

FCC RADIO TEST REPORT

FCC ID	: A4RGKV4X
Equipment	: Phone
Model Name	: GKV4X
Applicant	: Google LLC 1600 Amphitheatre Parkway, Mountain View, California, 94043 USA
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Jul. 11, 2023 and testing was performed from Jul. 21, 2023 to Dec. 11, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL : 886-3-327-0868	
FAX : 886-3-327-0855	
Report Template No.: BU5-FR15CWLAC MA Version	2.4

Page Number: 1 of 26Issue Date: Dec. 12, 2023Report Version: 01

Table of Contents

Hi	listory of this test report3				
Su	immary	y of Test Result	.4		
1	Gener	al Description	.5		
	1.1 1.2	Product Feature of Equipment Under Test Modification of EUT			
	1.3	Testing Location			
	1.4	Applicable Standards			
2		Configuration of Equipment Under Test			
	2.1	Carrier Frequency and Channel	.8		
	2.2	Test Mode			
	2.3	Connection Diagram of Test System	11		
	2.4	Support Unit used in test configuration and system	12		
	2.5	EUT Operation Test Setup	12		
	2.6	Measurement Results Explanation Example	12		
3	Test F	Result	13		
	3.1	6dB and 99% Bandwidth Measurement	13		
	3.2	Output Power Measurement	14		
	3.3	Power Spectral Density Measurement	15		
	3.4	Conducted Band Edges and Spurious Emission Measurement	16		
	3.5	Radiated Band Edges and Spurious Emission Measurement	17		
	3.6	AC Conducted Emission Measurement	21		
	3.7	Antenna Requirements	23		
4	List of	f Measuring Equipment	24		
5	Measu	urement Uncertainty	26		
Ap	pendix	A. Conducted Test Results			
Ap	pendix	k B. AC Conducted Emission Test Result			
Ap	pendix	c C. Radiated Spurious Emission			
Ap	Appendix D. Radiated Spurious Emission Plots				
Ap	pendix	k E. Duty Cycle Plots			

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR380307C	01	Initial issue of report	Dec. 12, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)	Power Output Measurement	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
2.4	Conducted Band Edges		Pass	-
3.4	15.247(d)	Conducted Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	1.54 dB under the limit at 2489.42 MHz
3.6	15.207	AC Conducted Emission	Pass	20.49 dB under the limit at 0.51 MHz
3.7	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: William Chen Report Producer: Lucy Wu

^{2.} The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

General Specs

GSM/WCDMA/LTE/5G NR, Bluetooth, BLE, BLE channel sounding, Wi-Fi 2.4GHz 802.11b/g/n/ac/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, Wi-Fi 6GHz 802.11a/ax, NFC, WPC Rx and GNSS Rx.

Antenna Type

WLAN: <Ant. 4>: ILA Antenna <Ant. 3>: IFA Antenna

EUT Information List		
S/N	Performed Test Item	
36151JEKB12371	RF Conducted Measurement	
38011JEKB00050	Padiated Spurious Emission	
36151JEKB12241	Radiated Spurious Emission	
38011JEKB00085	Conducted Emission	

Antenna information			
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	Ant. 4: -0.7 Ant. 3: -1.2	

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.1.1 Antenna Directional Gain

Follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)ii)

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows:

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

 G_{ANT} is set equal to the gain of the antenna having the highest gain.

For PSD measurements, the directional gain calculation.

$$DirectionalGain = 10 \cdot \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^{2}}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream;

 N_{SS} = the number of independent spatial streams of data;

 N_{ANT} = the total number of antennas

 $g_{j,k} = 10^{G_k/20}$ if the *k*th antenna is being fed by spatial stream *j*, or zero if it is not; G_k is the gain in dBi of the kth antenna.

As minimum N_{SS} =1 is supported by EUT, the formula can be simplified as:

Directional gain = $10^{10} \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2 / N_{ANT}] dBi$

Where G1, G2....GN denote single antenna gain.

The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant 4	Ant 3	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
2.4GHz	-0.70	-1.20	-0.70	2.06	0.00	0.00

Calculation example:

If a device has two antenna, G_{ANT3}= -0.70dBi; G_{ANT4}=-1.20dBi

Directional gain of power measurement = max(-0.70, -1.20) + 0 = -0.70 dBi

Directional gain of PSD derived from formula which is

10 x log { { [10^ (-0.70 dBi / 20) + 10^ (-1.20 dBi / 20)] ^ 2 } / 2 }

= 2.06 dBi

Power and PSD limit reduction = Composite gain - 6dBi, (min = 0)

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Test Site No.	Sporton Site No.	
Test Sile NO.	TH05-HY, CO07-HY, 03CH15-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and accessory (Adapter or Earphone), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X Plane with Adapter for <Ant. 4>, Z Plane with Adapter for <Ant. 3> and MIMO <Ant. 4+3> as worst plane.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	8	2447
	2	2417	9	2452
	3	2422	10	2457
2400-2483.5 MHz	4	2427	11	2462
	5	2432	12	2467
	6	2437	13	2472
	7	2442		

2.2 Test Mode

This device support 26/52/106/242-tone RU.

The PSD of partial RU is reduced to be smaller than full RU according to TCB workshop interim guidance Oct. 2022.

The 802.11ax mode is investigated among different tones, full resource units (RU), partial resource units. The partial RU has no higher power than full RU's, thus the full RU is chosen as main test configuration.

The 242-tone RU is covered by 20MHz channel.

The SISO mode conducted power is covered by MIMO mode per chain, so only the MIMO mode is tested.

The power for 802.11ac mode is smaller than 802.11n mode, so all other conducted andradiated test is covered by 802.11n mode.

The final test modes include the worst data rates for each modulation shown in the table below.

Single Antenna

Modulation	Data Rate
802.11b	1 Mbps

MIMO Antenna

Modulation	Data Rate
802.11g	6 Mbps
802.11n HT20	MCS0
802.11ac VHT20 (Covered by HT20)	MCS0
802.11ax HE20	MCS0

Remark: The conducted power level of each chain in MIMO mode is equal or higher than SISO mode.

	Test Cases							
AC Conducted Emission	Mode 1 :5G NR n5 Link + WLAN (2.4GHz) Link + Bluetooth on + NFC on + USB Cable 3 (Charging from Adapter 2) + Handset mode; Battery < 50%							
2. During th	ted Test Cases, the tests were performed with Adapter 1 and USB Cable 3. e preliminary test, both charging modes (Adapter mode and WPC Rx mode) were is determined that the adaptor mode is the worst case for official test.							

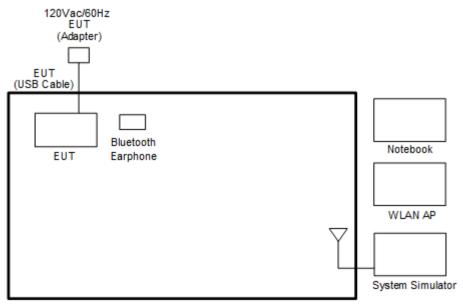
Ch. #	2400-2483.5 MHz
	802.11b
Low	01
Middle	06
High	11
	12
	13

<Ant. 4>

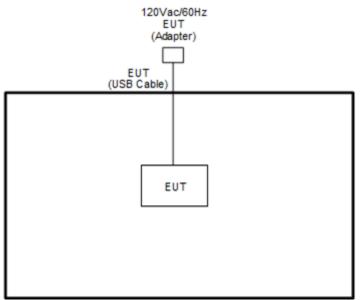
<Ant. 3>

Ch. #	2400-2483.5 MHz
	802.11b
Low	01
Middle	06
High	11
	12
	13

MIMO <Ant. 4+3>


Ch. #	2400-2483.5 MHz				
Cn. #	802.11g	802.11ax HE20			
Low	01	01			
Low	02	02			
Middle	06	06			
	10	10			
Llink	11	11			
High	12	12			
	13	13			

Remark: For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.



2.3 Connection Diagram of Test System

<WLAN Tx Mode>

2.4 Support Unit used in test configuration and syste

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Sony Ericsson	MW600	PY700A2029	N/A	N/A
3.	WLAN AP	Netgear	RAXE500	PY320300508	N/A	Unshielded, 1.8 m
4.	Notebook	DELL	Latitude E3400	PY320300320508		AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "cmd Ver.10.0.17134.1304" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

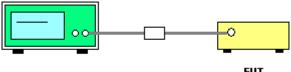
Offset(dB) = RF cable loss(dB) + attenuator factor(dB).= 4.2 + 10 = 14.2 (dB)

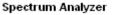
3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

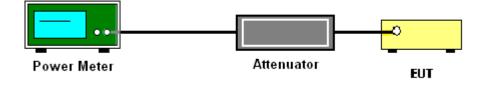
EUT

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna with directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

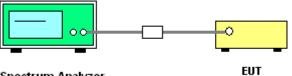
3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.3.3 Test Procedures

- The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD. 1.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- Set the maximum power setting and enable the EUT to transmit continuously. 3.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- Measure and record the results in the test report. 6.
- 7. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (c): Measure and add 10 $\log(N_{ANT})$ dB.

With this technique, spectrum measurements are performed at each output of the device, but rather than summing the spectra or the spectral peaks across the outputs, the quantity 10 log(NANT) dB is added to each spectrum value before comparing to the emission limit. The addition of 10 log(NANT) dB serves to apportion the emission limit among the NANT outputs so that each output is permitted to contribute no more than $1/N_{\mbox{\scriptsize ANT}}$ $^{\mbox{th}}$ of the PSD limit .

3.3.4 Test Setup

Spectrum Analyzer

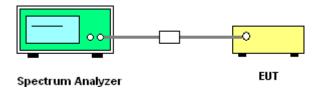
3.3.5 Test Result of Power Spectral Density

TEL : 886-3-327-0868	Page Number	: 15 of 26
FAX : 886-3-327-0855	Issue Date	: Dec. 12, 2023
Report Template No.: BU5-FR15CWLAC MA Version 2.4	Report Version	: 01

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement.


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

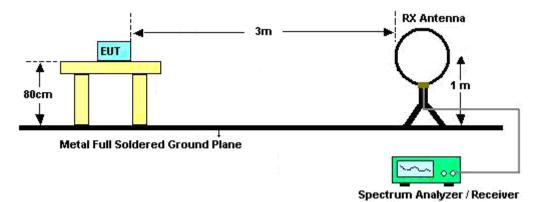
3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".

FCC RADIO TEST REPORT

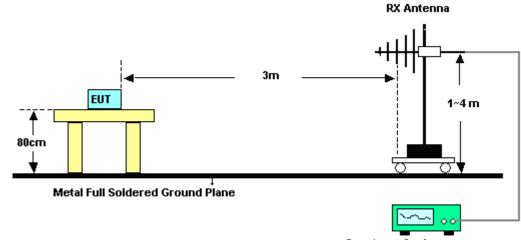

- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3 MHz for $f \geq$ 1 GHz for peak measurement.

For average measurement:

- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

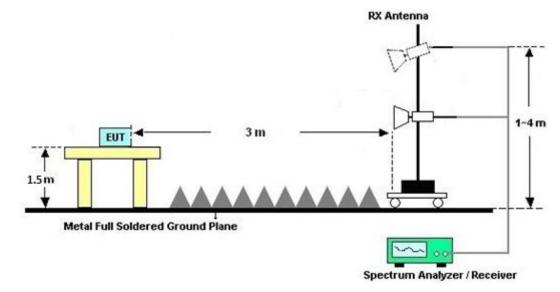
3.5.4 Test Setup

For radiated emissions below 30MHz



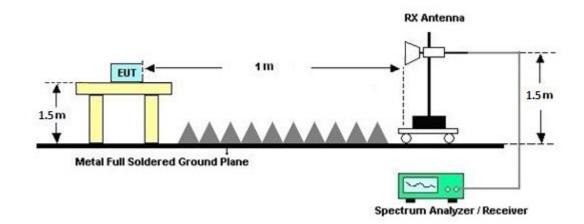
 TEL: 886-3-327-0868
 Page Number
 : 18 of 26

 FAX: 886-3-327-0855
 Issue Date
 : Dec. 12, 2023


 Report Template No.: BU5-FR15CWLAC MA Version 2.4
 Report Version
 : 01

For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver


For radiated test from 1GHz to 18GHz

TEL : 886-3-327-0868	Page Number	: 19 of 26
FAX : 886-3-327-0855	Issue Date	: Dec. 12, 2023
Report Template No.: BU5-FR15CWLAC MA Version 2.4	Report Version	: 01

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

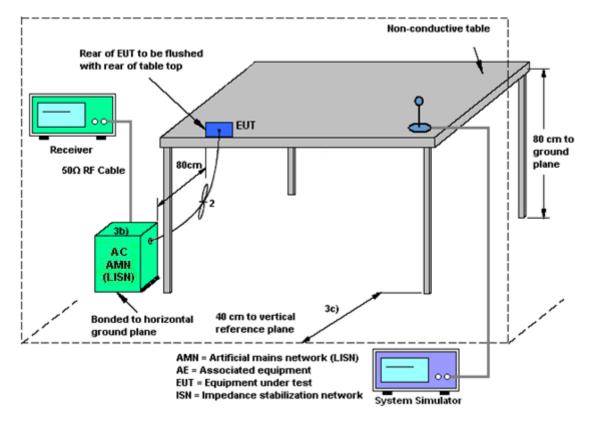
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9kHz~30 MHz	Feb. 28, 2023	Aug. 02, 2023~ Dec. 07, 2023	Feb. 27, 2024	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N- 06	41912 & 05	30MHz~1GHz	Feb. 05, 2023	Aug. 02, 2023~ Dec. 07, 2023	Feb. 04, 2024	Radiation (03CH15-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1212	1GHz~18GHz	Mar. 23, 2023	Aug. 02, 2023~ Dec. 07, 2023	Mar. 22, 2024	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00993	18GHz~40GHz	Nov. 24, 2022	Aug. 02, 2023~ Nov. 22, 2023	Nov. 23, 2023	Radiation (03CH15-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00991	18GHz~40GHz	Jun. 01, 2023	Nov. 23, 2023~ Dec. 07, 2023	May 31, 2024	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 26, 2022	Aug. 02, 2023~ Dec. 07, 2023	Dec. 25, 2023	Radiation (03CH15-HY)
Preamplifier	EMEC	EM01G18G	060837	1GHz~18GHz	Feb. 16, 2023	Aug. 02, 2023~ Dec. 07, 2023	Feb. 15, 2024	Radiation (03CH15-HY)
Preamplifier	EM Electronics	EM01G18G	060802	1GHz~18GHz	Mar. 03, 2023	Aug. 02, 2023~ Dec. 07, 2023	Mar. 02, 2024	Radiation (03CH15-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Aug. 02, 2023~ Dec. 07, 2023	Jun. 26, 2024	Radiation (03CH15-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY53290045	20MHz~8.4GHz	Apr. 25, 2023	Aug. 02, 2023~ Dec. 07, 2023	Apr. 24, 2024	Radiation (03CH15-HY
Spectrum Analyzer	Keysight	N9010A	MY54200485	10Hz~44GHz	Mar. 20, 2023	Aug. 02, 2023~ Dec. 07, 2023	Mar. 19, 2024	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Aug. 02, 2023~ Dec. 07, 2023	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Aug. 02, 2023~ Dec. 07, 2023	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24(k5)	RK-000451	N/A	N/A	Aug. 02, 2023~ Dec. 07, 2023	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104, 102E	MY582185/4,5 19228/2,80395 0/2	N/A	Jun. 13, 2023	Aug. 02, 2023~ Dec. 07, 2023	Jun. 12, 2024	Radiation (03CH15-HY)
Filter	Wainwright	WLJ4-1000-153 0-6000-40ST	SN4	1.53GHz Low Pass Filter	Jun. 14, 2023	Aug. 02, 2023~ Dec. 07, 2023	Jun. 13, 2024	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-2700- 3000-18000-60 ST	SN4	3GHz High Pass Filter	Jun. 14, 2023	Aug. 02, 2023~ Dec. 07, 2023	Jun. 13, 2024	Radiation (03CH15-HY)
Hygrometer	TECPEL	DTM-302	SN4	N/A	Jul. 26, 2023	Aug. 02, 2023~ Dec. 07, 2023	Jul. 25, 2024	Radiation (03CH15-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	Jul. 21, 2023~ Nov. 06, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Nov. 07, 2023~ Dec. 11, 2023	Nov. 06, 2024	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 13, 2022	Jul. 21, 2023~ Dec. 11, 2023	Dec. 12, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101565	10Hz ~ 40GHz	Dec. 26, 2022	Jul. 21, 2023~ Dec. 11, 2023	Dec. 25, 2023	Conducted (TH05-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Sep. 28, 2023	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 28, 2023	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Nov. 01, 2022	Sep. 28, 2023	Oct. 31, 2023	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 15, 2023	Sep. 28, 2023	Mar. 14, 2024	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 05, 2023	Sep. 28, 2023	Mar. 04, 2024	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 13, 2023	Sep. 28, 2023	Mar. 12, 2024	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI7	100724	9kHz~7GHz	Feb. 24, 2023	Sep. 28, 2023	Feb. 23, 2024	Conduction (CO07-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.46 dB
of 95% (U = 2Uc(y))	3.40 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.3 dB
of 95% (U = 2Uc(y))	0.3 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.5 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.5 dB
of 95% (U = 2Uc(y))	5.5 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.4 dB
of 95% (U = 2Uc(y))	5.4 dB

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Henry Ke / Hank Hsu/Junyu Jhou	Temperature:	21~25	°C
Test Date:	2023/7/21~2023/12/11	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band Single Antenna													
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	99% Осси (MI	•	6dB (MI	BW Hz)	6dB BW Limit (MHz)	Pass/Fail				
					Ant4	Ant3	Ant4	Ant3						
11b	1Mbps	1	1	2412	13.04	13.14	8.60	8.10	0.50	Pass				
11b	1Mbps	1	6	2437	13.14	13.14	8.60	8.06	0.50	Pass				
11b	1Mbps	1	11	2462	13.14	13.09	8.58	8.08	0.50	Pass				
11b	1Mbps	1	12	2467	13.09	13.04	8.10	8.08	0.50	Pass				
11b	1Mbps	1	13	2472	12.99	13.04	8.08	8.58	0.50	Pass				

	2.4GHz Band MIMO														
Mod.	. Data Rate NTX		CH.	Freq. (MHz)	99% Осси (MI	upied BW Hz)	•	BW Hz)	6dB BW Limit (MHz)	Pass/Fail					
					Ant4	Ant3	Ant4	Ant3							
11g	6Mbps	2	1	2412	17.08	16.98	16.38	16.38	0.50	Pass					
11g	6Mbps	2	6	2437	17.43	17.03	16.40	16.40	0.50	Pass					
11g	6Mbps	2	11	2462	17.13	16.83	16.40	16.38	0.50	Pass					
11g	6Mbps	2	12	2467	17.08	16.78	16.36	16.38	0.50	Pass					
11g	6Mbps	2	13	2472	16.98	16.83	16.38	16.38	0.50	Pass					
HT20	MCS0	2	1	2412	18.13	18.03	17.60	17.64	0.50	Pass					
HT20	MCS0	2	6	2437	21.13	18.23	17.58	17.64	0.50	Pass					
HT20	MCS0	2	11	2462	18.23	17.88	17.66	17.62	0.50	Pass					
HT20	MCS0	2	12	2467	18.08	17.88	17.62	17.64	0.50	Pass					
HT20	MCS0	2	13	2472	18.18	17.93	17.22	17.64	0.50	Pass					

Report Number : FR380307C

TEST RESULTS DATA Average Output Power

						2	.4GHz I	Band Sir	ngle Ant	enna						
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Average Conducted Power (dBm)			Conducted Power Limit (dBm)		DG (dBi)		EIRP Power (dBm)		EIRP Power Limit (dBm)		Pass /Fail
					Ant4	Ant3	SUM	Ant4	Ant3	Ant4	Ant3	Ant4	Ant3	Ant4	Ant3	
11b	1Mbps	1	1	2412	20.80	20.95		30.00	30.00	-0.70	-1.20	20.10	19.75	36.00	36.00	Pass
11b	1Mbps	1	6	2437	20.80	20.95		30.00	30.00	-0.70	-1.20	20.10	19.75	36.00	36.00	Pass
11b	1Mbps	1	11	2462	20.80	20.95		30.00	30.00	-0.70	-1.20	20.10	19.75	36.00	36.00	Pass
11b	1Mbps	1	12	2467	20.90	20.95		30.00	30.00	-0.70	-1.20	20.20	19.75	36.00	36.00	Pass
11b	1Mbps	1	13	2472	19.70	20.05		30.00	30.00	-0.70	-1.20	19.00	18.85	36.00	36.00	Pass
	2.4GHz Band MIMO															
Mod.	Data Rate	Nтx	CH.	Freq. (MHz)	' Power		Pov	ucted wer mit 3m)	D (dl	•		RP wer Bm)	Pov	RP wer mit 3m)	Pass /Fail	
					Ant4	Ant3	SUM	Ant4	Ant3	Ant4	Ant3	Ant4	Ant3	Ant4	Ant3	
11g	6Mbps	2	1	2412	17.80	17.65	20.74	30.	.00	-0.	70	20.	.04	36	.00	Pass
11g	6Mbps	2	2	2417	19.50	19.15	22.34	30.	.00	-0.	70	21	.64	36	.00	Pass
11g	6Mbps	2	6	2437	20.70	19.95	23.35	30.	.00	-0.	-	22.	.65	36	.00	Pass
11g	6Mbps	2	10	2457	18.20	17.85	21.04	30.	.00	-0.	70	20.	.34	36	.00	Pass
11g	6Mbps	2	11	2462	16.10	16.45	19.29	30.	.00	-0.	70	18.	.59	36	.00	Pass
11g	6Mbps	2	12	2467	14.40	14.95	17.69	30.	.00	-0.	70	16	.99	36	.00	Pass
11g	6Mbps	2	13	2472	4.70	4.65	7.69	30.	.00	-0.	70	6.9	99	36	.00	Pass
HT20	MCS0	2	1	2412	17.50	17.75	20.64	30.	.00	-0.		19.	.94	36	.00	Pass
HT20	MCS0	2	2	2417	17.90	17.45	20.69	30.	.00	-0.	70	19.	.99	36	.00	Pass
HT20	MCS0	2	6	2437	20.90	20.05	23.51	30.		-0.	-	22			.00	Pass
HT20	MCS0	2	10	2457	16.80	16.25	19.54		.00	-0.	-	18	-		.00	Pass
HT20	MCS0	2	11	2462	15.40	15.85	18.64		.00	-0.	-	17.	-		.00	Pass
HT20	MCS0	2	12	2467	14.50	15.45	18.01		.00	-0.	-	17.			.00	Pass
HT20	MCS0	2	13	2472	6.20	6.15	9.19		.00	-0.	-	8.4	-		.00	Pass
VHT20	MCS0	2	1	2412	17.50	17.75	20.64		.00	-0.	-	19	-		.00	Pass
VHT20	MCS0	2	2	2417	17.90	17.45	20.69	30	.00	-0.		19.	.99	36	.00	Pass
VHT20	MCS0	2	6	2437	20.90	20.05	23.51	30.	.00	-0.	70	22.	.81	36	.00	Pass
VHT20		2	10	2457	16.80	16.25	19.54	30.	.00	-0.	70	18.84		36.00		Pass
VHT20	MCS0	2	11	2462	15.40	15.85	18.64	30.	.00	-0.	70	17.	.94	36	.00	Pass
VHT20	MCS0	2	12	2467	14.50	15.45	18.01	30	.00	-0.	-	17.	-	36	.00	Pass
VHT20	MCS0	2	13	2472	6.20	6.15	9.19	30	.00	-0.	70	8.4	49	36	.00	Pass

Note: Measured power (dBm) has offset with cable loss.

h

<u>TEST RESULTS DATA</u> Peak Power Spectral Density

	2.4GHz Band Single Antenna													
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)		Peak PSD (dBm/3kHz)			G Bi)	Lii	: PSD mit /3kHz)	Pass/Fail		
	Nale			(101112)	Ant4	Ant3	Worse + 3.01	Ant4	Ant3	Ant4	Ant3			
11b	1Mbps	1	1	2412	-1.83	-1.97		-0.70	-1.20	8.00	8.00	Pass		
11b	1Mbps	1	6	2437	-1.96	-1.84		-0.70	-1.20	8.00	8.00	Pass		
11b	1Mbps	1	11	2462	-1.87	-1.91		-0.70	-1.20	8.00	8.00	Pass		
11b	1Mbps	1	12	2467	-1.91	-1.81		-0.70	-1.20	8.00	8.00	Pass		
11b	1Mbps	1	13	2472	-2.78	-2.47		-0.70	-1.20	8.00	8.00	Pass		

	2.4GHz Band MIMO														
Mod.	Mod. Data Rate NTX	Ntx	CH.	Freq. (MHz)		Peak PSD (dBm/3kHz)		D (dl	-	Lir	PSD nit 3kHz)	Pass/Fail			
			(101112)	Ant4	Ant3	Worse + 3.01	Ant4	Ant3	Ant4	Ant3					
11g	6Mbps	2	1	2412	-7.29	-7.72	-4.28	2.0)6	8.0	00	Pass			
11g	6Mbps	2	2	2417	-6.12	-6.17	-3.11	2.0)6	8.0	00	Pass			
11g	6Mbps	2	6	2437	-4.72	-6.07	-1.71	2.0)6	8.00		Pass			
11g	6Mbps	2	10	2457	-6.76	-7.80	-3.75	2.06		8.00		Pass			
11g	6Mbps	2	11	2462	-9.63	-8.36	-5.35	2.0)6	8.00		Pass			
11g	6Mbps	2	12	2467	-10.95	-10.55	-7.54	2.0	2.06 8.00		00	Pass			
11g	6Mbps	2	13	2472	-20.43	-20.94	-17.42	2.0)6	8.0	00	Pass			
HT20	MCS0	2	1	2412	-8.98	-8.22	-5.21	2.0)6	8.0	00	Pass			
HT20	MCS0	2	2	2417	-8.88	-7.66	-4.65	2.0)6	8.0	00	Pass			
HT20	MCS0	2	6	2437	-4.00	-5.52	-0.99	2.0)6	8.0	00	Pass			
HT20	MCS0	2	10	2457	-9.84	-9.20	-6.19	2.0)6	8.0	00	Pass			
HT20	MCS0	2	11	2462	-11.54	-9.63	-6.62	2.0)6	8.0	00	Pass			
HT20	MCS0	2	12	2467	-12.11	-10.59	-7.58	2.0	2.06		2.06 8.00		Pass		
HT20	MCS0	2	13	2472	-20.27	-19.57	-16.56	2.0)6	8.0	00	Pass			

Note: Measured power density (dBm) has offset with cable loss.

Report Number : FR380307C

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band MIMO													
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	RU Config.	99% Осси (MI	upied BW Hz)		BW Hz)	6dB BW Limit (MHz)	Pass/Fail			
						Ant4	Ant3	Ant4	Ant3					
HE20	MCS0	2	1	2412	Full	19.13	19.13	19.03	18.98	0.50	Pass			
HE20	MCS0	2	6	2437	Full	19.38	19.28	18.95	19.00	0.50	Pass			
HE20	MCS0	2	11	2462	Full	19.18	19.08	19.03	19.00	0.50	Pass			
HE20	MCS0	2	12	2467	Full	19.13	19.08	19.13	19.00	0.50	Pass			
HE20	MCS0	2	13	2472	Full	19.03	19.13	19.00	18.93	0.50	Pass			

Report Number : FR380307C

TEST RESULTS DATA Average Output Power

2.4GHz Band MIMO													
Mod.	Rate	Ντx	CH.	Freq. (MHz)	RU Config.	Average Conducted Power (dBm)		Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
11500						Ant4	Ant3	SUM	Ant4 Ant3	Ant4 Ant3	3 Ant4 Ant3	Ant4 Ant3	
HE20	MCS0	2	1	2412	Full	17.60	17.85	20.74	30.00	-0.70	20.04	36.00	Pass
HE20	MCS0	2	1	2412	26/0	9.50	9.15	12.34	30.00	-0.70	11.64	36.00	Pass
HE20	MCS0	2	1	2412	52/37	10.90	11.05	13.99	30.00	-0.70	13.29	36.00	Pass
HE20	MCS0	2	1	2412	106/53	14.20	14.25	17.24	30.00	-0.70	16.54	36.00	Pass
HE20	MCS0	2	2	2417	Full	18.00	17.55	20.79	30.00	-0.70	20.09	36.00	Pass
HE20	MCS0	2	2	2417	26/0	10.00	8.15	12.18	30.00	-0.70	11.48	36.00	Pass
HE20	MCS0	2	2	2417	52/37	10.90	9.65	13.33	30.00	-0.70	12.63	36.00	Pass
HE20	MCS0	2	2	2417	106/53	13.80	12.75	16.32	30.00	-0.70	15.62	36.00	Pass
HE20	MCS0	2	6	2437	Full	21.00	20.15	23.61	30.00	-0.70	22.91	36.00	Pass
HE20	MCS0	2	6	2437	26/4	12.00	11.85	14.94	30.00	-0.70	14.24	36.00	Pass
HE20	MCS0	2	6	2437	52/38	13.70	13.75	16.74	30.00	-0.70	16.04	36.00	Pass
HE20	MCS0	2	6	2437	106/53	17.20	17.15	20.19	30.00	-0.70	19.49	36.00	Pass
HE20	MCS0	2	10	2457	Full	16.90	16.35	19.64	30.00	-0.70	18.94	36.00	Pass
HE20	MCS0	2	10	2457	26/8	8.80	8.95	11.89	30.00	-0.70	11.19	36.00	Pass
HE20	MCS0	2	10	2457	52/40	10.60	10.55	13.59	30.00	-0.70	12.89	36.00	Pass
HE20	MCS0	2	10	2457	106/54	13.50	13.45	16.49	30.00	-0.70	15.79	36.00	Pass
HE20	MCS0	2	11	2462	Full	15.50	15.95	18.74	30.00	-0.70	18.04	36.00	Pass
HE20	MCS0	2	11	2462	26/8	7.90	8.45	11.19	30.00	-0.70	10.49	36.00	Pass
HE20	MCS0	2	11	2462	52/40	9.40	10.35	12.91	30.00	-0.70	12.21	36.00	Pass
HE20	MCS0	2	11	2462	106/54	12.20	13.25	15.77	30.00	-0.70	15.07	36.00	Pass
HE20	MCS0	2	12	2467	Full	14.60	15.45	18.06	30.00	-0.70	17.36	36.00	Pass
HE20	MCS0	2	12	2467	26/8	6.00	6.55	9.29	30.00	-0.70	8.59	36.00	Pass
HE20	MCS0	2	12	2467	52/40	8.10	8.95	11.56	30.00	-0.70	10.86	36.00	Pass
HE20	MCS0	2	12	2467	106/54	11.00	11.95	14.51	30.00	-0.70	13.81	36.00	Pass
HE20	MCS0	2	13	2472	Full	6.30	6.25	9.29	30.00	-0.70	8.59	36.00	Pass
HE20	MCS0	2	13	2472	26/8	-1.30	-1.25	1.74	30.00	-0.70	1.04	36.00	Pass
HE20	MCS0	2	13	2472	52/40	0.80	0.85	3.84	30.00	-0.70	3.14	36.00	Pass
HE20	MCS0	2	13	2472	106/54	3.90	3.95	6.94	30.00	-0.70	6.24	36.00	Pass

Note: Measured power (dBm) has offset with cable loss.

TEST RESULTS DATA Peak Power Spectral Density

2.4GHz Band MIMO													
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	RU Config.		Peak PSD (dBm/3kHz)		DG (dBi)		Peak PSD Limit (dBm/3kHz)		Pass/Fail
						Ant4	Ant3	Worse + 3.01	Ant4	Ant3	Ant4	Ant3	
HE20	MCS0	2	1	2412	Full	-8.96	-8.85	-5.84	2.06		8.00		Pass
HE20	MCS0	2	1	2412	26/0	-9.00	-8.90	-5.89	2.06		8.00		Pass
HE20	MCS0	2	1	2412	52/37	-9.10	-8.88	-5.87	2.06		8.00		Pass
HE20	MCS0	2	1	2412	106/53	-9.04	-8.92	-5.91	2.06		8.00		Pass
HE20	MCS0	2	2	2417	Full	-9.17	-9.39	-6.16	2.06		8.00		Pass
HE20	MCS0	2	2	2417	26/0	-9.30	-9.48	-6.29	2.06		8.00		Pass
HE20	MCS0	2	2	2417	52/37	-9.25	-10.77	-6.24	2.06		8.00		Pass
HE20	MCS0	2	2	2417	106/53	-9.47	-10.75	-6.46	2.06		8.00		Pass
HE20	MCS0	2	6	2437	Full	-6.38	-7.26	-3.37	2.06		8.00		Pass
HE20	MCS0	2	6	2437	26/4	-6.42	-7.35	-3.41	2.06		8.00		Pass
HE20	MCS0	2	6	2437	52/38	-6.59	-7.35	-3.58	2.06		8.00		Pass
HE20	MCS0	2	6	2437	106/53	-6.46	-7.30	-3.45	2.06		8.00		Pass
HE20	MCS0	2	10	2457	Full	-9.62	-9.81	-6.61	2.06		8.00		Pass
HE20	MCS0	2	10	2457	26/8	-9.74	-10.13	-6.73	2.06		8.00		Pass
HE20	MCS0	2	10	2457	52/40	-9.80	-9.95	-6.79	2.06		8.00		Pass
HE20	MCS0	2	10	2457	106/54	-9.74	-10.09	-6.73	2.06		8.00		Pass
HE20	MCS0	2	11	2462	Full	-10.70	-9.79	-6.78	2.06		8.00		Pass
HE20	MCS0	2	11	2462	26/8	-10.88	-9.85	-6.84	2.06		8.00		Pass
HE20	MCS0	2	11	2462	52/40	-10.82	-9.83	-6.82	2.06		8.00		Pass
HE20	MCS0	2	11	2462	106/54	-10.77	-9.85	-6.84	2.06		8.00		Pass
HE20	MCS0	2	12	2467	Full	-12.30	-11.23	-8.22	2.06		8.00		Pass
HE20	MCS0	2	12	2467	26/8	-12.57	-11.30	-8.29	2.06		8.00		Pass
HE20	MCS0	2	12	2467	52/40	-12.55	-11.31	-8.30	2.06		8.00		Pass
HE20	MCS0	2	12	2467	106/54	-12.48	-11.29	-8.28	2.06		8.00		Pass
HE20	MCS0	2	13	2472	Full	-19.32	-19.68	-16.31	2.06		8.00		Pass
HE20	MCS0	2	13	2472	26/8	-19.36	-19.69	-16.35	2.06		8.00		Pass
HE20	MCS0	2	13	2472	52/40	-19.48	-19.73	-16.47	2.06		8.00		Pass
HE20	MCS0	2	13	2472	106/54	-19.40	-19.71	-16.39	2.06		8.00		Pass

Note: Measured power density (dBm) has offset with cable loss.

6dB and 99% Occupied Bandwidth

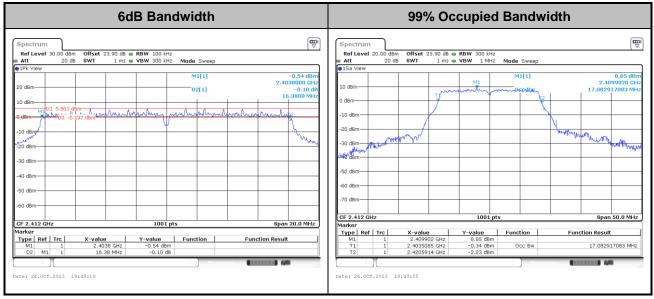
<Ant. 4>

<802.11b>

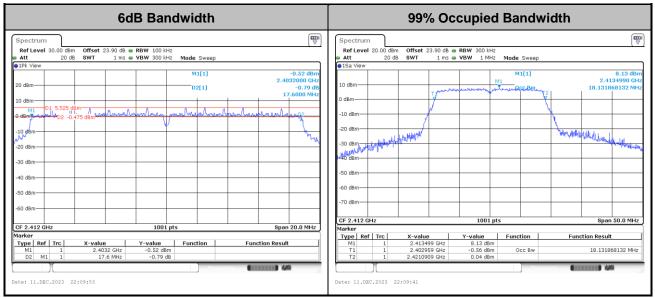
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

<Ant. 3>

<802.11b>



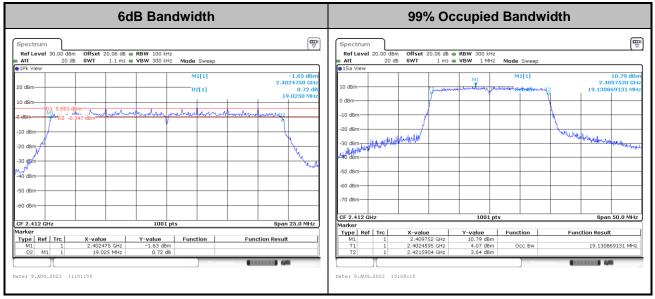
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.



MIMO <Ant. 4+3>

<802.11g>

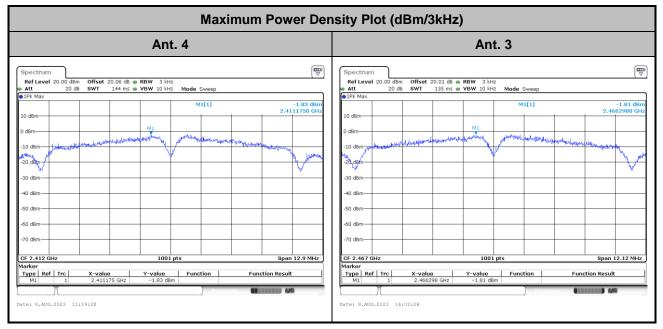
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.



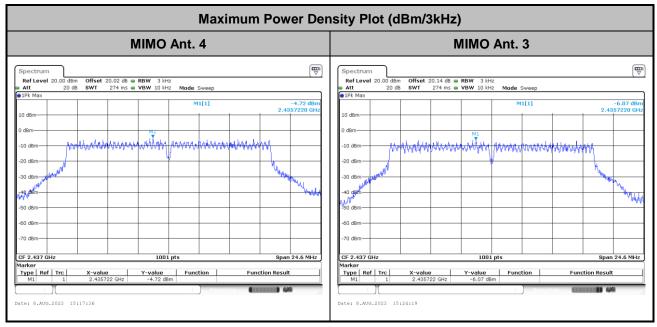
<802.11n HT20>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

<802.11ax HE20>

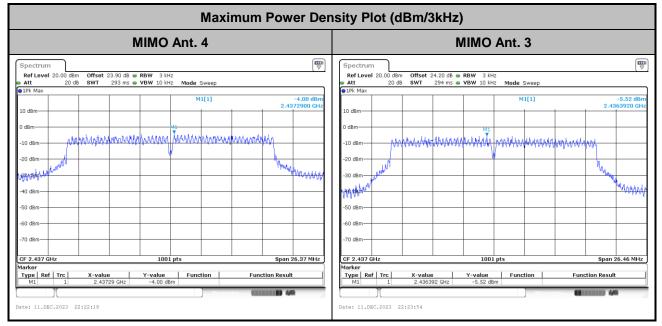


Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

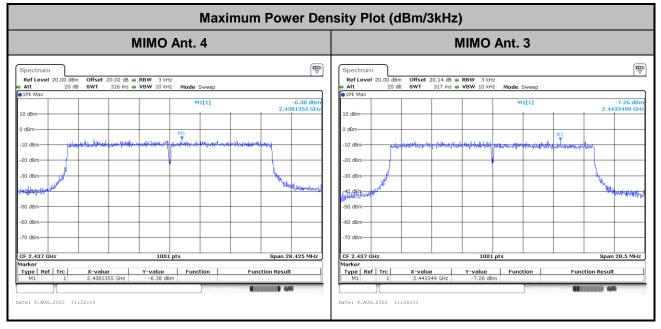


Power Spectral Density(dBm/3kHz)

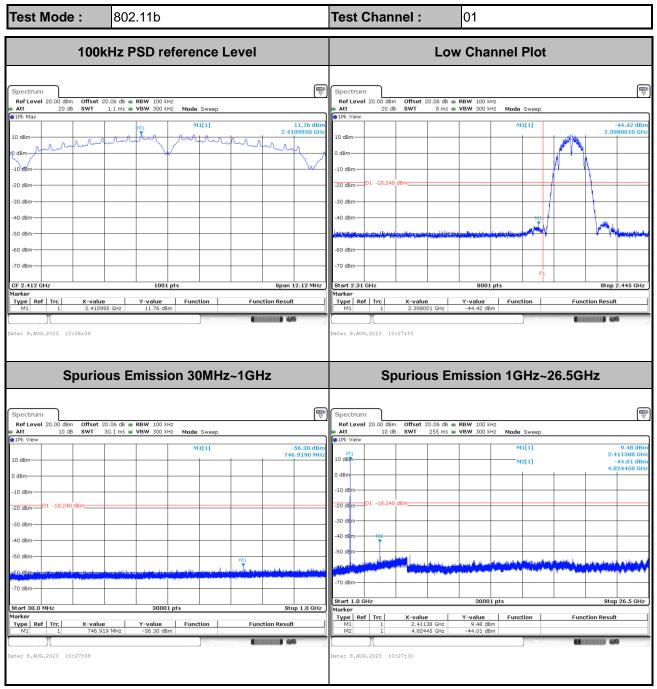
<802.11b>



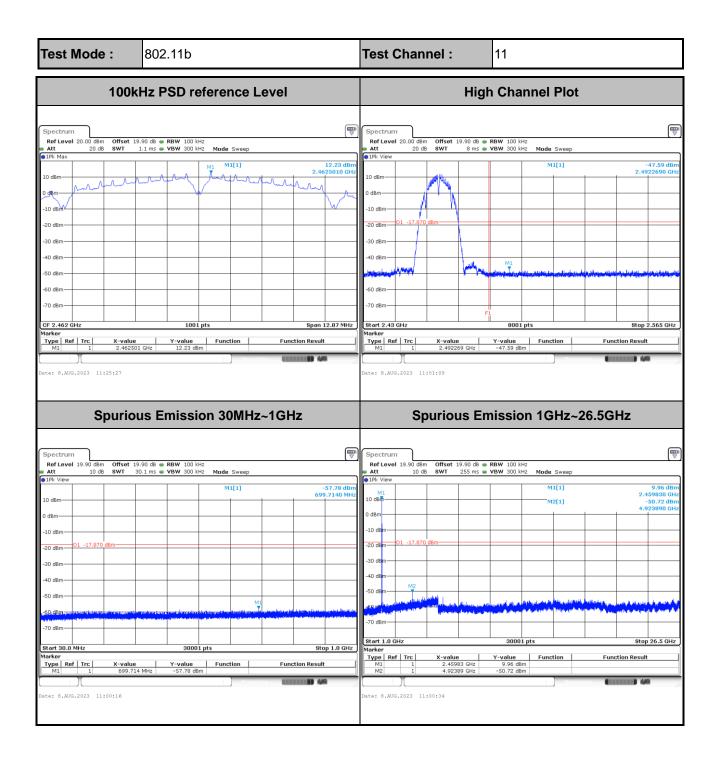
<802.11g>

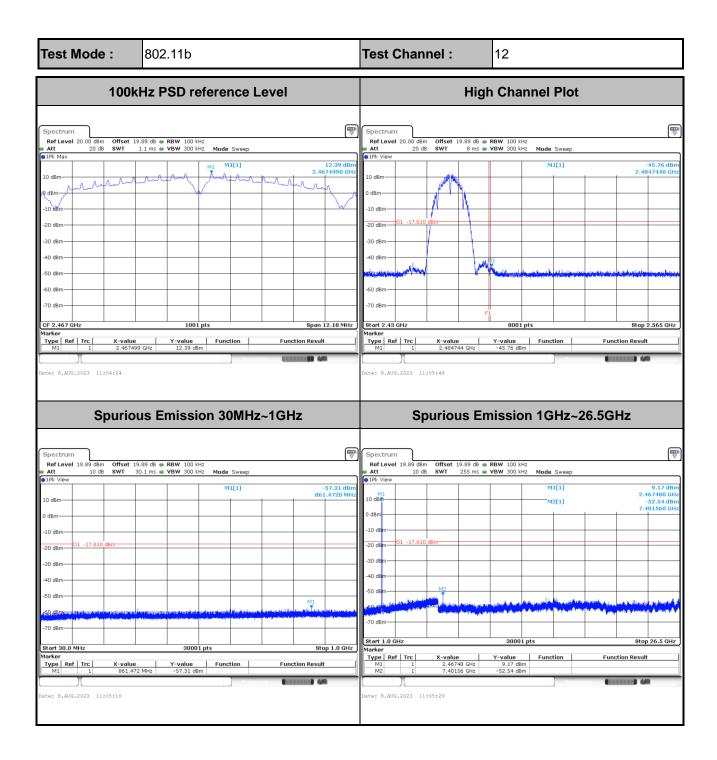


<802.11n HT20>

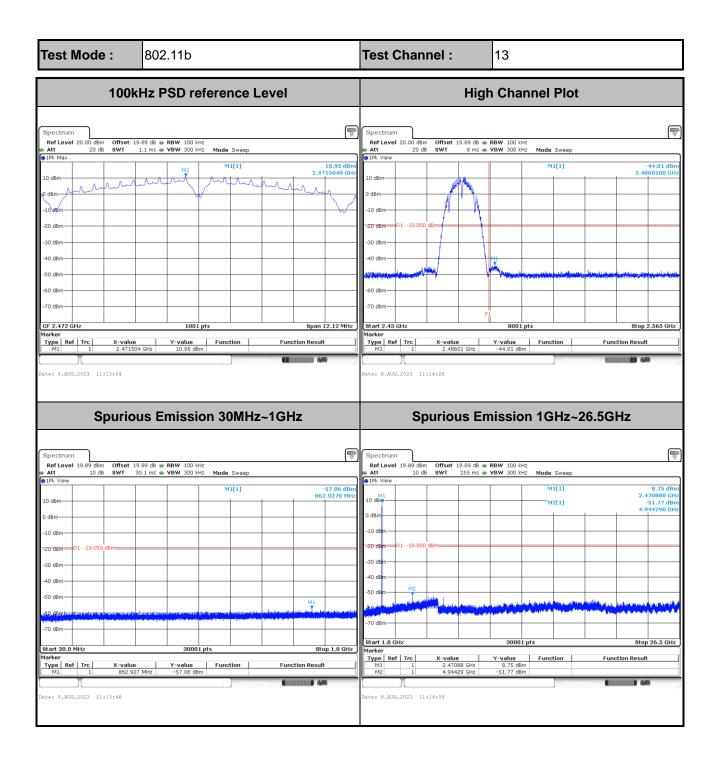

<802.11ax HE20>

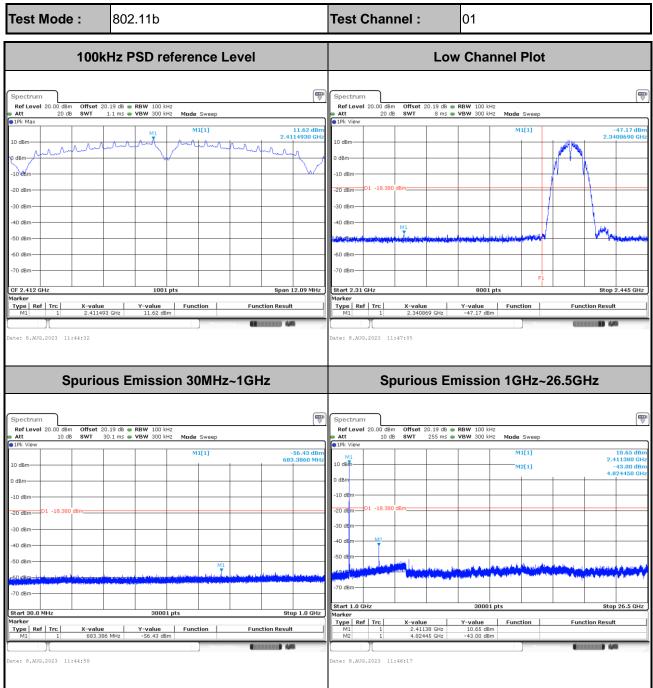
Band Edges and Spurious Emission

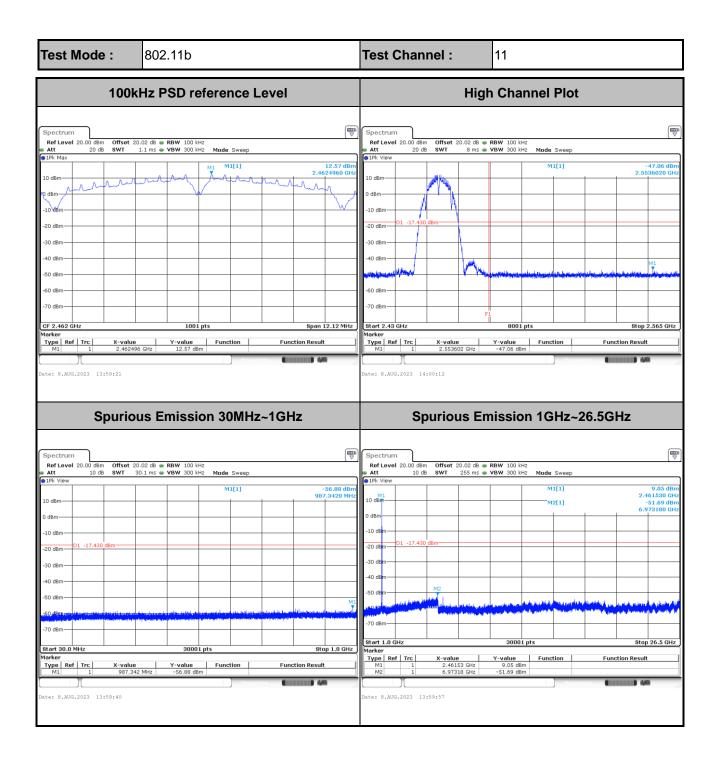

Number of TX = 1, Ant. 4 (Measured)

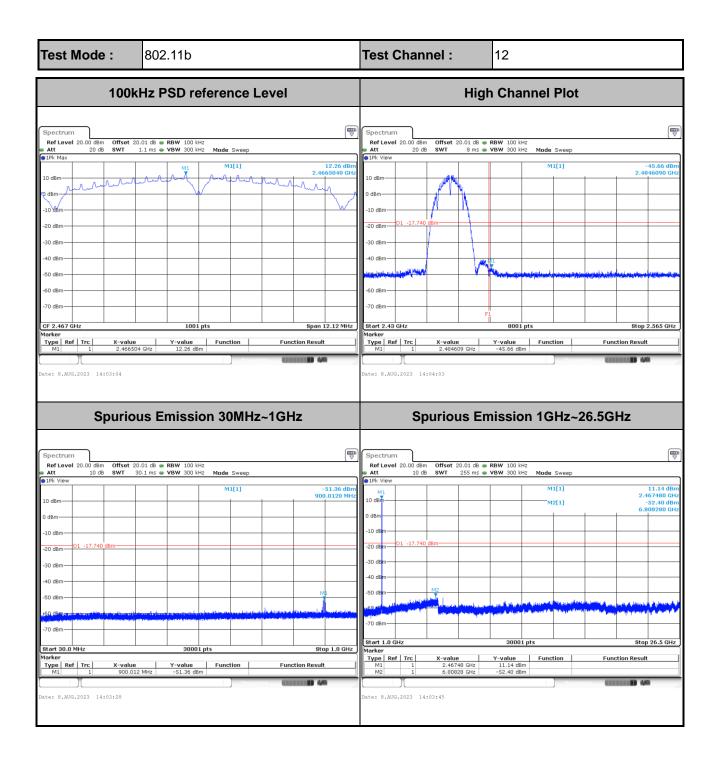


Test Mode :	802.11b	Test Channel :	06			
100k	Hz PSD reference Level	Mid Channel Plot				
Spectrum Ref Level 20.00 dBm Offset 20	0.02 dB = RBW 100 kHz 1.1 ms = VBW 300 kHz M1 11 2.4375010 GHz 4					
Spurio	us Emission 30MHz~1GHz	Spurious En	nission 1GHz~26.5GHz			
Spectrum Ref Level 20.00 dBm Offset 20	0.02 dB @ RBW 100 kHz 0.01 ms @ VBW 300 kHz Mode Sweep M1[1] -57.21 dBn 744.3000 MHz Image: State of the	Spectrum Ref Level 20.00 dBm Offset 20.02 dB + Att 10 dB 9 1Pk View 10 10 dBm 0 0 dBm 0 -20 dBm - -30 dBm - -30 dBm - -50 dBm - -70 dBm - -70 dBm - Stert 1.0 GHz -	(m)			

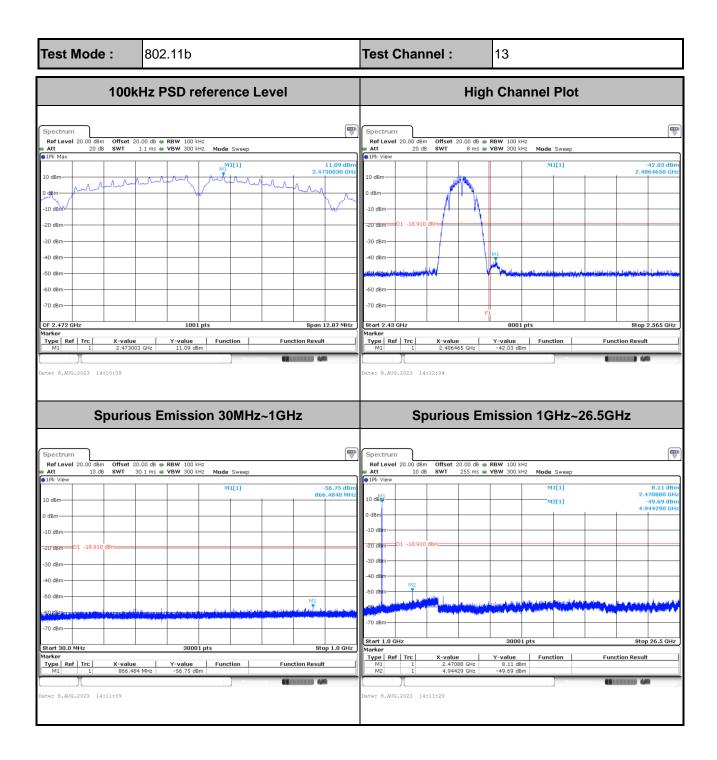


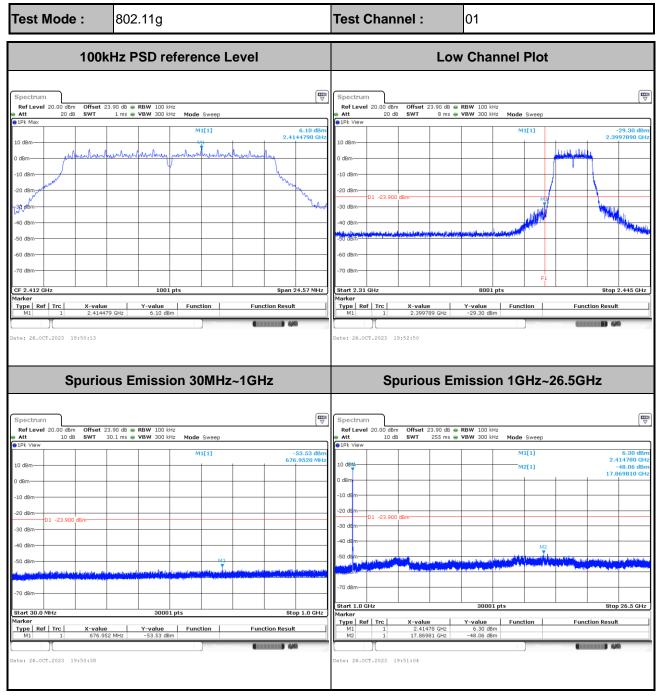


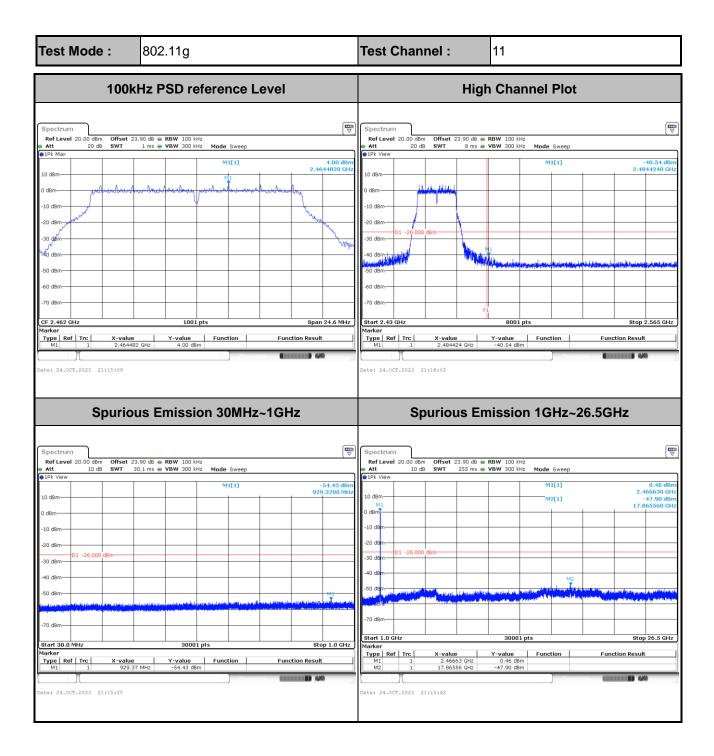

Number of TX = 1, Ant. 3 (Measured)



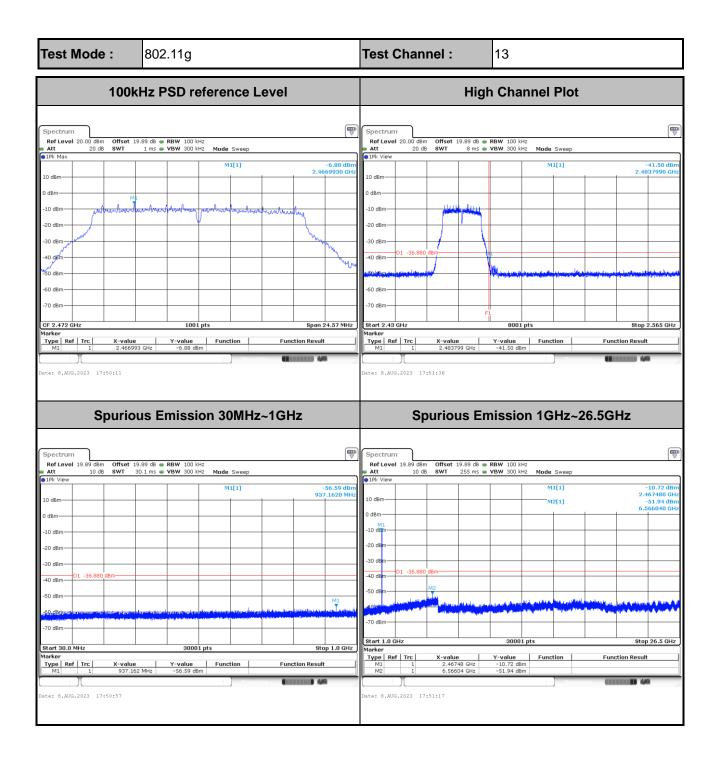
Test Mode :	802.11b	Test Channel : 06				
100	kHz PSD reference Level	Mid Channel Plot				
Att 20 dB SWT ● IPk Max 10 dBm 10 dBm 10,dBm -10,dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 dBm -70 dBm CF 2.437 GHz Marker Type Ref Trc X-valk	1001 pts Span 12	9.46 dBm 74960 CH2				
Spurio	ous Emission 30MHz~1GHz	Spurious Emission 1GHz~26.5GHz				
Spectrum Ref Level 20.00 dBm Offset # Att 10 dB SWT 10 dBm - - 10 dBm - - -10 dBm - - -20 dBm 01 -20.540 dBm - -30 dBm - - -50 dBm - - -70 dBm - - - - -	0000 0000 0000 <th>Spectrum Image: Constraint of the sector of th</th>	Spectrum Image: Constraint of the sector of th				

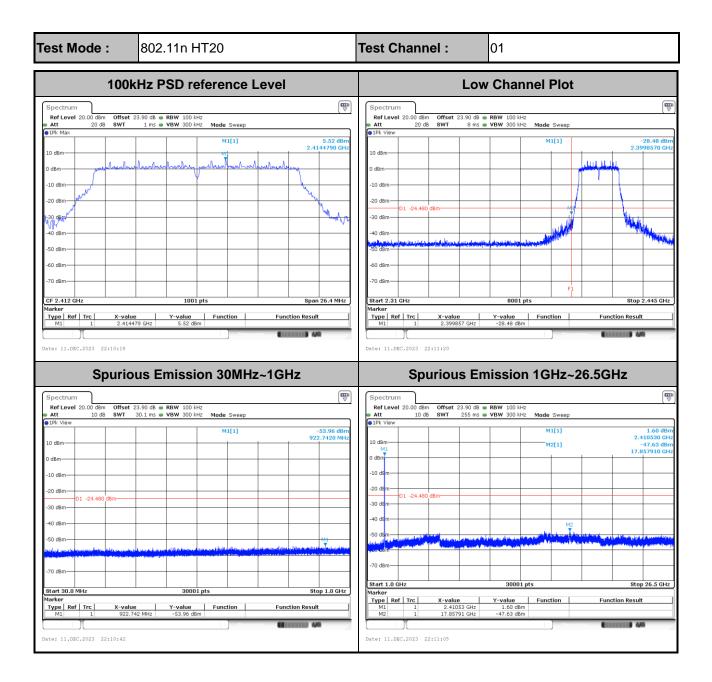




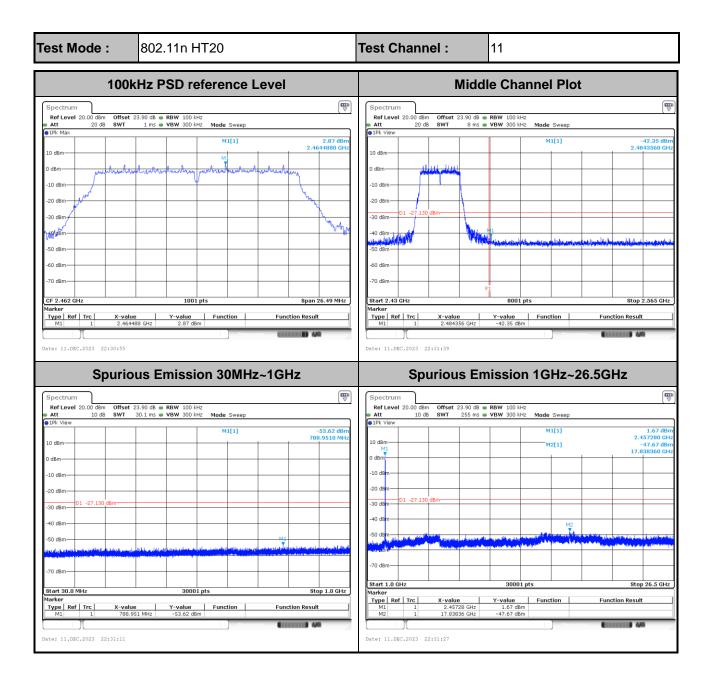

Number of TX = 2, Ant. 4 (Measured)

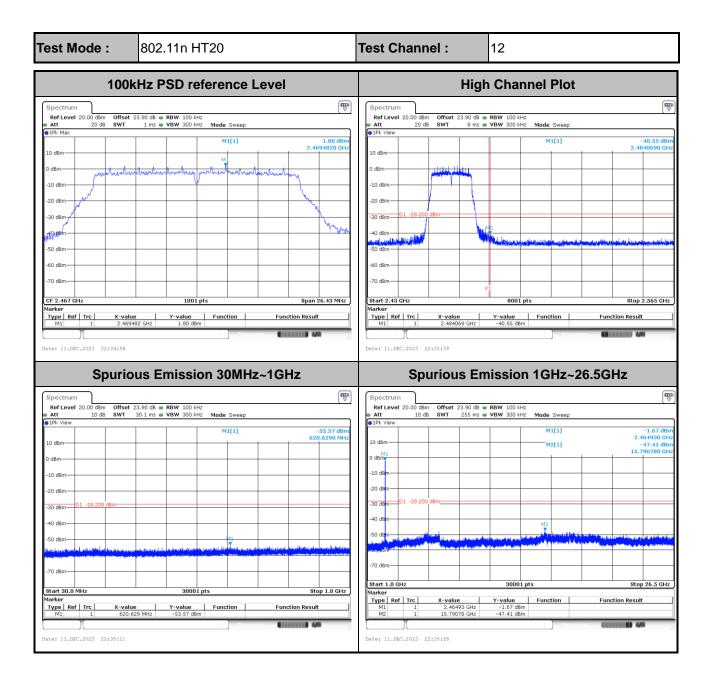
Test Mode :	802.11g	Test Channel : 06				
100	kHz PSD reference Level	Mid Channel Plot				
Att 20 dB SWT DPk Max D dBm D	Mi 2.43950 Jandan Markan Jana Markan Jana Jandan Markan Jana Markan Jana Jana Janaaaa Jana Ja					
Spurio	ous Emission 30MHz~1GHz	Spurious Emission 1GHz~26.5GHz				
Spectrum Ref Level 20.00 dBm Offset Att 10 dB SWT	20.02 dB • RBW 100 kHz 30.1 ms • VBW 300 kHz Mode Sweep	Spectrum Image: Constraint of the system of t				
10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dB	30001 pts 813.622	10 dBp M2[1] -51.02 dBn 0 dBm 6.673990 CH; -10 dBm - - -20.dBm - - -30 dBm - - -50 dBm M2 - -50 dBm - - -50 dBm M2 - -50 dBm - - -70 dBm - -				
Type Ref Trc X-valu	year Y-value Function Function Result 621 MHz -57.00 dBm Monocomposition Monocomposition	Type Ref Trc X-value Y-value Function Function Result M1 1 2:43603 GHz -51.93 dBm M2 1 6:67399 GHz -51.93 dBm M2 1 6:67399 GHz -51.93 dBm M2 M2 M2 M2 Date: 8.AUG.2023 15:22:20 M2				



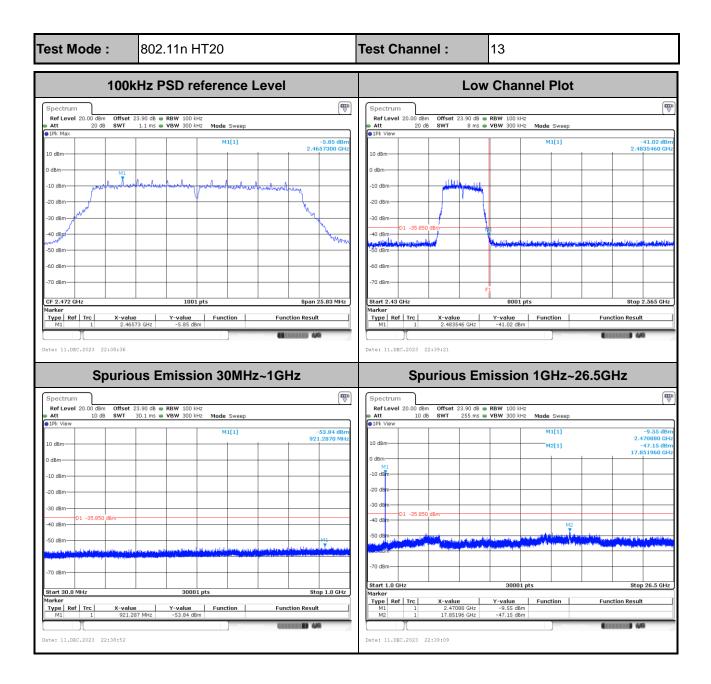


Test Mode :	802.11g		Test Channel :	12	
100	kHz PSD reference L	.evel	Higl	n Channel Plot	
Att 20 dB SWT 0 IPk Max 10 dBm 0 dBm	1001 pts	2.88 dBm 2.4695010 CH2 444444444444444444444444444444444444	Spectrum Rof Level 20.00 dBm Offset 19.09 dB + Att 20 dB SWT 8 ms + •IPk View 0 dBm 0 0 0 dBm 0 <td< th=""><th>VBW 300 kHz Mode Sweep</th><th></th></td<>	VBW 300 kHz Mode Sweep	
	ous Emission 30MHz	_		nission 1GHz~26.5G	Hz
Spectrum Ref Level 19.89 dBm Offset Att 10 dB SWT	19.89 dB e RBW 100 kHz 30.1 ms e VBW 300 kHz Mode Sweep		Spectrum Ref Level 19.89 dBm Offset 19.89 dB Att 10 dB SWT 255 ms	RBW 100 kHz VBW 300 kHz Mode Sweep	
10 dBm 10 dBm	will milii will milii will milii will milii will milii will milii will miliii will miliii will miliii will miliiii will miliiii will miliiii will miliiiiiiiii will miliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	-57.56 dBm 762.9240 MHz	10 dBm 10 dBm	1.89 dBm	1.89 dBm 2.463230 GHz - 53.69 dBm 6.613640 GHz
Type Ref Trc X-val	ue Y-value Function 924 MHz -57.56 dBm	Function Result	Mil 1 2.46323 GHz M2 1 6.61364 GHz Date: 8.AUG.2023 16:33:04	1.89 dBm -53.69 dBm	10000 499





Fest Mode :	802.11n HT20	Test Channel : 06				
100	0kHz PSD reference Level	High Channel Plot				
Att 20 dB SWT D dB SWT D dBm D dBm	M1[1] 10.81 dBr And Row New production for the whether the whe					
	ous Emission 30MHz~1GHz	Spurious Emission 1GHz~26.5GHz				
Spectrum Ref Level 20.00 dBm Offse Att 10 dB SWT	at 23.90 dB ● RBW 100 kHz 30.1 ms ● VBW 300 kHz Mode Sweep	Spectrum ▼ RefLevel 20.00 dBm Offset 23.90 dB ● RBW 100 kHz Att 10 dB SWT 255 ms ● VBW 300 kHz				
1Pk View 10 dBm 0 dBm	M1[1] -53.57 dBr 957.1760 MH	Image: Pick View M1[1] 7.25 dBr 10 dbp M1[1] 2.433400 GH 10 dbp M2[1] -45.86 dBr 17.844310 GH 17.844310 GH				
-10 dBm 01 -19.190 dBm		-10 dBm				
-50 dBm		-50 dSm Hold multiply and the second				
Start 30.0 MHz Marker Type Ref Trc X-va M1 1 95 Date: 11.0EC.2023 22:22:54	7.176 MHz -53.57 dBm	Marker Yupe Ref Trc X-value Y-value Function Function Result M1 1 2.43348 GHz 7.25 dBm				



Test Mode :	802.11ax HE20		Test Chann	el :	01 Full RU			
100kHz PSD reference Level			Low Channel Plot					
Att 20 dB SWT 1Pk Max 10 dBm		5.80 dBm 2.4145050 GHz	Spectrum Ref Lovel 20.00 dbm Att 20 dB I Dek View 10 dbm 10 dbm -10 dbm -20 dbm -20 dbm -30 dbm -40 dbm -50 dbm -70 dbm -70 dbm -70 dbm Date: 9.AUG.2023 10:11	m	W 100 kHz W 300 kHz Mode Sw M1[1 M1]]	M2	-32.04 dBm .3986920 GHz	
Spectrum		1GHz	Spectrum	Offset 20.06 dB • RE		z~26.5GHz		
Att 10 dB SWT • IPk View • SWT • ID dB • O dBm • O dBm • 10 dB • O dBm • O dBm • 20 dBm • O 1 -24.200 dBm • O dBm • 30 dBm • O 1 -24.200 dBm • O dBm • 50 dBm • O 1 -24.200 dBm • O dBm • 50 dBm • O 1 -24.200 dBm • O dBm • 70 dBm • O 1 -24.200 dBm • O 1 -24.200 dBm • 70 dBm • O 1 -24.200 dBm • O 0 0 MHz • 70 dBm • O 1 -24.200 dBm • O 1 -24.200 dBm • 70 dBm • O 1 -24.200 MHz • O 0 -20.20 • 0 Date: • O 1 -24.200 MHz	30.1 ms • VBW 300 kHz Mode Sweep	-57.42 dBm 868.0360 MHz 688.0360 MHz 688.036		SWT 255 ms VE	M 300 kHz Mode Sw M1[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1 M2[1			

Test Mode :	802.11ax HE20	Tes	t Channel :	06 Full	RU		
100kHz PSD reference Level			Mid Channel Plot				
Att 20 dB SWT 1Pk Max	0.02 dB • RBW 100 kHz 1.1 ms • VBW 300 kHz Mode Sweep Mr. M.	0.93 dbm 2.4394985 GHz					
Spurio	us Emission 30MHz~1GH	lz	Spurious	Emission	1GHz~26.50	GHz	
	0.02 d8 ● RBW 100 kHz 00.1 ms ● VBW 300 kHz Mode Sweep	(♥) Ref L • Att • IPk ↓	evel 20.00 dBm Offset 20.0 10 dB SWT 25	02 dB ● RBW 100 kHz 5 ms ● VBW 300 kHz p	1ode Sweep		
10 dBm	2 MHz -57.24 dBm	Stop 1.0 GHz ction Result Marker Mar	n	GHz 6.51 dBm	MI[1]	6.51 dBm 2.432630 GHz -52,75 dBm 6.950230 GHz 	