







Please Contact with WSCT www.wsct-cert.com

# TEST REPORT

FCC ID: 2AXYP-OSW-821N

**Product: Smart Watch** 

Model No.: OSW-821N

Trade Mark: oraimo

Report No.: WSCT-A2LA-R&E240500022A-BT

Issued Date: 31 May 2024

Issued for:

ORAIMO TECHNOLOGY LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI

STREET FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co.,Ltd.
Building A-B, Baoshi Science & Technology Park, Baoshi Road,
Bao'an District, Shenzhen, Guangdong, China

TEL: +86-755-26996192 FAX: +86-755-86376605

**Note:** The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

W5ET

World Standardization Certification & Testing

世标检测认证股份 iroup (Shenzhen) Co., Ltd.

AWSET I

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wscl-cert.com Http://www.wscl-cert.com

WSEI









Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# **TABLE OF CONTENTS**

| /          | 47679B                                        | 1 1 10 |
|------------|-----------------------------------------------|--------|
| 1.         | Test Certification                            | 3      |
| 2.         | Test Result Summary                           | 4      |
| 743.       | EUT Description                               | 5      |
| 4.         | Genera Information                            | 7      |
| ••         | 4.1. TEST ENVIRONMENT AND MODE                | 7      |
| ,          | 4.2. DESCRIPTION OF SUPPORT UNITS             |        |
| /5.        | Facilities and Accreditations                 | 8      |
| X          | 5.1. FACILITIES                               | 8      |
| 741        | 5.2. ACCREDITATIONS                           |        |
|            | 5.3. MEASUREMENT UNCERTAINTY                  |        |
|            | 5.4. MEASUREMENT INSTRUMENTS                  | 10     |
| 6.         | Test Results and Measurement Data             | 113    |
| /          | 6.1. ANTENNA REQUIREMENT                      | 7      |
| X          | 6.2. CONDUCTED EMISSION                       | 12     |
| 700        | 6.3. CONDUCTED OUTPUT POWER                   | 15     |
| A. R. 1886 | 6.4. 20DB OCCUPY BANDWIDTH                    | 22     |
|            | 6.5. CARRIER FREQUENCIES SEPARATION           |        |
|            | 6.6. HOPPING CHANNEL NUMBER                   |        |
| 1          | 6.7. DWELL TIME                               |        |
| X          | 6.8. PSEUDORANDOM FREQUENCY HOPPING SEQUENCE  |        |
| 323        | 6.9. CONDUCTED BAND EDGE MEASUREMENT          |        |
| 74/ 8      | 6.10. CONDUCTED SPURIOUS EMISSION MEASUREMENT |        |
| _          | 6.11. RADIATED SPURIOUS EMISSION MEASUREMENT  |        |
| 7.         | Test Setup Photographs                        | 71     |



Report No.: WSCT-A2LA-R&E240500022A-BT







For Question,
Please Contact with WSCT

## 1. Test Certification

Product:

Smart Watch

Model No .:

OSW-821N

Additional

Model:

oraimo

Applicant:

ORAIMO TECHNOLOGY LIMITED
FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Manufacturer:

ORAIMO TECHNOLOGY LIMITED
FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25

SHAN MEI STREET FOTAN NT HONGKONG

Date of receipt:

17 May 2024

Date of Test:

17 May 2024 ~ 30 May 2024

Applicable Standards:

FCC CFR Title 47 Part 15 Subpart C Section 15.247

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product/system, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By:

Warf Xiary

(Wang Xiang)

Checked By:

(Qin Shuiguan)

Approved By:

(Liu Fuxin)

Date:

31 Ma

7.01

OHOW A DI

on & Test

W5ET

World Standardization Certification & Testin

acation & Testing

世标检测认证股份 iroup (Shenzhen) Co., Ltd.

ADD:Building A-B.Baoshi Science & Technology Park, Baoshi Road,Baoan District, Shenzhen, Guangdong, China TEL:0086-755-26996192 26996053 FAX:0086-755-86376605 E-mail:fengbing.wang@wsct-cert.com Http://www.wsct-cert.com









Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# 2. Test Result Summary

|   | ハリスマル南 ハリスマル                     |                                     | / The state of |
|---|----------------------------------|-------------------------------------|----------------|
| 7 | Requirement                      | CFR 47 Section                      | Result         |
| - | Antenna Requirement              | §15.203/§15.247 (c)                 | PASS           |
| 0 | AC Power Line Conducted Emission | §15.207                             | PASS           |
|   | Conducted Peak Output<br>Power   | §15.247 (b)(1)<br>§2.1046           | PASS           |
|   | 20dB Occupied Bandwidth          | §15.247 (a)(1)<br>§2.1049           | PASS           |
|   | Carrier Frequencies Separation   | §15.247 (a)(1)                      | PASS           |
|   | Hopping Channel Number           | §15.247 (a)(1)                      | PASS           |
| 7 | Dwell Time                       | §15.247 (a)(1)                      | PASS           |
| 1 | Radiated Emission                | §15.205/§15.209<br>§2.1053, §2.1057 | PASS           |
|   | Band Edge                        | §15.247(d)<br>§2.1051, §2.1057      | PASS           |
|   |                                  |                                     |                |

#### Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

World Stands Stands Communication (Communication of Communication of Commu

WSET

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-2696192 26992308 FAX-86-755-86376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com

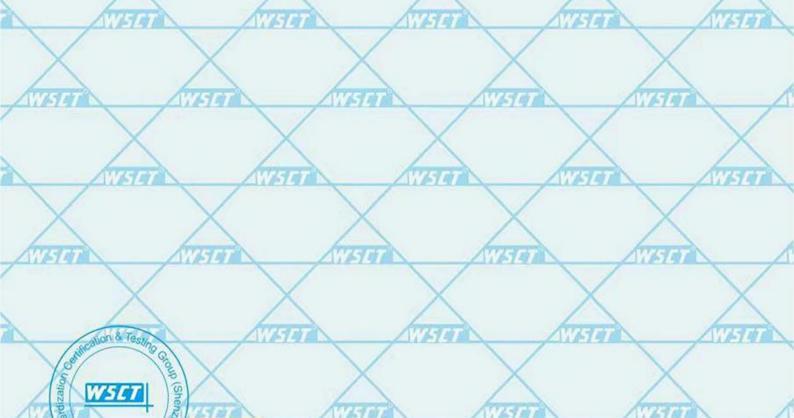








Certificate #5768.01


For Question,
Please Contact with WSCT
www.wsct-cert.com

# 3. **EUT Description**

| Product Name:       | Smart Watch                                                                                       |
|---------------------|---------------------------------------------------------------------------------------------------|
| Model:              | OSW-821N                                                                                          |
| Trade Mark:         | oraimo                                                                                            |
| Frequency Range:    | 2402-2480MHz(TX/RX)                                                                               |
| Channel Separation: | 1MHz                                                                                              |
| Number of Channel:  | 797 W544 W544                                                                                     |
| Modulation Type:    | GFSK, π/4-DQPSK, 8-DPSK                                                                           |
| Antenna Type        | Integral Antenna                                                                                  |
| Antenna Gain:       | -1.34dBi                                                                                          |
| Operating Voltage   | Li-ion Battery: 592127 Voltage: 3.8V Rated Capacity: 340mAh 1.292Wh Limited Charge Voltage: 4.35V |
| Remark:             | N/A.                                                                                              |

Note: 1. N/A stands for no applicable.

2. Antenna gain provided by the applicant



世标检测认证股份 roup (Shenzhen) Co., Ltd.

DUOM \* PIT



DUOM \* PT

## World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.







Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question, Please Contact with WSCT wsct-cert.com

| Operation Frequency ea | ch | of channel for GFSK, π/4-DQPSK, 8DPSK |
|------------------------|----|---------------------------------------|
|                        |    |                                       |

| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 074     | 2402MHz   | 20      | 2422MHz   | 40      | 2442MHz   | 60      | 2462MHz   |
| 1       | 2403MHz   | 21      | 2423MHz   | 41      | 2443MHz   | 61      | 2463MHz   |
|         |           |         |           |         | $\wedge$  |         |           |
| 10      | 2412MHz   | 30      | 2432MHz   | 50      | 2452MHz   | 70      | 2472MHz   |
| 11      | 2413MHz   | 31      | 2433MHz   | 51      | 2453MHz   | 71      | 2473MHz   |
| X       |           | X       | :         | X       | •••       | $\sim$  |           |
| 18      | 2420MHz   | 38      | 2440MHz   | 58      | 2460MHz   | 78      | 2480MHz   |
| 19      | 2421MHz   | 39      | 2441MHz   | 59      | 2461MHz   | 1779    |           |

Remark: Channel 0, 39 &78 have been tested for GFSK, π/4-DQPSK, 8DPSK modulation mode.

| WHITE             | WSI     | AVSTAT | WSI                 | WSET   | 1   |
|-------------------|---------|--------|---------------------|--------|-----|
| NVE9              |         |        | $\langle \ \rangle$ |        | 79  |
| Wister            | Wiston  | WHI    | WASTON              | WHITE  | ,   |
| WES               |         |        | $\langle \ \rangle$ |        | 140 |
| W-141             | NV-5141 | WSI    | Wester              | Wester |     |
| NV-51             |         |        |                     |        | 740 |
| WHITE             | NVET 4  | WEI HE | NATO A              | WESTER |     |
|                   |         |        | Wis NVIS            |        | 140 |
| estilication & Te | and Ca  |        |                     |        |     |

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com Page 6 of 71

Member of the WSCT INC.









Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 4. Genera Information

#### 4.1. Test environment and mode

| Operating Environment: |                                                                                |
|------------------------|--------------------------------------------------------------------------------|
| Temperature:           | 25.0 °C                                                                        |
| Humidity:              | 56 % RH                                                                        |
| Atmospheric Pressure:  | 1010 mbar                                                                      |
| Test Mode:             |                                                                                |
| Engineering mode:      | Keep the EUT in continuous transmitting by select channel and modulations with |
| August Augus           | Fully-charged battery                                                          |

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

#### 4.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| Equipment | Model No. | Serial No. | FCC ID | Trade Name |
|-----------|-----------|------------|--------|------------|
|           |           |            | 1      | / /        |
| Adapter   | U180IED   |            | 1      | 1          |

#### Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and
- the temporary antenna connector is listed in the Test Instruments.

WSET

世标检测认证股份









Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 5. Facilities and Accreditations

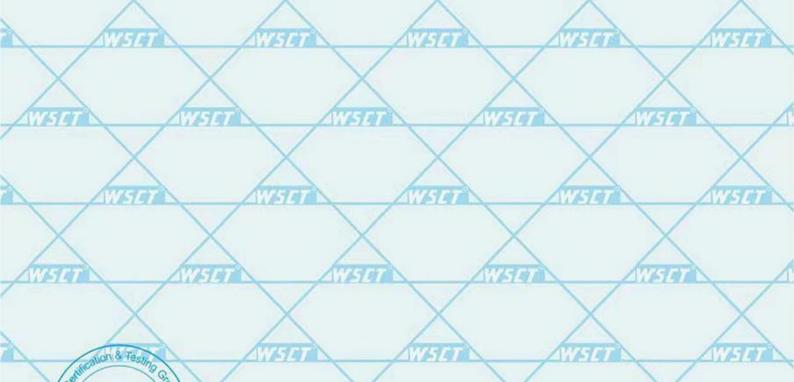
#### 5.1. Facilities

All measurement facilities used to collect the measurement data are located at Building A-B, Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China of the World Standardization Certification & Testing Group(Shenzhen) CO., LTD

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

#### 5.2. ACCREDITATIONS

**CNAS - Registration Number: L3732** 


China National Accreditation Service for Conformity Assessment, The test firm Registration Number: L3732

FCC - Designation Number: CN1303

World Standardization Certification & Testing Group(Shenzhen) CO., LTD. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Designation Number: CN1303.

A2LA - Certificate Number: 5768.01

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (A2LA). Certification Number: 5768.01



世标检测认证股份 http://snoup(Shenzhen)Co.Ltd.

ON \* P







## 5.3. Measurement Uncertainty

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

|   | No. | Item                           | MU      |
|---|-----|--------------------------------|---------|
|   | 1   | Conducted Emission Test        | ±3.2dB  |
|   | 2   | RF power, conducted            | ±0.16dB |
|   | 3   | Spurious emissions, conducted  | ±0.21dB |
| 7 | 4   | All emissions, radiated(<1GHz) | ±4.7dB  |
|   | 5   | All emissions, radiated(>1GHz) | ±4.7dB  |
|   | 6   | Temperature W507               | ±0.5°C  |
|   | 7   | Humidity                       | ±2.0%   |

|         | NV294                       | W-757 | WESTER | WSET   | AVF141   |
|---------|-----------------------------|-------|--------|--------|----------|
| /e      | STOP AVES                   |       |        |        | 900      |
|         | NVI-141                     | WEIGH | NISTER | Wister | VI-TER I |
| <u></u> | AVES                        |       |        |        | 5191     |
|         | WEIGH                       | WEIGH | WSTO   | WSTOT  | WESTER   |
| 1       | AVES                        |       |        |        | 574      |
|         |                             | WASTA | WESTER | NVSTOT | Wister   |
|         | Salutration & Testing Order |       |        |        | X        |

Page 9 of 71

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing Wang@wsct-cert.com Http://www.wsct-cert.com









Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

#### **5.4. MEASUREMENT INSTRUMENTS**

|       |                                            |                           | Comment          |                  |                     | www.ws           | ct-c |
|-------|--------------------------------------------|---------------------------|------------------|------------------|---------------------|------------------|------|
|       | NAME OF<br>EQUIPMENT                       | MANUFACTURER              | MODEL            | SERIAL<br>NUMBER | Calibration<br>Date | Calibration Due. | Z    |
|       | Test software                              |                           | EZ-EMC           | CON-03A          | -                   | X-               |      |
| 100   | Test software                              |                           | MTS8310          | (7274)           | 1                   | 2744             |      |
|       | EMI Test Receiver                          | R&S                       | ESCI             | 100005           | 11/05/2023          | 11/04/2024       |      |
|       | LISN                                       | AFJ                       | LS16             | 16010222119      | 11/05/2023          | 11/04/2024       | /    |
|       | LISN(EUT)                                  | Mestec                    | AN3016           | 04/10040         | 11/05/2023          | 11/04/2024       | Z    |
| /     | Universal Radio<br>Communication<br>Tester | R&S                       | CMU 200          | 1100.0008.02     | 11/05/2023          | 11/04/2024       |      |
| ý     | Coaxial cable                              | Megalon                   | LMR400           | N/A              | 11/05/2023          | 11/04/2024       |      |
|       | GPIB cable                                 | Megalon                   | GPIB             | N/A              | 11/05/2023          | 11/04/2024       | /    |
|       | Spectrum Analyzer                          | R&S                       | FSU              | 100114           | 11/05/2023          | 11/04/2024       | /    |
|       | Pre Amplifier                              | H.P.                      | HP8447E          | 2945A02715       | 11/05/2023          | 11/04/2024       | 7    |
|       | Pre-Amplifier                              | CDSI                      | PAP-1G18-38      |                  | 11/05/2023          | 11/04/2024       |      |
|       | Bi-log Antenna                             | SCHWARZBECK               | VULB9168         | 01488            | 7/29/2023           | 7/28/2024        |      |
| MG-II | 9*6*6 Anechoic                             | 4 ·- /                    | 7-7-11 A         | NESTE            | 11/05/2023          | 11/04/2024       |      |
|       | Horn Antenna                               | COMPLIANCE<br>ENGINEERING | CE18000          |                  | 11/05/2023          | 11/04/2024       |      |
|       | Horn Antenna                               | SCHWARZBECK               | BBHA9120D        | 9120D-631        | 11/05/2023          | 11/04/2024       |      |
|       | Cable                                      | TIME MICROWAVE            | LMR-400          | N-TYPE04         | 11/05/2023          | 11/04/2024       | é    |
|       | System-Controller                          | ccs                       | N/A              | N/A              | N.C.R               | N.C.R            |      |
| 7     | Turn Table                                 | ccs                       | N/A              | N/A              | N.C.R               | N.C.R            |      |
| 7     | Antenna Tower                              | ccs                       | N/A              | N/A              | N.C.R               | N.C.R            |      |
|       | RF cable                                   | Murata                    | MXHQ87WA300<br>0 | -                | 11/05/2023          | 11/04/2024       |      |
|       | Loop Antenna                               | EMCO                      | 6502             | 00042960         | 11/05/2023          | 11/04/2024       | 7    |
| /     | Horn Antenna                               | SCHWARZBECK               | BBHA 9170        | 1123             | 11/05/2023          | 11/04/2024       |      |
| 1     | Power meter                                | Anritsu                   | ML2487A          | 6K00003613       | 11/05/2023          | 11/04/2024       |      |
| 1     | Power sensor                               | Anritsu                   | MX248XD          | Alter            | 11/05/2023          | 11/04/2024       |      |
|       | Spectrum Analyzer                          | Keysight                  | N9010B           | MY60241089       | 11/05/2023          | 11/04/2024       | 1    |
|       | ^                                          | ^                         |                  | V.               |                     |                  |      |











Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 6. Test Results and Measurement Data

### 6.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

#### **E.U.T Antenna:**

The Bluetooth antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is -1.34 dBi.



世标检测认证数份 Sroup (Shenzhen) Co., Ltd.









Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 6.2. Conducted Emission

## 6.2.1. Test Specification

| 6.2.1. Test Specification |                                                                                                                               |                                                                                                        |                                |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------|
| Test Requirement:         | FCC Part15 C Section                                                                                                          | 15.207                                                                                                 | X                              |
| Test Method:              | ANSI C63.10:2014                                                                                                              | W-101                                                                                                  | 414                            |
| Frequency Range:          | 150 kHz to 30 MHz                                                                                                             | X                                                                                                      |                                |
| Receiver setup:           | RBW=9 kHz, VBW=30                                                                                                             | kHz, Sweep time=auto                                                                                   |                                |
| Limits:                   | Frequency range<br>(MHz)<br>0.15-0.5<br>0.5-5<br>5-30                                                                         | 66 to 56* 56 to 56*                                                                                    | rage<br>0 46*<br>6             |
| X                         | Reference                                                                                                                     | e Plane                                                                                                |                                |
| NISTE STEEL               | 40cm                                                                                                                          | 80cm LISN                                                                                              | -                              |
| Test Setup:               | Test table/Insulation plane  Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization No. Test table height=0.8m | EMI<br>Receiver                                                                                        | wer                            |
| Test Mode:                | Refer to item 4.1                                                                                                             | X                                                                                                      | X                              |
| WSTOT                     | impedance stabiliz<br>provides a 50ohm/5<br>measuring equipme                                                                 |                                                                                                        | ). This for the                |
| Test Procedure:           | power through a LI coupling impedance refer to the block photographs).                                                        | ses are also connected to to SN that provides a 50oh with 50ohm termination. diagram of the test se    | nm/50uH<br>(Please<br>tup and  |
| alion & Tests             | conducted interferer emission, the relative the interface cables                                                              | nce. In order to find the me positions of equipment a must be changed according conducted measurement. | naximum<br>and all of<br>ng to |
| Test Result:              | PASS                                                                                                                          |                                                                                                        |                                |
| 161                       |                                                                                                                               |                                                                                                        |                                |

世标检测认证数

DUOM \* PT

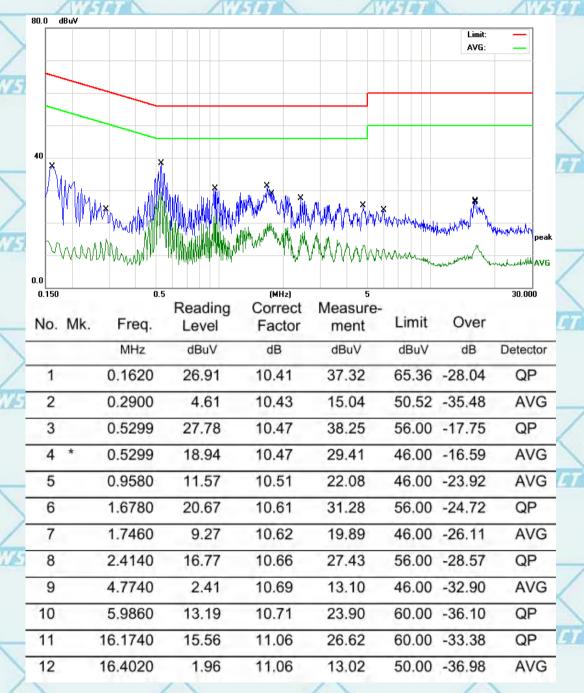








Report No.: WSCT-A2LA-R&E240500022A-BT


Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 6.2.2. Test data

| Temperature | 20 °C //√5/7 | Relative Humidity | 48%                  |
|-------------|--------------|-------------------|----------------------|
| Pressure    | 1010 hPa     | Test Mode         | Bluetooth + charging |

## Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

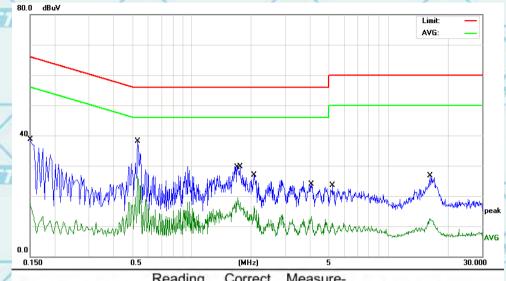




ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX:86-758-86376605 E-mail:Fengbing.Wang@wscl-cert.com Http://www.wscl-cert.com










Certificate #5768.01

# www.wsct-cert.com

## Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) Please Contact with WSCT



| No  | . Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-------|---------|------------------|-------------------|------------------|-------|--------|----------|
|     |       | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
|     |       | 0.1500  | 28.24            | 10.41             | 38.65            | 65.99 | -27.34 | QP       |
| - 2 | 2     | 0.1500  | 7.12             | 10,41             | 17.53            | 55.99 | -38.46 | AVG      |
| - 3 | 3 *   | 0.5299  | 27.53            | 10.47             | 38.00            | 56.00 | -18.00 | QP       |
|     | 1     | 0.5299  | 16.18            | 10.47             | 26.65            | 46.00 | -19.35 | AVG      |
| - ( | 5     | 1.7100  | 8.92             | 10.62             | 19.54            | 46.00 | -26.46 | AVG      |
| -   | 3     | 1.7540  | 19.16            | 10.62             | 29.78            | 56.00 | -26.22 | QP       |
|     | 7     | 2.0700  | 5.98             | 10.66             | 16.64            | 46.00 | -29.36 | AVG      |
| - 8 | 3     | 4.0580  | 13.15            | 10.68             | 23.83            | 56.00 | -32.17 | QP       |
| - 9 | 9     | 4.0580  | 2.66             | 10.68             | 13.34            | 46.00 | -32.66 | AVG      |
| 10  | )     | 5.1940  | 12.84            | 10.69             | 23.53            | 60.00 | -36.47 | QP       |
| 1   | 1     | 16.2060 | 1.48             | 11.06             | 12.54            | 50.00 | -37.46 | AVG      |
| 12  | 2     | 16.2979 | 15.65            | 11.06             | 26.71            | 60.00 | -33.29 | QP       |

#### Note1:

Freq. = Emission frequency in MHz

Reading level  $(dB\mu V)$  = Receiver reading

Corr. Factor (dB) = LISN Factor + Cable loss

Measurement  $(dB\mu V)$  = Reading level  $(dB\mu V)$  + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$ 

Margin (dB) = Measurement (dB $\mu$ V) – Limits (dB $\mu$ V)

Q.P. =Quasi-Peak AVG =average

is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2: Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode

(GFSK) was submitted only.



MOM \* PI









Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# 6.3. Conducted Output Power

## 6.3.1. Test Specification

|                   | ^ ^                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Requirement: | FCC Part15 C Section 15.247 (b)(3)                                                                                                                                                                                                                                                                                                                                                                           |
| Test Method:      | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                             |
| Limit:            | Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                        |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                            |
| Test Procedure:   | Use the following spectrum analyzer settings:  Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel  RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW  Sweep = auto  Detector function = peak  Trace = max hold  Allow the trace to stabilize.  Use the marker-to-peak function to set the marker to the peak of the emission.                                  |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                         |











Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

#### 6.3.2. Test Data

| 7 |              | GFSK mode               |             |        |  |  |  |
|---|--------------|-------------------------|-------------|--------|--|--|--|
|   | Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |  |  |  |
| 0 | Lowest       | -1.61                   | 20.97       | PASS   |  |  |  |
|   | Middle       | -1.05                   | 20.97       | PASS   |  |  |  |
|   | Highest      | -1.64                   | 20.97       | PASS   |  |  |  |

| ALLIA          | A prin all V | 20112 all als all 1       | 2 4 4 4 4 4 | 2 2 2 2 2 2 |  |
|----------------|--------------|---------------------------|-------------|-------------|--|
| Pi/4DQPSK mode |              |                           |             |             |  |
| T              | est channel  | Peak Output Power (dBm) F |             | Result      |  |
|                | Lowest       | 1.47                      | 20.97       | PASS        |  |
|                | Middle       | 1.88                      | 20.97       | PASS        |  |
|                | Highest      | 1.49                      | 20.97       | PASS        |  |

| r |              | 14.4-1-2.5              |             | T. J. Harrison |  |  |
|---|--------------|-------------------------|-------------|----------------|--|--|
|   | 8DPSK mode   |                         |             |                |  |  |
|   | Test channel | Peak Output Power (dBm) | Limit (dBm) | Result         |  |  |
|   | Lowest       | 2.02                    | 20.97       | PASS           |  |  |
|   | Middle       | 1.84                    | 20.97       | PASS           |  |  |
|   | Highest      | 1.36                    | 20.97       | PASS           |  |  |

Test plots as follows:

World Standard Standa

VISTA VISTA

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:86:755-86376605. E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com









Report No.: WSCT-A2LA-R&E240500022A-BT





Center 2.441000 GHz #Res BW 2.0 MHz

? May 15, 2024 ....

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

#Video BW 6.0 MHz

Span 10.00 MHz Sweep 1.33 ms (10001 pts)

III 🥾









Report No.: WSCT-A2LA-R&E240500022A-BT

Center 2.402000 GHz #Res BW 2.0 MHz



#Video BW 6.0 MHz



? May 15, 2024 ....

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

Span 10.00 MHz Sweep 1.33 ms (10001 pts)

II 🔌









Report No.: WSCT-A2LA-R&E240500022A-BT

Center 2.480000 GHz #Res BW 2.0 MHz





? May 15, 2024 ....

#Video BW 6.0 MHz

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

Span 10.00 MHz Sweep 1.33 ms (10001 pts)

.:: 🔌









Report No.: WSCT-A2LA-R&E240500022A-BT





Center 2.441000 GHz #Res BW 2.0 MHz

? May 15, 2024 ....

#Video BW 6.0 MHz

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing.Wang@wsci-cert.com Http://www.wsci-cert.com

Span 10.00 MHz Sweep 1.33 ms (10001 pts)

.:: N







Span 10.00 MHz Sweep 1.33 ms (10001 pts)



Report No.: WSCT-A2LA-R&E240500022A-BT

KEYSIGHT Input RF

Scale/Div 10 dB

Center 2.480000 GHz #Res BW 2.0 MHz

? May 15, 2024 ....

世标检测认证股份

DUOM \* PT





#Video BW 6.0 MHz

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com









Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

## 6.4. 20dB Occupy Bandwidth

# 6.4.1. Test Specification

| FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ol> <li>The testing follows ANSI C63.10:2014 Measurement Guidelines.</li> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Use the following spectrum analyzer settings for 20dB Bandwidth measurement.         Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤ RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold.     </li> <li>Measure and record the results in the test report.</li> </ol> |
| PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



NASTO NASTO

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992300 FAX-86-758-80376605 E-mail: Fengbing Wang@wscl-cert.com Http://www.wscl-cert.com









Report No.: WSCT-A2LA-R&E240500022A-BT

## 6.4.2. Test data

Certificate #5768.01

Please Contact with WSCT www.wsct-cert.com

|              | Toot obannal | 20dB Occupy Bandwidth (MHz) |           |       |            |  |
|--------------|--------------|-----------------------------|-----------|-------|------------|--|
| Test channel |              | GFSK                        | π/4-DQPSK | 8DPSK | Conclusion |  |
| ĺ            | Lowest       | 0.9481                      | 1.313     | 1.303 | PASS       |  |
| -            | Middle       | 0.9423                      | 1.322     | 1.305 | PASS       |  |
|              | Highest      | 0.9567                      | 1.285     | 1.276 | PASS       |  |

Test plots as follows: codification & Tes youp (Shenza

世标检算认证股份 Day Group (Shenzhen) Co., Ltd.

DUOM \* PT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-758-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com







Report No.: WSCT-A2LA-R&E240500022A-BT





ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com









Report No.: WSCT-A2LA-R&E240500022A-BT

Transmit Freq Error x dB Bandwidth

15.551 kHz 1.313 MHz



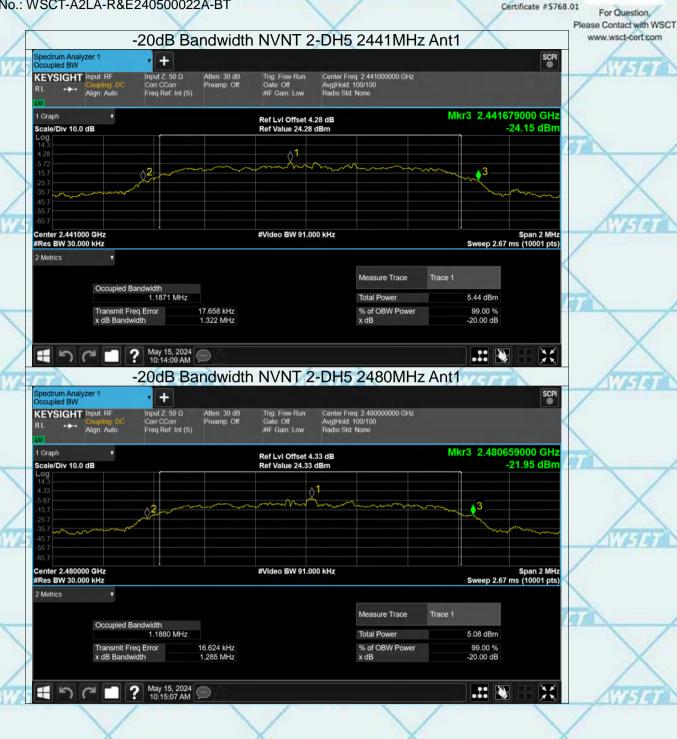


ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

% of OBW Powe x dB

99.00 % -20.00 dB

.:: N










Report No.: WSCT-A2LA-R&E240500022A-BT





ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com









Report No.: WSCT-A2LA-R&E240500022A-BT





ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-758-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

.:: N







.:: 📡



Report No.: WSCT-A2LA-R&E240500022A-BT

May 15, 2024 On 10:20:14 AM













Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# 6.5. Carrier Frequencies Separation

# 6.5.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Limit:            | Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Mode:        | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Test Procedure:   | <ol> <li>The testing follows ANSI C63.10:2014 Measurement Guidelines.</li> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings:         <ul> <li>Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto;</li></ul></li></ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-758-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com









Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 6.5.2. Test data

| GFSK mode    |                                      |                         |        |  |  |
|--------------|--------------------------------------|-------------------------|--------|--|--|
| Test channel | Carrier Frequencies Separation (MHz) | Limit (2/3*20dB BW MHz) | Result |  |  |
| Lowest       | 0.992                                | 0.632                   | PASS   |  |  |
| Middle       | 0.998                                | 0.628                   | PASS   |  |  |
| Highest      | 0.994                                | 0.638                   | PASS   |  |  |

| Pi/4 DQPSK mode |                                         |             |        |  |  |
|-----------------|-----------------------------------------|-------------|--------|--|--|
| Test channel    | Carrier Frequencies<br>Separation (MHz) | Limit (MHz) | Result |  |  |
| Lowest          | 1.078                                   | 0.875       | PASS   |  |  |
| Middle          | 0.998                                   | 0.881       | PASS   |  |  |
| Highest         | 1.004                                   | 0.857       | PASS   |  |  |

|   | 8DPSK mode   |                                         |             |        |  |  |
|---|--------------|-----------------------------------------|-------------|--------|--|--|
|   | Test channel | Carrier Frequencies<br>Separation (MHz) | Limit (MHz) | Result |  |  |
|   | Lowest       | 1.092                                   | 0.869       | PASS   |  |  |
|   | Middle       | 0.994                                   | 0.870       | PASS   |  |  |
| , | Highest      | 1.162                                   | 0.851       | PASS   |  |  |

Test plots as follows:

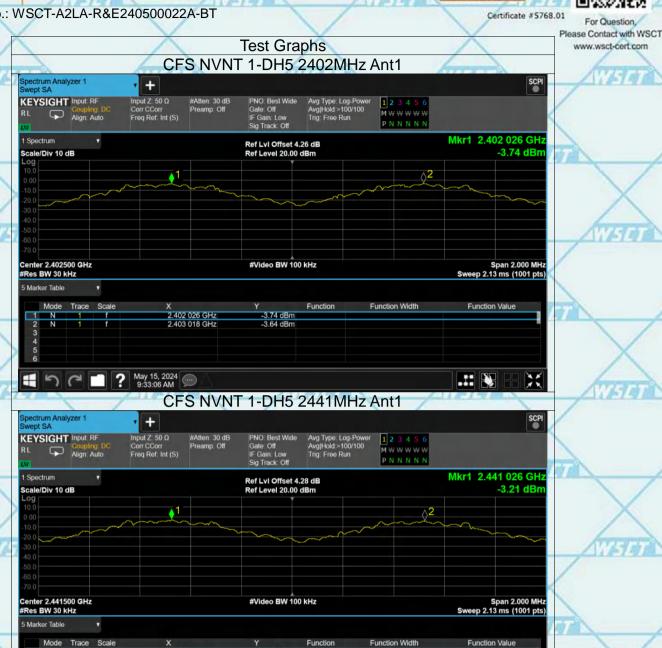
Warld Starking Commonton & Parking Commonton & Testing Commonton & Parking Commonton &

SET AVSET AVSET

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992306 FAX-86-755-86376605 E-mail: Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com



2.441 026 GHz 2.442 024 GHz


? May 15, 2024 9:37:08 AM













ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86,755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing, Wang@wist-cert.com Http://www.wsci-cert.com

.:: 🕦









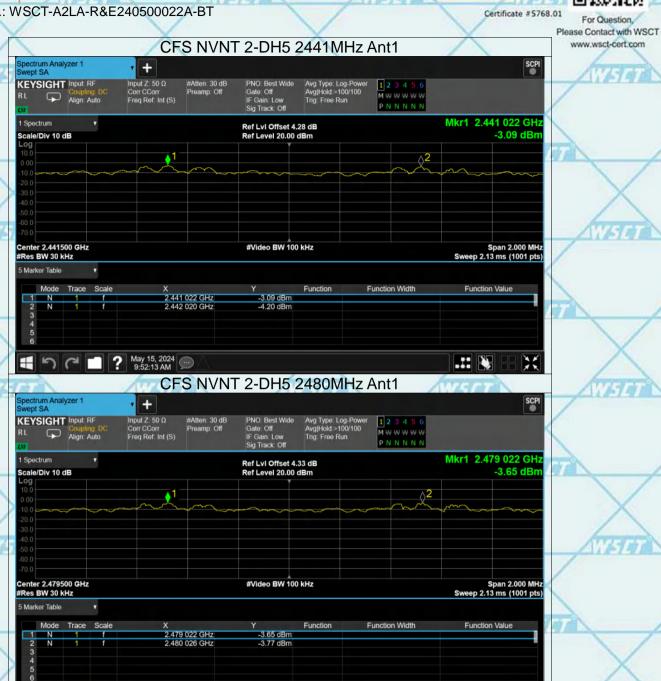
Report No.: WSCT-A2LA-R&E240500022A-BT





May 15, 2024 9:48:50 AM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-758-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com










Report No.: WSCT-A2LA-R&E240500022A-BT





May 15, 2024 9:55:37 AM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-758-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com









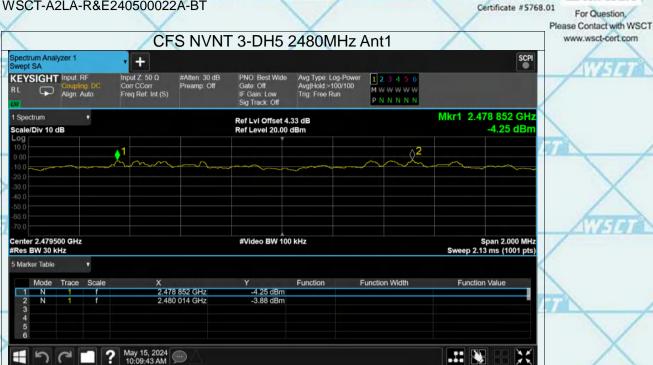
Report No.: WSCT-A2LA-R&E240500022A-BT





ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-758-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com








.:: 💸



Report No.: WSCT-A2LA-R&E240500022A-BT





世标检测认证股份

DUOM \* PIT

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-758-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com









Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# 6.6. Hopping Channel Number

#### 6.6.1. Test Specification

| FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Special and the second of the |
| Spectrum Analyzer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ol> <li>The testing follows ANSI C63.10:2014 Measurement Guidelines.</li> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>EUT transmit continuously.</li> <li>4. Enable the EUT hopping function.</li> <li>5. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold.</li> <li>6. The number of hopping frequency used is defined as the number of total channel.</li> <li>7. Record the measurement data in report.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PASS PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |



WSIET

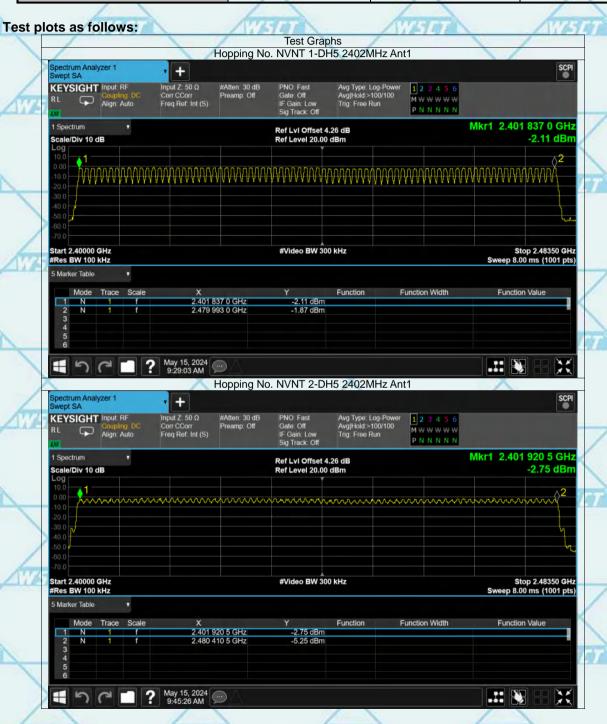
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86-755-26996192 26992308 FAX:86-758-86376605 E-mail:Fengbing.Wang@wsct-cert.com Http://www.wsct-cert.com










Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

#### 6.6.2. Test data

| Mode                   | Hopping channel numbers | Limit | Result |
|------------------------|-------------------------|-------|--------|
| GFSK, P/4-DQPSK, 8DPSK | 79                      | 15    | PASS   |



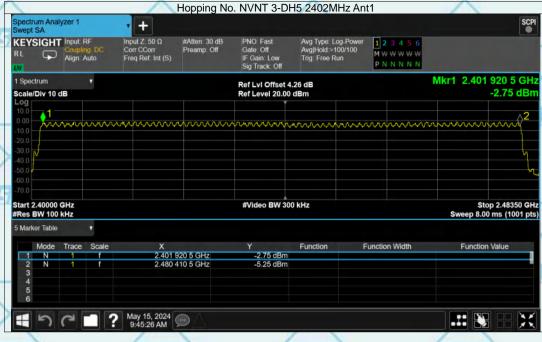


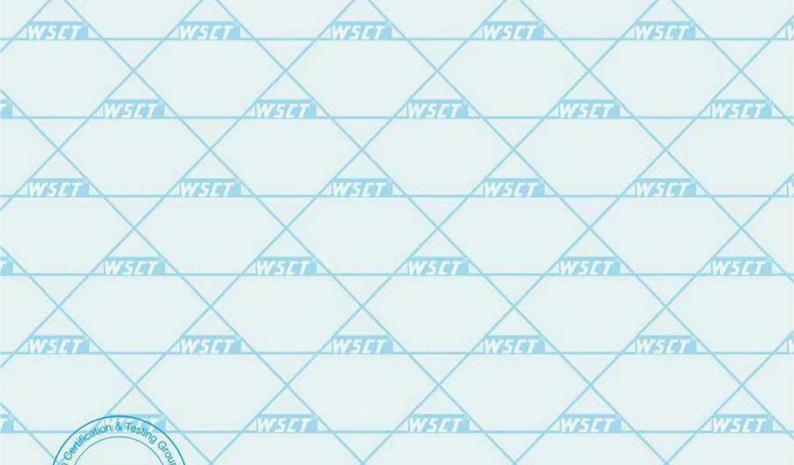









Report No.: WSCT-A2LA-R&E240500022A-BT


Shenzh

DUOM \* PIT

世标检测认证股份

Certificate #5768.01 For Question,
Please Contact with WSCT
www.wsct-cert.com













Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# 6.7. Dwell Time

# 6.7.1. Test Specification

| Test Requirement:                                    | FCC Part15 C Section 15.247 (a)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:                                         | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Limit:                                               | The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Test Setup:                                          | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Test Mode:                                           | Hopping mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Procedure:                                      | <ol> <li>The testing follows ANSI C63.10:2014 Measurement Guidelines.</li> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Enable the EUT hopping function.</li> <li>Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set &gt;&gt; 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.</li> <li>Measure and record the results in the test report.</li> </ol> |
| Test Result:                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Value Bridge Co. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |











Report No.: WSCT-A2LA-R&E240500022A-BT

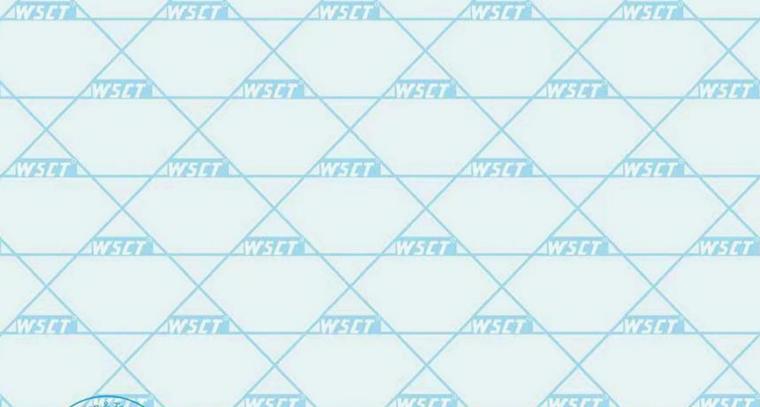
Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

### 6.7.2. Test Data

| Mode  | Frequency<br>(MHz) | Pulse Time<br>(ms) | Total Dwell Time (ms) | Burst<br>Count | Period Time<br>(ms) | Limit<br>(ms) | Verdict |
|-------|--------------------|--------------------|-----------------------|----------------|---------------------|---------------|---------|
| 1-DH1 | 2402               | 0.399              | 124.887               | 313            | 31600               | 400           | Pass    |
| 1-DH1 | 2441               | 0.397              | 123.467               | 311            | 31600               | 400           | Pass    |
| 1-DH1 | 2480               | 0.397              | 126.246               | 318            | 31600               | 400           | Pass    |
| 1-DH3 | 2402               | 1.655              | 249.905               | 151            | 31600               | 400           | Pass    |
| 1-DH3 | 2441               | 1.654              | 249.754               | 151            | 31600               | 400           | Pass    |
| 1-DH3 | 2480               | 1.653              | 277.704               | 168            | 31600               | 400           | Pass    |
| 1-DH5 | 2402               | 2.902              | 313.416               | 108            | 31600               | 400           | Pass    |
| 1-DH5 | 2441               | 2.903              | 307.718               | 106            | 31600               | 400           | Pass    |
| 1-DH5 | 2480               | 2.903              | 310.621               | 107            | 31600               | 400           | Pass    |

Note: 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.


For DH1, With channel hopping rate (1600 / 2 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to  $(1600 / 2 / 79) \times (0.4 \times 79) = 320$  hops

For DH3, With channel hopping rate (1600 / 4 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to  $(1600 / 4 / 79) \times (0.4 \times 79) = 160 \text{ hops}$ 

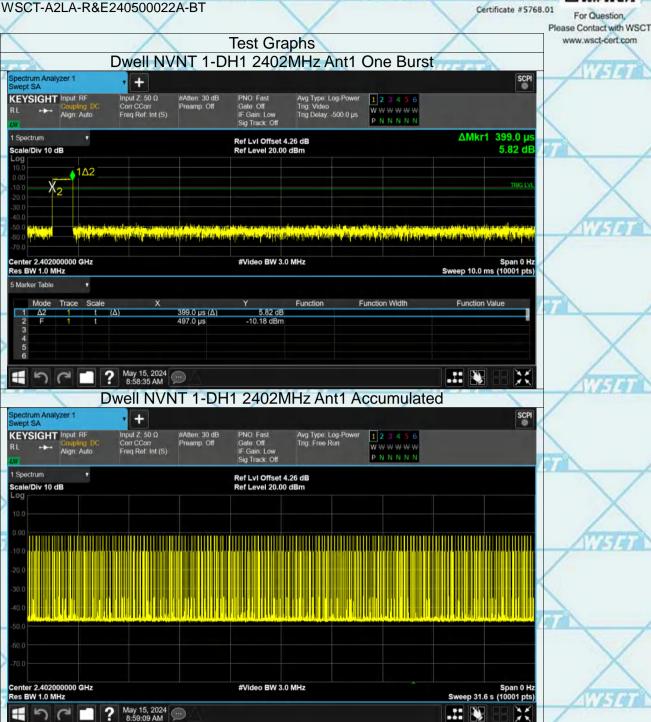
For DH5, With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit  $(0.4 \times 79)$  (s), Hops Over Occupancy Time comes to  $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$  hops

2. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

#### Test plots as follows:



World Start And Spino Certification to One anapti










Report No.: WSCT-A2LA-R&E240500022A-BT













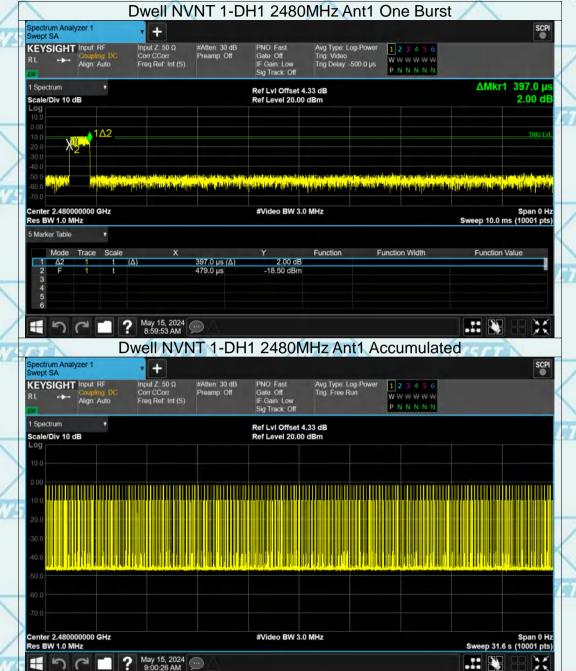
Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01














Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01 For Question, Please Contact with WSCT www.wsct-cert.com













Report No.: WSCT-A2LA-R&E240500022A-BT















Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01 For Question, Please Contact with WSCT











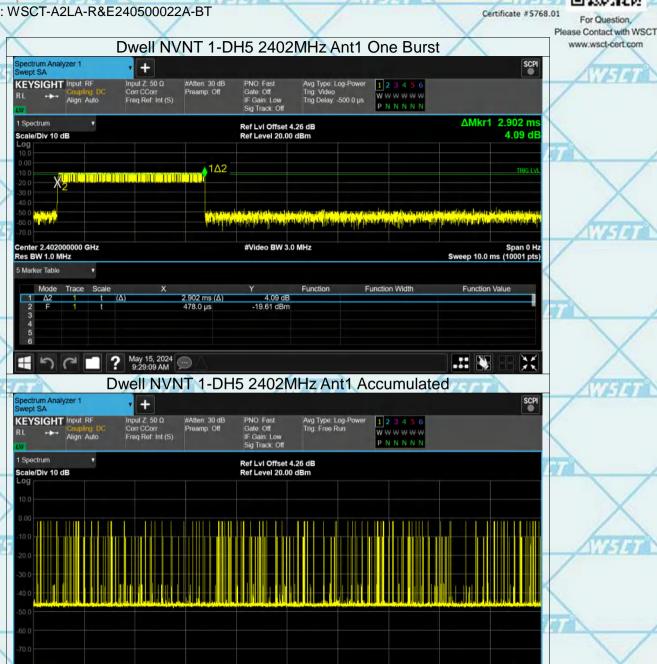


Report No.: WSCT-A2LA-R&E240500022A-BT
















Report No.: WSCT-A2LA-R&E240500022A-BT





Center 2.402000000 GHz Res BW 1.0 MHz

? May 15, 2024 9:29:42 AM

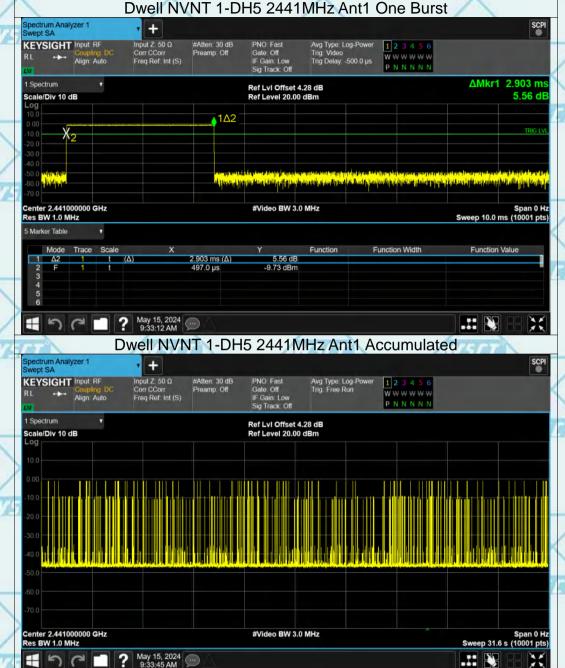
ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

#Video BW 3.0 MHz

Span 0 Hz Sweep 31.6 s (10001 pts)

III 🦠










Report No.: WSCT-A2LA-R&E240500022A-BT

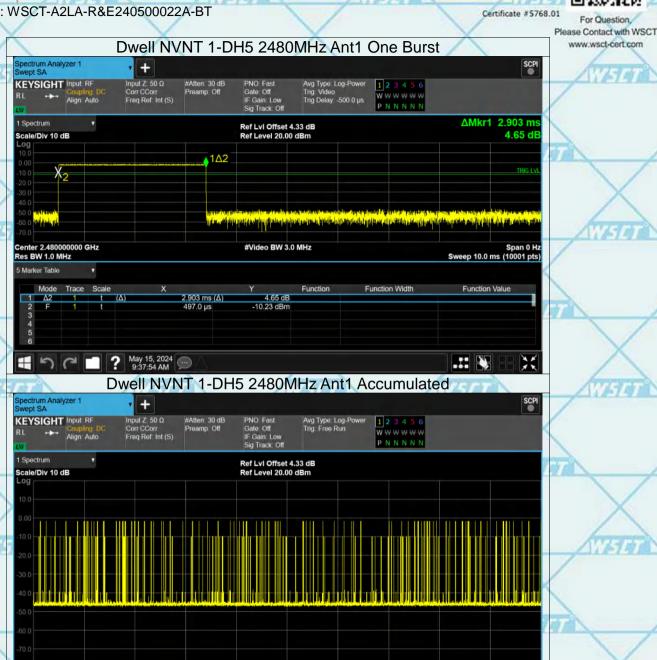
Certificate #5768.01 For Question,
Please Contact with WSCT
www.wsct-cert.com





THE WATER

Wister










Report No.: WSCT-A2LA-R&E240500022A-BT





Center 2.480000000 GHz Res BW 1.0 MHz

? May 15, 2024 .... 9:38:28 AM

ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:86-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

#Video BW 3.0 MHz

Span 0 Hz Sweep 31.6 s (10001 pts)

III 🐧









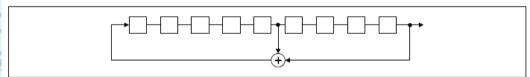
Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

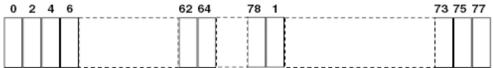
# 6.8. Pseudorandom Frequency Hopping Sequence

# Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

# **EUT Pseudorandom Frequency Hopping Sequence**


The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2<sup>9</sup>-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:



Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.











Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# 6.9. Conducted Band Edge Measurement

# 6.9.1. Test Specification

|   | Test Requirement:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ò | Test Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7 | Limit:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | Test Setup:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | Test Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | Test Procedure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <ol> <li>The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.</li> <li>Enable hopping function of the EUT and then repeat step 2 and 3.</li> <li>Measure and record the results in the test report.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | Test Result:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   | And the second s | THE PROPERTY AND P |











Report No.: WSCT-A2LA-R&E240500022A-BT

**Test Data** 

**GFSK Modulation (the worst case)** 

Certificate #5768.01 For Question, Please Contact with WSCT www.wsct-cert.com













Report No.: WSCT-A2LA-R&E240500022A-BT





ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

Function Width

Function Value

.:: N









Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# 6.10. Conducted Spurious Emission Measurement

# 6.10.1. Test Specification

| Test Requirement: | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10:2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Limit:            | In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Test Setup:       | Spectrum Analyzer EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test Mode:        | Transmitting mode with modulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Test Procedure:   | <ol> <li>The testing follows the guidelines in Spurious RF Conducted Emissions of ANSI C63.10:2014 Measurement Guidelines</li> <li>The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.</li> <li>Set to the maximum power setting and enable the EUT transmit continuously.</li> <li>Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.</li> <li>Measure and record the results in the test report.</li> <li>The RF fundamental frequency should be excluded against the limit line in the operating frequency band.</li> </ol> |
| Test Result:      | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |











Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

#### **Test Data**














Report No.: WSCT-A2LA-R&E240500022A-BT









+ Input Z: 50 Ω Corr CCorr Freq Ref: Int (S)

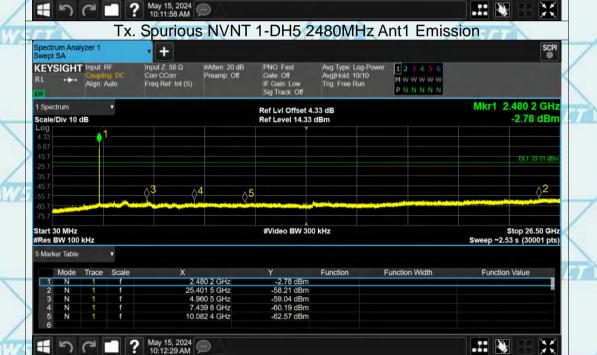




Span 1.500 MHz Sweep 1.00 ms (1001 pts)



Report No.: WSCT-A2LA-R&E240500022A-BT


KEYSIGHT Input: RF

1 Spectrum

Scale/Div 10 dB

Center 2.4800000 GHz #Res BW 100 kHz





#Video BW 300 kHz











Report No.: WSCT-A2LA-R&E240500022A-BT



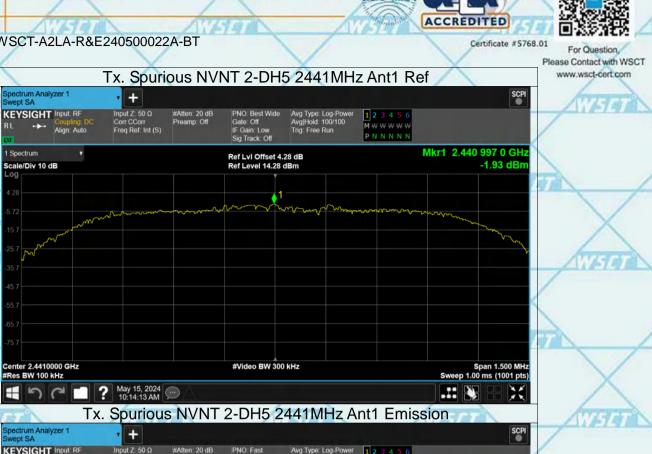


ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

.:: N

-63 00 dBm

? May 15, 2024 ....










Report No.: WSCT-A2LA-R&E240500022A-BT















Report No.: WSCT-A2LA-R&E240500022A-BT





? May 15, 2024 ....

.:: N

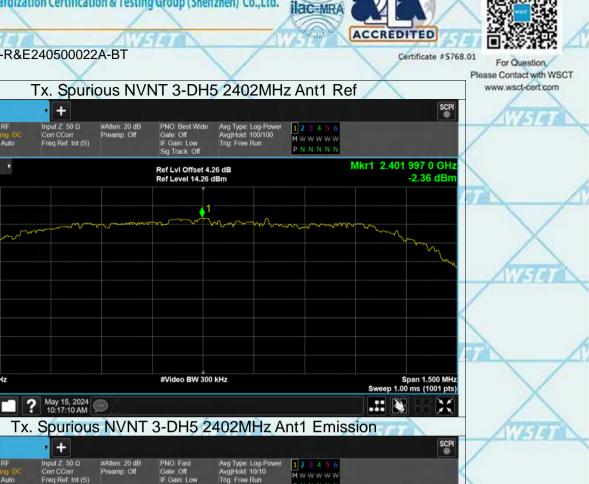








Report No.: WSCT-A2LA-R&E240500022A-BT


KEYSIGHT Input: RF


1 Spectrum

Scale/Div 10 dB

Center 2.4020000 GHz #Res BW 100 kHz

5 6















Report No.: WSCT-A2LA-R&E240500022A-BT

1 Spectrum















Report No.: WSCT-A2LA-R&E240500022A-BT





ADD:Building A-B Baoshi Science & Technology Park, Baoshi Road, Bao'an District, Shenzhen, Guangdong, China TEL:86:755-26996192 26992306 FAX:66-755-86376605 E-mail: Fengbing, Wang@wsct-cert.com Http://www.wsct-cert.com

.:: N

-62 66 dBm

? May 15, 2024 10:20:49 AM







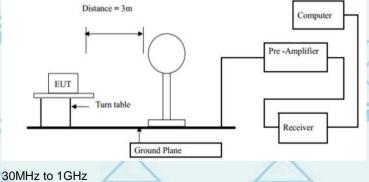


Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# 6.11. Radiated Spurious Emission Measurement


### 6.11.1. Test Specification

| Frequency Range:  Measurement Distance:  Antenna Polarization:  Frequency Detector RBW VBW Remark 9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak Va 150kHz- Quasi-peak 9kHz 30kHz Quasi-peak Va 30MHz  Receiver Setup:  Receiver Setup:  Receiver Setup:  Frequency Detector RBW VBW Remark 9kHz- 150kHz Quasi-peak 200Hz 1kHz Quasi-peak Va 150kHz- Quasi-peak 9kHz 30kHz Quasi-peak Va Above 1GHz Peak 1MHz 300KHz Quasi-peak Value Peak 1MHz 3MHz Peak Value Peak 1MHz 10Hz Average Value Frequency Field Strength Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 | 6.11.1. Test Specification |               |             | 1         |        |                   |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------|---------------|-------------|-----------|--------|-------------------|---|
| Prequency Range: 9 kHz to 25 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | Test Requirement:          | FCC Part15    | C Sectio    | n 15.209  |        | X                 |   |
| Neasurement Distance: 3 m   Horizontal & Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 | Test Method:               | ANSI C63.10   | ):2014      | 1779      | 1      | 17474             |   |
| Horizontal & Vertical   Frequency   Detector   RBW   VBW   Remark   9kHz-150kHz   Quasi-peak   200Hz   1kHz   Quasi-peak Va   150kHz-   Quasi-peak   9kHz   30kHz   Quasi-peak Va   30MHz   30MHz   Quasi-peak Va   30MHz   Quasi-peak Va   4bove 1GHz   Peak   1MHz   3MHz   Peak Value   Peak   1MHz   10Hz   Average Value   Peak   1MHz   Peak   Pe |   | Frequency Range:           | 9 kHz to 25 ( | GHz         |           | 1      | /                 | 1 |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | Measurement Distance:      | 3 m           |             |           | X      | \                 |   |
| SkHz- 150kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ | Antenna Polarization:      | Horizontal &  | Vertical    |           | 117    | 7                 | 4 |
| 150kHz-30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                            | Frequency     | Detector    | r RBW     | VBW    | Remark            | 1 |
| SOMHz   SOMH |   | X                          | 9kHz- 150kHz  | Quasi-pea   | ak 200Hz  | 1kHz   | Quasi-peak Value  |   |
| 30MHz-1GHz   Quasi-peak   100KHz   300KHz   Quasi-peak Value     Above 1GHz   Peak   1MHz   3MHz   Peak Value     Peak   1MHz   10Hz   Average Value     Frequency   Field Strength   Measurement     (microvolts/meter)   Distance (meter)     0.009-0.490   2400/F(KHz)   300     0.490-1.705   24000/F(KHz)   30     1.705-30   30   30     30-88   100   3     88-216   150   3     Limit:   216-960   200   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                            | 150kHz-       | Quasi-pea   | ak 9kHz   | 30kHz  | Quasi-peak Value  |   |
| Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   | Receiver Setup:            | 30MHz         |             | 1175/17   |        | MISET             | V |
| Above 1GHz   Peak   1MHz   10Hz   Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                            | 30MHz-1GHz    | Quasi-pea   | ak 100KHz | 300KHz | Quasi-peak Value  |   |
| Peak   1MHz   10Hz   Average Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                            | Ahove 1GHz    |             |           | 3MHz   | Peak Value        |   |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | $\wedge$                   | 7,0000 10112  | Peak        | 1MHz      | 10Hz   | Average Value     |   |
| Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | Anna Anna                  |               | KITTER      | Field Str | enath  | Measurement       | K |
| 0.490-1.705     24000/F(KHz)     30       1.705-30     30     30       30-88     100     3       88-216     150     3       216-960     200     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 | CIETA CIPIA                | Frequen       | су          |           |        | Distance (meters) | 4 |
| 1.705-30 30 30<br>30-88 100 3<br>88-216 150 3<br>216-960 200 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |                            | 0.009-0.4     | 190         | 2400/F(I  | (Hz)   | 300               | 1 |
| 30-88 100 3<br>88-216 150 3<br>216-960 200 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | X                          | 0.490-1.7     | <b>'</b> 05 | 24000/F(  | KHz)   | 30                |   |
| 88-216     150     3       216-960     200     3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ |                            | 1.705-3       | 0           | 30        |        | 30                |   |
| Limit: 216-960 200 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | W-547                      | 30-88         |             | 100       |        | 3 - 7             | \ |
| X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                            | 88-216        |             | 150       |        | 3                 |   |
| Above 960 500 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | Limit:                     | 216-96        | 0           | 200       |        |                   | 4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                            | Above 9       | 60          | 500       |        | 3                 | 1 |

For radiated emissions below 30MHz

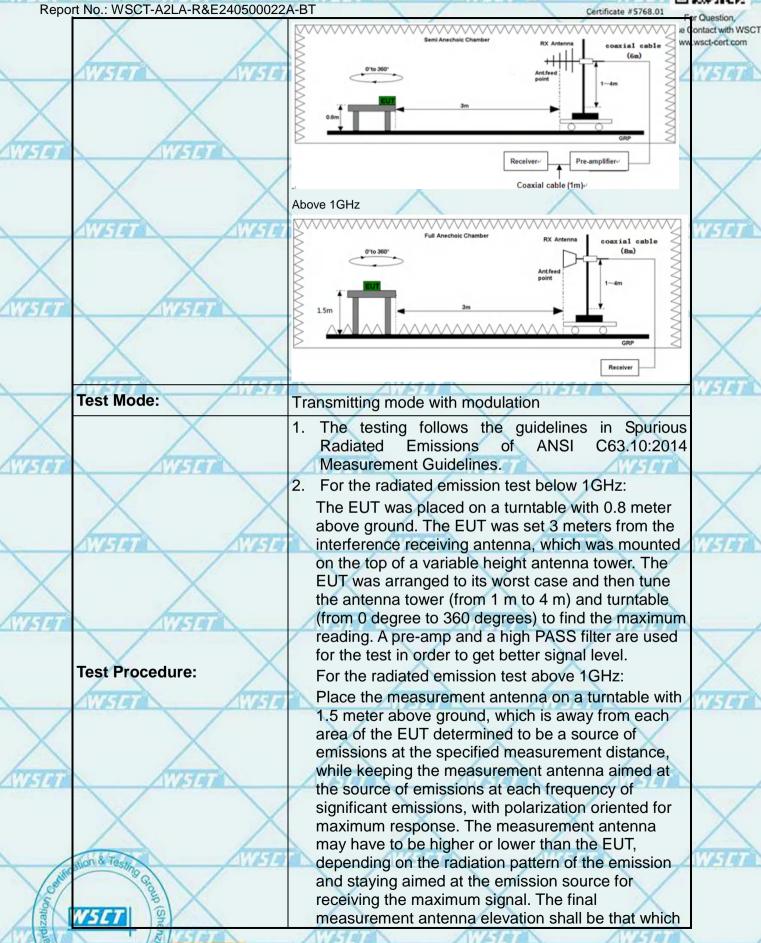
X

Test setup:



W5ET

世标检测认证股份 roup (Shenzhen) Co. Ltd.


(Shenz





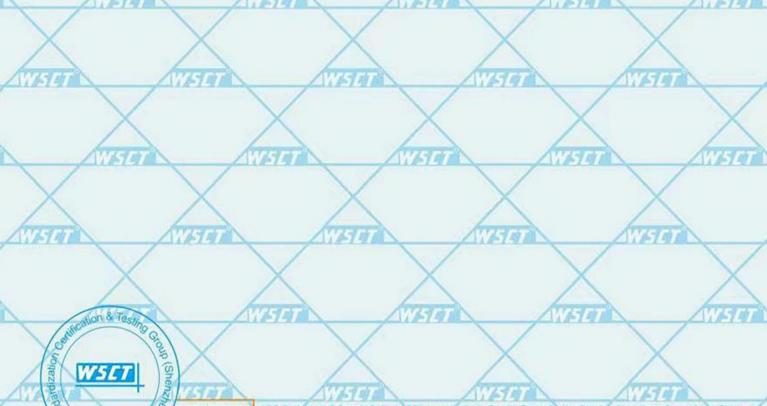








Est Mond \* PIT


# World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.







| ZIE      | 1 N                             | DIL       | THE PARTY OF THE P |
|----------|---------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| керо     | rt No.: WSCT-A2LA-R&E240500022/ |           | Certificate #5768.01 For Question,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | WATER SWATER                    | an<br>res | aximizes the emissions. The measurement please contact with wscrutenna elevation for maximum emissions shall be stricted to a range of heights of from 1 m to 4 m sove the ground or reference ground plane.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| X        | $\times$                        | 3. Se     | et to the maximum power setting and enable the UT transmit continuously.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AUZTER   | AUGGA                           | 4. Us     | se the following spectrum analyzer settings:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 21/2/2   |                                 | (*        | Span shall wide enough to fully capture the emission being measured;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | WHITE                           | (2        | 2) Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz; VBW≥RBW;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\vee$   |                                 |           | Sweep = auto; Detector function = peak; Trace = max hold for peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AVSTAT   | WEIT                            | AU        | (3) For average measurement: use duty cycle correction factor method per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          | XX                              |           | 15.35(c). Duty cycle = On time/100 milliseconds On time =N1*L1+N2*L2++Nn-1*LNn-1+Nn*Ln Where N1 is number of type 1 pulses, L1 is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | AV259                           |           | length of type 1 pulses, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $\times$ | X                               |           | Average Emission Level = Peak Emission Level + 20*log(Duty cycle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AVETE    | WHITE                           | A         | Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | Test results:                   | PASS      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | AVELOR AVELOR                   |           | CHIAN CHIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |





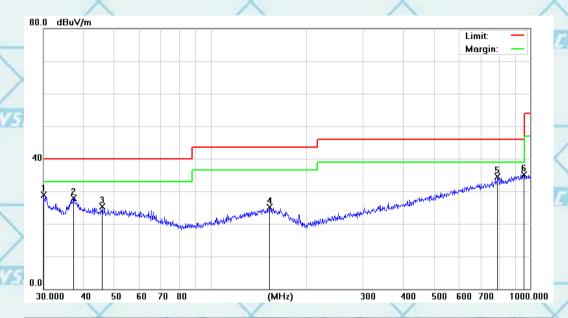






Report No.: WSCT-A2LA-R&E240500022A-BT

#### 6.11.2. Test Data


Please refer to following diagram for individual

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

# Below 1GHz

#### Horizontal:



|    | No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   | Tal.     |
|----|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |     |     | MHz      | dBuV             | dB                | dBuV/m           | dBuV/m | dB     | Detector |
| >  | 1   |     | 30.0000  | 31.44            | -2.60             | 28.84            | 40.00  | -11.16 | QP       |
| r  | 2   | A)  | 37.2855  | 29.71            | -1.83             | 27.88            | 40.00  | -12.12 | QP       |
| -1 | 3   |     | 45.8553  | 27.25            | -2.00             | 25.25            | 40.00  | -14.75 | QP       |
|    | 4   |     | 153.2004 | 26.61            | -1.59             | 25.02            | 43.50  | -18.48 | QP       |
|    | 5   | D.  | 790.6188 | 28.13            | 6.31              | 34.44            | 46.00  | -11.56 | QP       |
|    | 6   | *   | 955.4381 | 26.96            | 8.12              | 35.08            | 46.00  | -10.92 | QP       |

World Standard Standa

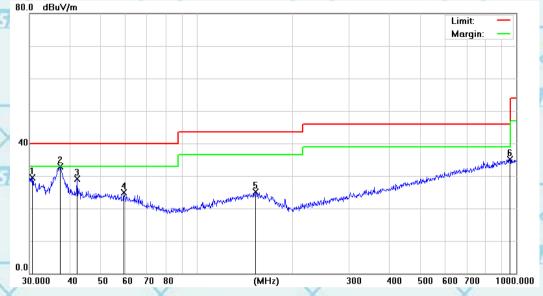
11414

WSEI










Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com





| t Over         |
|----------------|
| m dB Detector  |
| in db Detector |
| 0 -10.50 QP    |
| 0 -7.16 QP     |
| 0 -10.94 QP    |
| 0 -15.02 QP    |
| 0 -18.48 QP    |
| 0 -10.92 QP    |
|                |

#### Note1:

Freq. = Emission frequency in MHz

Reading level (dBµV) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement (dB $\mu$ V) = Reading level (dB $\mu$ V) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard

Margin (dB) = Measurement (dB $\mu$ V) – Limits (dB $\mu$ V)



V5741









Report No.: WSCT-A2LA-R&E240500022A-BT

Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

#### **Above 1GHz**

### **GFSK**

| Frog           | Low channel: 2402MHz |                      |       |                  |    |          |        |  |
|----------------|----------------------|----------------------|-------|------------------|----|----------|--------|--|
| Freq.<br>(MHz) | Ant.Pol              | Emission Level(dBuV) |       | Limit 3m(dBuV/m) |    | Over(dB) |        |  |
| (IVITZ)        | H/V                  | PK                   | AV    | PK               | AV | PK       | AV     |  |
| 4804           | V                    | 57.93                | 41.04 | 74               | 54 | -16.07   | -12.96 |  |
| 7206           | V                    | 57.22                | 40.39 | 74               | 54 | -16.78   | -13.61 |  |
| 4804           | Н                    | 56.63                | 40.85 | 74               | 54 | -17.37   | -13.15 |  |
| 7206           | I                    | 62.52                | 46.52 | 74               | 54 | -11.48   | -7.48  |  |

|                | A I I I I will pair with |         | COLUMN TO A STATE OF THE STATE |       | The state of the first |          | To all advanta |        |  |  |
|----------------|--------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|----------|----------------|--------|--|--|
| 4              | Eroa                     |         | Middle channel: 2441MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                        |          |                |        |  |  |
| Freq.<br>(MHz) |                          | Ant.Pol | Emission Level(dBuV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | Limit 3m               | (dBuV/m) | Over(dB)       |        |  |  |
|                | (IVIIIZ)                 | H/V     | PK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AV    | PK                     | AV       | PK             | AV     |  |  |
| ١              | 4882                     | VeV     | 65.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.73 | 74                     | 54       | -8.88          | -13.27 |  |  |
|                | 7323                     | V       | 62.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.82 | 74                     | 54       | -11.27         | -13.18 |  |  |
|                | 4882                     | Н       | 60.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.15 | 74                     | 54       | -13.89         | -14.85 |  |  |
|                | 7323                     | Н       | 64.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 48.59 | 74                     | 54       | -9.41          | -5.41  |  |  |

|   | ALL STATE OF THE S |                       | P. T. T. L. will make which | -0.7        | 12-diament |          | Till of air old |        |  |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|-------------|------------|----------|-----------------|--------|--|--|
| 1 | Eroc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | High channel: 2480MHz |                             |             |            |          |                 |        |  |  |
|   | Freq.<br>(MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ant.Pol               | Emission L                  | _evel(dBuV) | Limit 3m   | (dBuV/m) | Ove             | r(dB)  |  |  |
|   | (IVI□Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H/V                   | PK                          | AV          | PK         | AV       | PK              | AV     |  |  |
| ١ | 4960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                     | 57.33                       | 40.46       | 74         | 54       | -16.67          | -13.54 |  |  |
|   | 7440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                     | 61.52                       | 40.25       | 74         | 54       | -12.48          | -13.75 |  |  |
|   | 4960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Η                     | 59.74                       | 40.59       | 74         | 54       | -14.26          | -13.41 |  |  |
|   | 7440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Τ                     | 62.10                       | 46.10       | 74         | 54       | -11.90          | -7.90  |  |  |

- The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

(Shen OHOM \* PT









Certificate #5768.01

For Question, Please Contact with WSCT www.wsct-cert.com

# Report No.: WSCT-A2LA-R&E240500022A-BT **Restricted Bands Requirements**

| lest result for GFSK Mode(the worst case) |          |                   |                   |          |        |       |          |
|-------------------------------------------|----------|-------------------|-------------------|----------|--------|-------|----------|
| Frequency                                 | Reading  | Correct<br>Factor | Emission<br>Level | Limit    | Margin | Polar | Detector |
| (MHz)                                     | (dBuV/m) | dB/m              | (dBuV/m)          | (dBuV/m) | (dB)   | H/V   |          |
|                                           | AULIA    |                   | Low Cha           | nnel     | Kura   | -     | Alles    |
| 2390                                      | 63.79    | -8.76             | 55.03             | 74       | 18.97  | ¥     | PK       |
| 2390                                      | 56.34    | -8.76             | 47.58             | 54       | 6.42   | н     | AV       |
| 2390                                      | 59.17    | -8.73             | 50.44             | 74       | 23.56  | V     | PK       |
| 2390                                      | 54.51    | -8.73             | 45.78             | 54       | 8.22   | V     | AV       |
|                                           |          |                   | High Cha          | nnel     |        |       |          |
| 2483.5                                    | 64.91    | -8.76             | 56.15             | 74       | 17.85  | Н     | PK       |
| 2483.5                                    | 54.97    | -8.76             | 46.21             | 54       | 7.79   | Н     | AV       |
| 2483.5                                    | 62.63    | -8.73             | 53.90             | 74       | 20.10  | V     | PK       |
| 2483.5                                    | 57.43    | -8.73             | 48.70             | 54       | 5.30   | V     | AV       |

Note: Freq. = Emission frequency in MHz Reading level  $(dB\mu V)$  = Receiver reading

Corr. Factor (dB) = Attenuation factor + Cable loss Level (dB $\mu$ V) = Reading level (dB $\mu$ V) + Corr. Factor (dB)

Limit (dBµV) = Limit stated in standard Margin (dB) = Level (dB $\mu$ V) – Limits (dB $\mu$ V)

| 11794          | 1779    | WSET   | WSIT     | AWSET  |               |
|----------------|---------|--------|----------|--------|---------------|
| NVET           |         |        | $\times$ | WESTER | WETER         |
| W-14           | WHI     | WSTAT  | W5100    | Water  |               |
| N/SI           |         |        | X        | WETGE  | AVETO         |
| WHI            | NV-TO I | WEITER | WESTER   | WESTER |               |
| incation & Tes |         |        | X        | Witte  | N HI          |
| ificality      | ang l   |        |          |        | - Internation |

DUOM \* PIT



Show \* PITO

World Standardization Certification & Testing Group (Shenzhen) Co.,Ltd.







Report No.: WSCT-A2LA-R&E240500022A-BT

# 7. Test Setup Photographs

Please refer to the attachment Set Up Photos-15C

Certificate #5768.01

For Question,
Please Contact with WSCT
www.wsct-cert.com

| WATER                  | Thease refer to the attach | All | 1779                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17514   |  |  |  |
|------------------------|----------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| *****END OF REPORT**** |                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
| WEIGH                  | W5197                      | WATER                                   | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7       |  |  |  |
| WETER                  | NV-TO-                     | WSIET                                   | WESTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NIETO I |  |  |  |
| WISTET WISTET          | WHITE                      | WHAT                                    | WS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |  |  |  |
| 77219                  | WETER                      | WEIGH                                   | West of the Control o | WEIGH   |  |  |  |
| WSI at                 | WHITE                      | Wister                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
| NV-14                  | X15151                     | NISE                                    | NIETA I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/F/40  |  |  |  |
| WSET                   | Wister                     | Wester                                  | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |  |  |  |
| WEIGH                  | WESTER                     | WESTER                                  | WEIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WSI     |  |  |  |
| NIETO NIETO            | X                          | Wister                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |
|                        | Wister                     | N/5191                                  | WEIGH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEIGH   |  |  |  |
| WSET Shear             |                            | N. 198                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |  |  |