FCC 47 CFR MPE REPORT

Zhongshan City Richsound Electronic Industrial Ltd.

5.1.2CH Soundbar with Wireless Subwoofer

3.1.2CH Soundbar with Wireless Subwoofer

Model Number: AX5120G

Additional Model: Hisense: AX5120G, A512, A512L, A512P, W512, AX3120G, A312, A312L, A312P, W312

TOSHIBA: TS5120A, TS3120A

FCC ID: Z8M-AX5120G

Applicant:	Zhongshan City Richsound Electronic Industrial Ltd.				
Address:	No.16, East Shagang Road, Gangkou, Zhongshan, China				
Prepared By:	EST Technology Co., Ltd.				
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China				
Tel: 86-769-83081888-808					

Report Number:	ESTE-R2308286		
Date of Test:	Jul. 20, ~Aug. 22, 2023		
Date of Report:	Aug. 24, 2023		

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}, H ^{2} \text{ or } S$
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}, H ^{2} \text{ or } S$
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd $(W/m^2) = \frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode	Frequency (MHz)	Peak output power (dBm)	Peak output power (mW)		
GFSK	2402	1.80	1.514		
	2441	1.68	1.472		
	2480	1.78	1.507		
π /4-DQPSK	2402	2.61	1.824		
	2441	2.41	1.742		
	2480	2.49	1.774		

3. Calculated Result and Limit

		Antenna gain			Limited			
Mode	Peak output power (dBm)	Target power (dBm)	MAX Target power (dBm)	(dBi)	(Linear	Power Density (S) (mW /cm2)	of Power Density (S) (mW /cm2)	Test Result
2.4G Band								
GFSK	1.80	1 ±1	2	7.02	5.035	0.00159	1	Complies
π /4-DQPSK	2.61	2±1	3	7.02	5.035	0.00200	1	Complies

For 5.8G SRD

 $Field\ strength = 88.07 dBuV/m@3m$

 $P = \{ [10^{(88.07/20)}/10^6 *3]^2/30 \}*1000 mW = 0.192 mW$

Pd= (30*0.192) / (377*20^2)=0.00004<1

For 5.8G SRD+BT

Total Pd=0.00004/1+0.00200/1=0.00204<1

End of Test Report