TEST REPORT Report Reference No.....: 4787598692-2 FCC ID.....: 2AB7X-WISEPOS Applicant's name.....: BBPOS International Limited Address...... Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T., Hong Kong Manufacturer...... BBPOS International Limited Address...... Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T., Hong Kong Test item description: WisePOS Trade Mark: - Model/Type reference...... WSC11 Listed Model(s) WSC10 Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247 Date of receipt of test sample...... Sep. 18,2016 Date of testing...... Sep. 19,2016- Sep. 28, 2016 Result.....: PASS Reviewed by: Denny Huang(Project Engineer) Approved by: Stephen Guo (Laboratory Manager) Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd Gongming, Shenzhen, China ## UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branchis acknowledged as copyright owner and source of the material. UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. REPORT NO: 4787598692-2 EUT: WisePOS # **Contents** DATE: Nov. 09, 2016 MODEL: WSC11 | <u>1.</u> | APPLICABLE STANDARDS ANDTEST DESCRIPTION | 4 | |--------------|---|--------| | 1.1. | Applicable Standards | 4 | | 1.2. | Test Description | 4 | | | | | | <u>2.</u> | SUMMARY | 5 | | | | | | 2.1. | Client Information | 5 | | 2.2. | Product Description | 5 | | 2.3. | Operation state | 6 | | 2.4. | EUT configuration | 6 | | 2.5. | Modifications | 7 | | <u>3.</u> | TEST ENVIRONMENT | 7 | | | | _ | | 3.1. | Address of the test laboratory | 7 | | 3.2. | Test Facility | 7 | | 3.3. | Equipments Used during the Test | 8 | | 3.4.
3.5. | Environmental conditions | 9
9 | | 3.3. | Statement of the measurement uncertainty | 9 | | <u>4.</u> | TEST CONDITIONS AND RESULTS | 10 | | 4.1. | Antenna requirement | 10 | | 4.2. | Conducted Emission (AC Main) | 11 | | 4.3. | Conducted Peak Output Power | 14 | | 4.4. | Power Spectral Density | 15 | | 4.5. | 6dB bandwidth | 18 | | 4.6. | Restricted band | 21 | | 4.7. | Band edge and Spurious Emission (conducted) | 38 | | 4.8. | Spurious Emission (radiated) | 43 | | <u>5.</u> | TEST SETUP PHOTOS OF THE EUT | 59 | | 6. | EXTERNAL AND INTERNAL PHOTOS OF THE EUT | 61 | # 1. APPLICABLE STANDARDS ANDTEST DESCRIPTION ## 1.1. Applicable Standards The tests were performed according to following standards: FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices <u>KDB558074 D01 V03R03:</u> Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) ## 1.2. Test Description | ReportSection | Test Item | FCC Rule | Result | |---------------|-----------------------------------|-------------------|--------| | 4.1 | Antenna requirement | 15.203/15.247 (c) | Pass | | 4.2 | Line Conducted Emission (AC Main) | 15.207 | Pass | | 4.3 | Conducted Peak Output Power | 15.247 (b)(3) | Pass | | 4.4 | Power Spectral Density | 15.247 (e) | Pass | | 4.5 | 6dB Bandwidth | 15.247 (a)(2) | Pass | | 4.6 | Restricted band | 15.247(d)/15.205 | Pass | | 4.7/4.8 | Spurious Emission | 15.247(d)/15.209 | Pass | Remark: The measurement uncertainty is not included in the test result. # 2. **SUMMARY** # 2.1. Client Information | Applicant: | BBPOS International Limited | |---------------|--| | Address: | Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T., Hong Kong | | Manufacturer: | BBPOS International Limited | | Address: | Suite 1602, 16/F, Tower 2, Nina Tower, No. 8 Yeung Uk Road, Tsuen Wan, N.T., Hong Kong | # 2.2. Product Description | Name of EUT | WisePOS | | |--------------------------|---|--| | Trade Mark: | - | | | Model No.: | WSC11 | | | Listed Model(s): | WSC10 | | | IMEI 1: | 352788070030212 | | | IMEI 2: | 352788070030220 | | | Power supply: | DC 3.8V From internal battery | | | Adapter information: _ | | | | WIFI | | | | Supported type: | 802.11b/802.11g/802.11n(H20)/802.11n(H40) | | | Modulation: | 802.11b: DSSS (DBPSK / DQPSK / CCK)
802.11g/n(H20)/ n(H40): OFDM (BPSK / QPSK / 16QAM / 64QAM) | | | Operation frequency: | 802.11b/g/n(H20): 2412MHz~2462MHz
802.11n(H40): 2422MHz~2452MHz | | | Channel number: | 802.11b/g/n(H20): 11
802.11n(H40):7 | | | Channel separation: 5MHz | | | | Antenna type: | Internal Antenna | | | Antenna gain: | -0.5dBi | | ## 2.3. Operation state ## ◆ Test frequency list According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom. | 802.11b/g/n(H20) | | 802.11b/g/n(H40) | | |------------------|-----------------|------------------|-----------------| | Channel | Frequency (MHz) | | Frequency (MHz) | | 01 | 2412 | | | | 02 | 2417 | | | | 03 | 2422 | 03 | 2422 | | i | i | | ÷ | | 06 | 2437 | 06 | 2437 | | i | i | ÷ | ÷ | | 09 | 2452 | 09 | 2452 | | 10 | 2457 | | | | 11 | 2462 | | | #### Data Rated Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode. | Mode | datarate (worst mode) | |--------------|-----------------------| | 802.11b | 1Mbps | | 802.11g | 6Mbps | | 802.11n(H20) | 6.5Mbps | | 802.11n(H40) | 6.5Mbps | #### **♦** Test mode For RF test items: the engineering test program was provided and enabled to make EUT continuous transmit/receive. The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%. For AC power line conducted emissions: the EUT was set to connect with the WLAN AP under large package sizes transmission. ## 2.4. EUT configuration The following peripheral devices and interface cables were connected during the measurement: supplied by the manufacturer O - supplied by the lab | Length (m): | 1 | |---------------|---| | Shield : | / | | Detachable : | / | | Manufacturer: | / | | Model No. : | 1 | #### 2.5. Modifications No modifications were implemented to meet testing criteria. ## 3. TEST ENVIRONMENT ## 3.1. Address of the test laboratory Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089 ## 3.2. Test Facility The test facility is recognized, certified, or accredited by the following organizations: #### CNAS-Lab Code: L1225 Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018. #### A2LA-Lab Cert. No. 3902.01 Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016. #### FCC-Registration No.: 317478 Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017. #### IC-Registration No.: 5377A&5377B The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016. Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017. #### **ACA** Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation. # 3.3. Equipments Used during the Test | Radia | Radiated Emission | | | | | |-------|----------------------------|------------------------------|------------------------|------------|------------| | Item | Test Equipment | Manufacturer | Model No. | Serial No. | Last Cal | | 1 | Ultra-Broadband
Antenna | ShwarzBeck | VULB9163 | 538 | 2015/11/02 | | 2 | EMI TEST RECEIVER | Rohde&Schwarz | ESI 26 | 100009 | 2015/11/02 | | 3 | EMI TEST Software | Audix | E3 | N/A | N/A | | 4 | TURNTABLE | ETS | 2088 | 2149 | N/A | | 5 | ANTENNA MAST | ETS | 2075 | 2346 | N/A | | 6 | EMI TEST Software | Rohde&Schwarz | ESK1 | N/A | N/A | | 7 | HORNANTENNA | ShwarzBeck | 9120D | 1011 | 2015/11/02 | | 8 | Amplifer | Sonoma | 310N | E009-13 | 2015/11/02 | | 9 | JS amplifer | Rohde&Schwarz | JS4-00101800-
28-5A | F201504 | 2015/11/02 | | 10 | High pass filter | Compliance Direction systems | BSU-6 | 34202 | 2015/11/02 | | 11 | HORNANTENNA | ShwarzBeck | 9120D | 1012 | 2015/11/02 | | 12 | Amplifer | Compliance Direction systems | PAP1-4060 | 120 | 2015/11/02 | | 13 | Loop Antenna | Rohde&Schwarz | HFH2-Z2 | 100020 | 2015/11/02 | | 14 | TURNTABLE | MATURO | TT2.0 | | N/A | | 15 | ANTENNA MAST | MATURO | TAM-4.0-P | | N/A | | 16 | Horn Antenna | SCHWARZBECK | BBHA9170 | 25841 | 2015/11/02 | | 17 | ULTRA-BROADBAND
ANTENNA | Rohde&Schwarz | HL562 | 100015 | 2015/11/02 | | Maxir | Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF | | | | | |-------|---|---------------|---------|--------------|------------| | Emiss | Emission / Spurious RF Conducted Emission | | | | | | Item | Item Test Equipment Manufacturer Model No. Serial No. Last Cal | | | | Last Cal | | 1 | Spectrum Analyzer | Rohde&Schwarz | FSP | 1164.4391.40 | 2015/11/02 | | 2 | Power Meter | Anritsu | ML2480B | 100798 | 2015/11/02 | | 3 | Power Sensor | Anritsu | MA2411B | 100258 | 2015/11/02 | The Cal.Interval was one year #### 3.4. Environmental conditions During the measurement the environmental conditions were within the listed ranges: | Temperature: | 15~35°C | |------------------|-------------| | lative Humidity: | 30~60 % | | Air Pressure: | 950~1050mba | ## 3.5. Statement of the measurement uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported: | Test Items | MeasurementUncertainty | Notes | |---|------------------------|-------| | Transmitter power conducted | 0.57 dB | (1) | | Transmitter power Radiated | 2.20 dB | (1) | | Conducted spurious emission 9KHz-40 GHz | 1.60 dB | (1) | | Radiated spurious emission 9KHz-40 GHz | 2.20 dB | (1) | | Conducted Emission 9KHz-30MHz | 3.39 dB | (1) | | Radiated Emission 30~1000MHz | 4.24 dB | (1) | | Radiated Emissio 1~18GHz | 5.16 dB | (1) | | Radiated Emissio 18-40GHz | 5.54 dB | (1) | | Occupied Bandwidth | | (1) | ⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96. ## 4. TEST CONDITIONS AND RESULTS ## 4.1. Antenna requirement #### Requirement ## FCC CFR Title 47 Part 15 Subpart C Section 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i): (i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. ## **Test Result:** The antenna is integral antenna, the best case gain of the antenna is-0.5dBi. ## 4.2. Conducted Emission (AC Main) #### LIMIT FCC CFR Title 47 Part 15 Subpart C Section 15.207 | Fraguency range (MIII) | Limit (dBuV) | | | |------------------------|--------------------|-----------|--| | Frequency range (MHz) | Quasi-peak Average | | | | 0.15-0.5 | 66 to 56* | 56 to 46* | | | 0.5-5 | 56 | 46 | | | 5-30 | 60 | 50 | | ^{*} Decreases with the logarithm of the frequency. ## **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements. - 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. - 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment. - 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs) - 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source. - 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length. - 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz. #### **TEST RESULTS** | Test mode:AC 120V | WIFI | Polarization | L | |-------------------|------|--------------|---| |-------------------|------|--------------|---| | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | |---|--|--------------------------------------|----------------------------|--|----------------------------------|----------------------------|--| | 0.388500
0.456000
1.293000
4.245000
5.149500
16.705500 | 37.50
36.70
37.00
36.10
35.00
30.70 | 10.2
10.2
10.3
10.4
10.5 | 58
57
56
56
60 | 20.6
20.1
19.0
19.9
25.0
29.3 | QP
QP
QP
QP
QP
QP | L1
L1
L1
L1
L1 | GND
GND
GND
GND
GND
GND | | | | | | | | | | | Frequency
MHz | Level
dBµV | Transd
dB | Limit
dBµV | Margin
dB | Detector | Line | PE | | | | | | _ | AV
AV
AV
AV
AV | Line L1 L1 L1 L1 L1 L1 L1 | GND
GND
GND
GND
GND
GND | DATE: Nov. 09, 2016 MODEL: WSC11 | Test mode: AC 120V | C 120V WIFI Polarization | | N | | |--|--|--|--|--| | | | , | | | | Level [dBµV] | | | | | | 80 | | | | | | 70 | | i i i i i i | i i i i i i i i i i i i i i i i i i i | | | 60 | | | | | | 50 | | | | | | 40 | A di k i in i di additi | and a make the state of the state of | | | | The same of sa | A CANDING MINISTER AND | X and the latest l | | | | 30 | AND THE PROPERTY OF PROPER | | | | | 20 | | | | | | 10 | ·-;;;-;-;-; | ;;;;;;;;;;; | - - | | | 150k 300k 400k | 600k 800k 1M | 2M 3M 4M 5M 6M 8N | 1 10M 20M 30M | | | | F | requency [Hz] | | | | x x x MES GM1609285063_f | fin | | | | | Frequency | Level Transd I | imit Margin Detect | or Line PE | | | MHz | dBµV dB | dBµV dB | | | | | | | | | | 0.370500
0.645000 | 38.30 10.2
34.20 10.2 | 59 20.2 QP
56 21.8 QP | N GND | | | 1.221000 | 35.10 10.3 | 56 20.9 QP | N GND
N GND | | | 2.463000 | 35.70 10.3 | 56 20.3 QP | N GND | | | 5.478000 | 33.20 10.5 | 60 26.8 QP | N GND | | | 16.534500 | 31.20 10.7 | 60 28.8 QP | N GND | | | Frequency | | imit Margin Detecto | or Line PE | | | MHz | dBμV dB | dBµV dB | | | | 0.388500 | 31.70 10.2 | 48 16.4 AV | N GND | | | 1.153500 | 28.00 10.3 | 46 18.0 AV | N GND | | | 2.409000 | 27.60 10.3 | 46 18.4 AV | N GND | | | 5.284500 | 24.90 10.5 | 50 25.1 AV | N GND | | | 23.131500 | 27.00 10.8 | 50 23.0 AV | N GND | | Remark:Transd=Cable lose+PULSE LIMITER factor+ARTIFICIAL MAINS factor;Margin=Limit-Level ## 4.3. Conducted Peak Output Power ## <u>LIMIT</u> FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm ## **TEST CONFIGURATION** ## **TEST PROCEDURE** - 1. The EUT was tested according to ANSI C63.10: 2013 for compliance to FCC 47CFR 15.247requirements. - 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter. - 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector - 4. Record the measurement data. ## **TEST RESULTS** | Туре | Channel | Output power (dBm) | Limit (dBm) | Result | |--------------|---------|--------------------|-------------|--------------| | | 01 | 14.29 | | | | 802.11b | 06 | 14.83 | 30.00 | Pass | | | 11 | 14.87 | | | | | 01 | 12.12 | | Pass
Pass | | 802.11g | 06 | 12.43 | 30.00 | | | | 11 | 12.64 | | | | | 01 | 13.02 | 30.00 | | | 802.11n(H20) | 06 | 13.47 | | | | | 11 | 13.54 | | | | | 03 | 11.49 | | | | 802.11n(H40) | 06 | 11.54 | 30.00 | Pass | | | 09 | 11.73 | | | ## 4.4. Power Spectral Density #### **LIMIT** FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e): 8dBm/3KHz For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1. Connect the antenna port(s) to the spectrum analyzer input, - 2. Configurethe spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold - 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer. - 4. Use the peak marker function to determine the maximum amplitude level within the RBW. - 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat. ## **TEST RESULTS** | Туре | Channel | Power Spectral
Density(dBm/3KHz) | Limit (dBm/3KHz) | Result | |--------------|---------|-------------------------------------|------------------|--------| | | 01 | -7.51 | | | | 802.11b | 06 | -10.36 | 8.00 | Pass | | | 11 | -11.50 | | | | | 01 | -18.84 | | Pass | | 802.11g | 06 | -19.00 | 8.00 | | | | 11 | -18.57 | | | | | 01 | -18.34 | | | | 802.11n(H20) | 06 | -19.35 | 8.00 | Pass | | | 11 | -18.84 | | | | | 03 | -24.68 | | | | 802.11n(H40) | 06 | -24.93 | 8.00 | Pass | | | 09 | -23.28 | | | Test plot as follows: ## 4.5. 6dB bandwidth #### LIMIT FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2): at least 500KHz For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz. #### **TEST CONFIGURATION** ## **TEST PROCEDURE** - 1. Connect the antenna port(s) to the spectrum analyzer input. - 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer). Center Frequency =DTS channel center frequency Span=2 x DTS bandwidth $RBW = 100 \text{ kHz}, VBW \ge 3 \times RBW$ Sweep time= auto couple Detector = Peak Trace mode = max hold - 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer. - 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, andrecord the pertinent measurements. #### **TEST RESULTS** | Туре | Channel | 6dB Bandwidth(MHz) | Limit (KHz) | Result | |--------------|---------|--------------------|-------------|--------| | | 01 | 10.06 | | | | 802.11b | 06 | 10.02 | ≥500 | Pass | | | 11 | 10.06 | | | | | 01 | 15.75 | | | | 802.11g | 06 | 15.50 | ≥500 | Pass | | | 11 | 15.50 | | | | | 01 | 16.92 | | | | 802.11n(H20) | 06 | 15.75 | ≥500 | Pass | | | 11 | 17.02 | | | | | 03 | 35.42 | | | | 802.11n(H40) | 06 | 35.38 | ≥500 | Pass | | | 09 | 35.49 | | | ## Test plot as follows: DATE: Nov. 09, 2016 MODEL: WSC11 #### 4.6. Restricted band #### **LIMIT** FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements. - 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated360 degrees to determine the position of the maximum emission level. - 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters. - 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement. - The receiver set as follow: RBW=1MHz, VBW=3MHz for Peak value RBW=1MHz, VBW=10Hz for Average value. - 6. Pre-scan 2310-2390MHz,2483.5-2500MHz,and only mark the worst case data in the test report ## **TEST RESULTS** DATE: Nov. 09, 2016 MODEL: WSC11 DATE: Nov. 09, 2016 MODEL: WSC11 DATE: Nov. 09, 2016 MODEL: WSC11