
	DAG	Report No.: DACE250410002RF001
DAG	RF TEST RE	PORT
Shon	For Then loweite Techn	
	zhen Jeweite Techno oduct Name: Blueto	
	Test Model(s):	
Report Reference No.	: DACE250410002RF001	
FCC ID	: 2BOZ3-M3	
Applicant's Name	: Shenzhen Jeweite Technolo	
Address		lo. 381, Shajing South Ring Road, hajing Street, Baoan District, Shenzhen
Testing Laboratory	: Shenzhen DACE Testing Te	chnology Co., Ltd.
Address		ilding H, Hongfa Science & Technology Park, Subdistrict, Bao'an District, Shenzhen,
Test Specification Standard	: 47 CFR Part 15.247	
Date of Receipt	: April 10, 2025	
Date of Test	: April 10, 2025 to April 18, 20	025
Data of Issue	: April 18, 2025	
Result	: Pass	
Testing Technology Co., Ltd. Tl	his document may be altered or re hall be noted in the revision sectio	ne written approval of Shenzhen DACE vised by Shenzhen DACE Testing Technology n of the document. The test results in the
102, Building H1, & 1/F., Building H, Hongfa Sc Web: http://www.dace-lab.com		an Subdistrict, Bao'an District, Shenzhen, Guangdong, China : service@dace-lab.com Page 1 of 96

e

1

Δ C -	V1.0	DAC	Report No.: DACE250410002RF001
	C Rev	vision History Of Repo	ort DAC
Version V1.0	Description Original	REPORT No. DACE250410002RF001	Issue Date April 18, 2025
6	DAG	20	E
2			

1.

1.

4

CONTENTS

240	V1.0	Report No.: DACE250410002RF00
	CON	TENTS
1 TEST	SUMMARY	6
		25
2 GENE	RAL INFORMATION	
2.	1 CLIENT INFORMATION	
2.	2 DESCRIPTION OF DEVICE (EUT)	
		ΤΥ
3 EVAL	UATION RESULTS (EVALUATION)	_ @
3.	1 ANTENNA REQUIREMENT	
	3.1.1 Conclusion:	
4 RADIO	O SPECTRUM MATTER TEST RESULTS (RF).	
	411 EULT Operation:	<u></u>
	4.1.1 E.O.1. Operation.	
		<u></u>
4.		
	4.2.3 Test Data:	
4.	.3 MAXIMUM CONDUCTED OUTPUT POWER	22
	4.3.1 E.U.T. Operation:	
	4.3.2 Test Setup Diagram:	
4.		
	· -	
4.		
	4.5.1 E.U.T. Operation:	
4.		
		IDS
4		

DAG

NG

1

DAG

DE

DΔC

C

DAG

4.8.2 Test Setup Diagram:	28
4.8.3 Test Data:	
4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
4.9.1 E.U.T. Operation:	
4.9.2 Test Setup Diagram:	
4.9.3 Test Data:	
4.10 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	
4.10.1 E.U.T. Operation:	
4.10.2 Test Setup Diagram:	
4.10.3 Test Data:	
5 TEST SETUP PHOTOS	
6 PHOTOS OF THE EUT	
1200B BANDWIDTH	
2. 99% OCCUPIED BANDWIDTH	
3. PEAK OUTPUT POWER 4. SPURIOUS EMISSIONS	
4. SPURIOUS EMISSIONS	
6. CARRIER FREQUENCIES SEPARATION (HOPPING)	
7. NUMBER OF HOPPING CHANNEL (HOPPING)	
8. DWELL TIME (HOPPING)	

DAG

NE

NE

DAG

2

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

Page 5 of 96

NE

V1.0

TEST SUMMARY 1

1.1 Test Standards

DAG

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Method	Requirement	Result
Antenna requirement		47 CFR 15.203	Pass
Conducted Emission at AC power line	ANSI C63.10-2020 section 6.2	47 CFR 15.207(a)	Pass
20dB Bandwidth	ANSI C63.10-2020, section 7.8.6 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Maximum Conducted Output Power	ANSI C63.10-2020, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	ANSI C63.10-2020, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	ANSI C63.10-2020, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	ANSI C63.10-2020, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	ANSI C63.10-2020 section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	ANSI C63.10-2020 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

Ne

AC

Note: 1.N/A -this device(EUT) is not applicable to this testing item

2. RF-conducted test results including cable loss.

NE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Page 6 of 96

NE

NE

2 GENERAL INFORMATION

2.1 Client Information

DΔC

Applicant's Name	:	Shenzhen Jeweite Technology Co., LTD
Address	:	305, Block A, Building B3, No. 381, Shajing South Ring Road, Dawangshan Community, Shajing Street, Baoan District, Shenzhen
Manufacturer	:	Shenzhen Jeweite Technology Co., LTD
Address	:	305, Block A, Building B3, No. 381, Shajing South Ring Road, Dawangshan Community, Shajing Street, Baoan District, Shenzhen

C

2.2 Description of Device (EUT)

Product Name:	Bluetooth speaker
Model/Type reference:	M3
Series Model:	M1, M2 , M4, M10, MT, BS-08, BS-09, U1, U2
Model Difference:	There are multiple models of the product, with differences in the color of the appearance and customer requirements for different models in the market, resulting in multiple models. However, the internal circuit boards, PCBs, BOMs, and other electrical structures of these models are the same, and these differences will not affect RF&EMC performance. Therefore, the selected test model is: M3.
Trade Mark:	N/A
Product Description:	Bluetooth speaker
Power Supply:	DC3.7V from battery
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	79
Modulation Type:	GFSK, π/4 DQPSK, 8DPSK
Antenna Type:	PCB ANT
Antenna Gain:	1.3dBi
Hardware Version:	SL8313-03
Software Version:	BT_Tool V1.1.0

Channel list:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

6

E-mail: service@dace-lab.com

Page 7 of 96

1

V1.0

DAG

	11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
	12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
	13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
	14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
	15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
	16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
	17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
	18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
	19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
_	20	2421MHz	40	2441MHz	60	2461MHz	/	1
-				•	•		•	

the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

2.3 Description of Test Modes

No	Title	Description
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation at lowest, middle and highest channel.
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation at lowest, middle and highest channel.
ТМ3	TX-8DPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation at lowest, middle and highest channel.
TM4	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
TM5	TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.
TM6	TX-8DPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.
TM7	Charging mode	Charging mode
BT_Tool COMX Baudro CLassic B Test Mode FCC Test DUT Test RF Contro RF Mode Hopping TX Fower Scenario	BT address SSSSSSSSSS Run TX TEST V Packet Type DH5 V TX Frequency 2429 0 6 V RX Frequency 2402 0 FRBS Pattern V	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

2.4 Description of Support Units

DΛC

Title	Title Manufacturer		Serial No.	
Adapter	PHOTON	ATXC-069AC65B	1	

6

2.5 Equipments Used During The Test

Conducted Emission a	at AC power line	20	C .		6
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Cable	SCHWARZ BECK	/	/	2024-05-20	2025-05-19
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB	561-(-1)/1		2025-12-05
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	1164.6607K03 -102109-MH	2024-06-12	2025-06-11
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11
L.I.S.N	L.I.S.N SCHWARZ BECK		05055	2024-06-14	2025-06-13
Pulse Limiter	CYBERTEK	EM5010A	1 🕥	2024-09-27	2025-09-26
EMI test software	EZ -EMC	EZ	V1.1.42	/	/

20dB Bandwidth Maximum Conducted Channel Separation Number of Hopping F Dwell Time Emissions in non-rest	requencies	ands	6	DA	E
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	/	DAC
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05
200		NE	1		6

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

6-

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 9 of 96

DVG

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
EMI Test software	Farad	EZ -EMC	V1.1.42	1	/				
Positioning Controller	MF	MF-7802	/	/	/				
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2023-05-19	2025-05-18				
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-05-19	2025-05-18				
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13				
Cable(LF)#2	Schwarzbeck	/	/	2024-12-19	2025-12-18				
Cable(LF)#1	Schwarzbeck	/	/	2024-12-19	2025-12-18				
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-05-20	2025-05-19				
Cable(HF)#1	Schwarzbeck	SYV-50-3-1		2024-05-20	2025-05-19				
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11				
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11				
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11				
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11				
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2024-06-13	2025-06-12				
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12				
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27				

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty		
Conducted Disturbance (0.15~30MHz)	±3.41dB	21	
Occupied Bandwidth	±3.63%	J.	
RF conducted power	±0.733dB		
Duty cycle	±3.1%		
Conducted Spurious emissions	±1.98dB		
Radiated Emission (Above 1GHz)	±5.46dB		
Radiated Emission (Below 1GHz)	±5.79dB		

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Page 10 of 96

DΔC

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.			
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China			
Phone Number:	+86-13267178997			
Fax Number:	86-755-29113252			
Identification of the Responsi	ble Testing Location			
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.			
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China			
Phone Number:	+86-13267178997			
Fax Number:	86-755-29113252			
FCC Registration Number:	0032847402			
Designation Number:	CN1342			
Test Firm Registration Number:	778666			
A2LA Certificate Number:	6270.01			

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

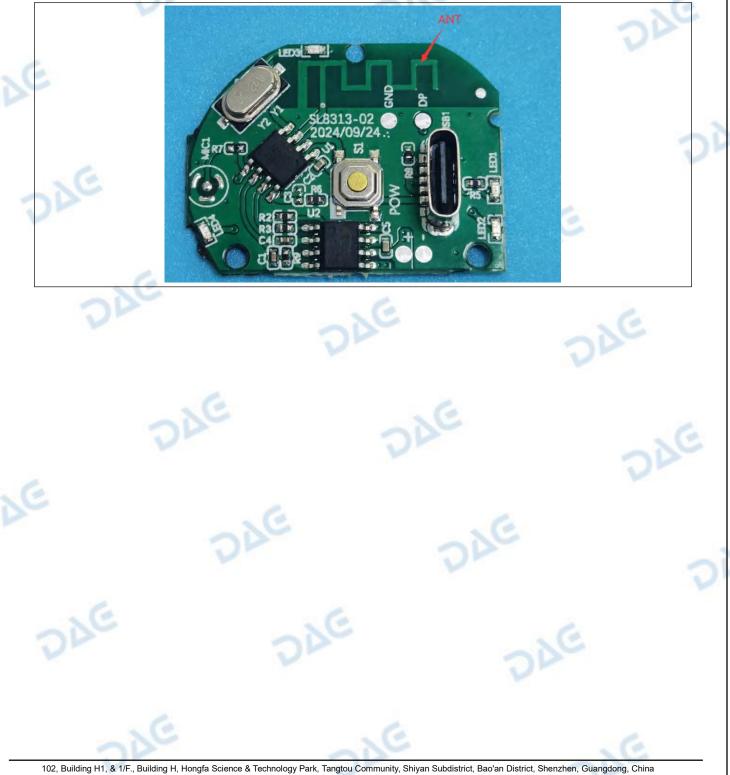
(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. the laboratory is not responsible for the accuracy of the information provided by the client(item 2.2). When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613

 E-mail: service@dace-lab.com
 Page 11 of 96


3 Evaluation Results (Evaluation)

3.1 Antenna requirement

with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.		uses a unique coupling to the intentional radiator shall be considered sufficient to
---	--	--

3.1.1 Conclusion:

DAG

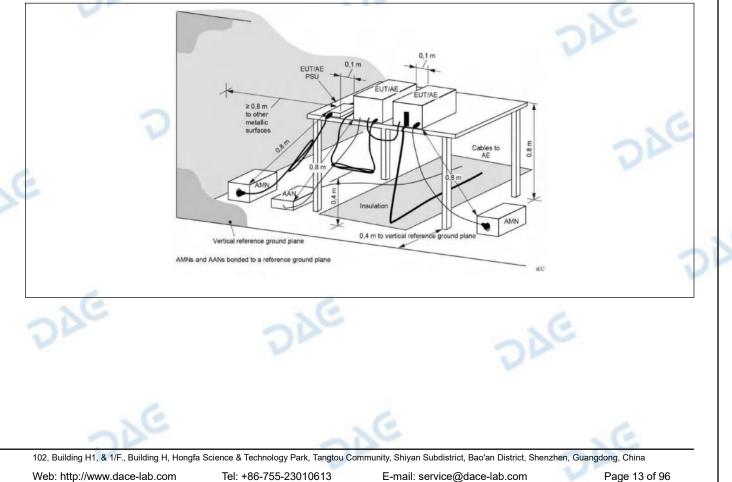
Web: http://www.dace-lab.com Tel: +86-755-23010613

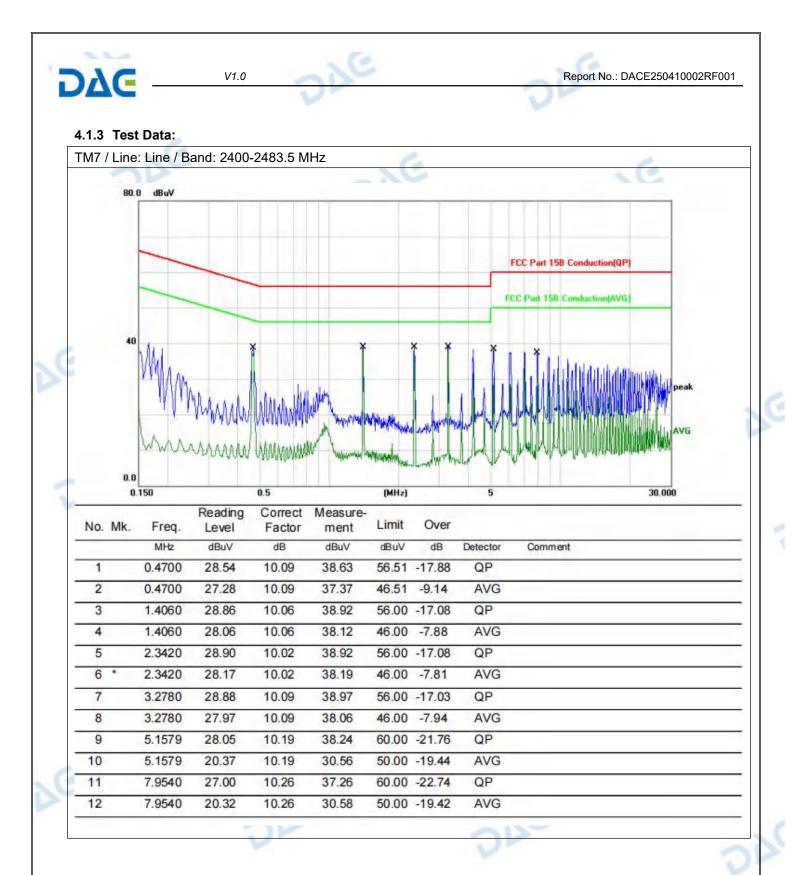
E-mail: service@dace-lab.com

4 Radio Spectrum Matter Test Results (RF)

4.1 Conducted Emission at AC power line

Test Requirement:Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of the section, for an intentional radiator that is designed to be connected to the p utility (AC) power line, the radio frequency voltage that is conducted back of AC power line on any frequency or frequencies, within the band 150 kHz to MHz, shall not exceed the limits in the following table, as measured using a µH/50 ohms line impedance stabilization network (LISN).							
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)					
	~	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2020 section 6.2						
Procedure:	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices						


*


4.1.1 E.U.T. Operation:

DΔC

Operating Environment:						
Temperature:	22.6 °C		Humidity:	51 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM7			V	
Final test mode:	6	TM7				

4.1.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

DAG

Page 14 of 96

DAG

V1.0 Report No.: DACE250410002RF001 TM7 / Line: Neutral / Band: 2400-2483.5 MHz Image: Constraint of the second secon

(MHz)

Limit

dBuV

46.51

56.51 -17.58

56.00 -16.71

46.00 -7.67

56.00 -16.66

46.00 -7.52

46.00 -7.85

56.00 -16.59

56.00 -17.04

46.00 -8.54

60.00 -22.07

50.00 -22.38

Over

dB

-8.23

5

Detector

QP

AVG

QP

AVG

QP

AVG

AVG

QP

QP

AVG QP

AVG

Comment

FEC Part 158 Conduction(AVG)

NOTE:

0.0

Freq.

MHz

0.4700

0.4700

1.4020

1.4020

2.3380

2.3380

3.2740

3.2780

4.2100

4.2100

6.0980

6.0980

No. Mk.

1

2

3

4

6

7

8

10

11

12

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3.Mesurement Level = Reading level + Correct Factor, Over=Limit- Mesurement

0.5

Correct

Factor

dB

10.09

10.09

10.06

10.06

10.02

10.02

10.09

10.09

10.16

10.16

10.21

10.21

Measure-

ment

dBuV

38.93

38.28

39.29

38.33

39.34

38.48

38.15

39.41

38.96

37.46

37.93

27.62

Reading

Level

dBuV

28.84

28.19

29.23

28.27

29.32

28.46

28.06

29.32

28.80

27.30

27.72

17.41

4. When charging , the eut can not transmit

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 15 of 96

1

30.000

Report No.: DACE250410002RF001

4.2 20dB Bandwidth

DAG

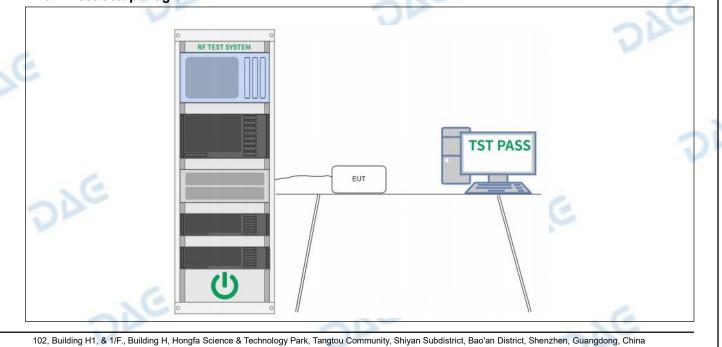
Test Requirement:	47 CFR 15.247(a)(1)	6
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the provisions to the general emission limits, as contained in §§ 15.27 and in subpart E of this part, must be designed to ensure that the of the emission, or whatever bandwidth may otherwise be specified rule section under which the equipment operates, is contained with band designated in the rule section under which the equipment is	17 through 15.257 20 dB bandwidth ed in the specific thin the frequency
Test Method:	ANSI C63.10-2020, section 7.8.6, For occupied bandwidth measu procedure in 6.9.3. Frequency hopping shall be disabled for this to KDB 558074 D01 15.247 Meas Guidance v05r02	
Procedure:	The occupied bandwidth is the frequency bandwidth such that, be above its upper frequency limits, the mean powers are each equa total mean power of the given emission. The following procedure measuring 99% power bandwidth: a) The instrument center frequency is set to the nominal EUT cha frequency. The frequency span for the spectrum analyzer shall be times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the rang the OBW, and VBW shall be at least three times the RBW, unless specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the exceeding the maximum input mixer level for linear operation. In g of the spectral envelope shall be more than [10 log (OBW/RBW)] reference level. Specific guidance is given in 4.1.6.2. d) Step a) through step c) might require iteration to adjust within the range. e) Video averaging is not permitted. Where practical, a sample de sweep mode shall be used. Otherwise, peak detection and max-h the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if ava the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function data points are recovered and directly summed in linear power ten recovered amplitude data points, beginning at the lowest frequency running sum until 0.5% of the total is reached; that frequency is real lower frequency. The process is repeated until 99.5% of the total is frequency is recorded as the upper frequency. The 99% power bandwidth shall be reported by providing spectra measuring instrument display; the plot axes and the scale units po- clearly labeled. Tabular data may be reported in addition to the plot clearly labeled. Tabular data may be reported in addition to the plot clearly labeled. Tabular data may be reported in addition to the plot clearly labeled. Tabular data may be reported in addition to the plot clearly labeled. Tabular data may be reported in addition to the plot clearly labeled. Tabular data may be	It to 0.5% of the shall be used for annel center between 1.5 ge of 1% to 5% of otherwise he signal from general, the peak below the he specified etection and single old mode (until hilable) and report on, then the trace rms. The cy, are placed in a ecorded as the is reached; that indwidth is the l plot(s) of the er division shall be
4.2.1 E.U.T. Operation:		

4.2.1 E.U.T. Operation:

Operating Envir	onment:	2			20-	
Temperature:	22.6 °C		Humidity:	51 %	Atmospheric Pressure:	102 kPa
Pretest mode: TM1, TM2, TM3						
Final test mode	:	TM1,	TM2, TM3	6		12
4.2.2 Test Setup Diagram:				C		
Y			V		22	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 16 of 96 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DVG


4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2020, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings: a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. b) RBW > 20 dB bandwidth of the emission being measured. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow trace to stabilize. h) Use the marker-to-peak function to set the marker to the peak of the emission. i) The indicated level is the peak output power, after any corrections for external attenuators and cables. j) A spectral plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and
xe	sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.
4.3.1 E.U.T. Operation:	IE G

4.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.6 °C		Humidity:	51 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3				
Final test mode:		TM1,	TM2, TM3		e.		
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

4.3.2 Test Setup Diagram:

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 96

V1.0

Report No.: DACE250410002RF001

4.4 Channel Separation

DΛC

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2020, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize.
	Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

٢

4.4.1 E.U.T. Operation:

Operating Envir	onment:						
Temperature:	22.6 °C		Humidity:	51 %	A	Atmospheric Pressure:	102 kPa
Pretest mode:		TM4,	TM5, TM6	aP	200		alle
Final test mode:		TM4,	TM5, TM6	V			JF JF

4.4.2 Test Setup Diagram:

DDE		EUT	TST PASS	DAC
2	se.	 NE	ι.	.C

-

4.5 Number of Hopping Frequencies

DΔC

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold.
DAC	 g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A spectral plot of the data shall be included in the test report.

4.5.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.6 °C		Humidity:	51 %		Atmospheric Pressure:	102 kPa
Pretest mode: TM4, TM5, TM6							V
Final test mode: TM4, TM5, TM6							
4.5.2 Test Setu	4.5.2 Test Setup Diagram:						

4.5.2 Test Setup Diagram:

26		200	C
		EUT	DAC
102, Building H1, & 1/F., Building H, Hon	gfa Science & Technology Park, Tangtou C	ommunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Gua	ngdong, China
Web: http://www.dace-lab.com	Tel: +86-755-23010613	E-mail: service@dace-lab.com	Page 22 of 96

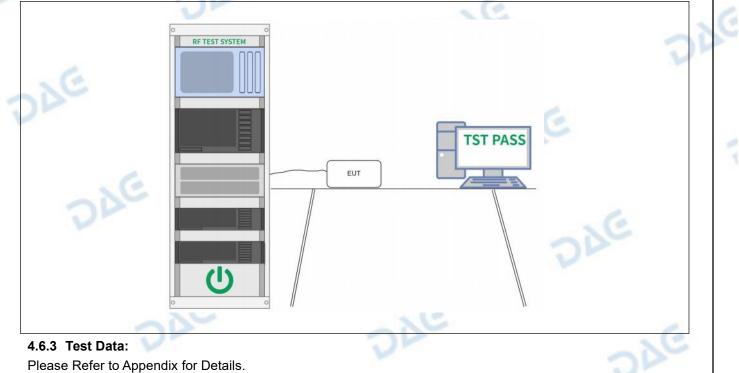
2

Report No.: DACE250410002RF001

4.6 Dwell Time

DVG

47 CFR 15.247(a)(1)(iii)
Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
ANSI C63.10-2020, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
The dwell time per hop on a channel is the time from the start of the first transmission to the end of the last transmission for that hop. If the device has a single transmission per hop then the dwell time is the duration of that transmission. If the device has a multiple transmissions per hop then the dwell time is measured from the start of the first transmission to the end of the last transmission.
The time of occupancy is the total time that the device dwells on a channel over an observation period specified in the regulatory requirement. To determine the time of occupancy the spectrum analyzer will be configured to measure both the dwell time per hop and the number of times the device transmits on a specific channel in a given period.
The EUT shall have its hopping function enabled. Compliance with the requirements shall be made with the minimum and with the maximum number of channels enabled. If the dwell time per channel does not vary with the number of channels than compliance with the requirements may be based on the minimum number of channels. If the device supports different dwell times per channel (example Bluetooth devices can dwell on a channel for 1, 3 or 5 time slots) then measurements can be limited to the longest dwell time with the minimum number of channels.
Use the following spectrum analyzer settings to determine the dwell time per hop:
 a) Span: Zero span, centered on a hopping channel. b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected transmission time per hop. c) Sweep time: Set so that the start of the first transmission and end of the last transmission for the hop are clearly captured. Setting the sweep time to be slightly longer than the hopping period per channel (hopping period = 1/hopping rate) should achieve this. d) Use a video trigger, where possible with a trigger delay, so that the start of the transmission is clearly observed. The trigger level might need adjustment to reduce the chance of triggering when the system hops on an adjacent channel. e) Detector function: Peak. f) Trace: Clear-write, single sweep. g) Place markers at the start of the first transmission on the channel and at the end of the last transmission. The dwell time per hop is the time between these two markers
markers. To determine the number of hops on a channel in the regulatory observation period repeat the measurement using a longer sweep time. When the device uses a single hopping sequence the period of measurement should be sufficient to capture at least 2 hops. When the device uses a dynamic hopping sequence, or the sequence varies, the period of measurement may need to capture multiple hops to better determine the average time of occupancy. Count the number of hops on the


DAG -	V1.0	Report No.: DACE250410002RF001
	V	UL
DAG	spectrum analyzer sweep time mu example, if three hops are counter	ber of hops on the channel divided by the ultiplied by the regulatory observation period. For d with an analyzer sweep time of 500 ms and the 0 s, then the number of hops in that ten seconds
	The average time of occupancy is by the number of hops in the obse	calculated by multiplying the dwell time per hop ervation period.

4.6.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.6 °C		Humidity:	51 %	V	Atmospheric Pressure:	102 kPa
Pretest mode:		TM4,	TM5, TM6				V
Final test mode:		TM4,	TM5, TM6				

4.6.2 Test Setup Diagram:

DAG

AC

DE

DAG

DAG

4.7 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	7.8.7.1 General considerations To demonstrate compliance with the relative out-of-band emissions requirements conducted spurious emissions shall be measured for the transmit frequencies, per 5.5 and 5.6, and at the maximum transmit powers. Frequency hopping shall be disabled for this test with the exception of measurements at the allocated band- edges which shall be repeated with hopping enabled.
DAC	Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The frequency range of testing shall span 30 MHz to 10 times the operating frequency and this may be done in a single sweep or, to aid resolution, across a number of sweeps. The resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector. The limit is based on the highest in-band level across all channels measured using the same instrument settings (resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector). To help clearly demonstrate compliance a display line may be set at the required offset (typically 20 dB) below the highest in-band level. Where the highest in-band level is not clearly identified in the out-of-band measurements a separate spectral plot showing the in-band level shall be provided.
DAG	When conducted measurements cannot be made (for example a device with integrated, non-removable antenna) radiated measurements shall be used. The reference level for determining the limit shall be established by maximizing the field strength from the highest power channel and measuring using the resolution and video bandwidth settings and peak detector as described above. The field strength limit for spurious emissions outside of restricted-bands shall then be set at the required offset (typically 20 dB) below the highest in-band level. Radiated measurements will follow the standards measurement procedures described in Clause 6 with the exception that the resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector. Note that use of wider measurement bandwidths are acceptable for measuring the spurious emissions are compared to the highest in-band level measured with the 100 kHz / 300 kHz bandwidth settings to determine compliance.
NE	7.8.7.2 Band-edges Compliance with a relative limit at the band-edges (e.g., -20 dBc) shall be made on the lowest and on the highest channels with frequency hopping disabled and repeated with frequency hopping enabled. For the latter test the hopping sequence shall include the lowest and highest channels.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

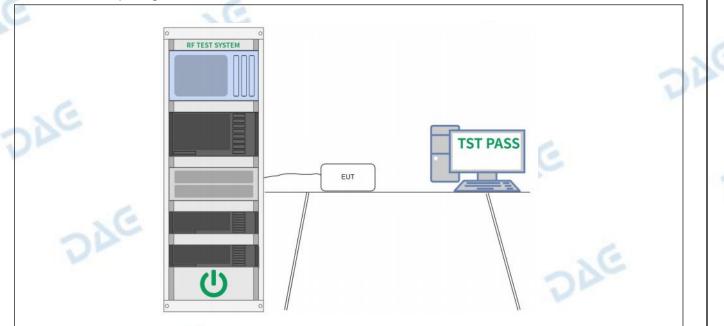
Page 26 of 96

Report No.: DACE250410002RF001

NG

For measurements with the hopping disabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of the allocated band-edge.

For measurements with the hopping enabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of both of the allocated band-edges. This could require separate spectral plots for each band-edge.


NE

NE

4.7.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.6 °C		Humidity:	51 %	Atmospheric Pressure:	102 kPa	
Pretest mode:	V	TM1,	TM2, TM3		Jr-	-10	
Final test mode:		TM1,	TM2, TM3			Dr	

4.7.2 Test Setup Diagram:

4.7.3 Test Data: Please Refer to Appendix for Details.

DAG

DE

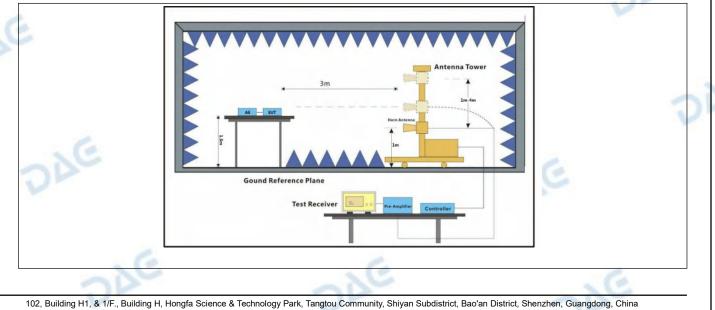
 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613

 E-mail: service@dace-lab.com
 Page 27 of 96

AC

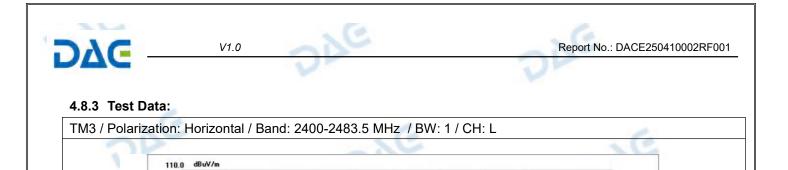
4.8 Band edge emissions (Radiated)


DΔC

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
- 2	0.009-0.490	2400/F(kHz)	300				
2	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
DAG	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands i and 15.241. In the emission table ab The emission limits show employing a CISPR qua 110–490 kHz and above	paragraph (g), fundamental em r this section shall not be locate 174-216 MHz or 470-806 MHz s permitted under other section ove, the tighter limit applies at the vn in the above table are based si-peak detector except for the 1000 MHz. Radiated emission tents employing an average det	ed in the frequency bands . However, operation within s of this part, e.g., §§ 15.231 he band edges. I on measurements frequency bands 9–90 kHz, limits in these three bands				
Test Method:	ANSI C63.10-2020 secti KDB 558074 D01 15.24	on 6.10 7 Meas Guidance v05r02					
Procedure:	ANSI C63.10-2020 sect	on 6.10.5.2	SC				
481 FUT Operatio			200				

4.8.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	22.6 °C	1	Humidity:	51 %	Atmospheric Pressure:	102 kPa
Pretest mode:	- 3	TM1,	TM2, TM3		10	
Final test mode:		TM3			DA	- (e)


4.8.2 Test Setup Diagram:

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

FCC Part 15C

FCC Part 15

2390.000

2370.000 2380.000

VG

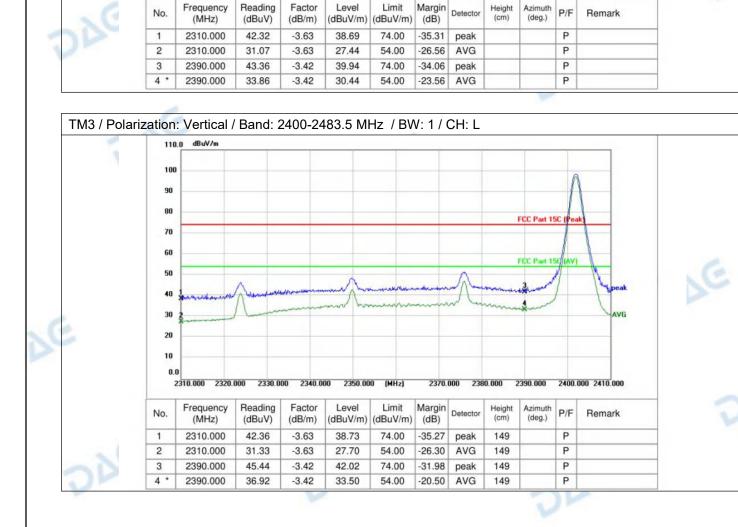
2400.000 2410.000

100 90 80

70

50 40 30

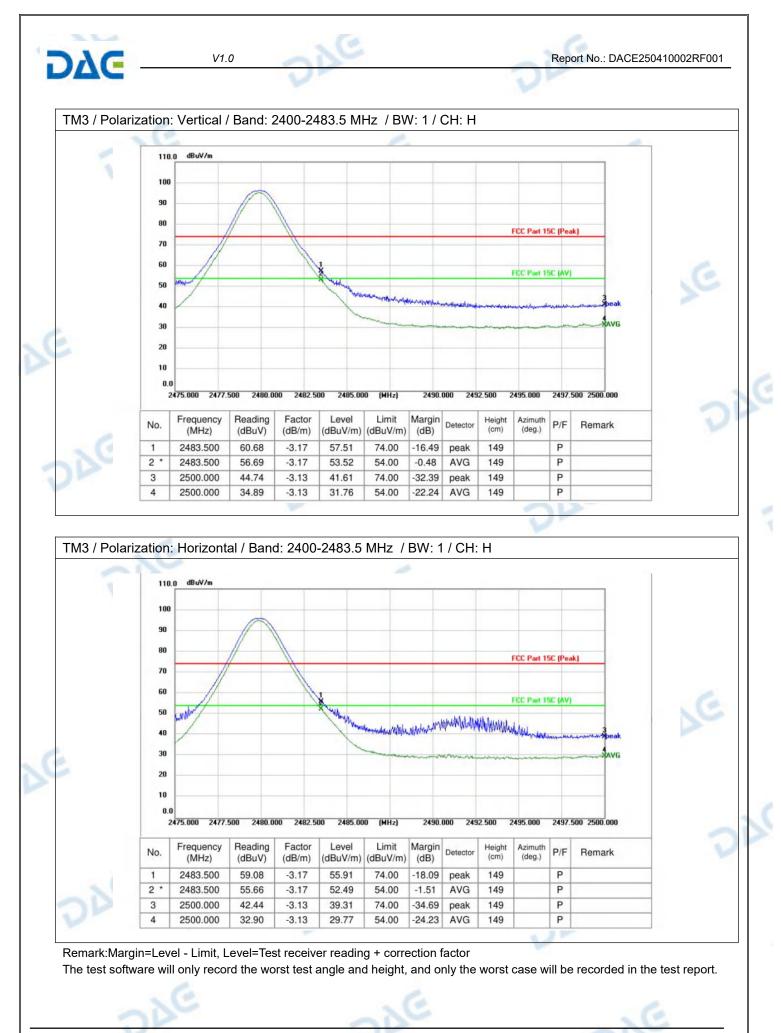
20 10 0.0


2310.000 2320.000

2330.000

2340.000

2350.000


(MHz)

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 29 of 96

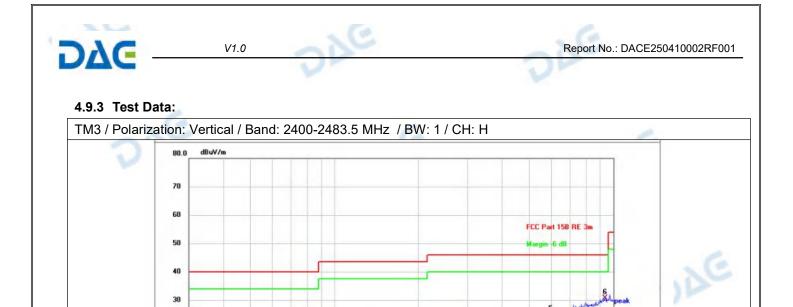
1

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 30 of 96

DγC

4.9 Emissions in frequency bands (below 1GHz)


Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30		
	1.705-30.0	30	30		
	30-88	100 **	3		
	88-216	150 **	3		
	216-960	200 **	3		
	Above 960	500	3		
			ental emissions from intentional		
	these frequency ban and 15.241. In the emission table The emission limits s employing a CISPR 110–490 kHz and ab	ds is permitted under other above, the tighter limit app shown in the above table ar quasi-peak detector except	re based on measurements t for the frequency bands 9–90 kHz mission limits in these three bands		
Test Method:	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02				
Procedure:	360 degrees to deter b. For above 1GHz, above the ground at degrees to determine c. The EUT was set which was mounted d. The antenna heigh determine the maxim polarizations of the a e. For each suspected	mine the position of the high the EUT was placed on the a 3 meter fully-anechoic ch e the position of the highes 3 or 10 meters away from t on the top of a variable-hei num value of the field streng intenna are set to make the ed emission, the EUT was a	top of a rotating table 1.5 meters namber. The table was rotated 360 t radiation. he interference-receiving antenna, ght antenna tower. to four meters above the ground to gth. Both horizontal and vertical		
	below 30MHz, the ar was turned from 0 de f. The test-receiver s Bandwidth with Maxi g. If the emission lev specified, then testin	ntenna was tuned to height egrees to 360 degrees to fin ystem was set to Peak Det mum Hold Mode. el of the EUT in peak mode g could be stopped and the	s 1 meter) and the rotatable table		
	tested one by one us reported in a data sh h. Test the EUT in th i. The radiation meas Transmitting mode, a j. Repeat above proc Remark:	sing peak, quasi-peak or av eet. e lowest channel, the midd surements are performed ir and found the X axis positic redures until all frequencies	rerage method as specified and the le channel, the Highest channel. a X, Y, Z axis positioning for oning which it is the worst case. a measured was complete.		
	1) For omission hale	w 1GHz, through pre-scan	found the worst ages is the lowest		

Web: http://www.dace-lab.com

Tel: +86-755-23010613

Page 31 of 96

DAG -	V1.0	240	1	Rep	ort No.: DACE250410	002RF001
DA	Prea Fina Prea 3) S was foun spur	amplifier. The basic I Test Level =Rece amplifier Factor can from 9kHz to 2 very low. The poir d when testing, so ious emissions fro	calculated by add c equation with a s eiver Reading + An 25GHz, the disturb this marked on abov o only above points om the radiator whi	ample calculation i tenna Factor + Cal ance above 12.750 /e plots are the hig had been displaye ch are attenuated r	s as follows: ble Factor "C GHz and below 30 hest emissions co ed. The amplitude more than 20dB b	MHz ould be of elow
		ious emission is s	eported. Fundamer hown.	ital frequency is br	ockeu by liller, all	u only
4.9.1 E.U.T. Op	eration:		OP			SC
Operating Envir					3	
Temperature:	22.6 °C	Humidity: 51	% Atmo	spheric Pressure:	102 kPa	
Pretest mode:	TM1	, TM2, TM3				
Final test mode:	TM3	2		- Co		
4.9.2 Test Setu	ıp Diagram:			200		
DAG		EUT	3 m Ground Plane		DAG	
E		AE EUT (Turntable) G Test Re	Antenna an round Reference Plane Ceiver	Antenna Tower		DC I
	6	V		2r		

(MHz)

Limit

40.00

40.00

43.50

46.00

Margin

(dB)

-16.47

-25.82

-24.16

-25.50

300.00

Detector

QP

QP

QP

QP

QP

Height

(cm)

100

100

100

100

100

Azimuth

(deg.)

P/F

P

Ρ

Ρ

Ρ

Ρ

20

10 0.0 30.000

No.

1

2

3

4

5

Frequency

(MHz)

31.7313

75.7114

124.1330

360.4476

Ş

Factor

(dB/m)

-2.71

-12.66

-6.60

-6.54

Level

23.53

14.18

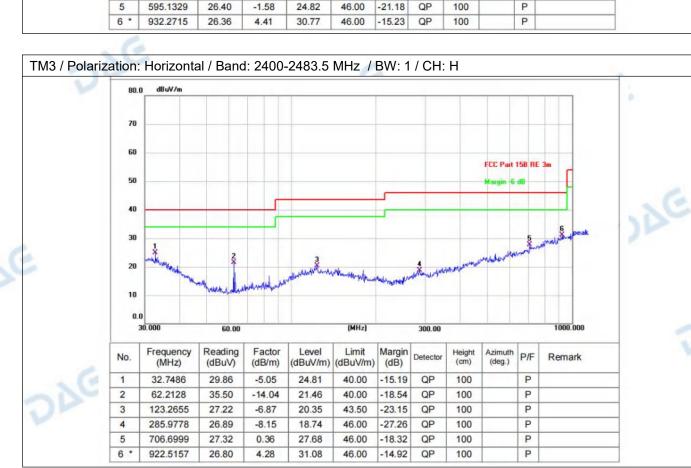
19.34

20.50

(dBuV/m) (dBuV/m)

60.00

Reading


(dBuV)

26.24

26.84

25.94

27.04

Remark:Margin=Level - Limit, Level=Test receiver reading + correction factor The test software will only record the worst test angle and height, and only the worst case will be recorded in the test report.

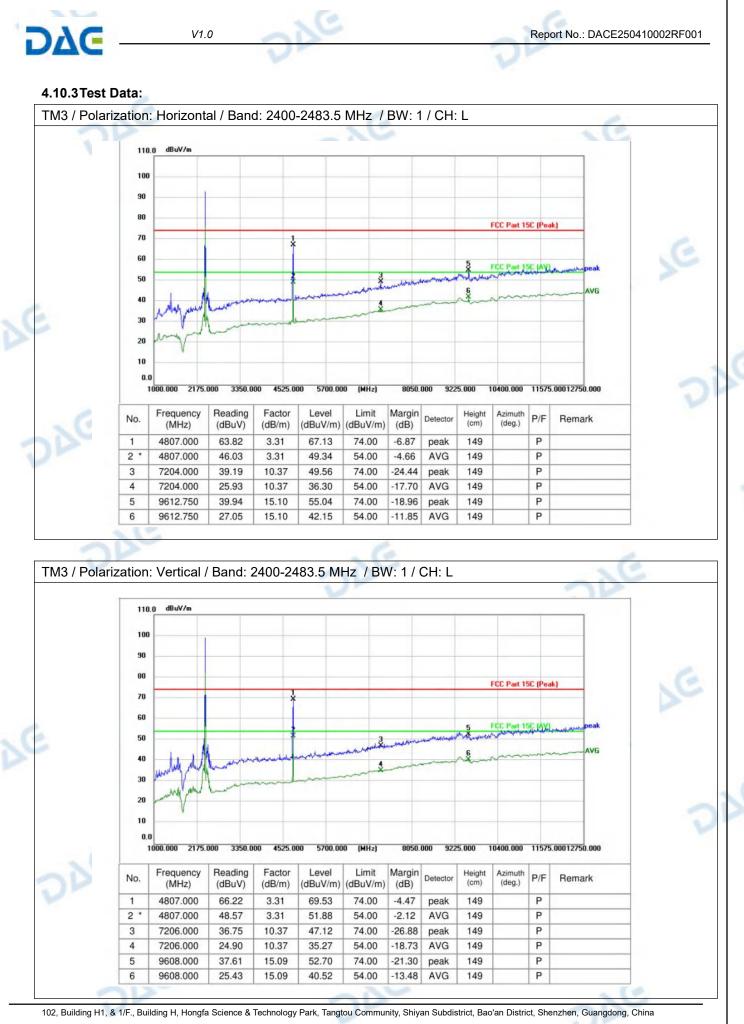
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com Web: http://www.dace-lab.com

Page 33 of 96

1000.000

Remark

DγG

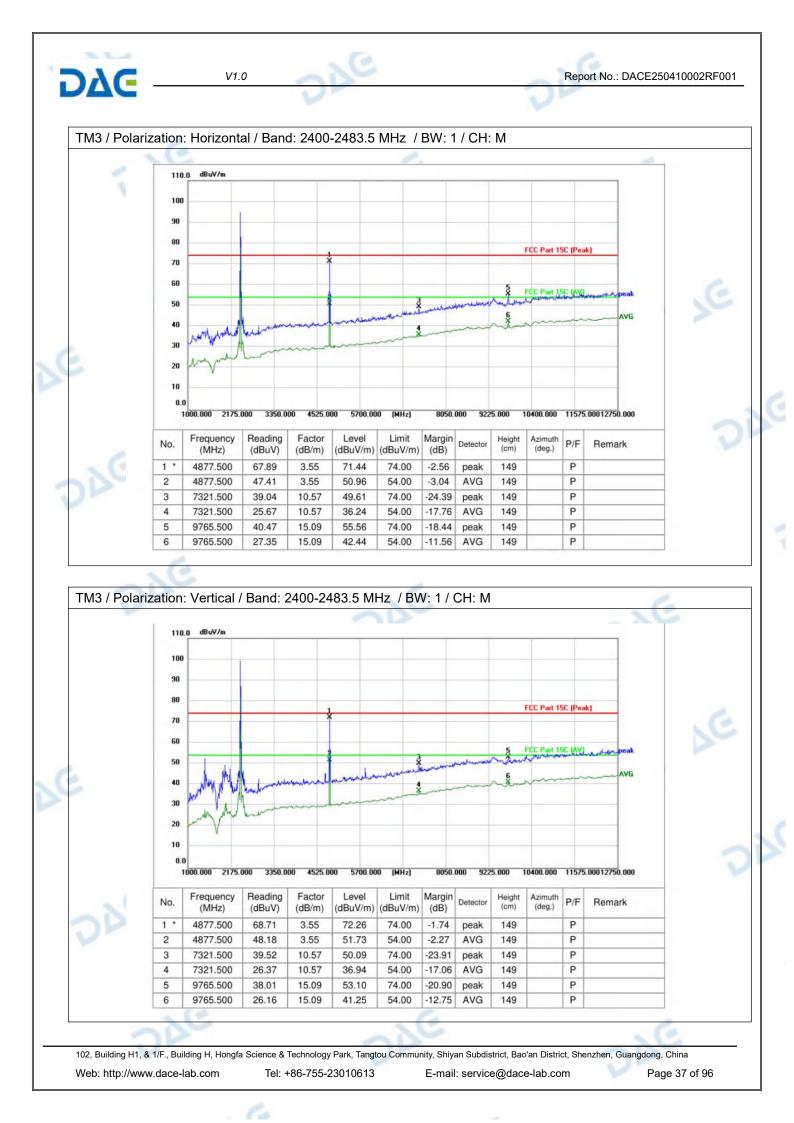

4.10 Emissions in frequency bands (above 1GHz)

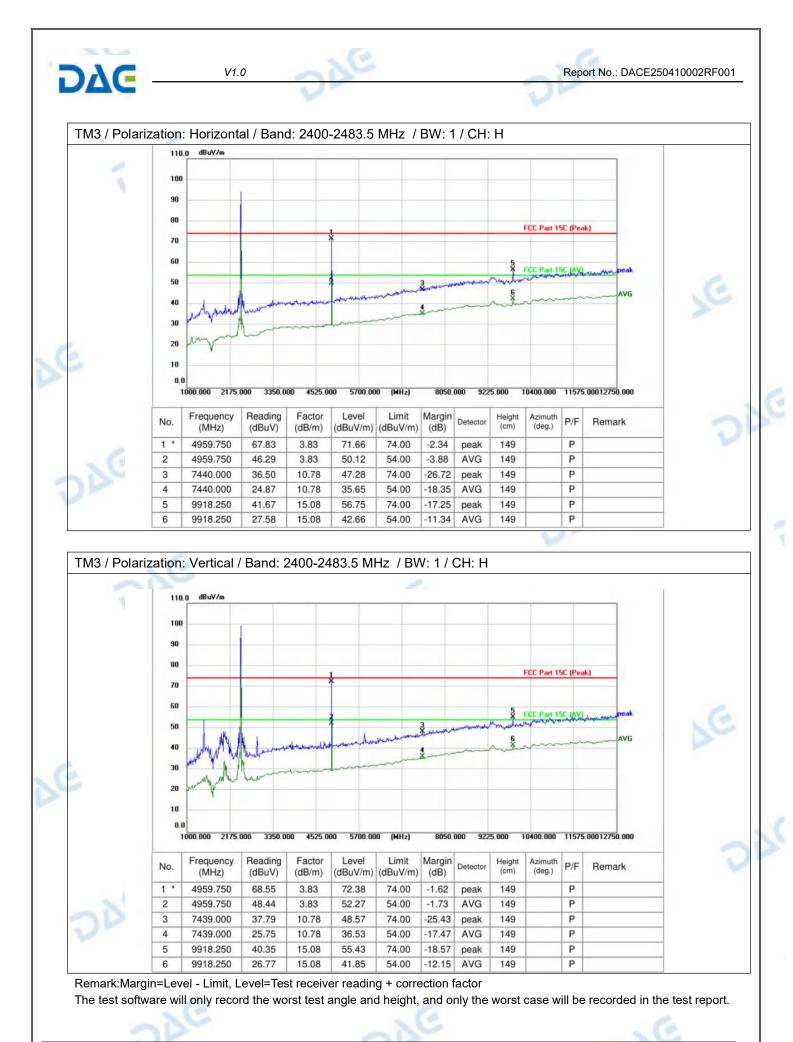
Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	radiators operating under 54-72 MHz, 76-88 MHz, 1 these frequency bands is and 15.241. In the emission table above The emission limits shown employing a CISPR quasi	this section shall not be 74-216 MHz or 470-800 permitted under other s we, the tighter limit appli in the above table are -peak detector except for				
	are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02					
	360 degrees to determine b. For above 1GHz, the E above the ground at a 3 n degrees to determine the c. The EUT was set 3 or 1 which was mounted on th d. The antenna height is w determine the maximum w polarizations of the antenne e. For each suspected em the antenna was tuned to below 30MHz, the antenne was turned from 0 degree f. The test-receiver system Bandwidth with Maximum g. If the emission level of specified, then testing cou- reported. Otherwise the e tested one by one using p reported in a data sheet. h. Test the EUT in the low i. The radiation measurem Transmitting mode, and fo j. Repeat above procedure Remark:	the position of the high UT was placed on the to neter fully-anechoic cha position of the highest r 0 meters away from the e top of a variable-heigh varied from one meter to ralue of the field strengt ha are set to make the r hission, the EUT was arr heights from 1 meter to a was tuned to heights s to 360 degrees to find how as set to Peak Detect Hold Mode. the EUT in peak mode w and be stopped and the p missions that did not ha eak, quasi-peak or aver est channel, the middle hents are performed in 2 bound the X axis position es until all frequencies r	op of a rotating table 1.5 meters mber. The table was rotated 360 radiation. e interference-receiving antenna, nt antenna tower. o four meters above the ground to h. Both horizontal and vertical measurement. ranged to its worst case and then o 4 meters (for the test frequency 1 meter) and the rotatable table d the maximum reading. ct Function and Specified was 10dB lower than the limit beak values of the EUT would be reage method as specified and the channel, the Highest channel. K, Y, Z axis positioning for ing which it is the worst case. measured was complete.			
NE			ound the worst case is the lowes			

Tel: +86-755-23010613

ΔΕ —	V1.0	De	-	Report No.: DACE2504	410002RF001
DAG	Preamplifier. The Final Test Level Preamplifier Fac 3) Scan from 9k was very low. Th found when test spurious emission	e basic equation =Receiver Reac ctor Hz to 25GHz, th he points marked ting, so only abo ons from the rad ot be reported. F	d by adding the Anter with a sample calcul ding + Antenna Factor d on above plots are t ve points had been di liator which are attenu fundamental frequenc	ation is as follows: - + Cable Factor "C 12.75GHz and below he highest emissions splayed. The amplitu lated more than 20dE	30MHz could be de of below
4.10.1E.U.T. Operation		1			NC
Operating Environment:					
Temperature: 22.6 °C			Atmospheric Pres	sure: 102 kPa	
Pretest mode: Final test mode:	TM1, TM2, TM3				
4.10.2Test Setup Diagr			- 20		
					3
DAC		ference Plane Test Receiver	Lon-ten Hors Antenna In Pre-Amptifier Controller	DAG	-4
2	AG		DAG	1	DAG

1.




Web: http://www.dace-lab.com

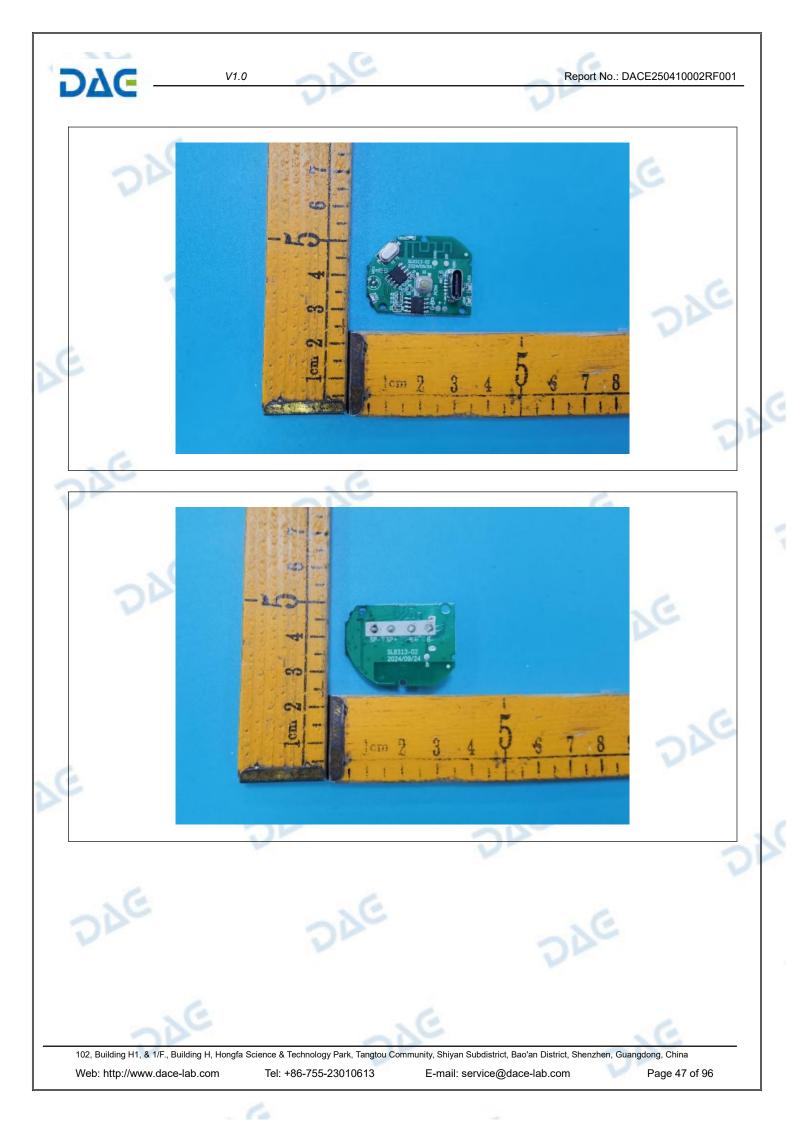
Tel: +86-755-23010613

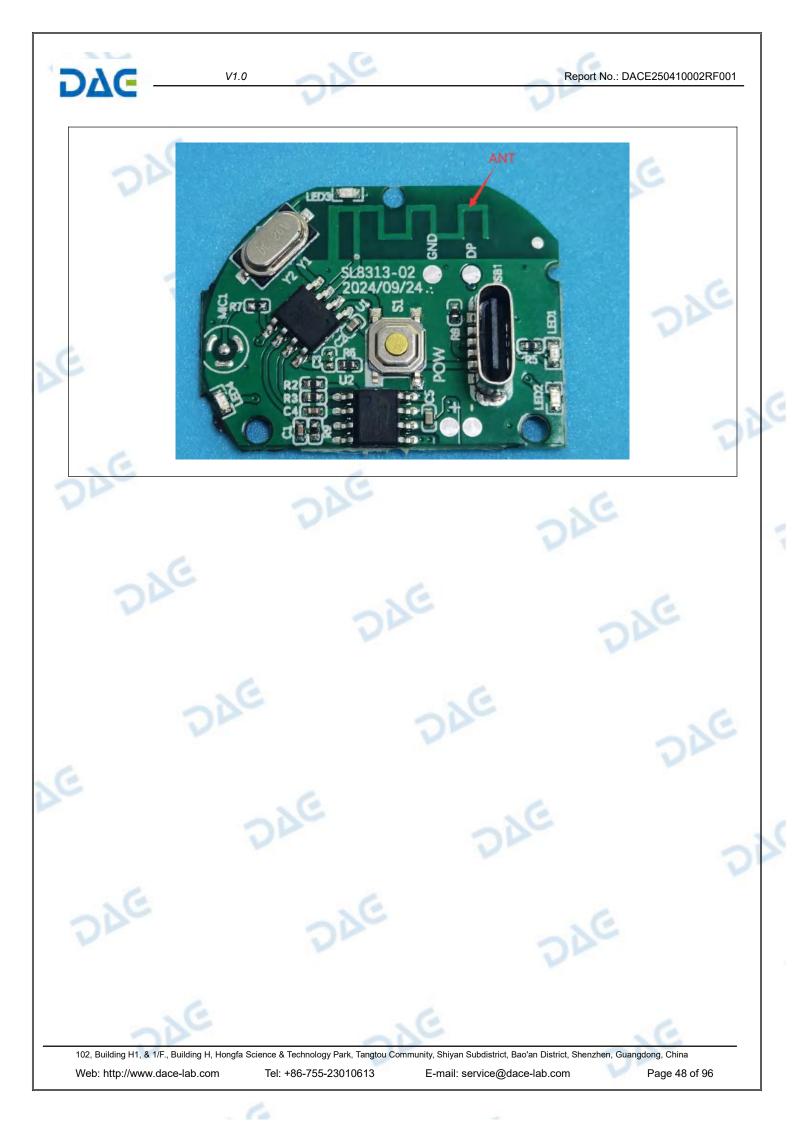
E-mail: service@dace-lab.com

Page 36 of 96

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 38 of 96





Appendix


1. -20dB Bandwidth

V1.0

DAG

DAG

	ndwidth					
-20dB Ba Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS	
NVNT	ANT1	1-DH5	2402.00	0.958	No	
NVNT	ANT1	1-DH5	2441.00	0.957	No	
NVNT	ANT1	1-DH5	2480.00	0.959	No	
NVNT	ANT1	2-DH5	2402.00	1.285	Yes	
NVNT	ANT1	2-DH5	2441.00	1.285	Yes	
NVNT	ANT1	2-DH5	2480.00	1.285	Yes	
NVNT	ANT1	3-DH5	2402.00	1.294	Yes	
NVNT	ANT1	3-DH5	2441.00	1.291	Yes	
NVNT	ANT1	3-DH5	2480.00	1.296	Yes	

C

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 49 of 96

DAG

10

1

1

2. 99% Occupied Bandwidth

DAG

Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.855
NVNT	ANT1	1-DH5	2441.00	0.859
NVNT	ANT1	1-DH5	2480.00	0.857
NVNT	ANT1	2-DH5	2402.00	1.158
NVNT	ANT1	2-DH5	2441.00	1.160
NVNT	ANT1	2-DH5	2480.00	1.161
NVNT	ANT1	3-DH5	2402.00	1.175
NVNT	ANT1	3-DH5	2441.00	1.176
NVNT	ANT1	3-DH5	2480.00	1.177

V1.0

Report No.: DACE250410002RF001

1


3. **Peak Output Power**

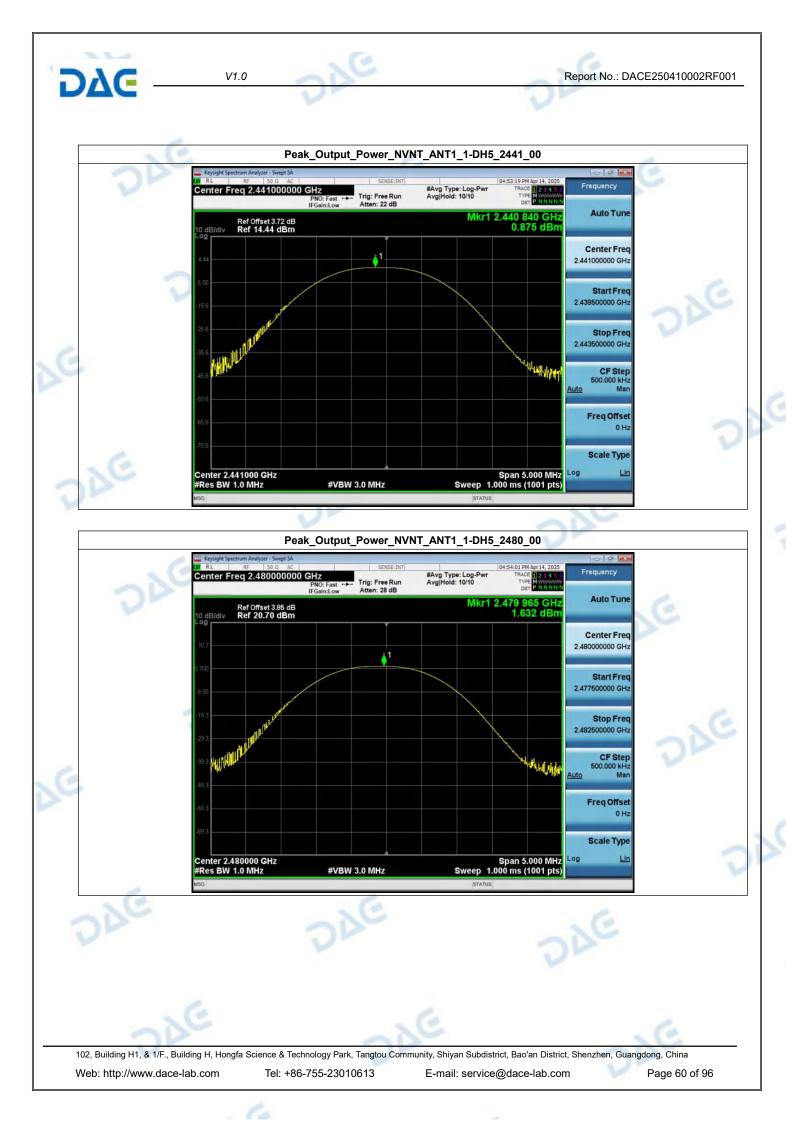
DAG

DAG

DAG

Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	-0.05	0.99	1000	Pass
NVNT	ANT1	1-DH5	2441.00	0.88	1.22	1000	Pass
NVNT	ANT1	1-DH5	2480.00	1.63	1.46	1000	Pass
NVNT	ANT1	2-DH5	2402.00	0.88	1.22	125	Pass
NVNT	ANT1	2-DH5	2441.00	1.63	1.45	125	Pass
NVNT	ANT1	2-DH5	2480.00	2.57	1.81	125	Pass
NVNT	ANT1	3-DH5	2402.00	1.34	1.36	125	Pass
NVNT	ANT1	3-DH5	2441.00	2.14	1.64	125	Pass
NVNT	ANT1	3-DH5	2480.00	3.12	2.05	125	Pass

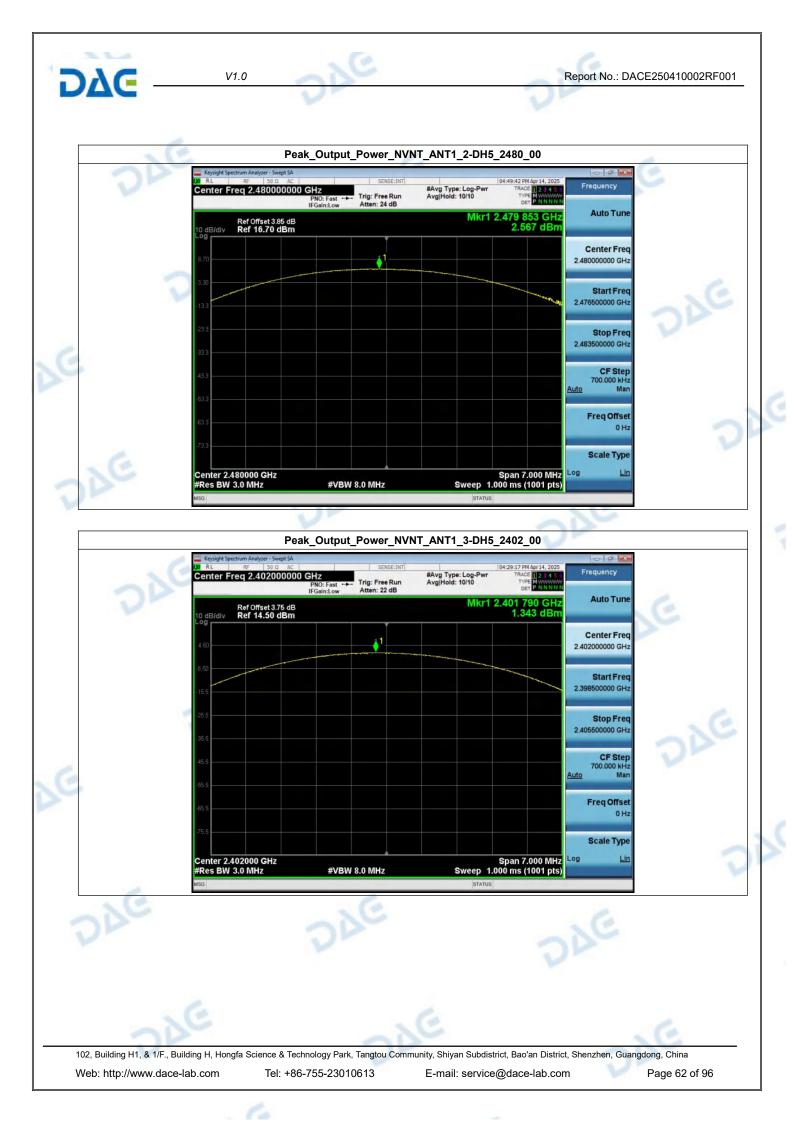
DAG

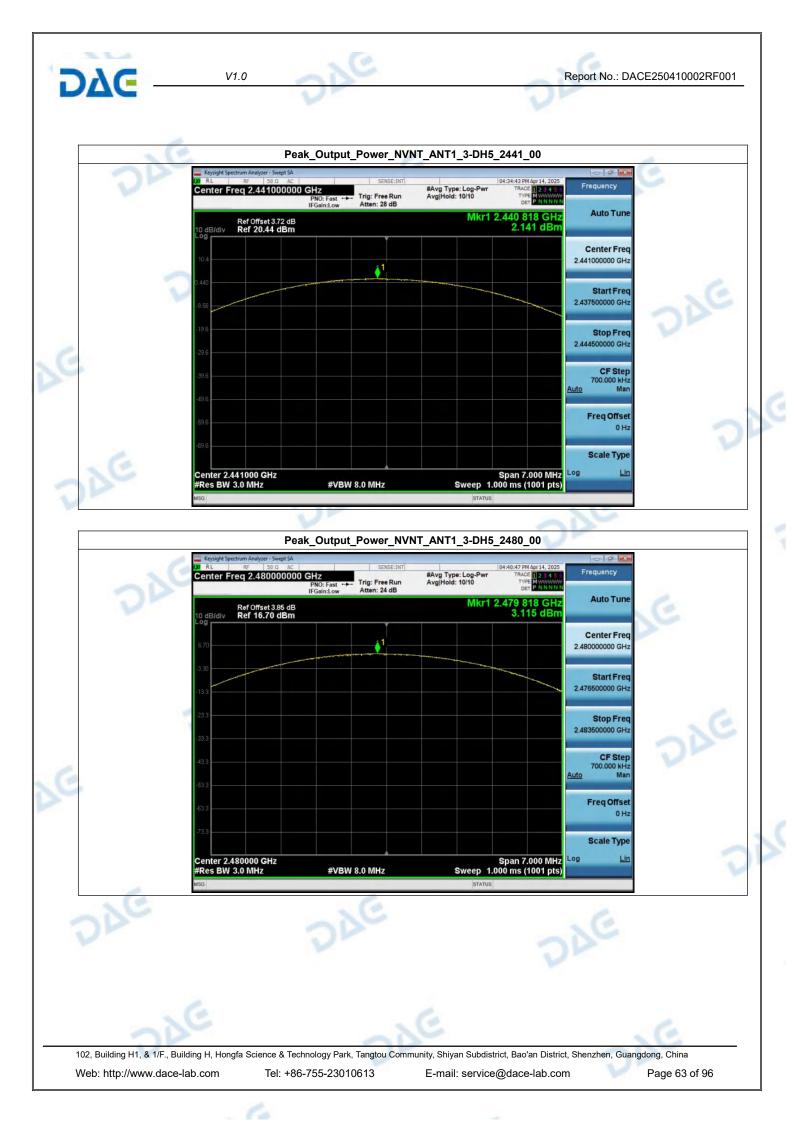

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DAG

DAG


Page 59 of 96



Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com Page 61 of 96

V1.0

Report No.: DACE250410002RF001

4. Spurious Emissions

DAG

DAG

DAG

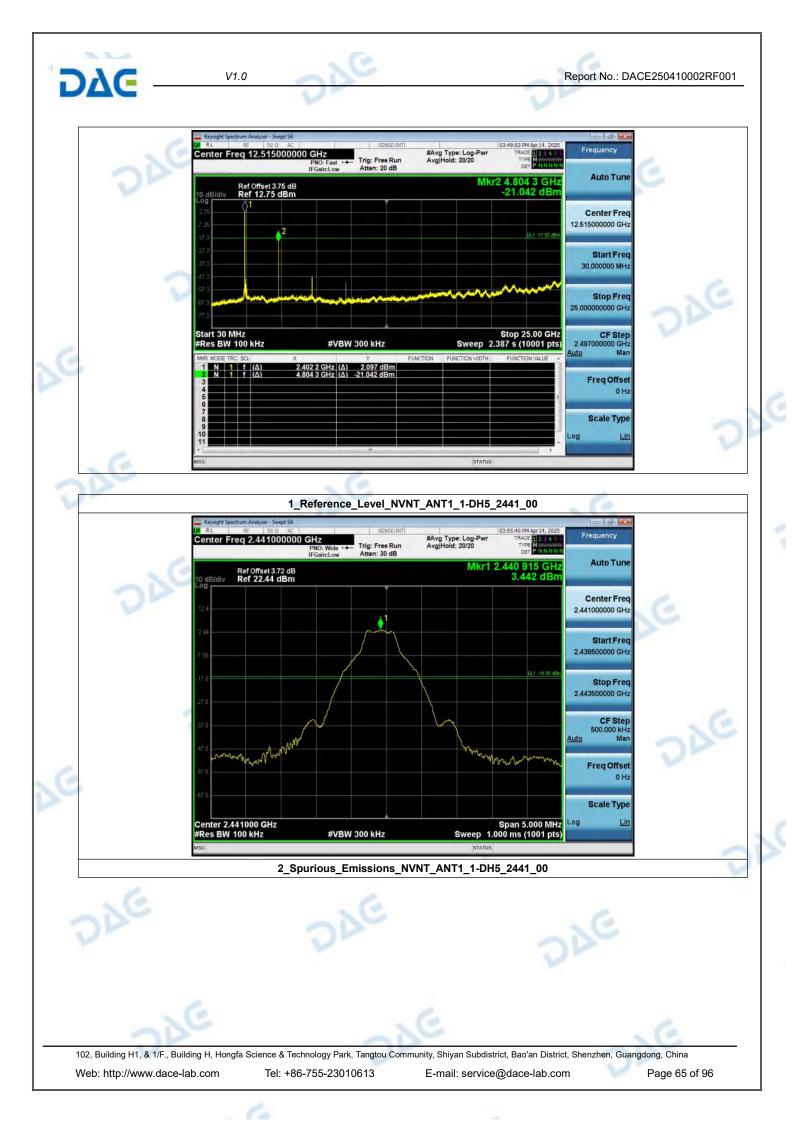
Condition	Antenna	Modulation	TX Mode	Ref_level(dBm)	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	2.453	-21.042	-17.547	Pass
NVNT	ANT1	1-DH5	2441.00	3.442	-20.396	-16.558	Pass
NVNT	ANT1	1-DH5	2480.00	4.496	-20.136	-15.504	Pass
NVNT	ANT1	2-DH5	2402.00	2.665	-21.528	-17.335	Pass
NVNT	ANT1	2-DH5	2441.00	3.368	-23.283	-16.632	Pass
NVNT	ANT1	2-DH5	2480.00	4.378	-21.422	-15.622	Pass
NVNT	ANT1	3-DH5	2402.00	-0.698	-25.000	-20.698	Pass
NVNT	ANT1	3-DH5	2441.00	0.447	-28.357	-19.553	Pass
NVNT	ANT1	3-DH5	2480.00	1.214	-30.719	-18.786	Pass

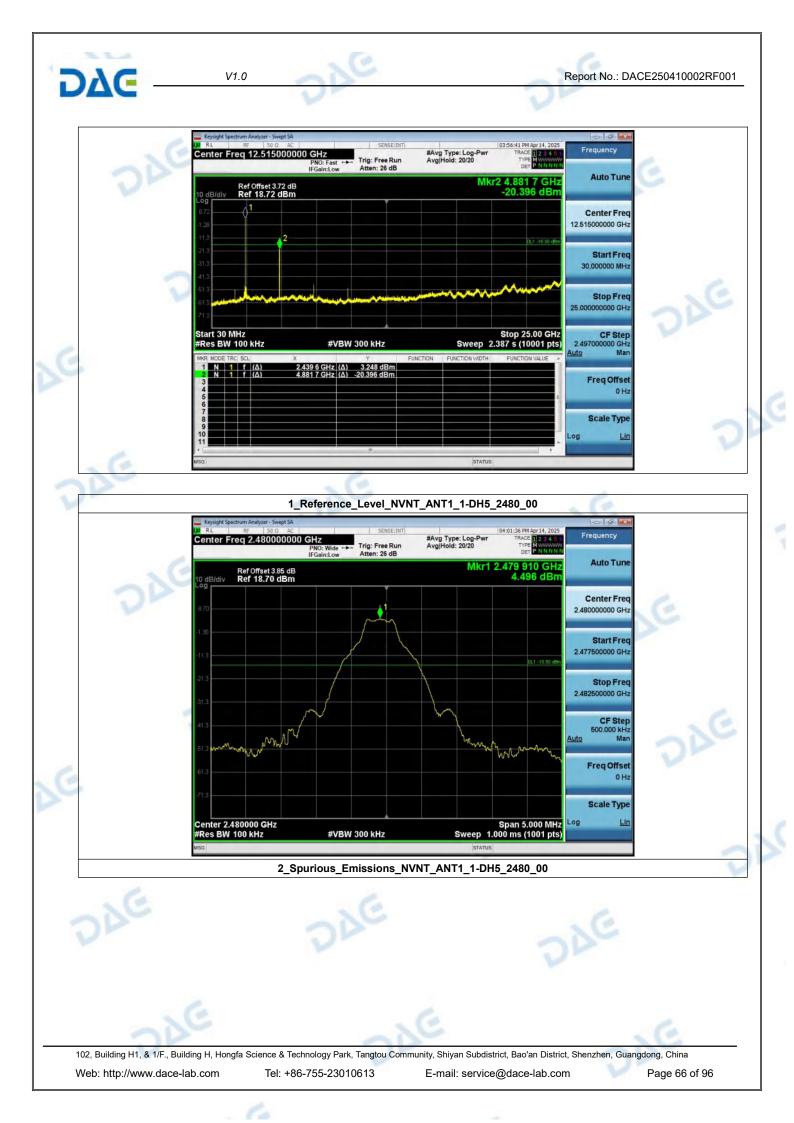
2_Spurious_Emissions_NVNT_ANT1_1-DH5_2402_00

DAG

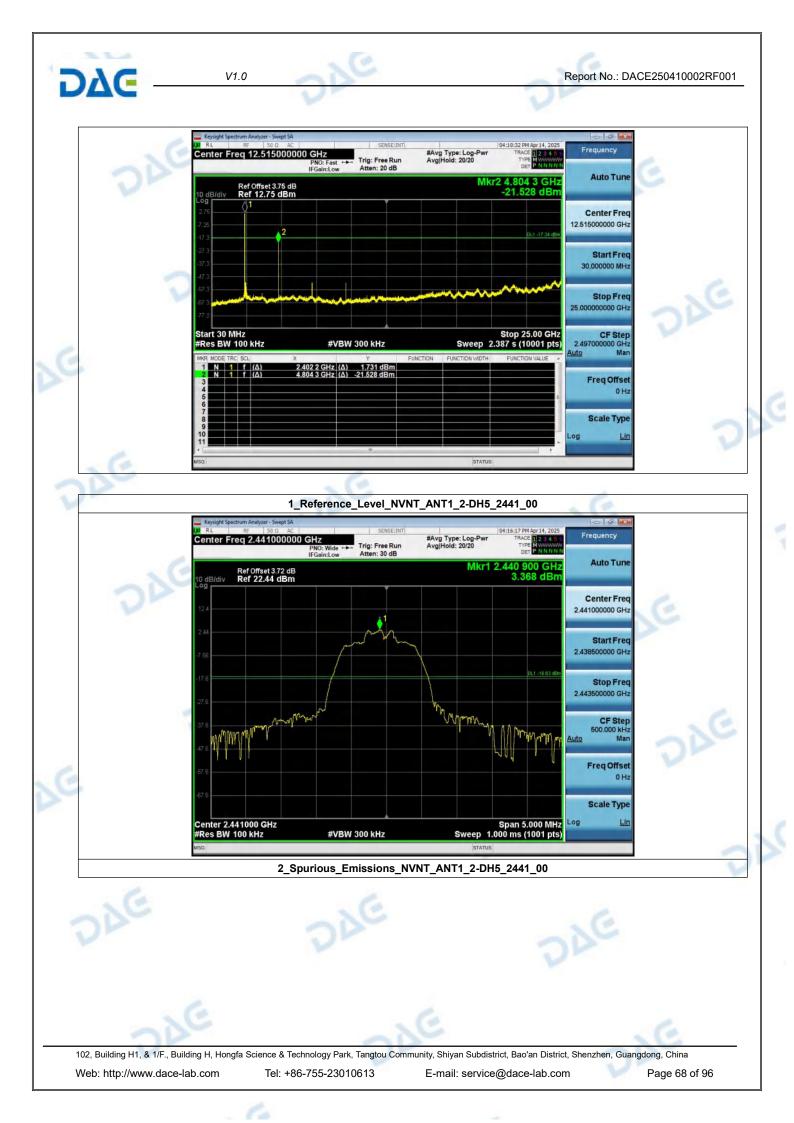
DAG

AC

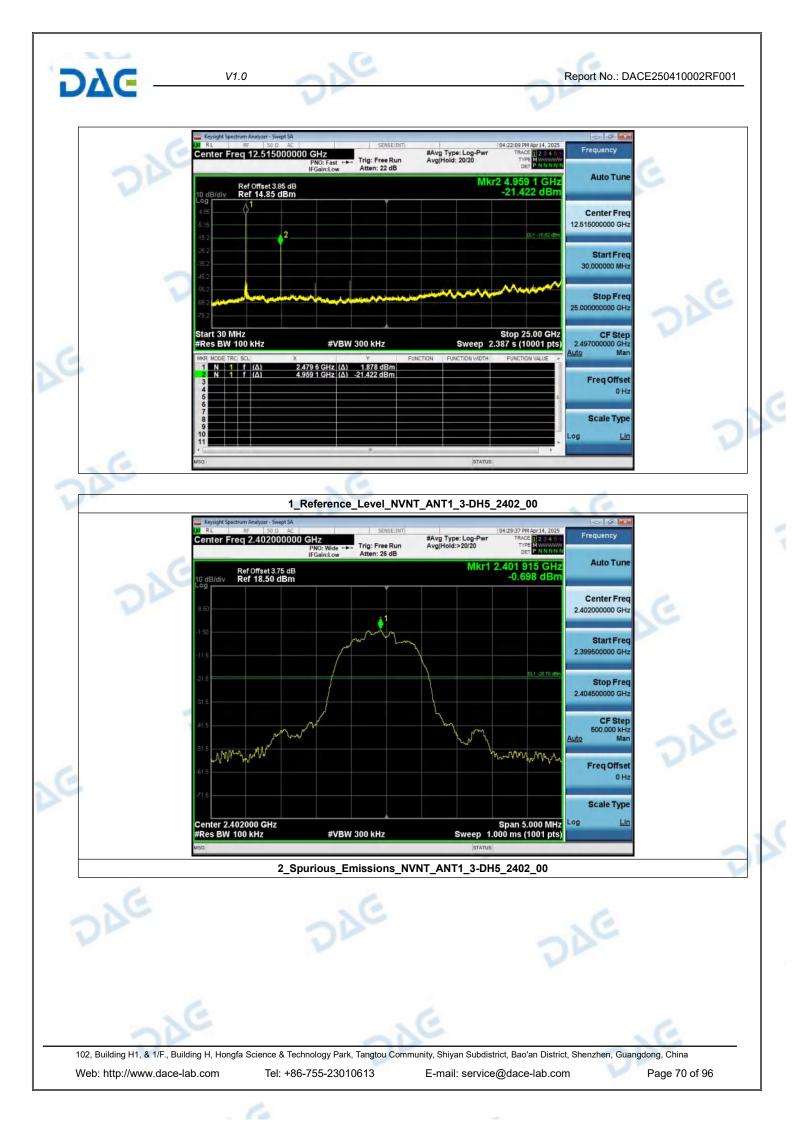

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

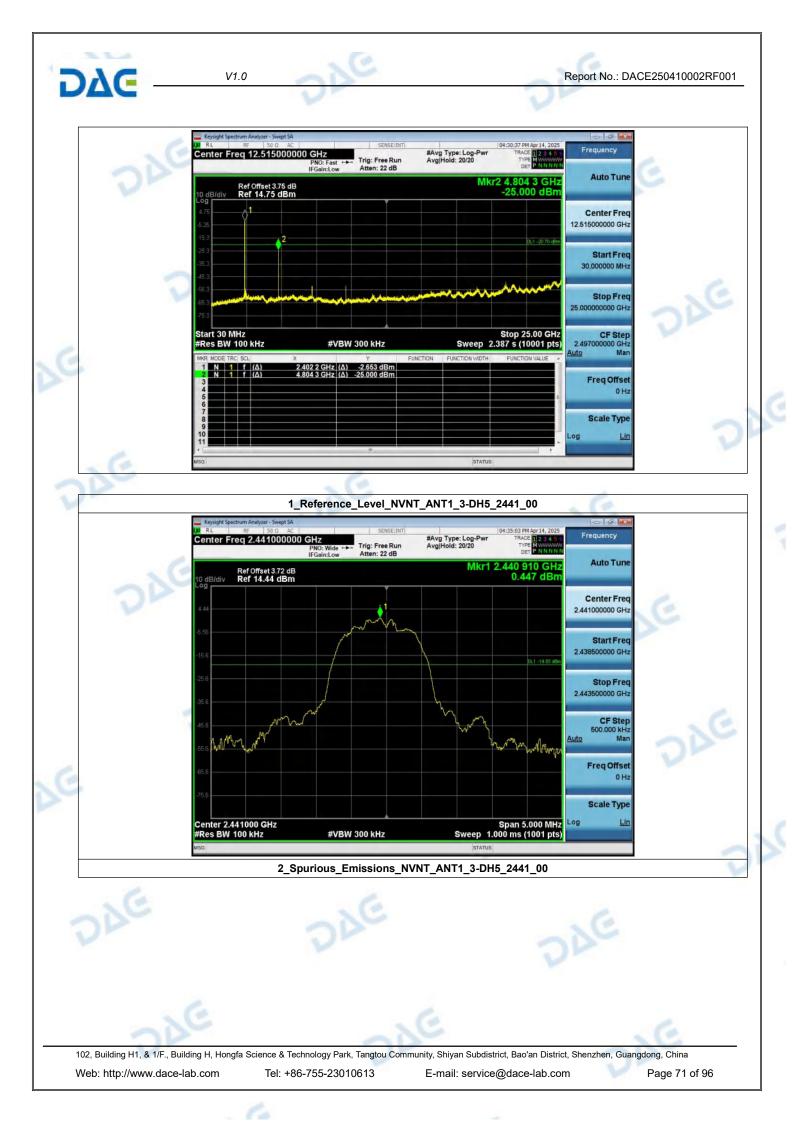

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 64 of 96

DAG


2

1





DAG -	V1.0	DAG	2	Report No.: DACE25041000	2RF001
20	Keysight Spectrum Analyzer - Swept SA K RL RF 50 0 M Center Freq 12.515000	E SENSE:INT	04:42:08 PM Apr 14, 2025 #Avg Type: Log-Pwr TRACE 12 - 4 15 Avg Hold: 20/20 Trine Det P NINN	Frequency	
UP.	10 dB/dly Ref Offset 3.85 dBr	B	Mkr2 4.959 1 GHz -30.719 dBm	Auto Tune Center Freq 12.51500000 GHz	
	-3.15 -13.2 -23.2 -33.2		0.1 -18 79 480	Start Freq 30.000000 MHz	
1	-43.2 -63.2 -63.2	man and a second second		Stop Freq 25.00000000 GHz	C
Ca.	Start 30 MHz #Res BW 100 kHz		Stop 25.00 GHz Sweep 2.387 s (10001 pts)	CF Step 2.49700000 GHz <u>Auto</u> Man	
C.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2.479 6 GHz (Δ) -2.928 dBm 4.959 1 GHz (Δ) -30.719 dBm		Freq Offset 0 Hz	
	7 8 9 10 11	m		Scale Type Log <u>Lin</u>	2
2AG	MSG	- XC	STATUS		
102, Building H1, & 1/F., B Web: http://www.dace		echnology Park, Tangtou Commu 86-755-23010613	nity, Shiyan Subdistrict, Bao'an Distric E-mail: service@dace-lab.cor		

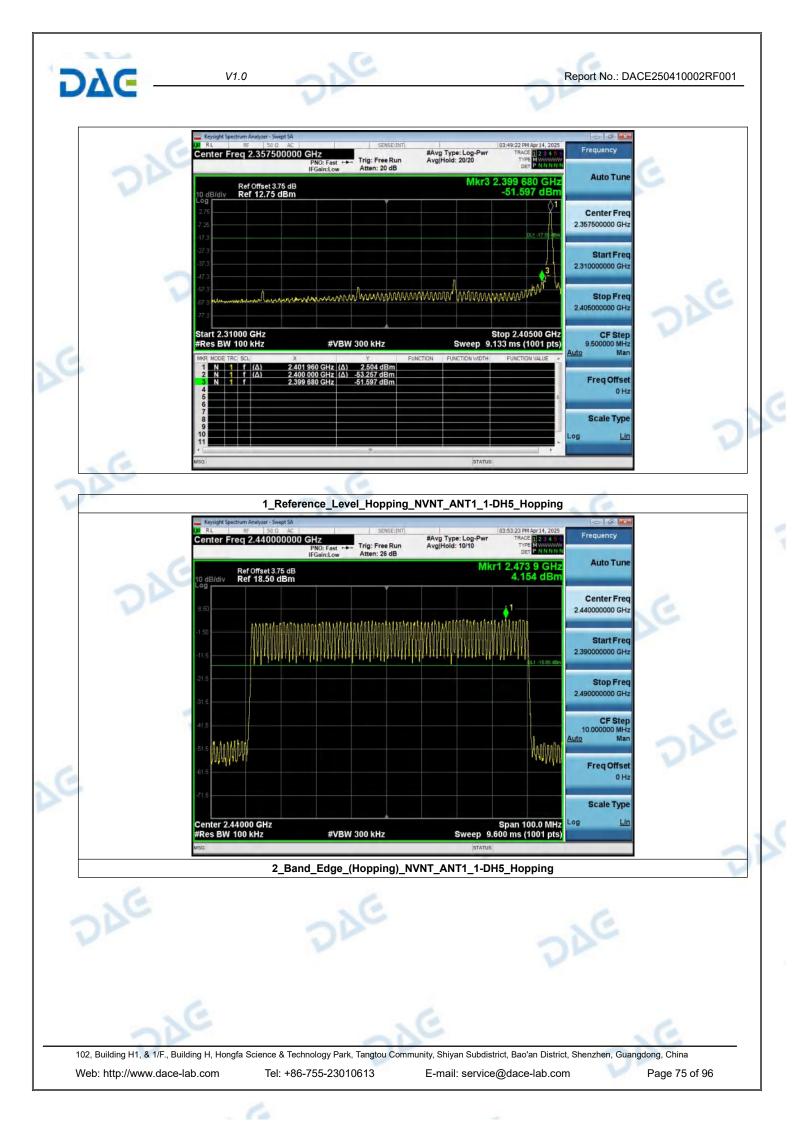
DAG

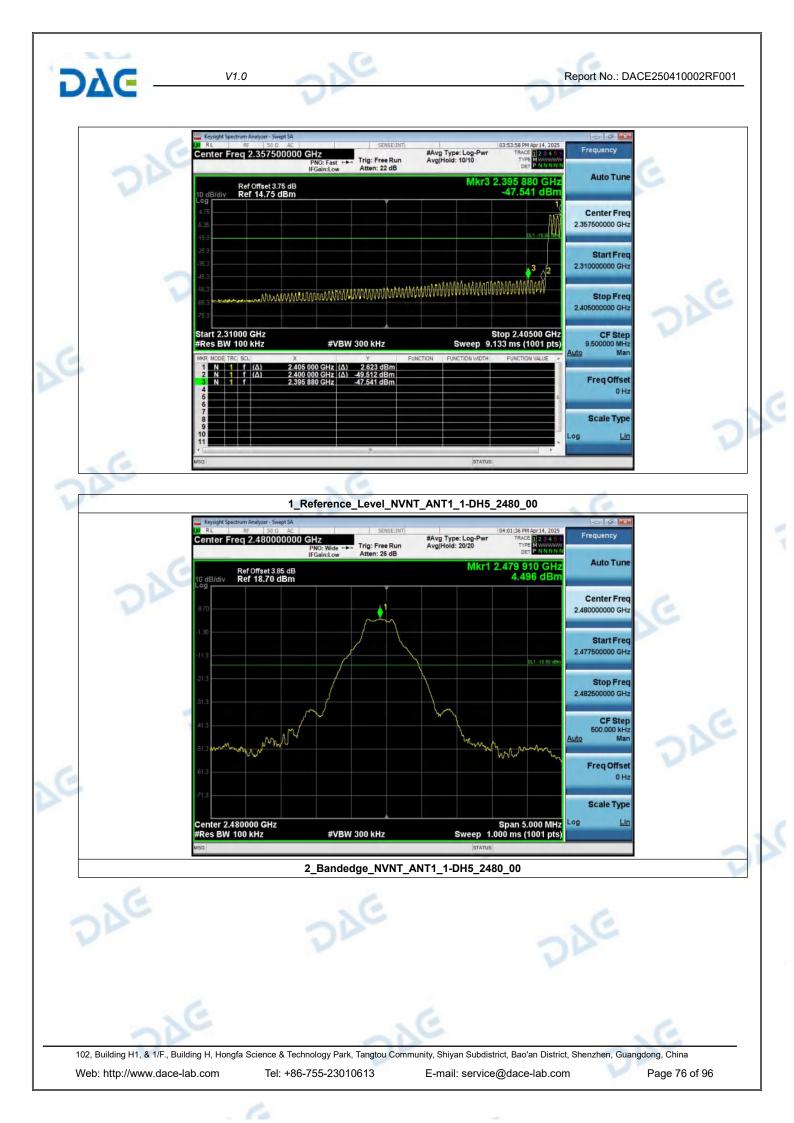
V1.0

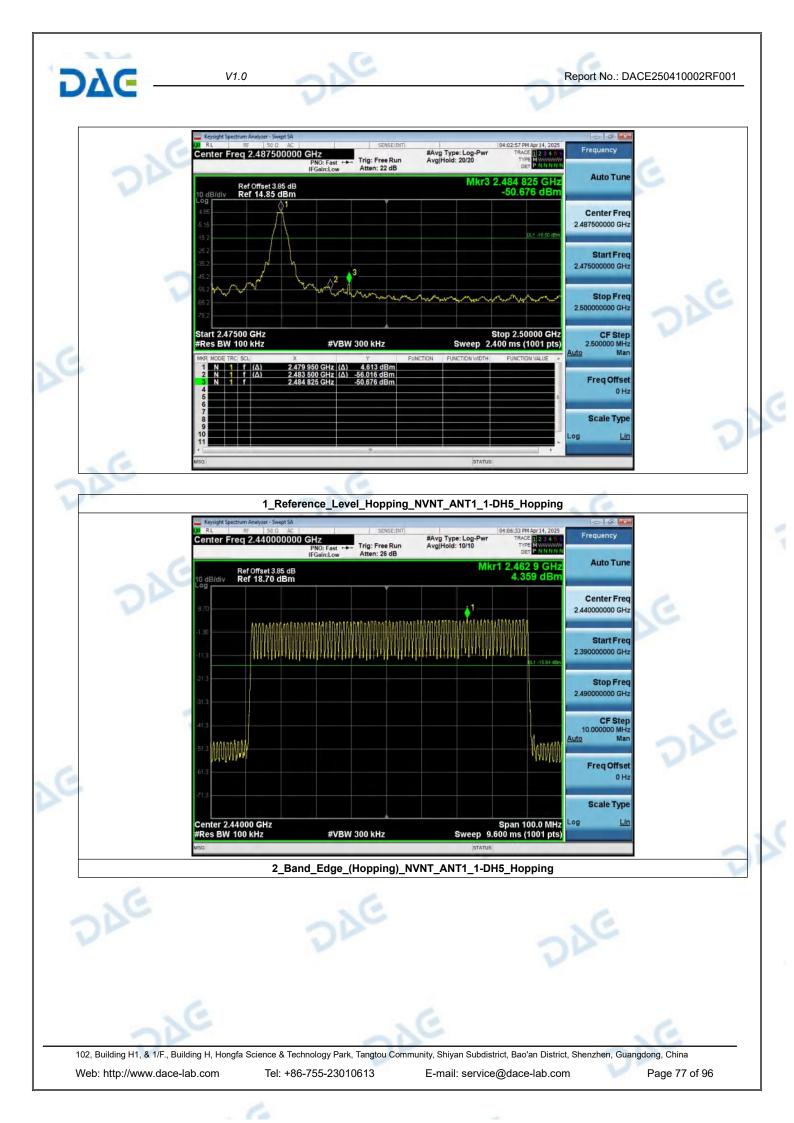
Report No.: DACE250410002RF001

5. Bandedge

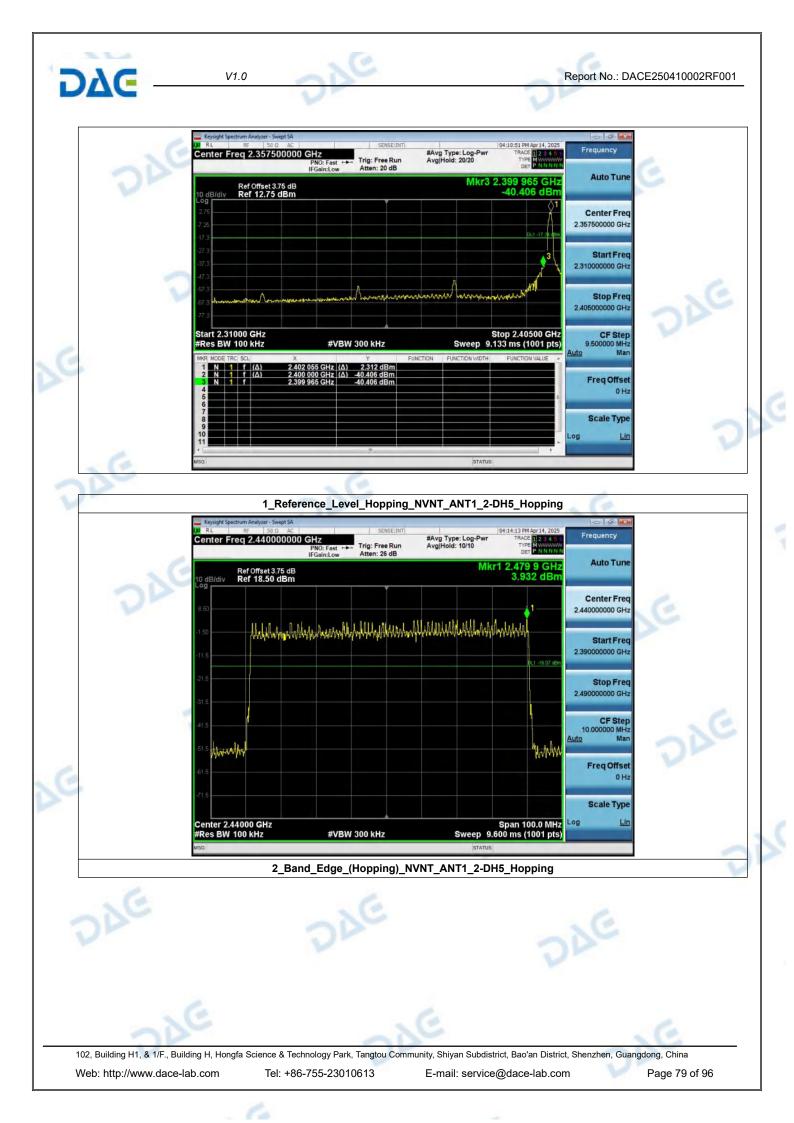
Condition	Antenna	Modulation	TX Mode	Ref_level(dBm)	Bandedge MAX.Value	Limit	Result
NVNT	ANT1	1-DH5	2402.00	2.453	-51.597	-17.547	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	4.154	-47.541	-15.846	Pass
NVNT	ANT1	1-DH5	2480.00	4.496	-50.676	-15.504	Pass
NVNT	ANT1	1-DH5	Hopping_HCH	4.359	-48.208	-15.641	Pass
NVNT	ANT1	2-DH5	2402.00	2.665	-40.406	-17.335	Pass
NVNT	ANT1	2-DH5	Hopping_LCH	3.932	-47.590	-16.068	Pass
NVNT	ANT1	2-DH5	2480.00	4.378	-45.333	-15.622	Pass
NVNT	ANT1	2-DH5	Hopping_HCH	4.078	-47.826	-15.922	Pass
NVNT	ANT1	3-DH5	2402.00	-0.698	-51.142	-20.698	Pass
NVNT	ANT1	3-DH5	Hopping_LCH	0.867	-50.898	-19.133	Pass
NVNT	ANT1	3-DH5	2480.00	1.214	-53.172	-18.786	Pass
NVNT	ANT1	3-DH5	Hopping_HCH	0.717	-50.366	-19.283	Pass

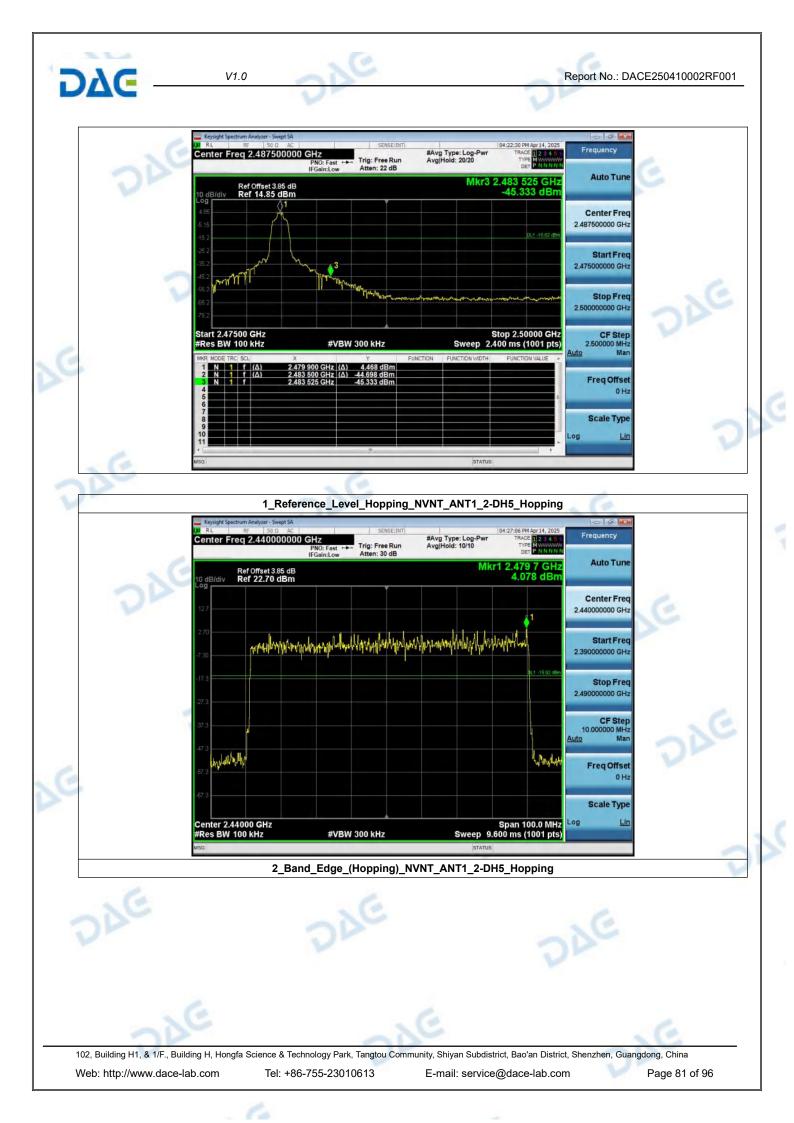

2_Bandedge_NVNT_ANT1_1-DH5_2402_00

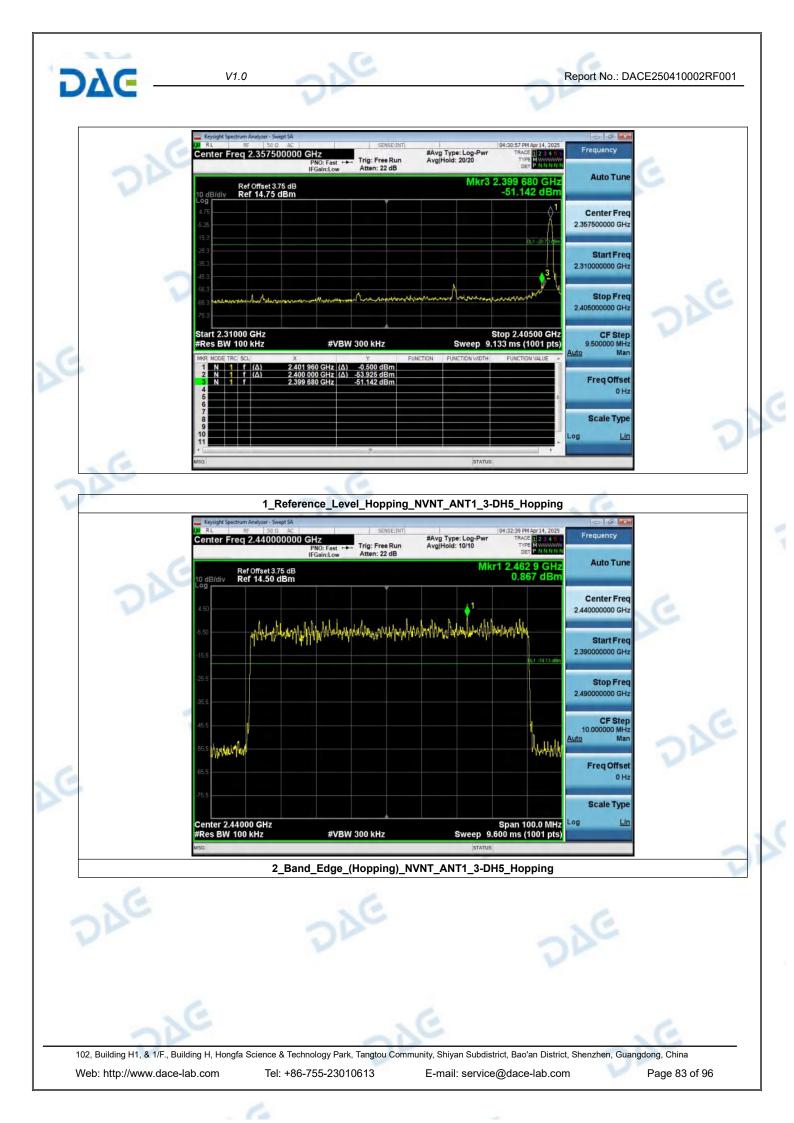

DE

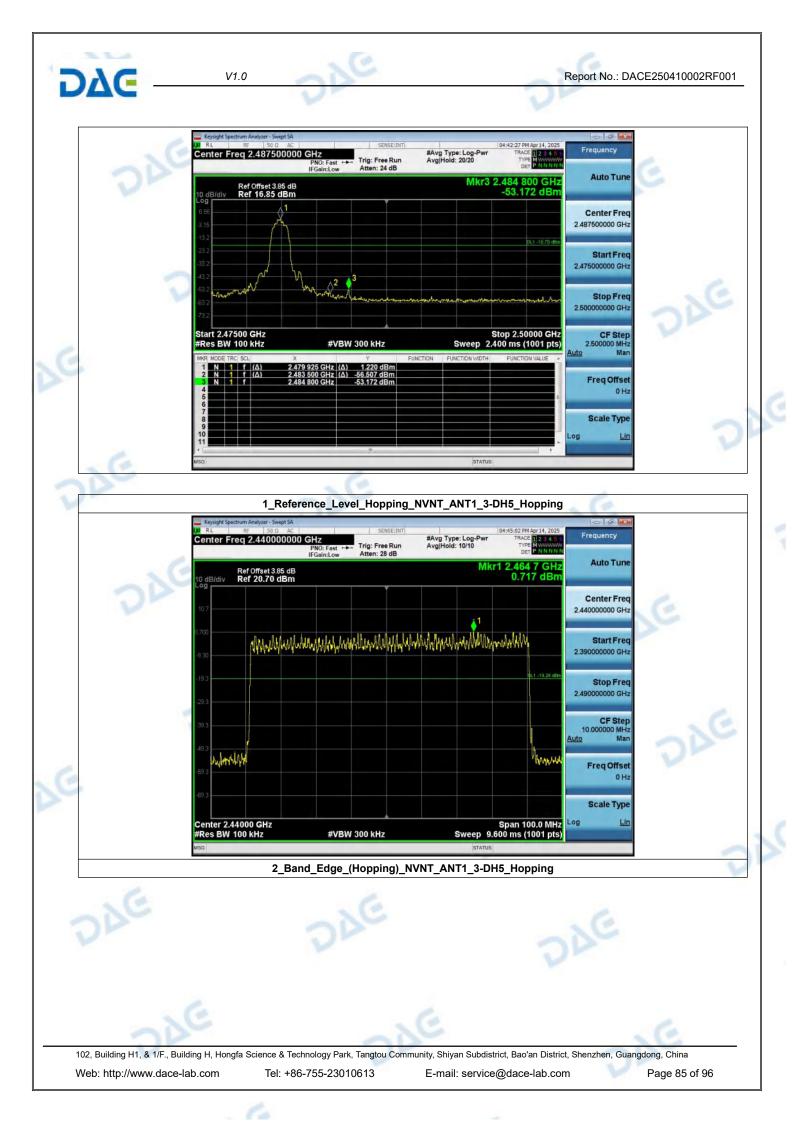

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 74 of 96 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DAG


1

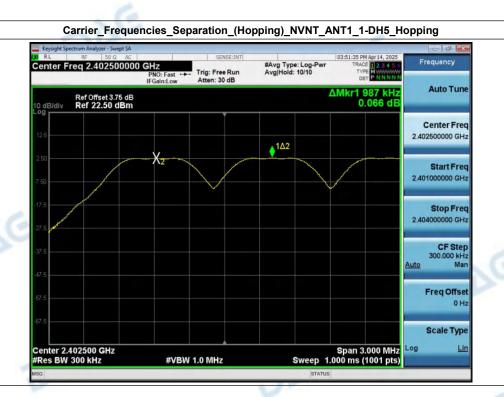






DAG -	V1.0	AC	2	Report No.: DACE25041	0002RF001
200	Keysight Spectrum Analyzer - Swept SA WRL RF S0 QL AC Center Freq 2.487500000 GHz PN0 IFGal	SENSE:INT :Fast ↔→ Trig: Free Run n:Low Atten: 24 dB	04:46:26 PM Apr.14, 2025 #Avg Type: Log-Pwr TRACE 10.9.4 Avg[Hold: 10/10 TVPE M WWWW DET P TR N N	Auto Tuno	
V	10 dB/div Ref Offset 3.85 dB Ref 16.85 dBm		Mkr3 2.484 900 GHz -50.366 dBm		
			DL3 -19-28 dBm	Start Freq 2.475000000 GHz	
T	-43.2 -53.2 -63.2 	3 Den Martine Martine Company	and a contraction of the second and a second and the se	Stop Freq 2.50000000 GHz	DE
	Start 2.47500 GHz #Res BW 100 kHz	#VBW 300 kHz	Stop 2.50000 GHz Sweep 2.400 ms (1001 pts)		
G	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SHZ (Δ) 0.939 dBm GHZ (Δ) -56.090 dBm SHZ -50.366 dBm		Freq Offset 0 Hz	
	6 7 8 9 10			Scale Type Log <u>Lin</u>	2
DE	NSG ST	. 6	STATUS		
		AG			
102, Building H1, & 1/F., Bui Web: http://www.dace-	Iding H, Hongfa Science & Technolog		ty, Shiyan Subdistrict, Bao'an Distri E-mail: service@dace-lab.co		^{na} 6 of 96

1


DAG

DA

DAG

6. **Carrier Frequencies Separation (Hopping)**

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2401.918	2402.905	0.99	0.958	Pass
NVNT	ANT1	1-DH5	2441.00	2440.915	2441.914	1.00	0.957	Pass
NVNT	ANT1	1-DH5	2480.00	2478.903	2479.896	0.99	0.959	Pass
NVNT	ANT1	2-DH5	2402.00	2401.756	2403.082	1.33	0.857	Pass
NVNT	ANT1	2-DH5	2441.00	2440.702	2441.743	1.04	0.857	Pass
NVNT	ANT1	2-DH5	2480.00	2479.056	2480.067	1.01	0.857	Pass
NVNT	ANT1	3-DH5	2402.00	2401.762	2402.920	1.16	0.863	Pass
NVNT	ANT1	3-DH5	2441.00	2440.738	2442.070	1.33	0.861	Pass
NVNT	ANT1	3-DH5	2480.00	2479.077	2480.076	1.00	0.864	Pass

NE

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

DAG

NE

Page 87 of 96

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

#VBW 1.0 MHz

Center 2.441500 GHz #Res BW 300 kHz

NC

Page 89 of 96

Freq Offset 0 H;

Scale Type

Log

Ne

Span 3.000 MHz Sweep 1.000 ms (1001 pts)

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

#VBW 1.0 MHz

Center 2.402500 GHz #Res BW 300 kHz

NC

Page 90 of 96

Auto

Log

Ne

Span 3.000 MHz Sweep 1.000 ms (1001 pts)

Freq Offset 0 H;

Scale Type

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

#VBW 1.0 MHz

Center 2.479500 GHz #Res BW 300 kHz

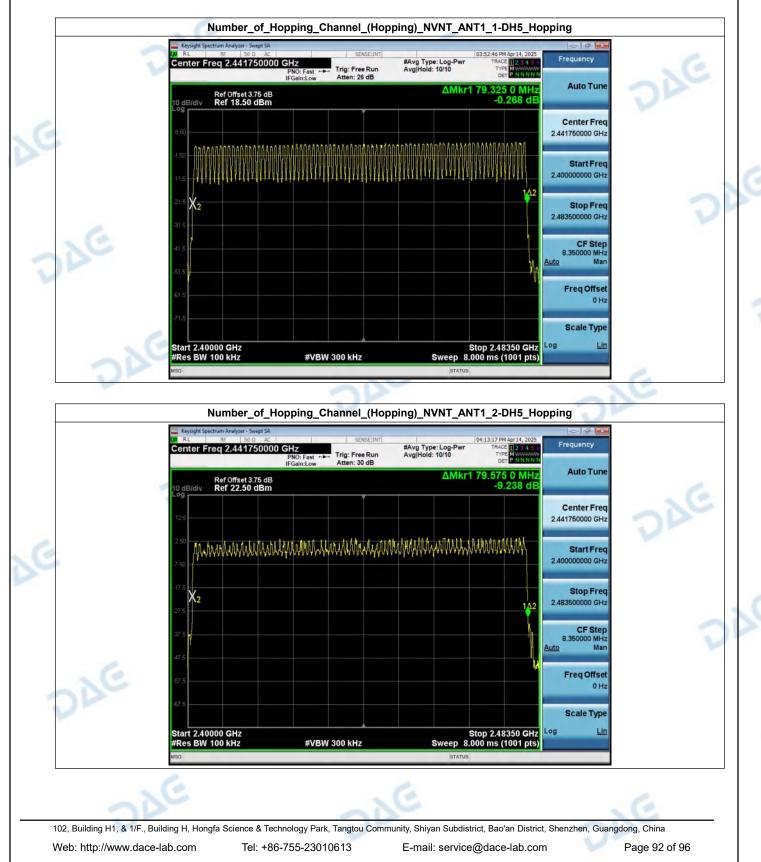
NC

Page 91 of 96

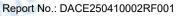
0 H;

Scale Type

Log

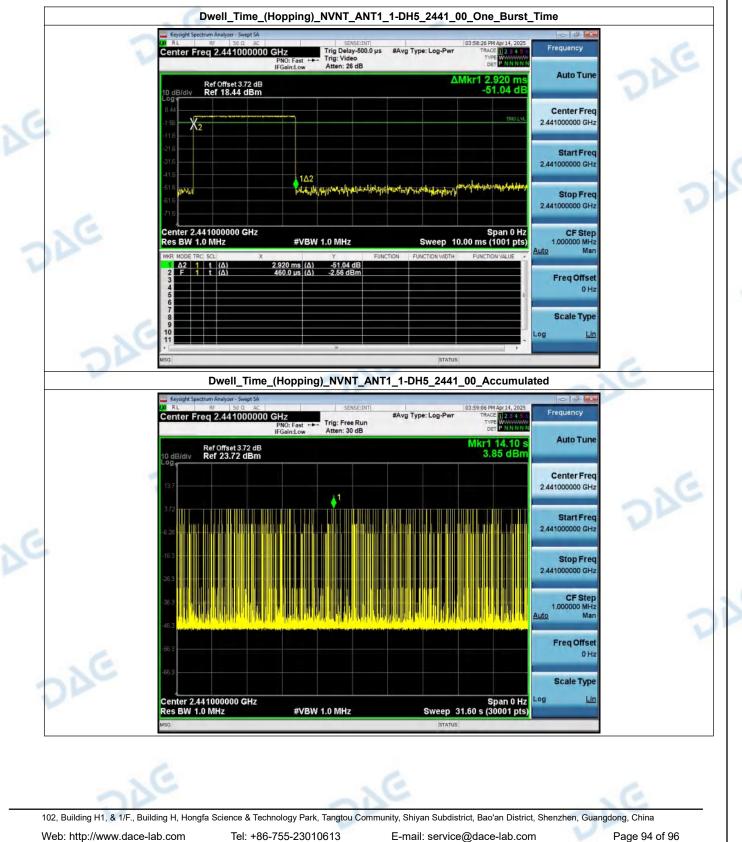

NE

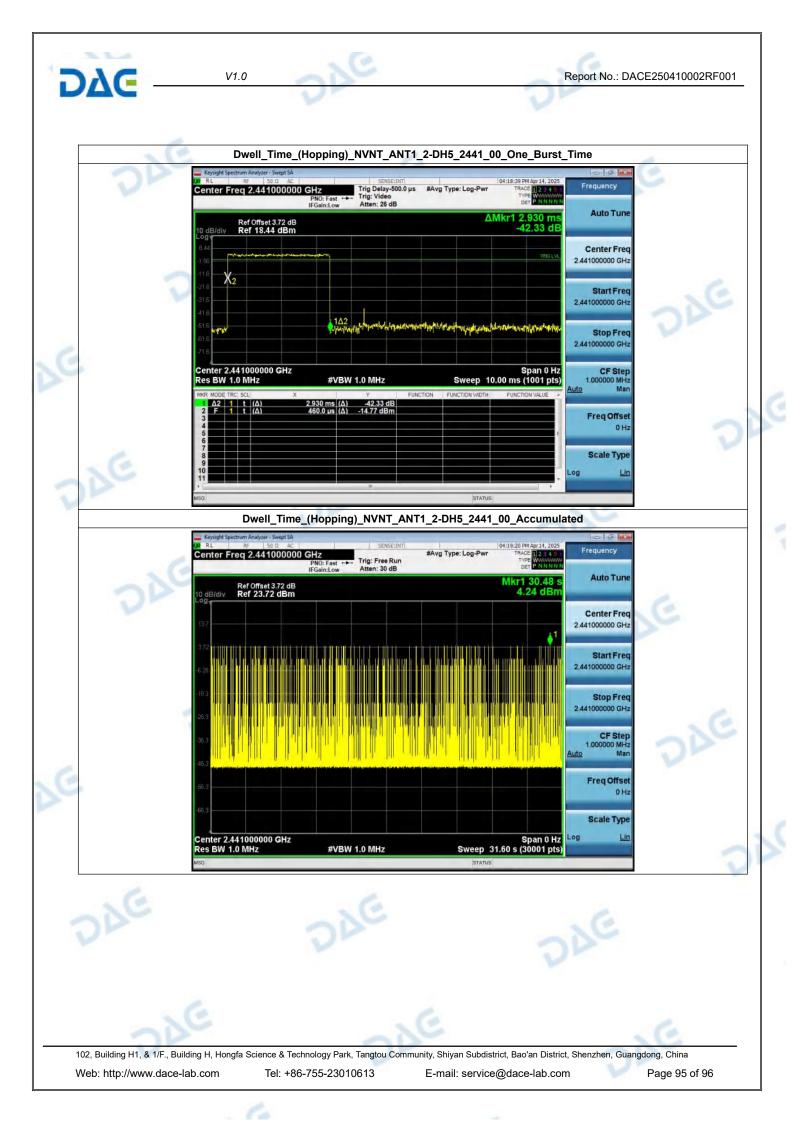
Span 3.000 MHz Sweep 1.000 ms (1001 pts)

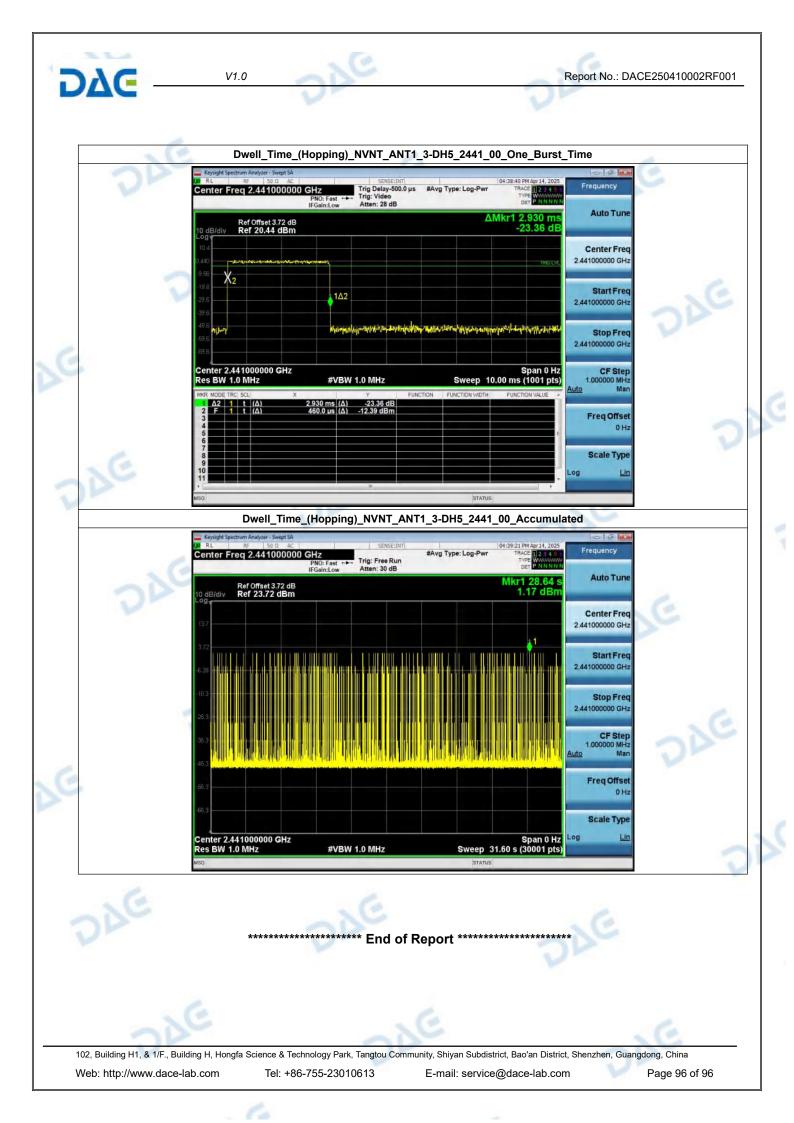

DΔC

7. Number of Hopping Channel (Hopping)

Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	3-DH5	79	15	Pass




8. **Dwell Time (Hopping)**


DΔC

Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.920	123.00	359.160	0.40	Pass
NVNT	ANT1	2-DH5	2.930	100.00	293.000	0.40	Pass
NVNT	ANT1	3-DH5	2.930	107.00	313.510	0.40	Pass

Web: http://www.dace-lab.com

