SAMM 826 #### **DECLARATION OF COMPLIANCE SAR ASSESSMENT Part 1 of 2** Motorola Solutions Inc. EME Test Laboratory Motorola Solutions Malaysia Sdn Bhd Plot 2A, Medan Bayan Lepas, Mukim 12 SWD 11900 Bayan Lepas Penang, Malaysia. **Date of Report:** 01/18/2023 **Report Revision:** B **Responsible Engineer:** Saw Sun Hock (EME Engineer) **Report Author:** Muhammad Akmal Naim Kasim (EME Technician) **Date/s Tested:** 12/9/2022–12/12/2022, 1/3/2023-1/4/2023, 1/7/2023-1/10/2023 **Manufacturer:** Motorola Solutions Inc. **DUT Description:** Handheld Portable – T600 Consumer Radio 462-467MHz Impact Green Test TX mode(s):CW (PTT)Max. Power output:Refer table 3Nominal Power output:Refer table 3Tx Frequency Bands:Refer table 3 Signaling type: FM Model(s) Tested: T6B22201GWRAAW (PMUE5712B) (IC MODEL: PMUE5712B) Model(s) Certified: T6B22201GWRAAW (PMUE5712B) (IC MODEL: PMUE5712B), T6B22201GWRAAW (PMUE5712B) (IC MODEL: PMUE5712B), T6B22201GWCAAG (PMUE5869A) (IC MODEL: PMUE5869A) **Serial Number(s):** 17520YX0001. 17520YX0004 Classification: General Population/Uncontrolled Environment Firmware Version: NA 002 **Applicant Name:** Motorola Solutions Inc. **Applicant Address:** 8000 West Sunrise Boulevard, Fort Lauderdale, Florida 33322 **FCC ID:** AZ489FT4973 FCC Test Firm Registration 823256 Number: **IC:** 109U-89FT4973 **ISED Test Site registration:** 24843 The test results clearly demonstrate compliance with General Population/Uncontrolled RF Exposure limits of 1.6 W/kg averaged over 1 gram per the requirements of FCC 47 CFR § 2.1093 and RSS-102 (Issue 5) Based on the information and the testing results provided herein, the undersigned certifies that when used as stated in the operating instructions supplied, said product complies with the national and international reference standards and guidelines listed in section 4.0 of this report (no deviation from standard methods). This report shall not be reproduced without written approval from an officially designated representative of the Motorola Solutions Inc EME Laboratory. I attest to the accuracy of the data and assume full responsibility for the completeness of these measurements. This reporting format is consistent with the suggested guidelines of the TIA TSB-150 December 2004. The results and statements contained in this report pertain only to the device(s) evaluated. H. Saw Sun Hock (Approval Signatory) Approval Date: 1/18/2023 # Part 1 of 2 | 1.0 | Introduction4 | | | | | | |------|--|-----|--|--|--|--| | 2.0 | FCC SAR Summary | . 4 | | | | | | 3.0 | Abbreviations / Definitions | . 4 | | | | | | 4.0 | Referenced Standards and Guidelines | . 4 | | | | | | 5.0 | SAR Limits | . 5 | | | | | | 6.0 | Description of Device Under Test (DUT) | . 5 | | | | | | 7.0 | Optional Accessories and Test Criteria | . 6 | | | | | | | 7.1 Antennas | . 6 | | | | | | | 7.2 Battery | . 6 | | | | | | | 7.3 Body worn Accessories | . 6 | | | | | | | 7.4 Audio Accessories | . 7 | | | | | | 8.0 | Description of Test System | . 7 | | | | | | | 8.1 Descriptions of Robotics/Probes/Readout Electronics | . 7 | | | | | | | 8.2 Description of Phantom(s) | | | | | | | | 8.3 Description of Simulated Tissue | . 8 | | | | | | 9.0 | Additional Test Equipment | .9 | | | | | | 10.0 | SAR Measurement System Validation and Verification | | | | | | | | 10.1 System Validation | | | | | | | | 10.2 System Verification | 10 | | | | | | | 10.3 Equivalent Tissue Test Results | | | | | | | 11.0 | Environmental Test Conditions | | | | | | | 12.0 | DUT Test Setup and Methodology | 11 | | | | | | | 12.1 Measurements | | | | | | | | 12.2 DUT Configuration(s) | | | | | | | | 12.3 DUT Positioning Procedures | | | | | | | | 12.3.1 Body | | | | | | | | 12.3.2 Head | | | | | | | | 12.3.3 Face | | | | | | | | 12.4 DUT Test Channels | | | | | | | | 12.5 SAR Result Scaling Methodology | | | | | | | | 12.6 DUT Test Plan. | | | | | | | 13.0 | DUT Test Data | | | | | | | | 13.1 Assessment at the Body for 462.5500 – 462.7250 MHz band | | | | | | | | 13.2 Assessment at the Face for 462.5500 – 462.7250 MHz band | | | | | | | | 13.3 Assessment at the Body for 467.5625 – 467.7125 MHz band | | | | | | | | 13.4 Assessment at the Face for 467.5625 – 467.7125 MHz band | | | | | | | | 13.5 Assessment for ISED, Canada | | | | | | | 14.0 | Shortened Scan Assessment | | | | | | | | Results Summary | | | | | | | | Variability Assessment | | | | | | | | System Uncertainty | | | | | | | , | System Officertainty | | | | | | # **APPENDICES** | A | Measurement Uncertainty Budget | 21 | |-----|---|----| | В | Probe Calibration Certificates | 24 | | C | Dipole Calibration Certificates | 49 | | | | | | Par | rt 2 of 2 | | | APl | PENDICES | | | D | System Verification Check Scans | | | E | DUT Scans | 4 | | F | Shorten Scan of Highest SAR Configuration | 9 | | G | DUT Test Position Photos | | | Н | DUT, Body worn and audio accessories Photos | 13 | # **Report Revision History** | Date | Revision | Comments | |------------|----------|--------------------------------| | 01/10/2023 | A | Initial release | | 01/18/2023 | В | Update the Antenna Information | FCC ID: AZ489FT4973 / IC: 109U-89FT4973 Report ID: P35850-EME-00003 #### 1.0 Introduction This report details the utilization, test setup, test equipment, and test results of the Specific Absorption Rate (SAR) measurements performed at the Motorola Solutions Inc. EME Test Laboratory for handheld portable model number T6B22201GWRAAW (PMUE5712B) (IC MODEL: PMUE5712B). This device is classified as General Population/Uncontrolled. # 2.0 FCC SAR Summary Table 1 | Equipment Class | Frequency band (MHz) | Max Calc at
Body (W/kg) | Max Calc at
Face (W/kg) | | |------------------------|----------------------|----------------------------|----------------------------|--| | • • | | 1g-SAR | 1g-SAR | | | FRF | 462.5500 – 462.7250 | 1.20 | 0.91 | | | FKF | 467.5625 – 467.7125 | 0.59 | 0.44 | | #### 3.0 Abbreviations / Definitions CNR: Calibration Not Required CW: Continuous WaveDUT: Device Under Test EME: Electromagnetic Energy FM: Frequency Modulation FRF: Part 95 Family Radio Face Held Transmitter NA: Not Applicable PTT: Push to Talk RSM: Remote Speaker Microphone SAR: Specific Absorption Rate Audio accessories: These accessories allow communication while the DUT is worn on the body. Body worn accessories: These accessories allow the DUT to be worn on the body of the user. Maximum Power: Defined as the upper limit of the production line final test station FCC ID: AZ489FT4973 / IC: 109U-89FT4973 Report ID: P35850-EME-00003 #### 4.0 Referenced Standards and Guidelines This product is designed to comply with the following applicable national and international standards and guidelines. - Federal Communications Commission, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radio frequency Electromagnetic Fields", OET Bulletin 65, FCC, Washington, D.C.: 1997. - Institute of Electrical and Electronics Engineers (IEEE) C95.1-2019 - International Commission on Non-Ionizing Radiation Protection (ICNIRP) 2020 - Ministry of Health (Canada) Safety Code 6 (2015), Limits of Human Exposure to Radio frequency Electromagnetic Fields in the Frequency Range from 3 kHz to 300 GHz - RSS-102 (Issue 5) Radio Frequency (RF) Exposure Compliance of Radio communication Apparatus (All Frequency Bands) - Australian Communications Authority Radio communications (Electromagnetic Radiation -Human Exposure) Standard (2014) - ANATEL, Brazil Regulatory Authority, Resolution No 700 of September 28, 2018 "Approves the Regulation on the Assessment of Human Exposure to Electric, Magnetic and Electromagnetic Fields Associated with the Operation of Radio communication Transmitting Stations. - IEC/IEEE 62209-1528-2020- Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz) - FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - FCC KDB 643646 D01 SAR Test for PTT Radios v01r03 - FCC KDB 865664 D02 RF Exposure Reporting v01r02 - FCC KDB 447498 D01 General RF Exposure Guidance v07 #### 5.0 SAR Limits Table 2 | | SAR (W/kg) | | | | |---|-----------------------|----------------------|--|--| | EXPOSURE LIMITS | (General Population / | (Occupational / | | | | EAI OSURE LIVITIS | Uncontrolled Exposure | Controlled Exposure | | | | | Environment) | Environment) | | | | Spatial Average - ANSI - | 0.08 | 0.4 | | | | (averaged over the whole body) | | | | | | Spatial Peak - ANSI - | 1.6 | 8.0 | | | | (averaged over any 1-g of tissue) | | | | | | Spatial Peak – ICNIRP/ANSI - | 4.0 | 20.0 | | | | (hands/wrists/feet/ankles averaged over 10-g) | | | | | | Spatial Peak - ICNIRP - | 2.0 | 10.0 | | | | (Head and Trunk 10-g) | | | | | #### **6.0** Description of Device Under Test (DUT) The LMR bands in this device operate in a half duplex system. A half duplex system only allows the user to transmit or receive. This device cannot transmit and receive simultaneously. The user must stop transmitting in order to receive a signal or listen for a response, regardless of PTT button or use of voice activated audio accessories. This type of operation, along with the RF safety booklet, which instructs the user to transmit no more than 50% of the time, justifies the use of 50% duty factor for this device. Table 3 below summarizes the bands, maximum duty cycles and maximum output powers limit by applied different type of battery. Maximum output powers are defined as upper limit of the production line final test station. Table 3 | Band (MHz) | Transmission | on Duty Cycle (%) Nominal | | Declared Max | |---------------------|--------------|---------------------------|-------|--------------
 | | | | Power | Power | | 462.5500 - 462.7250 | FM | *50 | 1.8 W | 2.2 W | | 467.5625 - 467.7125 | FM | *50 | 0.4 W | 0.5 W | Note - * includes 50% PTT operation The intended operating positions are "at the face" with the DUT at least 2.5 cm from the mouth, and "at the body" by means of the offered body worn accessories. Body worn audio and PTT operation is accomplished by means of optional remote accessories that are connected to the radio. # 7.0 Optional Accessories and Test Criteria This device is offered with optional accessories. All accessories were individually evaluated during the test plan creation to determine if testing was required per the guidelines outlined in "SAR Test Reduction Considerations for Occupational PTT Radios" FCC KDB 643646 to assess compliance of this device. The following sections identify the test criteria and details for each accessory category. Refer to Exhibit 7B for antenna separation distances. #### 7.1 Antennas Table 4 | Antenna No. | Antenna Models | Description | Selected for test | Tested | |-------------|----------------|---|-------------------|--------| | 1 | Fixed Antenna | Fixed, 100-500MHz, 1/4 wave, 8cm, -0.5dBi | Yes | Yes | # 7.2 Battery Table 5 | Battery No. | Battery Models | Description | Selected
for test | Tested | |-------------|----------------|---|----------------------|------------------------| | 1 | 1532 | 1300mAh 3xAA NiMH Rechargeable Battery Pack | Yes | Yes | | 2 | AA Alkaline | 3xAA Alkaline individual batteries | Yes | Yes | | 3 | PMNN4477A | 800mAh 3xAA NiMH Rechargeable Battery Pack | Yes | Yes; In box
battery | # 7.3 Body worn Accessories Table 6 | Body worn
No. | Body worn
Models | Description | Selected
for test | Tested | |------------------|---------------------|-------------------|----------------------|--------| | 1 | PMLN7220A | Belt Clip | Yes | Yes | | 2 | PMLN7240A | Whistle Belt Clip | Yes | Yes | | 3 | PMLN7706AR | Carry Pouch | Yes | Yes | #### 7.4 Audio Accessories Table 7 | Audio | Audio Acc. | Description | Selected | Tested | Comments | |-------|----------------|-------------------------------------|----------|--------|-------------------------| | No. | Models | | for test | | | | 1 | 53725C | Headset with Swivel Boom Microphone | Yes | Yes | Default Audio | | 2 | 53727B | Earbud with Push-to-Talk Microphone | No | No | By similarity to 53725C | | 3 | 56320B | Earpiece with Boom Microphone | Yes | Yes | | | 4 | GU6443A (1518) | Surveillance Headset (1518) | Yes | Yes | | | 5 | PMLN7705AR | Throat Mic with PTT-VOX Switch | Yes | Yes | | | 6 | 53724C | Remote Speaker Microphone | Yes | Yes | | ### 8.0 Description of Test System ### 8.1 Descriptions of Robotics/Probes/Readout Electronics Table 8 | Dosimetric System type | System version | DAE type | Probe Type | |--|----------------|----------|---------------------| | Schmid & Partner Engineering AG SPEAG DASY 5 | 52.10.2.1495 | DAE4 | EX3DV4
(E-Field) | The **DASY5TM system** is operated per the instructions in the DASY5TM Users Manual. The complete manual is available directly from SPEAGTM. All measurement equipment used to assess SAR compliance was calibrated according to ISO/IEC 17025 A2LA guidelines. Section 9.0 presents additional test equipment information. Appendices B and C present the applicable calibration certificates. The E-field probe first scans a coarse grid over a large area inside the phantom in order to locate the interpolated maximum SAR distribution. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The subsequent scan can directly use this position as reference for the cube evaluations. ### 8.2 Description of Phantom(s) Table 9 | Phantom Type | Phantom(s) Used | Material | Phantom | Material | Support | Loss | |--------------|-----------------|-----------------|-------------|-----------|-----------|---------| | | | Parameters | Dimensions | Thickness | Structure | Tangent | | | | | LxWxD | (mm) | Material | (wood) | | | | | (mm) | | | | | | | 200MHz -6GHz; | | | | | | Triple Flat | NA | Er = 3-5, | 280x175x175 | x175 | | | | Triple riat | NA | Loss Tangent = | 280x1/3x1/3 | | | | | | | ≤0.05 | | | | | | | NA | 300MHz -6GHz; | | | | | | SAM | | Er = < 5, | Human | 2mm | Wood | < 0.05 | | SAM | | Loss Tangent = | Model | +/- 0.2mm | wood | < 0.03 | | | | ≤0.05 | | | | | | | | 300MHz -6GHz; | | | | | | Ornal Elet | | Er = 4 + / - 1, | 600400100 | | | | | Oval Flat | V | Loss Tangent = | 600x400x190 | | | | | | | ≤0.05 | | | | | # 8.3 Description of Simulated Tissue The sugar based simulate tissue is produced by placing the correct measured amount of De-ionized water into a large container. Each of the dried ingredients are weighed and added to the water carefully to avoid clumping. If the solution has a high sugar concentration the water is pre-heated to aid in dissolving the ingredients. The simulated tissue mixture was mixed based on the Simulated Tissue Composition indicated in Table 10. During the daily testing of this product, the applicable mixture was used to measure the Di-electric parameters at each of the tested frequencies to verify that the Di-electric parameters were within the tolerance of the tissue specifications. ### **Simulated Tissue Composition (percent by mass)** Table 10 | Ingredients | 450MHz | |-------------------|--------| | Ingi culcuts | Head | | Sugar | 56.0 | | De ionized –Water | 39.1 | | Salt | 3.8 | | HEC | 1.0 | | Bact. | 0.1 | ### 9.0 Additional Test Equipment The Table below lists additional test equipment used during the SAR assessment. Table 11 | Equipment Type | Model
Number | Serial Number | Calibration
Date | Calibration Due Date | |----------------------------|---------------------------|---------------|---------------------|----------------------| | SPEAG Probe | EX3DV4 | 7485 | 04/25/2022 | 04/25/2023 | | SPEAG DAE | DAE4 | 850 | 04/14/2022 | 04/14/2023 | | Power Amplifier | 50W100D | 0357646 | CNR | CNR | | Vector Signal Generator | E4438C | MY42081753 | 08/14/2022 | 08/14/2023 | | Bi-Directional Coupler | 3020A | 40295 | 06/30/2022 | 06/30/2023 | | Power Meter | E4416A | MY50001037 | 08/05/2021 | 08/05/2023 | | Power Meter | E4417A | GB41292245 | 11/11/2022 | 11/11/2023 | | Power Meter | E4418B | MY45100911 | 08/08/2022 | 08/08/2023 | | Power Sensor | E9301B | MY50280001 | 05/26/2022 | 05/26/2023 | | Power Sensor | E9301B | MY55210006 | 05/26/2022 | 05/26/2023 | | Power Sensor | E9301B | MY55210003 | 06/08/2022 | 06/08/2023 | | Data Logger | DSB | 16398050 | 08/13/2022 | 08/13/2023 | | Thermometer | HH806AU | 080307 | 11/28/2022 | 11/28/2023 | | Temperature Probe | 80PK-22 | 06032017 | 11/28/2022 | 11/28/2023 | | Network Analyzer | E5071B | MY42403147 | 02/14/2022 | 02/14/2023 | | Dielectric Probe Kit (DAK) | DAK-3.5 | 1156 | 04/11/2022 | 04/11/2023 | | Thermometer | 1523 | 3492108 | 11/04/2022 | 11/04/2023 | | Temperature Probe | PR-10L-4-
100-1/4-6-BX | WNWR037791 | 11/04/2022 | 11/04/2023 | | SPEAG Dipole | D450V3 | 1077 | 07/09/2021 | 07/09/2024 | # 10.0 SAR Measurement System Validation and Verification DASY output files of the probe/dipole calibration certificates and system verification test results are included in appendices B, C & D respectively. ### **10.1** System Validation The SAR measurement system was validated according to procedures in KDB 865664. The validation status summary Table is below. Table 12 | Dates | Probe Ca
Poi | | Probe
SN | Measured Tissue
Parameters | | Validation | | | |------------|-----------------|-----|-------------|-------------------------------|------|-------------|-----------------------|------| | | 1 01 | 111 | 514 | σ €r | | Sensitivity | Sensitivity Linearity | | | | | | | CW | | | | | | 06/03/2022 | Head | 450 | 7485 | 0.85 | 42.7 | Pass | Pass | Pass | #### **10.2** System Verification System verification checks were conducted each day during the SAR assessment. The results are normalized to 1W. Appendix D includes DASY plots with the largest deviation from the qualified source SAR target for each dipole. The Table below summarizes the daily system check results used for the SAR assessment. Table 13 | Probe
Serial # | Tissue Type | Dipole Kit / Serial
| Ref SAR @ 1W
(W/kg) | System Check
Results
Measured
(W/kg) | System Check Test Results when normalized to 1W (W/kg) | Tested
Date | | |-------------------|---------------|--------------------------|------------------------|---|--|----------------|----------| | | | | | 1.16 | 4.64 | 12/9/2022 | | | | | | | 1.10 | 4.40 | 12/10/2022 | | | | | | | 1.18 | 4.72 | 12/11/2022 | | | 7485 | IEEE/IEC Head | SPEAG D450V3/ | 4.63 | 1.14 | 4.56 | 1/3/2023 | | | 7463 | | 1077 | 4.03 | 4.03 | 1.17 | 4.68 | 1/6/2023 | | | | | | 1.18 | 4.72 | 1/7/2023 | | | | | | | 1.21 | 4.84 | 1/9/2023 | | | | | | | 1.18 | 4.72 | 1/10/2023 | | # **10.3** Equivalent Tissue Test Results Simulated tissue prepared for SAR measurements is measured daily and within 24 hours prior to actual SAR testing to verify that the tissue is within +/- 5% of target parameters at the center of the transmit band. This measurement is done using the applicable equipment indicated in section 9.0. The Table below summarizes the measured tissue parameters used for the SAR assessment. Table 14 | Frequency | Tissue Type | Conductivity | Dielectric Constant | Conductivity | Dielectric | Tested Date | |-----------|-------------|---------------------|----------------------------|--------------|------------|--------------------| | (MHz) | | Target (S/m) | Target | Meas. (S/m) | Constant | | | | | | | | Meas. | | | | | | | 0.83 | 42.8 | 12/9/2022# | | | | | | 0.83 | 43.1 | 12/10/2022# | | | | | | 0.85 | 43.4 | 12/11/2022# | | 450 |
 0.87 | 43.5 | 0.88 | 42.9 | 01/03/2023# | | 430 | | (0.83-0.91) | (41.3-45.7) | 0.89 | 42.1 | 1/6/2023# | | | | | | 0.88 | 42.3 | 1/7/2023# | | | IEEE/ | | 0.86 | 41.7 | 1/9/2023 | | | | IEC Head | | | 0.88 | 41.6 | 1/10/2023 | | | | | | 0.84 | 42.5 | 12/9/2022# | | 463 | | 0.87 | 43.4 | 0.84 | 42.9 | 12/10/2022# | | 403 | | (0.83-0.91) | (41.3-45.6) | 0.86 | 43.1 | 12/11/2022# | | | | | | 0.89 | 42.6 | 01/03/2023# | | | | | | 0.90 | 41.8 | 1/6/2023# | | | | | | 0.87 | 41.4 | 1/9/2023 | | | | 0.97 | 42.4 | 0.87 | 43.0 | 12/11/2022# | | 468 | | 0.87
(0.83-0.91) | 43.4
(41.2-45.6) | 0.87 | 41.4 | 1/9/2023 | | | | (0.03-0.91) | (41.2-43.0) | 0.89 | 41.3 | 1/10/2023 | #### 11.0 Environmental Test Conditions The EME Laboratory's ambient environment is well controlled resulting in very stable simulated tissue temperature and therefore stable dielectric properties. Simulated tissue temperature is measured prior to each scan to insure it is within +/ - 2°C of the temperature at which the dielectric properties were determined. The liquid depth within the phantom used for measurements was at least 15cm. Additional precautions are routinely taken to ensure the stability of the simulated tissue such as covering the phantoms when scans are not actively in process in order to minimize evaporation. The lab environment is continuously monitored. The Table below presents the range and average environmental conditions during the SAR tests reported herein: Table 15 | | Target | Measured | |---------------------|------------|----------------------| | Ambient Temperature | 18 − 25 °C | Range: 20.5 – 22.7°C | | | | Avg. 21.6 °C | | Tissue Temperature | 18 − 25 °C | Range: 19.0-20.4°C | | | | Avg. 19.7°C | Relative humidity target range is a recommended target The EME Lab RF environment uses a Spectrum Analyzer to monitor for extraneous large signal RF contaminants that could possibly affect the test results. If such unwanted signals are discovered the SAR scans are repeated. #### 12.0 DUT Test Setup and Methodology #### 12.1 Measurements SAR measurements were performed using the DASY system described in section 8.0 using zoom scans. Oval flat phantoms filled with applicable simulated tissue were used for body and face testing. The Table below includes the step sizes and resolution of area and zoom scans per KDB 865664 requirements. Table 16 | Descr | iption | ≤3 GHz | > 3 GHz | | | |--|------------------------------|--|--|--|--| | Maximum distance from close (geometric center of probe sen | _ | $5 \pm 1 \text{ mm}$ $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ r}$ | | | | | Maximum probe angle from p normal at the measurement loc | robe axis to phantom surface | 30° ± 1° | 20° ± 1° | | | | | | ≤ 2 GHz: ≤ 15 mm | $3-4$ GHz: ≤ 12 mm | | | | | | $2-3$ GHz: ≤ 12 mm | $4-6 \text{ GHz:} \leq 10 \text{ mm}$ | | | | | | When the x or y dimension | on of the test device, in | | | | Maximum area scan spatial re | solution: Av Area Av Area | the measurement plane orientation, is smaller | | | | | Waxiiiuiii area scaii spatiai re | solution. Axalea, Ayalea | than the above, the measurement resolution must | | | | | | | be \leq the corresponding x or y dimension of the | | | | | | | test device with at least of | ne measurement point | | | | | | on the test device. | | | | | Maximum zoom scan spatial r | resolution: ΔxZoom, ΔyZoom | ≤ 2 GHz: ≤ 8 mm | $3-4 \text{ GHz: } \leq 5 \text{ mm*}$ | | | | | | $2-3 \text{ GHz: } \leq 5 \text{ mm*}$ | $4-6$ GHz: ≤ 4 mm* | | | | Maximum zoom scan | uniform grid: ΔzZoom(n) | | 3 – 4 GHz: ≤ 4 mm | | | | spatial resolution, normal to | | ≤ 5 mm | $4-5$ GHz: ≤ 3 mm | | | | phantom surface | | | $5-6$ GHz: ≤ 2 mm | | | Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details. #### **12.2 DUT** Configuration(s) The DUT is a portable device operational at the body and face as described in section 6.0 while using the applicable accessories listed in section 7.0. All accessories listed in section 7.0 of this report were considered when implementing the guidelines specified in KDB 643646. #### **12.3 DUT Positioning Procedures** The positioning of the device for each body location is described below and illustrated in Appendix G. #### 12.3.1 Body The DUT was positioned in normal use configuration against the phantom with the offered body worn accessory as well as with and without the offered audio accessories as applicable. #### 12.3.2 Head Not applicable. #### 12.3.3 Face The DUT was positioned with its' front sides separated 2.5cm from the phantom. ^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. #### **12.4 DUT Test Channels** The number of test channels was determined by using the following IEEE 1528 equation. The use of this equation produces the same or more test channels compared to the FCC KDB 447498 number of test channels formula. $$N_c = 2 * roundup[10 * (f_{high} - f_{low}) / f_c] + 1$$ Where N_c = Number of channels $F_{high} = Upper channel$ $F_{low} = Lower channel$ F_c = Center channel #### 12.5 SAR Result Scaling Methodology The calculated 1-gram and 10-gram averaged SAR results indicated as "Max Calc. 1g-SAR" in the data Tables is determined by scaling the measured SAR to account for power leveling variations and drift. Appendix F includes a shortened scan to justify SAR scaling for drift. For this device the "Max Calc. 1g-SAR" is scaled using the following formula: $$Max_Calc = SAR_meas \cdot 10^{\frac{-Drift}{10}} \cdot \frac{P_max}{P_int} \cdot DC$$ $P_{max} = Maximum Power (W)$ $P_{int} = Initial Power(W)$ Drift = DASY drift results (dB) SAR meas = Measured 1-g or 10-g Avg. SAR (W/kg) DC = Transmission mode duty cycle in % where applicable 50% duty cycle is applied for PTT operation Note: for conservative results, the following are applied: If $P_{int} > P_{max}$, then $P_{max}/P_{int} = 1$. Drift = 1 for positive drift Additional SAR scaling was applied using the methodologies outlined in FCC KDB 865664 using tissue sensitivity values. SAR was scaled for conditions where the tissue permittivity was measured above the nominal target and for tissue conductivity that was measured below the nominal target. Negative or reduced SAR scaling is not permitted. #### 12.6 DUT Test Plan The guidelines and requirements outlined in section 4.0 were used to assess compliance of this device. All modes of operation identified in section 6.0 were considered during the development of the test plan. All tests were performed in CW and 50% duty cycle was applied to PTT configurations in the final results. FCC ID: AZ489FT4973 / IC: 109U-89FT4973 Report ID: P35850-EME-00003 #### 13.0 DUT Test Data ### 13.1 Assessments at the Body for 462.5500-462.7250MHz band Conducted power measurements for channel within frequency range 462.5500 - 462.7250 MHz was measured and listed in Table 17. Table 17 | Test frequency: 462.6375 MHz | | | | | | | | |------------------------------|-----------|--|--|--|--|--|--| | Battery | Power (W) | | | | | | | | 1532 | 1.88 | | | | | | | | AA Alkaline | 2.02 | | | | | | | | PMNN4477A | 1.78 | | | | | | | # Assessments at the Body with Body worn PMLN7240A DUT assessment with EAN.144F.823RA1 antennas, batteries and above mentioned body worn accessory. Table 18 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | | | | | | | | | | | | | | | | | | |------------------|-------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|----------------------------------|---------------------------|--------|--------|--------|------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------------| | | PMNN4477A | | 53725C | 53725C | 53725C | 53725C | 53725C | | 1.78 | -0.95 | 1.35 | 1.04 | FZ-AB-221210-01# | | | | | | | | | | | | | | | Fixed
Antenna | AA Alkaline | PMLN7240A | | | | | | 53725C | 53725C | 53725C | 53725C | 53725C | 53725C 4 | 53725C 462.6375 | | Tancina | 1532 | | | | 1.88 | -1.01 | 1.25 | 0.92 | IRA(SHM)-AB-
230109-02 | | | | | | | | | | | | | | | | | | ### Assessments at the Body with Body worn PMLN7706AR DUT assessment with the EAN.144F.823RA1 antenna, batteries and above mentioned body worn accessory. Table 19 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# |------------------|-------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|----------------------------------|----------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|------|-------|------|------|---------------------------| | | PMNN4477A | | | | 1.78 | -0.44 | 1.31 | 0.90 | MA(EMR)-AB-
230107-02# | Fixed
Antenna | AA Alkaline | PMLN7706AR | PMLN7706AR | PMLN7706AR | 53725C 462.6375 | 2.02 | -0.62 | 1.56 | 0.98 | MA(EMR)-AB-
230107-04# | | | 1532 | | | | 1.88 | -0.39 | 1.30 | 0.83 | IRA(SHM)-AB-
230107-05# | | | | | | | | | | | | | | | | | | | #### Assessments at the Body
with Body worn PMLN7220A DUT assessment with the EAN.144F.823RA1 antenna, batteries and above mentioned body worn accessory. Table 20 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | |------------------|-------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|----------------------------------|----------------------------| | | PMNN4477A | | | | 1.78 | -0.14 | 1.13 | 0.72 | BL-AB-221210-10 | | Fixed
Antenna | AA Alkaline | PMLN7220A | 53725C | 462.6375 | 2.02 | -0.62 | 1.17 | 0.73 | IRA(SHM)-AB-
230108-01# | | | 1532 | | | | 1.88 | 0.01 | 1.25 | 0.73 | BL-AB-221210-12 | #### Assessment at the Body with other audio accessories Assessment per "KDB 643646 Body SAR Test Consideration for Audio Accessories without Built-in Antenna; Sec 1, A. when overall > 0.8 W/kg, SAR tested for that audio accessory is necessary. "This was applicable to all remaining accessories." SAR plots of the highest results for Body (bolded) is present in Appendix E. Table 21 | Antenna | Battery | Carry
Accessory | Cable Accessory | Test Freq. (MHz) | Initial
Power
(W) | SAR
Drift
(dB) | Meas. 1g-
SAR
(W/kg) | Max
Calc.1g
-SAR
(W/kg) | Run# | | |---------------|-----------|--------------------|-----------------|------------------|-------------------------|----------------------|----------------------------|----------------------------------|-------------------|-----------------| | | | | | 56320B | 462.6375 | 1.78 | -0.39 | 1.27 | 0.86 | BL-AB-221210-14 | | Fixed Antenna | PMNN4477A | PMLN7240A | GU6443A (1518) | 462.6375 | 1.78 | -0.75 | 1.64 | 1.20 | AMF-AB-221210-17 | | | | | | PMLN7705AR | 462.6375 | 1.78 | -0.32 | 1.42 | 0.94 | AMF-AB-221211-02# | | | | | | 53724C | 462.6375 | 1.78 | -0.45 | 1.45 | 0.99 | BL-AB-221211-07# | | #### 13.2 Assessment at the Face for 462.5500 – 462.7250 MHz band Conducted power measurements for channel within FCC allocated frequency range 462.5500 - 462.7250 MHz was measured and listed in Table 22. Table 22 | Test frequency: 462.6375 MHz | | | | | | | | | |------------------------------|-----------|--|--|--|--|--|--|--| | Battery | Power (W) | | | | | | | | | 1532 | 1.88 | | | | | | | | | AA Alkaline | 2.02 | | | | | | | | | PMNN4477A | 1.78 | | | | | | | | Assessment of fixed antenna with offered battery) with front of DUT positioned 2.5cm facing phantom. SAR plots of the highest results for Face (bolded) is present in Appendix E. Table 23 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | |------------------|-------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|----------------------------------|-----------------------------| | Fixed
Antenna | PMNN4477A | @ front | None | 462.6375 | 1.78 | -0.81 | 1.22 | 0.91 | BL-FACE-221211-04# | | | AA Alkaline | | | | 2.02 | -0.81 | 1.14 | 0.75 | IRA(SHM)-FACE-
230109-03 | | | 1532 | | | | 1.88 | -0.50 | 1.14 | 0.75 | IRA(SHM)-FACE-
230109-04 | # 13.3 Assessment at the Body for 467.5625 – 467.7125 MHz band Conducted power measurements for channel within FCC allocated frequency range 467.5625-467.7125 MHz was measured and listed in Table 24. Table 24 | Test frequency: 467.6375 MHz | | | | | | | | | |------------------------------|-----------|--|--|--|--|--|--|--| | Battery | Power (W) | | | | | | | | | 1532 | 0.36 | | | | | | | | | AA Alkaline | 0.44 | | | | | | | | | PMNN4477A | 0.34 | | | | | | | | ### Assessments at the Body with Body worn PMLN7240A DUT assessment with EAN.144F.823RA1 antennas, batteries and above mentioned body worn accessory. Table 25 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | | |------------------|-------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|----------------------------------|-----------------------------|--| | | PMNN4477A | PMLN7240A | 53725C | 467.6375 | 0.34 | -0.10 | 0.49 | 0.36 | BL-AB-221211-09 | | | Fixed
Antenna | AA Alkaline | | | | 0.44 | -0.89 | 0.59 | 0.41 | IRA(SHM)-FACE-
230109-05 | | | | 1532 | | | | 0.36 | -0.54 | 0.51 | 0.40 | BL-AB-221211-11 | | #### Assessments at the Body with Body worn PMLN7706AR DUT assessment with the EAN.144F.823RA1 antenna, batteries and above mentioned body worn accessory. Table 26 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | |------------------|-------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|----------------------------------|-----------------------------| | Fixed
Antenna | PMNN4477A | PMLN7706AR | 53725C | 467.6375 | 0.34 | -0.72 | 0.58 | 0.50 | BL-AB-221211-12 | | | AA Alkaline | | | | 0.44 | -0.69 | 0.68 | 0.45 | IRA(SHM)-FACE-
230109-06 | | | 1532 | | | | 0.36 | -0.65 | 0.63 | 0.50 | BL-AB-221211-14 | #### Assessments at the Body with Body worn PMLN7220A DUT assessment with the EAN.144F.823RA1 antenna, batteries and above mentioned body worn accessory. SAR plots of the highest results for Body (bolded) is present in Appendix E. Table 27 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | |------------------|-------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|----------------------------------|------------------| | Fixed
Antenna | PMNN4477A | | 53725C | 467.6375 | 0.34 | -0.78 | 0.43 | 0.37 | BL-AB-221211-15 | | | AA Alkaline | PMLN7220A | | | 0.44 | -1.03 | 0.82 | 0.59 | AMF-AB-221211-16 | | | 1532 | | | | 0.36 | -0.54 | 0.64 | 0.50 | AMF-AB-221211-18 | #### Assessment at the Body with other audio accessories Assessment per "KDB 643646 Body SAR Test Consideration for Audio Accessories without Built-in Antenna; Sec 1, A. when overall < 0.8 W/kg, SAR tested for that audio accessory is not necessary. "This was applicable to all remaining accessories." #### 13.4 Assessment at the Face for 467.5625 – 467.7125 MHz band Conducted power measurements for channel within FCC allocated frequency range 467.5625-467.7125 MHz was measured and listed in Table 28. Table 28 | Test frequency: 467.6375 MHz | | | | | | | | |------------------------------|-----------|--|--|--|--|--|--| | Battery | Power (W) | | | | | | | | 1532 | 0.36 | | | | | | | | AA Alkaline | 0.44 | | | | | | | | PMNN4477A | 0.34 | | | | | | | Assessment with the fixed antenna and default battery with front of DUT positioned 2.5cm facing phantom. SAR plots of the highest results for Face (bolded) is present in Appendix E. Table 29 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | |------------------|-------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|----------------------------------|-----------------------------| | | PMNN4477A | @ front | None | 467.6375 | 0.34 | -0.79 | 0.50 | 0.44 | AMF(EMR)-FACE-
230110-02 | | Fixed
Antenna | AA Alkaline | | | | 0.44 | -0.95 | 0.53 | 0.37 | AMF-FACE-221211-20 | | Antenna | 1532 | | | | 0.36 | -0.65 | 0.51 | 0.41 | AMF-FACE-221212-
01# | #### 13.5 Assessment for ISED, Canada Based on the assessment results for body and face per KDB643646 D01, additional tests were not required for the Industry Canada frequency range (462.5500 - 462.7250 MHz and 467.5625 - 467.7125 MHz) as the testing performed is in compliance with Industry Canada frequency range. The frequency range only has one channel per each band; no additional tests were required for low, mid and high frequency channels as per ISED Notice 2016-DRS001. #### 14.0 Shortened Scan Assessment A "shortened" scan using the highest SAR configuration overall from above was performed to validate the SAR drift of the full DASY5TM coarse and zoom scans. Note that the shortened scan represents the zoom scan performance result; this is obtained by first running a coarse scan to find the peak area and then, using a newly charged battery, a zoom scan only was performed. The results of the shortened cube scan presented in Appendix D demonstrate that the scaling methodology used to determine the calculated SAR results presented herein are valid. The SAR result from the Table below is provided in Appendix F. Table 30 | Antenna | Battery | Carry
Accessory | Cable
Accessory | Test Freq
(MHz) | Init
Pwr
(W) | SAR
Drift
(dB) | Meas.
1g-SAR
(W/kg) | Max
Calc.
1g-SAR
(W/kg) | Run# | |------------------|-----------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------------|----------------------------------|----------------------------| | Fixed
Antenna | PMNN4477A | PMLN7240A | GU6443A
(1518) | 462.6375 | 1.78 | -0.76 | 1.54 | 1.13 | AMF(EMR)-AB-
230104-01# | ### 15.0 Results Summary Based on the test guidelines from section 4.0 and satisfying frequencies within FCC bands and ISED Canada Frequency bands, the highest Operational Maximum
Calculated 1-gram average SAR values found for this filing: Table 31 | Technologies | Frequency Band | Max Cal at Body | Max Cal at Face | | | |--------------|---------------------|-----------------|-----------------|--|--| | | (MHz) | (W/kg) | (W/kg) | | | | | | 1g SAR | 1g SAR | | | | | | | o . | | | | FM | 462.5500 – 462.7250 | 1.20 | 0.91 | | | | | 467.5625 – 467.7125 | 0.59 | 0.44 | | | All results are scaled to the maximum output power # 16.0 Variability Assessment Per the guidelines in KDB 865664 SAR variability assessment is required because SAR results are below 0.8W/kg (General population). Table 32 | Run# | Antenna | Battery | Carry | Cable | Test | Adj Ca | Ratio | Comments | |----------------|---------------|----------|-----------|-----------|----------|---------|-------|----------------------------| | | | | Accessory | Accessory | Freq. | lc. 1g- | | | | | | | | | (MHz) | SAR | | | | | | | | | | (W/kg) | | | | AMF-AB-221210- | | | | | | 0.07 | | No additional | | 17 | | | | | | 0.97 | | repeated scans is | | | Fixed Antenna | PMNN4477 | PMLN7240 | GU6443A | 462.6375 | | 1.05 | required due to the | | AMF(EMR)-AB- | Tixed Antenna | A | A | (1518) | 402.0373 | | 1.03 | Ratio | | 230104-01# | | | | | | 0.92 | | $(SAR_{high}/SAR_{low}) <$ | | | | | | | | | | 1.20 | #### 17.0 System Uncertainty A system uncertainty analysis is not required for this report per KDB 865664 because the highest report SAR value for General Population exposure is less than 1.5W/kg. Per the guidelines of ISO/IEC 17025 a reported system uncertainty is required and therefore measurement uncertainty budget is included in Appendix A. FCC ID: AZ489FT4973 / IC: 109U-89FT4973 Report ID: P35850-EME-00003 # Appendix A # **Measurement Uncertainty Budget** ### Uncertainty Budget for System Validation (Dipole & Flat Phantom) for 450 MHz | | | | | e= | | | h= | i= | | |--|----------------------|--------------|----------|--------|-------|------------|------------|------------|----------| | a | b | c | d | f(d,k) | f | g | cxf/e | cxg/e | k | | | | Tol.
(± % | Prob. | | Çi. | <u>ç</u> į | 1g | 10 g | | | | IEEE 1528
section |) | Dist. | | (1 g) | (10 g) | <u>u</u> i | <u>u</u> i | | | Uncertainty Component | геспоп | | | Div. | | | (±%) | (±%) | vi | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | ∞ | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ω | | Spherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0 | 0 | 0.0 | 0.0 | œ | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | œ | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | ω | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 00 | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | 80 | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | œ | | Integration Time | E.2.8 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | 00 | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | œ | | RF Ambient Conditions -
Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | 8 | | Probe Positioner Mechanical | | | | | | | | | | | Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | ω | | Probe Positioning w.r.t. | | | | | | | | | | | Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | ® | | Max. SAR Evaluation (ext., | | ١., | _ | 4.55 | ١. | ١. | | | | | int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | 00 | | Dipole | | | _ | 4.50 | | | 4.5 | | | | Dipole Axis to Liquid Distance | 8, E.4.2 | 2.0 | R | 1.73 | 1 | 1 | 1.2 | 1.2 | 00 | | Input Power and SAR Drift
Measurement | 8, 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | ω | | Phantom and Tissue | 8, 0.0.2 | 3.0 | A | 1./3 | 1 | 1 | 2.9 | 2.9 | 00 | | Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | 00 | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | 00 | | Liquid Conductivity | | 1 | <u> </u> | | | | | | | | (measurement) | E.3.3 | 3.3 | R | 1.73 | 0.64 | 0.43 | 1.2 | 0.8 | œ | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | œ | | Liquid Permittivity | | | | | | | | | | | (measurement) | E.3.3 | 1.9 | R | 1.73 | 0.6 | 0.49 | 0.6 | 0.5 | œ | | Combined Standard | | | | | | | | | | | Uncertainty | | | RSS | | | | 10 | 9 | 99999 | | Expanded Uncertainty | | | | | | | | | | | (95% CONFIDENCE LEVEL) | | | k=2 | | | | 19 | 18 | | Notes for uncertainty budget Tables: - a) Column headings a-k are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) *ci* sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty # Uncertainty Budget for Device Under Test, for 450 MHz | а | Ь | с | d | e =
f(d,k) | f | g | h =
cxf/
e | i = c x g / e | k | |--|----------------------|---------------|--------------|---------------|-------|-----------|-------------------|--------------------|-----| | Uncertainty Component | IEEE 1528
section | Tol.
(± %) | Prob
Dist | Div. | (l g) | (10
g) | 1 g
u;
(±%) | 10 g
u;
(±%) | vi | | Measurement System | | | | | | | | | | | Probe Calibration | E.2.1 | 6.7 | N | 1.00 | 1 | 1 | 6.7 | 6.7 | œ | | Axial Isotropy | E.2.2 | 4.7 | R | 1.73 | 0.707 | 0.707 | 1.9 | 1.9 | 00 | | Hemispherical Isotropy | E.2.2 | 9.6 | R | 1.73 | 0.707 | 0.707 | 3.9 | 3.9 | 80 | | Boundary Effect | E.2.3 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 80 | | Linearity | E.2.4 | 4.7 | R | 1.73 | 1 | 1 | 2.7 | 2.7 | 80 | | System Detection Limits | E.2.5 | 1.0 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Readout Electronics | E.2.6 | 0.3 | N | 1.00 | 1 | 1 | 0.3 | 0.3 | 8 | | Response Time | E.2.7 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | Integration Time | E.2.8 | 1.1 | R | 1.73 | 1 | 1 | 0.6 | 0.6 | 8 | | RF Ambient Conditions - Noise | E.6.1 | 3.0 | R | 1.73 | 1 | 1 | 1.7 | 1.7 | 8 | | RF Ambient Conditions - Reflections | E.6.1 | 0.0 | R | 1.73 | 1 | 1 | 0.0 | 0.0 | 8 | | Probe Positioner Mech. Tolerance | E.6.2 | 0.4 | R | 1.73 | 1 | 1 | 0.2 | 0.2 | 8 | | Probe Positioning wrt Phantom | E.6.3 | 1.4 | R | 1.73 | 1 | 1 | 0.8 | 0.8 | 8 | | Max. SAR Evaluation (ext., int., avg.) | E.5 | 3.4 | R | 1.73 | 1 | 1 | 2.0 | 2.0 | 8 | | Test sample Related | | | | | | | | | | | Test Sample Positioning | E.4.2 | 3.2 | N | 1.00 | 1 | 1 | 3.2 | 3.2 | 29 | | Device Holder Uncertainty | E.4.1 | 4.0 | N | 1.00 | 1 | 1 | 4.0 | 4.0 | 8 | | SAR drift | 6.6.2 | 5.0 | R | 1.73 | 1 | 1 | 2.9 | 2.9 | 8 | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty | E.3.1 | 4.0 | R | 1.73 | 1 | 1 | 2.3 | 2.3 | 00 | | Liquid Conductivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.64 | 0.43 | 1.8 | 1.2 | œ | | Liquid Conductivity (measurement) | E.3.3 | 3.3 | N | 1.00 | 0.64 | 0.43 | 2.1 | 1.4 | œ | | Liquid Permittivity (target) | E.3.2 | 5.0 | R | 1.73 | 0.6 | 0.49 | 1.7 | 1.4 | 00 | | Liquid Permittivity (measurement) | E.3.3 | 1.9 | N | 1.00 | 0.6 | 0.49 | 1.1 | 0.9 | 00 | | Combined Standard Uncertainty | | | RSS | | | | 12 | 11 | 482 | | Expanded Uncertainty
(95% CONFIDENCE LEVEL) | | | k=2 | | | | 23 | 23 | | Notes for uncertainty budget Tables: - a) Column headings a-k are given for reference. - b) Tol. tolerance in influence quantity. - c) Prob. Dist. Probability distribution - d) N, R normal, rectangular probability distributions - e) Div. divisor used to translate tolerance into normally distributed standard uncertainty - f) ci sensitivity coefficient that should be applied to convert the variability of the uncertainty component into a variability of SAR. - g) ui SAR uncertainty - h) vi degrees of freedom for standard uncertainty and effective degrees of freedom for the expanded uncertainty FCC ID: AZ489FT4973 / IC: 109U-89FT4973 Report ID: P35850-EME-00003 # Appendix B # **Probe Calibration Certificates** #### Calibration Laboratory of Schmid & Partner Engineering AG Zeugheusstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola Solutions MY Certificate No: EX3-7485_Apr22 ### CALIBRATION CERTIFICATE Object EX3DV4 - SN:7485 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: April 25, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate, All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID. | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: CC2552 (20x) |
04-Apr-22 (No. 217-03527) | Apr-23 | | DAE4 | SN: 680 | 13-Oct-21 (No. DAE4-660 Oct21) | Oct-22 | | Reference Probe ES3DV2 | SN: 3013 | 27-Dec-21 (No. ES3-3013_Dec21) | Dec-22 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E44198 | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | Calibrated by: Michael Weber Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: April 26, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7485_Apr22 Page 1 of 24 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z ConvF DCP tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx.y,z diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system # Calibration is Performed According to the Following Standards: - iEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7485_Apr22 Page 2 of 24 EX3DV4 - SN:7485 April 25, 2022 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7485 #### **Basic Calibration Parameters** | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |----------|---------------|-----------|----------------| | 0.46 | 0.45 | 0.45 | ± 10.1 % | | 102.0 | 100.3 | | 2.10.1 70 | | | 0.46
102.0 | 0.46 0.45 | 0.46 0.45 0.45 | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unce
(k=2) | |--------|--|-------------------------------|---------|------------|-------|----------|----------|-------------|----------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 152.4 | ± 3.0 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 153.8 | | | | | | Z | 0.00 | 0.00 | 1.00 | | 153.8 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 2.94 | 67.44 | 10.75 | 10.00 | 60.0 | ± 3.0 % | ± 9.6 % | | AAA | | Y | 2.16 | 64.02 | 9.09 | | 60.0 | 1 | 20.0 | | - | | Z | 20.00 | 88.55 | 18.67 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 2.07 | 67.46 | 9.77 | 6.99 | 80.0 | ±2.2% | ± 9.6 % | | AAA | Les accessors of the modern of the process. | Y | 1.29 | 62.72 | 7.68 | | 80.0 | 12.2.76 | 2 0.0 % | | | | Z | 20.00 | 90.37 | 18.26 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 20.00 | 84.23 | 13.37 | 3.98 | 95.0 | ±1.4% | ± 9.6 % | | AAA | In any period of the selection to the contract of | Y | 0.84 | 63.31 | 7.33 | | 95.0 | | | | | L. | Z | 20.00 | 94.11 | 18.56 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 20.00 | 82.48 | 11.57 | 2.22 | 120.0 | ± 1.6 % | ± 9.6 % | | AAA | | Y | 20.00 | 85.32 | 13.47 | | 120.0 | | | | | | Z | 20.00 | 97.68 | 18.86 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | PSK Waveform, 1 MHz X 1.72 68 | 68.86 | 15.94 | 1.00 | 150.0 | ± 2.8 % | ± 9.6 % | | | AAA | The second of th | Y | 1.64 | 67.38 | 15.37 | 10000000 | 150.0 | 1 | | | | 11 | Z | 1.62 | 67.05 | 15.09 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.23 | 69.18 | 16.46 | 0.00 | 150.0 | ±1.6% | ± 9.6 % | | AAA | 1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | Y | 2.12 | 67.82 | 15.85 | | 150.0 | | 2 9.0 70 | | | | Z | 2.18 | 68.21 | 15.86 | | 150.0 | | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.89 | 72.36 | 19.92 | 3.01 | 150.0 | ± 1.7 % | ± 9.6 % | | AAA | ENGINE DESCRIPTION OF ARCES SE | Y | 2.08 | 65.82 | 16.96 | 10100000 | 150.0 | | 34 910 76 | | | | Z | 2.67 | 69.92 | 18.77 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.51 | 67.65 | 16.14 | 0.00 | 150.0 | ± 1.6 % | ± 9.6 % | | AAA | Empty and the control of | Y | 3.44 | 66.96 | 15.80 | 0.00 | 150.0 | 1 1.0 Va | + 5.0 % | | | | Z | 3.49 | 67.26 | 15.89 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.77 | 66.08 | 15.83 | 0.00 | 150.0 | ± 3.1 % | ± 9.6 % | | AAA | | Y | 4.72 | 65.61 | 15.58 | 1000000 | 150.0 | - 40 10 | 2 0.0 70 | | 22500 | | Z | 4.82 | 65.89 | 15.71 | | 150.0 | | | For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a
coverage probability of approximately 95%. Certificate No: EX3-7485_Apr22 Page 3 of 24 The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:7485 April 25, 2022 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7485 #### Sensor Model Parameters | | C1
fF | C2
fF | α
V-1 | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V-2 | T5
V⁻¹ | T6 | |---|----------|----------|----------|--------------------------|--------------------------|----------|-----------|-----------|------| | X | 33.9 | 252.40 | 35.42 | 5.19 | 0.00 | 5.01 | 1.56 | 0.05 | 1.01 | | Υ | 34.5 | 257.48 | 35.55 | 8.99 | 0.00 | 4.96 | 0.00 | 0.22 | 1.00 | | Z | 37.4 | 282.07 | 36.13 | 6.91 | 0.00 | 5.06 | 0.83 | 0.21 | 1.01 | # Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (*) | 170.8 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job, Certificate No: EX3-7485_Apr22 Page 4 of 24 EX3DV4-SN:7485 April 25, 2022 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7485 Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^p | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ⁰ | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 52.3 | 0.76 | 14.37 | 14.37 | 14.37 | 0.00 | 1.00 | ± 13.3 9 | | 300 | 45.3 | 0.87 | 12.96 | 12.96 | 12.96 | 0.09 | 1.00 | ± 13.3 % | | 450 | 43.5 | 0.87 | 12.01 | 12.01 | 12.01 | 0.16 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 11.05 | 11.05 | 11.05 | 0.40 | 0.89 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.49 | 10.49 | 10.49 | 0.45 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.26 | 10.26 | 10.26 | 0.44 | 0.80 | ± 12.0 9 | | 1450 | 40.5 | 1.20 | 9.49 | 9.49 | 9,49 | 0.41 | 0.80 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.92 | 8.92 | 8.92 | 0.28 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.77 | 8.77 | 8.77 | 0.29 | 0.86 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.68 | 8.68 | 8.68 | 0.30 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.45 | 8.45 | 8.45 | 0.25 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 8.13 | 8.13 | 8.13 | 0.23 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.87 | 7.87 | 7.87 | 0.27 | 0.90 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.33 | 7.33 | 7.33 | 0.30 | 1.30 | ± 14.0 % | | 3700 | 37.7 | 3.12 | 7.03 | 7.03 | 7.03 | 0.30 | 1.30 | ± 14.0 % | | 5250 | 35.9 | 4.71 | 5.66 | 5.66 | 5.66 | 0.40 | 1.80 | ± 14.0 % | | 5500 | 35.6 | 4.96 | 5,19 | 5.19 | 5.19 | 0.40 | 1.80 | ± 14.0 % | | 5600 | 35.5 | 5.07 | 5.08 | 5.08 | 5.08 | 0.40 | 1.80 | ± 14.0 % | | 5750 | 35.4 | 5.22 | 5.11 | 5.11 | 5.11 | 0.40 | 1.80 | ± 14.0 % | [©] Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), alse it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 3 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F. At frequencies up to 6 GHz, the validity of tissue parameters (c and e) can be relaxed to ± 10% if fluid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ApharDaph are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7485_Apr22 Page 5 of 24 EX3DV4- \$N:7485 April 25, 2022 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7485 Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^c | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^c
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 61.9 | 0.80 | 13.77 | 13.77 | 13.77 | 0.00 | 1.00 | ± 13.3 % | | 300 | 58.2 | 0.92 | 12.30 | 12.30 | 12.30 | 0.02 | 1.35 | ± 13.3 % | | 450 | 56.7 | 0.94 | 12.11 | 12.11 | 12.11 | 0.11 | 1.20 | ± 13.3 % | | 750 | 55.5 | 0.96 | 10.83 | 10.83 | 10.83 | 0.41 | 0.90 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.68 | 10.68 | 10.68 | 0.35 | 0.80 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.61 | 10.61 | 10.61 | 0.39 | 0.80 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 9.32 | 9.32 | 9.32 | 0.39 | 0.80 | ± 12.0 % | | 1810 | 53.3 | 1,52 | 8.68 | 8.68 | 8.68 | 0.30 | 0.86 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.55 | 8.55 | 8.55 | 0.34 | 0.86 | ± 12.0 % | | 2100 | 53.2 | 1.62 | 8.47 | 8.47 | 8.47 | 0.26 | 0.86 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 8.42 | 8.42 | 8.42 | 0.29 | 0.90 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 8.20 | 8.20 | 8.20 | 0.30 | 0.90 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 8.12 | 8.12 | 8.12 | 0.31 | 0.90 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 7.07 | 7.07 | 7.07 | 0.35 | 1.35 | ± 14.0 % | | 3700 | 51.0 | 3.55 | 6.95 | 6.95 | 6.95 | 0.35 | 1.35 | ± 14.0 % | | 5250 | 48.9 | 5.36 | 4.89 | 4.89 | 4.89 | 0.50 | 1.90 | ± 14.0 % | | 5500 | 48.6 | 5.65 | 4.51 | 4.51 | 4.51 | 0.50 | 1.90 | ± 14.0 % | | 5600 | 48.5 | 5.77 | 4.40 | 4.40 | 4.40 | 0.50 | 1.90 | ± 14.0 % | | 5750 | 48.3 | 5.94 | 4.42 | 4.42 | 4.42 | 0.50 | 1.90 | ± 14.0 % | ^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. At frequencies up to 6 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if flightd compensation formula is applied to measured SAR values. The uncontainty is the RSS of the ConvF uncertainty for Indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7485_Apr22 Page 6 of 24 EX3DV4- SN:7485 April 25, 2022 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7485_Apr22 Page 7 of 24 EX3DV4- SN:7485 April 25, 2022 **Conversion Factor Assessment** f = 835 MHz, WGLS R9 (H_convF) f = 1900 MHz, WGLS R22 (H_convF) SAR (WAS)W arrelytical THE PERSON Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz 1.0 0.8 0.6 0.4 0.0 -0.2 -0.4-0.6 -0.8 -1.045 135 +/deg/180 225 270 30 315 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EX3-7485_Apr22 Page 10 of 24 EX3DV4- SN:7485 April 25, 2022 | IID | Rev | Communication System Name | Group | PAR
(dB) | Unc ^E
(k=2) | |-------|--------|---|-----------|-------------|---------------------------| | 0 | - | CW | CW | 0.00 | ±4.79 | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ± 9.6 % | | 10011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ±9.6% | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ± 9.6 % | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ± 9.6 % | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ± 9.6 % | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1,16 | ± 9.6 % | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ±9.69 | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ± 9.6 % | | 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 9 | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ± 9.6 9 | | 10037 |
CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 9 | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ±9.69 | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ± 9.6 9 | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, Pl/4-DQPSK, Halfrate) | AMPS | 7.78 | ± 9.6 9 | | 10044 | CAA | IS-91/EIA/TIA-553 FDO (FDMA, FM) | AMPS | 0.00 | ± 9.6 9 | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ±9.69 | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ± 9.6 9 | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ± 9.6 % | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ± 9.6 % | | 10059 | CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ± 9.6 9 | | 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ± 9.6 % | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ±9.69 | | 10062 | CAD | IEEE 802,11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ±9.69 | | 10063 | CAD | IEEE 802.11ah WIFI 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 9 | | 10064 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ± 9.6 % | | 10065 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10066 | CAD | IEEE 802.11e/h WIFI 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 3 | | 10067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ±9.69 | | 10068 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ±9.69 | | 10069 | CAD | IEEE 802.11a/h WiFl 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 9 | | 10071 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 9 | | 10072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 9 | | 10073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 9 | | 10074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 9 | | 10075 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ± 9.6 % | | 10076 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 9 | | 10077 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ± 9.6 9 | | 10081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ± 9.6 % | | 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | | | 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | - | ±9.69 | | 10097 | CAB | UMTS-FDD (HSDPA) | WCDMA | 6.56 | ±9.69 | | 10098 | CAB | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | Marketon a recognition to | | 14600 | Arres. | EDGE-FDD (TDMA, 8PSK, TN 0-4) | VICOMA | 3.80 | ± 9.6 % | Certificate No: EX3-7485_Apr22 Page 11 of 24 EX3DV4- SN:7485 April 25, 2022 | 10100 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 % | |-------|-----|--|---------|-------|---------| | 10101 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 9 | | 10102 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 84-QAM) | LTE-FDD | 6.60 | ± 9.6 9 | | 10103 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 9 | | 10104 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10105 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TOD | 10,01 | ± 9.6 9 | | 10108 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ±9.69 | | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.69 | | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 10111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 9 | | 10112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ± 9.6 9 | | 10113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 9 | | 10114 | CAD | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ±9.63 | | 10115 | CAD | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ± 9.6 % | | 10116 | CAD | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 9 | | 10117 | CAD | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 % | | 10118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 9 | | 10119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ± 9.6 5 | | 10140 | CAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 ° | | 10141 | CAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ± 9.6 ° | | 10142 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 1 | | 10143 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 % | | 10144 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 ° | | 10145 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 5 | | 10146 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ±9.6 | | 10147 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 | | 10149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 ° | | 10150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 | | 10151 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9.28 | ± 9.6 % | | 10152 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10153 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ± 9.6 5 | | 10154 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 ° | | 10155 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 ° | | 10156 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ±9.6 ° | | 10157 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 9 | | 10158 | CAG | LTE-FDO (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 9 | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ±9.6 9 | | 10160 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ± 9.6 9 | | 10161 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.69 | | 10162 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDO | 6.58 | ± 9.6 % | | 10166 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ± 9.6 9 | | 10167 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 9 | | 10168 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ± 9.6 9 | | 10169 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ±9.69 | | 10170 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.69 | | 10171 | AAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ±9.69 | | 10172 | CAG | LTE-TOD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ±9.69 | | 10173 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 18-QAM) | LTE-TDD | 9.48 | ± 9.6 9 | | 10174 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 9 | | 10175 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 9 | | 10176 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 9 | | 10177 | CAI | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 9 | | 10178 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 9 | | 10179 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 9 | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10181 | CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | Certificate No: EX3-7485_Apr22 Page 12 of 24 | 10182 | CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | |-------|---|---|---------|-------|---------| | 10183 | AAD | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) |
LTE-FDD | 6.50 | ± 9.6 % | | 10184 | CAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10185 | CAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ± 9.6 % | | 10186 | AAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10187 | CAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 % | | 10188 | CAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 % | | 10189 | AAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 % | | 10193 | CAD | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ± 9.6 9 | | 10194 | CAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ± 9.6 % | | 10195 | CAD | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WLAN | 8.21 | ± 9.6 % | | 10196 | CAD | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 10197 | CAD | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10198 | CAD | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10219 | CAD | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ± 9.6 % | | 10220 | CAD | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | | 10221 | CAD | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAD | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ± 9.6 % | | 10225 | CAB | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ± 9.6 % | | 10226 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TOD | 9.49 | ± 9.6 % | | 10227 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TOD | 10.26 | ± 9.6 % | | 10228 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TOD | 9.22 | ± 9.6 9 | | 10229 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 9 | | 10230 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 9 | | 10231 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ± 9.6 9 | | 10232 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 9 | | 10233 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TOD | 10.25 | ± 9.6 % | | 10234 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10235 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10236 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10237 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10238 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10239 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10240 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ± 9.6 % | | 10242 | NA AND ADDRESS OF THE PARTY | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ± 9.6 % | | 10243 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ± 9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 18-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10245 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TOD | 10.06 | ± 9.6 % | | 10246 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ± 9.6 % | | | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDO | 9.81 | ± 9.6 % | | 10251 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ± 9.6 % | | 10252 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TOD | 9.90 | ± 9.6 % | | 10254 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ± 9.6 % | | 10255 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ± 9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ± 9.6 % | | 10257 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ± 9.6 % | | 10258 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ± 9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ± 9.6 % | | 10260 | CAD | LTE-TOD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | Certificate No: EX3-7485_Apr22 Page 13 of 24 | 10261 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LITE TOD | 1004 | 1.000 | |--|-----|--
--|--------------------------|---------------| | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.24 | ±9.6 % | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | The state of s | | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz. QPSK) | LTE-TOD | 10.16 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.23 | ± 9.6 9 | | 10266 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10267 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 10.07 | ± 9.6 9 | | 10268 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.30 | ± 9.6 % | | 10269 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10270 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 10.13 | ± 9.6 % | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Re(8,10) | LTE-TDD | 9.58 | ± 9.6 % | | 10275 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 4.87 | ± 9.6 % | | 10277 | CAA | PHS (QPSK) | WCDMA | 3.96 | ± 9.6 % | | 10278 | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ±9.6% | | 10279 | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 11.81 | ± 9.6 % | | 10279 | AAB | The state of s | PHS | 12.18 | ± 9.6 % | | 10290 | - | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10291 | AAB | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ± 9.6 % | | | | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ± 9.6 % | | 10293 | AAB | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ± 9.6 % | | 10295 | AAB | CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10297 | AAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ± 9.6 % | | 10298 | AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 % | | 10299 | AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDO | 6.39 | ± 9.6 % | | 10300 | AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 % | | 10301 | AAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC) | WiMAX | 12.03 | ± 9.6 % | | 10302 | AAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) | WiMAX | 12.57 | ± 9.6 % | | 10303 | AAA | IEEE 802.16e WIMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 12.52 | ± 9.6 % | | 10304 | AAA | IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) | WiMAX | 11.86 | ± 9.6 % | | | AAA | IEEE 802.16e WIMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 15.24 | ±9.6 % | | - | AAA | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) | WiMAX | 14.67 | ± 9.6 % | | 10307 | AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, PUSC) | WIMAX | 14.49 | ± 9.6 % | | 10308 | AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) | WiMAX | 14.46 | ± 9.6 % | | 10309 | AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) | WiMAX | 14.58 | ± 9.6 % | | 10310 | AAA | IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 | WiMAX | 14.57 | ± 9.6 % | | CONTRACTOR NAMED IN | AAD | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-FDD | 6.06 | ± 9.6 % | | 10313 | AAA | IDEN 1:3 | iDEN | 10.51 | ± 9.6 % | | 10314 | AAA | IDEN 1:6 | IDEN | 13.48 | ± 9.6 % | | 10315 | AAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 98pc dc) | WLAN | 1.71 | ± 9.6 % | | 10316 | AAB | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10317 | AAD | IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) | WLAN | 8.36 | ± 9.6 % | | 10352 | AAA | Pulse Waveform (200Hz, 10%) | Generic | 10.00 | ± 9.6 % | | 10353 | AAA | Pulse Waveform (200Hz, 20%) | Generic | 6.99 | ± 9.6 % | | 10354 | AAA | Pulse Waveform (200Hz, 40%) | Generic | 3.98 | ± 9.6 % | | 10355 | AAA | Pulse Waveform (200Hz, 60%) | Generic | 2.22 | ± 9.6 % | | 10356 | AAA | Pulse Waveform (200Hz, 80%) | Generic | 0.97 | ± 9.6 % | | 10387 | AAA | QPSK Waveform, 1 MHz | Generic | 5.10 | ± 9.6 % | | 10388 | AAA | QPSK Waveform, 10 MHz | Generic | 5.22 | ± 9.6 % | | 10396 | AAA | 64-QAM Waveform, 100 kHz | Generic | 6.27 | ± 9.6 % | | 10399 | AAA | 64-QAM Waveform, 40 MHz | Generic | 6.27 | ± 9.6 % | | 10400 | AAE | IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10401 | AAE | IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc) | WLAN | 8.60 | ± 9.6 % | | | AAE | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) | WLAN | The second second second | - Cristment's | | - | AAB | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 8.53 | ± 9.6 % | | | AAB | CDMA2000 (1xEV-DO, Rev. A) | CDMA2000
CDMA2000 | 3.76 | ± 9.6 % | | water and the same of | | | 1 3 3 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 | 3.77 | ± 9.6 % | | 10404 | AAB | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ± 9.6 % | Certificate No: EX3-7485_Apr22 Page 14 of 24 EX3DV4-- SN:7485 April 25, 2022 | 10414 | AAA | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ± 9.6 | |--|----------
--|----------|-------|---------| | 10415 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ± 9.6 | | 10416 | AAA | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 | | 10417 | AAC | IEEE 802.11a/h WiFl 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 | | 10418 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ± 9.6 | | 10419 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 | | 10422 | AAC | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.6 | | 10423 | AAC | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ± 9.6 | | 10424 | AAC | IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 | | 10425 | AAC | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 | | 10426 | AAC | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ± 9.6 | | 10427 | AAC | IEEE 802,11n (HT Greenfield, 150 Mbps, 64-QAM) | WLAN | 8.41 | ± 9.6 | | 10430 | AAD | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ± 9.6 | | 10431 | AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ± 9.6 | | 10432 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 | | 10433 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1) | LTE-FDD | - | - | | 10434 | | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.34 | ± 9.6 | | 10435 | | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 8.60 | ± 9.6 | | 10447 | AAD | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | | 7.82 | ± 9.6 | | 10448 | AAD | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) | LTE-FDD | 7.56 | ± 9.6 | | 10449 | AAC | LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) | LTE-FDD | 7.53 | ± 9.6 | | 10450 | AAC | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-FDD | 7.51 | ± 9.6 | | 10451 | AAA | W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | LTE-FDD | 7.48 | ± 9.6 | | 10453 | AAD | Validation (Square, 10ms, 1ms) | WCDMA | 7.59 | ± 9.8 | | 10456 | AAC | IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | Test | 10.00 | ± 9.6 | | 10457 | AAA | UMTS-FDD (DC-HSDPA) | WLAN | 8.63 | ± 9.6 | | 10457 | AAA | A CONTRACTOR OF THE | WCDMA | 6.62 | ± 9.6 | | 10459 | | CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDMA2000 | 6.55 | ± 9.6 | | 10460 | AAA | CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | CDMA2000 | 8.25 | ± 9.6 | | 7.4.1.4.4 | 11.4 2.5 | UMTS-FDD (WCDMA, AMR) | WCDMA | 2.39 | ± 9.6 | | 10461 | AAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 | | 10462 | AAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.30 | ± 9.6 | | 10463 | AAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 | | 10464 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 | | 10465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.32 | ± 9.6 | | 10466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 | | 10467 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 | | | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 | | | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 | | 10471 | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 | | Control Control | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 9 | | 10473 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 | | 10474 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 | | State of the later | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.57 | ± 9.6 | | 10477 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.32 | ± 9.6 | | 10478 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 | | | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 5 | | 10480 | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sulb) | LTE-TDD | 8.18 | ± 9.6 ° | | - | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 84-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 9 | | 10482 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.71 | ± 9.6 9 | | 0483 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TDD | 8.39 | ± 9.6 9 | | 10484 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.47 | ± 9.6 9 | | 0485 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TOD | 7.59 | ± 9.6 9 | | 10486 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.38 | ± 9.6 9 | | 10487 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.60 | ±9.69 | | 0488 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TOD | 7.70 | ± 9.6 9 | Certificate No: EX3-7485_Apr22 Page 15 of 24 EX3DV4- SN:7485 April 25, 2022 | 10489 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ± 9.6 9 | |--------------------|-----|---|--|------|---------| | 10490 | AAF | LTE-TOD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | B.54 | ± 9.6 % | | 10491 | AAE | LTE-TOD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10492 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.41 | ± 9.6 % | | 10493 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 9 | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.37 | ± 9.6 % | | 10496 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TOD | 8.54 | ±9.69 | | 10497 | AAB | LTE-TDD
(SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 9 | | 10498 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ± 9.6 9 | | 10499 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ± 9.6 9 | | 10500 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ± 9.6 9 | | 10501 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.44 | ± 9.6 9 | | 10502 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.52 | ± 9.6 % | | 10503 | AAF | LTE-TOD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.72 | ± 9.6 % | | 10504 | AAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.31 | ± 9.6 % | | 10505 | AAF | LTE-TOD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10506 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.36 | ± 9.6 % | | 10508 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10509 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TOD | 7.99 | | | 10510 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | - | ± 9.6 % | | 10511 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | The second secon | 8.49 | ± 9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 8.51 | ± 9.6 9 | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10514 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TOO | 8.42 | ± 9.6 % | | 10515 | AAA | IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | LTE-TOD | 8.45 | ± 9.6 % | | 10516 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10517 | AAA | IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 10518 | AAC | IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10519 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10520 | AAC | IEEE 802.11s/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10521 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 16 Mbps, 99pc dc) | WLAN | 8.12 | ± 9.6 % | | 10522 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 7.97 | ±9.6 % | | 10523 | AAC | IEEE 802 11a/h WIFI 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10524 | AAC | | WLAN | 8.08 | ± 9.6 % | | 10524 | AAC | IEEE 802.11a/h WIFI 5 GHz (OFDM, 54 Mbps, 99pc dc)
IEEE 802.11ac WIFI (20MHz, MCS0, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10526 | AAC | IEEE 802.11ac WIFI (20MHz, MCS1, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10527 | AAC | IEEE 802.11ac WIFI (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10528 | AAC | | WLAN | 8.21 | ± 9.6 % | | 10529 | AAC | IEEE 802.11ac WIFI (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10531 | - | IEEE 802.11ac WIFI (20MHz, MCS4, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | The second second | AAC | IEEE 802.11sc WiFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10532 | AAC | IEEE 802.11ac WIFI (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10533 | AAC | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) | WLAN | 8.38 | ± 9.6 % | | THE REAL PROPERTY. | | IEEE 802.11ac WIFI (40MHz, MCS0, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10535 | AAC | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | _ | AAC | IEEE 802.11ac WIFI (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10537 | AAC | IEEE 802.11ac WIFI (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ± 9.6 % | | 10538 | AAC | IEEE 802.11ac WiFI (40MHz, MCS4, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10540 | AAC | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10541 | AAC | IEEE 802.11ac WIFI (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | - | AAC | IEEE 802.11ac WIFI (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 98pc dc) | WLAN | 8.65 | ± 9.6 % | | 10544 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc) | WLAN | 8,47 | ± 9.6 % | | 10545 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10546 | AAC | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ±9.6 % | Certificate No: EX3-7485_Apr22 Page 16 of 24 | 10547 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ± 9.6 % | |-------|-----|---|----------------|------------|-------------| | 10548 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ±9.6 % | | 10550 | AAC | IEEE 802.11sc WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10551 | AAC | IEEE 802.11sc WIFI (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAC | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10553 | AAC | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAD | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAD | IEEE 802.11ac WIFI (160MHz, MCS1, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10556 | AAD | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAD | IEEE 802.11ac WIFi (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAD | IEEE 802.11sc WIFI (160MHz, MCS4, 99pc dc) | WLAN | 8.61 | ± 9.6 % | | 10560 | AAD | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ± 9.6 % | | 10561 | AAD | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ± 9.6 % | | 10562 | AAD | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc do) | WLAN | 8.69 | ± 9.6 % | | 10563 | AAD | IEEE 802,11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10566 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ± 9.6 % | | 10567 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ± 9.6 9 | | 10569 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8.30 | ± 9.6 9 | | 10571 | AAA | IEEE 802.11b WIFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10572 | AAA | IEEE 802.11b WIFI 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10573 | AAA | IEEE 802.11b WIFI 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 9 | | 10574 | AAA | IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 9 | | 10575 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10576 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10577 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10578 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc do) | WLAN | 8.49 | ± 9.6 9 | | 10579 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10580 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 9 | | 10581 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10582 | AAA | IEEE 802.11g WIFI 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ±9.63 | | 10583 | AAC | IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10584 | AAC | IEEE 802.11a/h WIFI 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ±9.6 % | | 10585 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10586 | AAC | IEEE 802.11a/h WIFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 9 | | 10587 | AAC | IEEE 802.11a/h WIFi 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10588 | AAC | IEEE 802.11a/h WIFi 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10589 | AAC | IEEE 802.11a/h WIFI 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ± 9.6 % | | 10690 | AAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ±9.69 | | 10591 | AAC | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.63 | ±9.69 | | 10592 | AAC | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 9 | | 10593 | AAC | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.64 | ±9.69 | | 10594 | AAC | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 9 | | 10595 | AAC | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc) | WLAN | 8.74 | ±9.69 | | 10596 | AAC | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.71 | ±9.69 | | 10597 | AAC | IEEE 802.11n (HT Mixed, 20MHz, MCS8, 90pc dc) | WLAN | 8.72 | ±9.69 | | 10598 | AAC | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ±9.69 | | 10599 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ±9.69 | | 10600 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 8.88 | ±9.69 | | 10601 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.82 | ± 9.6 9 | | 10602 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ± 9.6 9 | | 10603 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ± 9.6 9 | | | | | 7.7. No. 21. 7 | 26.000,000 | 1 00 W.M. A | Certificate No: EX3-7485_Apr22 Page 17 of 24 | EX3DV4 SN:7485 | April 25, 2022 | |----------------|----------------| |----------------|----------------| | 10606 | AAC | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | |----------------|------------------------------
--|-----------|-------|---------| | 10607 | AAC | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ±9.6% | | 10608 | AAC | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10609 | AAC | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ± 9.6 % | | 10610 | AAC | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ±9.6% | | 10611 | AAC | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAC | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10613 | AAC | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10614 | AAC | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10615 | AAC | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ±9.6% | | 10616 | AAC | IEEE 802.11sc WiFi (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAC | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAC | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ± 9.6 % | | 10619 | AAC | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ±9.6 % | | 10620 | AAC | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10621 | AAC | IEEE 802.11ac WIFI (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10622 | AAC | IEEE 802.11ac WIFI (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ±9.6% | | 10623 | AAC | IEEE 802.11ac WiFi (40MHz, MGS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10624 | AAC | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ±9.6 % | | 10625 | AAC | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10626 | AAC | IEEE 802.11ac WiFi (80MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10627 | AAC | IEEE 802.11ac WiFi (80MHz, MCS1, 90pc dc) | WLAN | 8,88 | ± 9.6 % | | 10628 | AAC | IEEE 802.11ac WIFI (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10629 | AAC | IEEE 802.11ac WiFi (80MHz, MCS3, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10630 | AAC | IEEE 802.11ac WiFi (80MHz, MCS4, 90pc dc) | WLAN | 8.72 | ±9.6 % | | 10631 | AAC | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | ±9.6% | | 10632 | AAC | IEEE 802.11ac WIFI (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10633 | AAC | IEEE 802.11ac WIFI (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ±9.6 % | | 10634 | AAC | IEEE 802.11ac WIFI (80MHz, MCS8, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10635
10636 | AAC | IEEE 802.11ac WIFI (80MHz, MCS9, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10637 | TO SUPPLICATION AND ADDRESS. | IEEE 802.11ac WIFI (160MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10637 | AAD | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc)
IEEE 802.11ac WiFi (160MHz, MCS2, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10639 | AAD | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10640 | - | Salar and the Control of | WLAN | 8.85 | ± 9.6 % | | 10641 | AAD | IEEE 802.11ac WIFI (160MHz, MCS4, 90pc dc) IEEE 802.11ac WIFI (160MHz, MCS5, 90pc dc) | WLAN | 8.98 | ±9.6% | | 10642 | AAD | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10643 | AAD | IEEE 802.11ac WiFI (160MHz, MCS7, 90pc dc) | WLAN | 9.06 | ± 9.6 % | | 10644 | AAD | IEEE 802.11ac WIFI (160MHz, MCS7, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10645 | AAD | IEEE 802.11ac WiFI (160MHz, MCS9, 90pc dc) | WLAN | 9.05 | ± 9.6 % | | 10645 | AAG | LTE-TOD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | WLAN | 9.11 | ± 9.6 % | | 10647 | AAF | LTE-TOD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | LTE-TOD | 11.96 | ± 9.6 % | | 10648 | AAA | CDMA2000 (1x Advanced) | LTE-TDD | 11.96 | ±9.6% | | 10652 | AAE | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) | CDMA2000 | 3.45 | ± 9.6 % | | 10653 | AAE | LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | ± 9.6 % | | 10654 | AAD | LTE-TOD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.42 | ± 9.6 % | | 10655 | AAE | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.96 | ± 9.6 % | | 10658 | AAA | Pulse Waveform (200Hz, 10%) | | 7.21 | ± 9.6 % | | 10659 | AAA | Pulse Waveform (200Hz, 20%) | Test | 10.00 | ± 9.6 % | | 10660 | AAA | Pulse Waveform (200Hz, 40%) | Test | 8.99 | ± 9.6 % | | 10661 | AAA | Pulse Waveform (200Hz, 60%) | | 3.98 | ± 9.6 % | | 10862 | AAA | Pulse Waveform (200Hz, 80%) | Test | 2.22 | ±9.6% | | 10670 | AAA | Bluetooth Low Energy | Bluetooth | 0.97 | ±9.6% | | 10671 | AAC | IEEE 802.11ax (20MHz, MCS0, 90pc do) | WLAN | 9.09 | ±9.6% | | | PAPER. | ment com i ron (com it, mood, pope de) | WEAN | 9.09 | ± 9.6 % | Certificate No: EX3-7485_Apr22 Page 18 of 24 | EX3DV4- SN:7485 | April 25, 2022 | |-----------------|----------------| | 10673 | AAC | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 | |-------|---------------------|---------------------------------------|------|------|---------| | 10674 | AAC | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 ° | | 10675 | AAC | IEEE 802.11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | ±9.65 | | 10676 | AAC | IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 | | 10677 | AAC | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | WLAN | 8.73 | ±9.65 | | 10678 | AAC | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ± 9.6 ° | | 10679 | AAC | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ± 9.6 | | 10680 | AAC | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ±9.6 | | 10681 | AAC | IEEE 802.118x (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ±9.6 | | 10682 | AAC | IEEE 802.118x (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ±9.6 | | 10683 | AAC | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 | | 10684 | AAC | IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | ± 9.6 | | 10685 | AAC | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ±9.6 | | 10686 | AAC | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 | | 10687 | AAC | IEEE 802.11ax (20MHz, MCS4, 99pc dc) | WLAN | 8.45 | ± 9.6 | | 10688 | AAC | IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN | 8.29 | ± 9.6 | | 10689 | AAC | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ± 9.6 | | 10690 | AAC | IEEE 802.11ax (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | _ | | 10690 | AAC | IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.25 | ± 9.6 | | 10692 | AAC | IEEE 802.11ax (20MHz, MCS9, 99pc dc) | | - | - | | - | STATE OF THE PARTY. | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.29 | ±9.6 | | 10693 | AAC | | WLAN | 8.25 | ±9.6 | | 10694 | AAC | IEEE 802.11ax (20MHz, MCS11, 99pc dc) | WLAN | 8.57 | ± 9.6 | | 10695 | AAC | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 | | 10696 | AAC | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ± 9.6 | | 10697 | AAC | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ± 9,6 | | 10698 | AAC | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ± 9.6 | | 10699 | AAC | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | ± 9.6 | | 10700 | AAC | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ± 9.6 | | 10701 | AAC | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ± 9.6 | | 10702 | AAC | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ± 9.6 | | 10703 | AAC | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 | | 10704 | AAC | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ± 9.6 | | 10705 | AAC | IEEE 802.11ax (40MHz, MCS10, 90pc do) | WLAN | 8.69 | ± 9.6 | | 10706 | AAC | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ± 9.6 | | 10707 | AAC | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ± 9.6 | | 10708 | AAC | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 | | 10709 | AAC | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ± 9.6 | | 10710 | AAC | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ± 9.6 | | 10711 | AAC | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 | | 10712 | AAC | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ± 9.6 | | 10713 | AAC | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | ± 9.6 | | 10714 | AAC | IEEE 802.11ax
(40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ± 9.6 | | 10715 | AAC | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ± 9.6 | | 10716 | AAC | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ± 9.6 | | 10717 | AAC | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 | | 10718 | AAC | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 | | 10719 | AAC | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 | | 10720 | AAC | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 | | 10721 | AAC | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 | | 10722 | AAC | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 | | 10723 | AAC | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 | | 10724 | AAC | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 | | 10725 | AAC | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 | | 10726 | AAC | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ± 9.6 | | 10727 | AAC | IEEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | 8.66 | ± 9.6 | | 10728 | AAC | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ± 9.6 | Certificate No: EX3-7485_Apr22 Page 19 of 24 | 10729 | AAC | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ± 9.6 % | |-------|-----|---|---------------|------|--------------------------| | 10730 | AAC | IEEE 802.11ax (80MHz, MCS11, 90pc dc) | WLAN | 8.67 | ± 9.6 9 | | 10731 | AAC | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10732 | AAC | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.46 | ± 9.6 9 | | 10733 | AAC | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8.40 | ± 9.6 9 | | 10734 | AAC | IEEE 802.11ax (80MHz, MCS3, 99pc dc) | WLAN | 8.25 | ± 9.6 9 | | 10735 | AAC | IEEE 802.11ax (80MHz, MCS4, 99pc dc) | WLAN | 8.33 | ± 9.6 9 | | 10736 | AAC | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 9 | | 10737 | AAC | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 9 | | 10738 | AAC | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 9 | | 10739 | AAC | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 9 | | 10740 | AAC | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10741 | AAC | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8,40 | ± 9.6 % | | 10742 | AAC | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 10743 | AAC | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10744 | AAC | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ± 9.6 % | | 10745 | AAC | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | - | The second second second | | 10746 | AAC | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 10747 | AAC | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 10748 | AAC | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | 1 100 2000 | 9.04 | ± 9.6 9 | | 10749 | AAC | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.93 | ± 9.6 9 | | 10750 | AAC | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.90 | ± 9.6 9 | | 10751 | AAC | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10752 | AAC | IEEE 802.11ax (160MHz, MCS9, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10753 | AAC | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10754 | AAC | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 9.00 | ± 9.6 % | | 10755 | AAC | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.94 | ± 9.6 % | | 10756 | AAC | IEEE 802.11ax (160MHz, MCS1, 99pc dc) | WLAN | 8.64 | ± 9.6 % | | 10757 | AAC | IEEE 802,11ax (160MHz, MCS1, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10758 | AAC | IEEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10759 | AAC | | WLAN | 8.69 | ± 9.6 % | | 10760 | AAC | IEEE 802.11ax (160MHz, MCS4, 99pc dc) IEEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10761 | AAC | IEEE 802.11ax (160MHz, MCS6, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10762 | AAC | IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.58 | ± 9.6 % | | 10763 | AAC | | WLAN | 8.49 | ± 9.6 % | | 10764 | | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.53 | ± 9.6 % | | 10765 | AAC | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | 10766 | AAC | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 % | | | | IEEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | 8.51 | ± 9.6 % | | 10767 | AAE | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ± 9.6 % | | 10768 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10769 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10770 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10771 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10772 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ± 9.6 % | | 10773 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ± 9.6 % | | 10774 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ± 9.6 % | | 10775 | AAD | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | 10776 | - | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10777 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10778 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10779 | AAC | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10780 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 % | | 10781 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ±9.6% | | 10782 | AAD | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10783 | AAE | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 % | | 10784 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ± 9.6 % | Certificate No: EX3-7485_Apr22 Page 20 of 24 | 10785 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | |--|-----|---|---------------|------|----------| | 10786 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10787 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.44 | ± 9.6 % | | 10788 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10789 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10790 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10791 | AAE | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.83 | ± 9.6 % | | 10792 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ± 9.6 % | | 10793 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.95 | ± 9.6 % | | 10794 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10795 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ± 9.6 % | | 10796 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 % | | 10797 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 % | | 10798 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10799 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10801 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 % | | 10802 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ± 9.6 % | | 10803 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30
kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10805 | AAD | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10806 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10809 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10810 | AAD | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10812 | AAD | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10817 | AAE | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10818 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10819 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10820 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10821 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10822 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10823 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10824 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 % | | 10825 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10827 | AAD | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10828 | AAD | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10829 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 % | | 10830 | AAD | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ± 9.6 % | | 10831 | AAD | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAD | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ± 9.6 % | | 10833 | AAD | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAD | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | 10835 | AAD | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10836 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 % | | 10837 | AAD | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10839 | AAD | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10840 | AAD | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 10841 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ± 9.6 % | | 10843 | AAD | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 % | | 10844 | AAD | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10846 | AAD | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10854 | AAD | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10855 | AAD | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10856 | AAD | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10857 | AAD | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10858 | AAD | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10859 | AAD | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | The state of s | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | SOUTH THE TOP | 0.04 | 1 3/0 70 | Certificate No: EX3-7485_Apr22 Page 21 of 24 | 10861 | AAD | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | 1 ± 9.6 % | |--------------------------------------|-----|--|--|------|-----------| | 10863 | AAD | 5G NR (CP-OFDM, 108% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8,41 | ± 9.6 % | | 10864 | AAD | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 % | | 10865 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10866 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5,89 | ± 9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10872 | AAD | 5G NR (DFT-8-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TOD | 6.52 | ± 9.6 % | | 10873 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 9 | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.39 | ± 9.6 9 | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | - | | | 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 5.96 | ± 9.6 % | | 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10885 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | The second secon | 6.53 | ± 9.6 % | | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TOD | 6.61 | ± 9.6 % | | 10887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TOD | 6.65 | ±9.6 % | | 10888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.35 | ± 9.6 % | | 10890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ± 9.6 % | | 10891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.6 % | | 10892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 84QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ± 9.6 % | | 10897 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10898 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 10899 | AAB | 5G NR (DFT-e-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10900 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 10901 | AAB | 5G NR (DFT-6-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10902 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10903 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10904 | AAB | | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10905 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | THE STREET, STREET, | AAC | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10907 | AAB |
5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDO | 5.78 | ± 9.6 % | | 10909 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | Name and Address of the Owner, where | 4.4 | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10910 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | | AAB | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10912 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10913 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ± 9.6 % | | 10915 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ±9.6 % | | 10916 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAB | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10918 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10921 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10922 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | Certificate No: EX3-7485_Apr22 Page 22 of 24 EX3DV4-SN:7485 April 25, 2022 | 10923 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | |-------------------------|-----|---|--|---|-----------------| | 10924 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10925 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 9 | | 10926 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 9 | | 10927 | AAB | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10928 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10930 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10931 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10932 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10934 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10935 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ±9.6 % | | 10936 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 % | | 10940 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 % | | 10941 | AAC | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10942 | AAC | SG NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ±9.6 % | | 10943 | AAD | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.95 | ± 9.6 % | | 10944 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ± 9.6 % | | 10945 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10946 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10947 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10948 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10949 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 % | | 10950 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 % | | 10951 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 % | | 10952 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ± 9.6 % | | 10953 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ± 9.6 % | | 10954 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | T. Philippenson | | 10955 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10956 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | - | | 10957 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 100000000000000000000000000000000000000 | ± 9.6 % | | 10958 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ± 9.6 % | | 10959 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ± 9.6 % | | 10960 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10961 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ±9.6 % | | 10962 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ± 9.6 % | | 10963 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 84-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ± 9.6 % | | 10964 | AAC | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10965 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ± 9.6 % | | 10966 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | | AAB | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10968 | AAB | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | 10972 | AAB | 5G NR (CP-OFDM, 1 R8, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | - | 1000 | | 10973 | AAB | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | The state of s | 11.59 | ±9.6% | | 10974 | AAB | 5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz) | 5G NR FR1 TDD
5G NR FR1 TDD | 9.06 | ± 9.6 % | | the same of the same of | AAA | ULLA BDR | ULLA | 10.28 | ±9.6% | | 10979 | AAA | ULLA HDR4 | ULLA | 2.23 | ±9.6% | | - montenesses | AAA | ULLA HDR8 | | 7.02 | ±9.6% | | 10981 | AAA | ULLA HDRp4 | ULLA | 8.82 | ± 9.6 % | | 10982 | AAA | ULLA HDR08 | ULLA | 1.50 | ± 9.6 % | | - | AAA | 5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.31 | ± 9.6 % | | 10983 | | | | | | Certificate No: EX3-7485_Apr22 Page 23 of 24 EX3DV4- SN:7485 April 25, 2022 | AAA | 5G NR DI /CR-DEDM TM 2.1 40 MHz #4 CAM 20 HJz | 1 20 100 000 1 000 | 1 | 1 | |--------|--|--
--|---| | 7.7.11 | | 5G NR FR1 TDO | 9.54 | ± 9.6 % | | AAA | 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.50 | ± 9.6 % | | AAA | 5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | - | ± 9.6 % | | AAA | 5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz) | | 12000 | ± 9.6 % | | AAA | | | | ± 9.6 % | | AAA | 5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.52 | ± 9.6 % | | | AAA | AAA 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz) AAA 5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz) | AAA 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD AAA 5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD | AAA 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.50 AAA 5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.53 AAA 5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.38 AAA 5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.38 AAA 5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz) 5G NR FR1 TDD 9.33 | ⁶ Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-7485_Apr22 Page 24 of 24 FCC ID: AZ489FT4973 / IC: 109U-89FT4973 Report ID: P35850-EME-00003 # Appendix C # **Dipole Calibration Certificates** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Motorola Solutions MY Certificate No: D450V3-1077 Jul21 | Object | D450V3 - SN:107 | 7 | | |---|---|--|---| | Calibration procedure(s) | QA CAL-15,v9
Calibration Proce | dure for SAR Validation Sources | below 700 MHz | | Calibration date: | July 09, 2021 | | | | | | onal standards, which realize the physical uni
robability are given on the following pages an | | | All calibrations have been conducte | ed in the closed laborator | y facility: environment temperature (22 ± 3)°C | and humidity < 70% | | Ni calibrations have been conduct | eu in ine croses iacoraco | y lacinty, environment temperature (22 ± 3) t | 2 and hamany < 20%. | | Calibration Equipment used (M&TE | E critical for calibration) | | | | | | | | | Primary Standards | lin# | Cal Data (Carlifficate No.) | School ded Collection | | | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | ower meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | ower meter NRP
ower sensor NRP-Z91 | SN: 104778
SN: 103244 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291) | Apr-22
Apr-22 | | ower meter NRP
lower sensor NRP-Z91
lower sensor NRP-Z91 | SN: 104778
SN: 103244
SN: 103245 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292) | Apr-22
Apr-22
Apr-22 | | ower meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 104778
SN: 103244 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343) | Apr-22
Apr-22
Apr-22
Apr-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x) | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343) | Apr-22
Apr-22
Apr-22
Apr-22 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3877_Dec20) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3877_Dec20)
28-Jun-21 (No. DAE4-664_Jun21) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3877_Dec20)
28-Jun-21 (No. DAE4-664_Jun21)
Check Date (in house) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A | SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3877_Dec20)
28-Jun-21 (No. DAE4-664_Jun21)
Check Date (in house)
06-Apr-16 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A | SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 654
ID#
SN: GB41293874
SN: MY41498087 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21 (No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3877_Dec20)
28-Jun-21 (No. DAE4-664_Jun21)
Check Date (in house)
06-Apr-16 (in house check Jun-20)
06-Apr-16 (in house check Jun-20) | Apr-22
Apr-22
Apr-22
Apr-22
Apr-22
Dec-21
Jun-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A RF generator HP 8648C | SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 664
ID#
SN: GB41293874
SN: MY41498087
SN: 000110210 | 09-Apr-21 (No. 217-03291/03292)
09-Apr-21 (No. 217-03291)
09-Apr-21 (No. 217-03292)
09-Apr-21
(No. 217-03343)
09-Apr-21 (No. 217-03344)
30-Dec-20 (No. EX3-3877_Dec20)
28-Jun-21 (No. DAE4-664_Jun21)
Check Date (in house)
06-Apr-16 (in house check Jun-20)
06-Apr-16 (in house check Jun-20)
06-Apr-16 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 | SN: 104778
SN: 103244
SN: 103245
SN: CC2552 (20x)
SN: 310982 / 06327
SN: 3877
SN: 664
ID#
SN: GB41293874
SN: MY41498087
SN: 000110210
SN: US3642U01700 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-664_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 In house check: Jun-22 In house check: Jun-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8649C Network Analyzer Agilent E8358A | SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID# SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US41080477 | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03343) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-664_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 06-Apr-16 (in house check Jun-20) 04-Aug-99 (in house check Jun-20) 31-Mar-14 (in house check Oct-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E44198 Power sensor E4412A RF generator HP 8648C | SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID# SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US41080477 Name | 09-Apr-21 (No. 217-03291/03292) 09-Apr-21 (No. 217-03291) 09-Apr-21 (No. 217-03292) 09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344) 30-Dec-20 (No. EX3-3877_Dec20) 28-Jun-21 (No. DAE4-664_Jun21) Check Date (in house) 06-Apr-16 (in house check Jun-20) 31-Mar-14 (in house check Jun-20) | Apr-22 Apr-22 Apr-22 Apr-22 Apr-22 Dec-21 Jun-22 Scheduled Check In house check: Jun-22 | Certificate No: D450V3-1077_Jul21 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL ConvF tissue simulating liquid sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated, - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D450V3-1077_Jul21 Page 2 of 8 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52,10.4 | |------------------------------|------------------------|-----------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 450 MHz ± 1 MHz | | | | | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 43.5 | 0.87 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 43.2 ± 6 % | 0.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 4.63 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.772 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 3.08 W/kg ± 17.6 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 56.7 | 0.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 56.7 ± 6 % | 0.93 mha/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | | # SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 4.64 W/kg ± 18.1 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 0.774 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 3.12 W/kg ± 17.6 % (k=2) | Certificate No: D450V3-1077_Jul21 Page 3 of 8 ## Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.1 Ω - 6.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.2 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 52.4 Ω - 9.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.2 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.351 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | | |-----------------|-------|--| Certificate No: D450V3-1077_Jul21 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 07.07.2021 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1077 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.87 \text{ S/m}$; $\epsilon_f = 43.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 28.06.2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # Dipole Calibration for Head Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 39.23 V/m; Power Drift =
-0.01 dB Peak SAR (extrapolated) = 1.79 W/kg SAR(1 g) = 1.16 W/kg; SAR(10 g) = 0.772 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30 mm) Ratio of SAR at M2 to SAR at M1 = 64.4% Maximum value of SAR (measured) = 1.56 W/kg Certificate No: D450V3-1077_Jul21 Page 5 of 8 # Impedance Measurement Plot for Head TSL Certificate No: D450V3-1077_Jul21 Page 6 of 8 ### **DASY5 Validation Report for Body TSL** Date: 09.07.2021 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 450 MHz; Type: D450V3; Serial: D450V3 - SN:1077 Communication System: UID 0 - CW; Frequency: 450 MHz Medium parameters used: f = 450 MHz; $\sigma = 0.93 \text{ S/m}$; $\epsilon_r = 56.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN3877; ConvF(10.64, 10.64, 10.64) @ 450 MHz; Calibrated: 30.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 28.06.2021 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Body Tissue/d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0; Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 42.26 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.76 W/kg SAR(1 g) = 1.15 W/kg; SAR(10 g) = 0.774 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 30 mm) Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 1.54 W/kg Certificate No: D450V3-1077_Jul21 # Impedance Measurement Plot for Body TSL Certificate No: D450V3-1077_Jul21 Page 8 of 8 # **Dipole Data** The table below includes dipole impedance and return loss measurement data measured by Motorola Solutions' EME lab. The results meet the requirements stated in KDB 865664. | Dipole 450- | Head | | | | |-------------|-----------|------------|--------------------|--| | 1077 | Impedance | | Return Loss | | | Date | real Ω | imag jΩ | dB | | | Measured | 1 Ca1 32 | illiag jsz | ub | | | 08/06/2021 | 48.59 | -6.47 | -23.86 | | | 09/05/2022 | 51.12 | -7.98 | -21.74 | |