

Page 1 of 122

EMC Technologies Pty Ltd ABN 82 057 105 549 176 Harrick Road Keilor Park Victoria Australia 3042

Ph: + 613 9365 1000 Fax: + 613 9331 7455 email: melb@emctech.com.au

SAR Test Report									
Report Number: M1	50814_FCC_8260NGW_SAR_2.4								
Test Sample:	Portable T SERIES LIFEBOOK CONVERTIBLE Computer								
Radio Modules:	WLAN and Bluetooth INTEL SNOWFIELD PEAK 8260NGW								
Host PC Model Number:									
FCC ID:	EJE-WB0096								
IC ID:	<u>337J-WB0096</u>								
Date of Issue:	17th September 2015								

EMC Technologies Pty Ltd reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. EMC Technologies Pty Ltd shall have no liability for any deductions, inferences or generalisations drawn by the client or others from EMC Technologies Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Technologies Pty Ltd.

CONTENTS

1.0	GENERAL INFORMATION	3
2.0	INTRODUCTION	
3.0	TEST SAMPLE TECHNICAL INFORMATION	
	3.1 DUT (WLAN) Details	5
	 3.2 DUT (Bluetooth) Details 3.3 DUT (T series LifeBook Convertible PC) Details 	9 10
	3.4 Test Sample Accessories	10
	3.4.1 Battery Types	
4.0	TEST SIGNAL, FREQUENCY AND OUTPUT POWER	
	4.1 Battery Status	
5.0	DETAILS OF TEST LABORATORY	
	5.1 Location	
	5.2 Accreditations	
	5.3 Environmental Factors	
6.0	CALIBRATION AND VERIFICATION PROCEDURES AND DATA	
	6.1 System verification	13
	6.1.1 System verification Results @ 2450MHz 6.1.2 Liquid Temperature and Humidity	
7.0	SAR MEASUREMENT PROCEDURE USING DASY5	
8.0		
9.0	EQUIPMENT LIST AND CALIBRATION DETAILS	
10.0	TEST METHODOLOGY	
	10.1 Positions 10.1.1 "Lap Held" Position Definition (0mm spacing)	
	10.1.1 "Lap Held" Position Definition (0mm spacing)10.1.2 "Edge On" Position (Portrait or Landscape)	19 10
	10.1.3 "Bystander" Position (25mm spacing)	19
	10.2 List of All Test Cases (Antenna In/Out, Test Frequencies, User Modes)	
11.0	SAR MEASUREMENT RESULTS	21
	11.1 2450MHz SAR Results	21
12.0	COMPLIANCE STATEMENT	23
13.0	MULTIBAND EVALUATION CONSIDERATIONS	24
APP	ENDIX A1 TEST SAMPLE PHOTOGRAPHS	25
APP	ENDIX A2 TEST SAMPLE PHOTOGRAPHS	26
APP	ENDIX A3 TEST SAMPLE PHOTOGRAPHS	27
APP	ENDIX A4 TEST SETUP PHOTOGRAPHS	28
APP	ENDIX A5 TEST SETUP PHOTOGRAPHS	29
APP	ENDIX A6 TEST SETUP PHOTOGRAPHS	30
APP	ENDIX A7 TEST SETUP PHOTOGRAPHS	31
	ENDIX A8 TEST SETUP PHOTOGRAPHS	
	ENDIX B PLOTS OF THE SAR MEASUREMENTS	
APP	ENDIX C DESCRIPTION OF SAR MEASUREMENT SYSTEM	92
APP	ENDIX D CALIBRATION DOCUMENTS	96

NAT

SAR TEST REPORT Report Number: M150814_FCC_8260NGW_SAR_2.4 FCC ID: <u>EJE-WB0096,</u> IC ID: <u>337J-WB0096,</u>

1.0 GENERAL INFORMATION

Test Sample: Model Name: Radio Modules: Interface Type: Device Category: Test Device: FCC ID: IC ID:		Portable T SERIES LIFEBOOK CONVERTIBLE Computer T936 WLAN and Bluetooth 8260NGW M.2 Wireless LAN Module Portable Transmitter Pre-Production Unit <u>EJE-WB0096</u> <u>337J-WB0096</u>
RF exposure Category:		General Population/Uncontrolled
Manufacturer:		Fujitsu Limited
Test Standard/s:	2. 3.	 KDB 248227 D01 SAR measurements for 802 11 a b g v02r01 KDB 447498 D01 General RF Exposure Guidance v05r02 KDB 616217 D04 SAR for laptop and tablets v01r01 KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 KDB 865664 D02 RF Exposure Reporting v01r01 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), RSS-102 EN 62209-2:2010 Human exposure to radio frequency fields from hand-held and bodymounted wireless communication devices. Human models, instrumentation, and procedures. Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) IEEE 1528: 2013
Statement Of Compliance:		Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Measurement Techniques. The Fujitsu T SERIES LIFEBOOK CONVERTIBLE Computer T936 with Wireless LAN and Bluetooth model 8260NGW complied with the FCC General public/uncontrolled RF exposure limits of 1.6mW/g per requirements of 47CFR2.1093(d). It also complied with IC RSS-102
Highest Reported SAR: Test Dates:		requirements. 2450 MHz WLAN Band : 0.359 mW/g 24 th August 2015
Test Officer:		Jorla dae Peter Jakubiec

Authorised Signature:

.felor

Chris Zombolas Technical Director

SAR TEST REPORT Portable T SERIES LIFEBOOK CONVERTIBLE Computer Model: T936 Report Number: M150814_FCC_8260NGW_SAR_2.4

Table 1

		Table of Revisions		
Report Number	Revision Number	Description	Pages affected	Date
M150814_FCC_8260NGW_SAR_2.4	1	Original	N/A	11th September 2015

2.0 INTRODUCTION

Testing was performed on the Fujitsu T SERIES LIFEBOOK CONVERTIBLE PC, Model: T936 with M.2 integrated Wireless LAN & Bluetooth Module (INTEL SNOWFIELD PEAK 802.11a/b/g/n/ac), Model: 8260NGW. The 8260NGW WLAN module was originally certified by INTEL Corporation as a modular approval under FCC ID: PD98260NG. The INTEL SNOWFIELD PEAK module is an OEM product was tested in the dedicated host – LIFEBOOK T SERIES, Model T936. The system tested will be referred to as the DUT throughout this report.

The Wireless LAN Module incorporates Bluetooth Transmitter, which can only transmit via Antenna B (2), the Bluetooth maximum power was 7dBm (including tune-up) therefore it did not require SAR testing as a standalone transmitter. This is in accordance with KDB 447498 section 4.3.1 exemption formula:

The shortest distance between the BT antenna (Antenna 2) and the user is 5.37mm. The closest distance between WLAN 1 and WLAN2 antennas was 268 mm

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] · [\sqrt{f} (GHz)] ≤ 3.0 for 1-g SAR Result - [(5.01)/(5.37mm)] · [\sqrt{f} (2.45GHz)]=1.46

The measurement test results mentioned hereon only apply to the 2450MHz frequency band; an additional report titled "M150814_FCC_8260NGW_SAR_5.6" applies to the 5GHz range.

Table 2

Applicable Head Configurations Applicable Body Configurations	: None : Lap Held Position : Edge On Position : Bystander
--	--

3.0 TEST SAMPLE TECHNICAL INFORMATION

(Information supplied by the client)

3.1 DUT (WLAN) Details

Table 3

Transmitter:	M.2 Wireless LAN Module (WLAN parts)					
Wireless Module:	WLAN 2x2 IEEE802.11ac/abgn					
Model Number:	8260NGW					
Manufacturer:	Intel Corporation					
Wi-Fi standard	802.11ac 2x2					
Wi-Fi TX/RX chains	2x2 chains					
Supported Bands	2.4GHz, 5GHz					
Antenna Allocation	Main: Wi-Fi only, Aux: Shared Wi-Fi, BT					
Wi-Fi TX/RX Throughput	660 Mbps					
Bluetooth Core	BT4.1(BDR/EDR/AFH/BLE)					
Antenna Types:	Nissei Inverted F antenna					
	Model: refer to WLAN antenna data					
	Location: refer to Antenna location file					
	For BT: use Aux(2: left side connect on module)					
Power Supply:	3.3 VDC from PCI bus					

Table 4 Channels and Output power setting

2.4 GHz (802.11b	, 802.11g and 802.11n/ac)
------------------	---------------------------

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Tx BW (MHz)	Average Power Target (dBm)			Control	Average Power Measured (dBm)	
					Ch A	Ch B	Power Control Tx A	Power Control Tx B	Tx A	Тх В
	1	2412					15.375	15.500	15.01	15.05
802.11	6	2437	CCK	201411-			15.375	15.375	15.07	15.01
b	7	2442	1	20MHz 99%D	15.0	15.0	15.250	15.625	15.01	15.05
2.4	11	2462		99%D C						
GHz	12	2467		C			15.250	15.125	15.01	15.07
	13	2472			12.0	10.0	12.375	10.125	12.01	10.02
	1	2412					-	-	-	-
	2	2417]				-	-	-	-
802.11	6	2437]		15.0	15.0	-	-	-	-
g	10	2457	OFDM	20MHz			-	-	-	-
2.4	11	2462	6	99%D C			-	-	-	-
GHz	12	2467			13.5	13.5	-	-	-	-
	13	2472			2.0	1.0	-	-	-	-
	3F 4F 5F	2422 2427 2432					15.250	15.375	15.04	15.04
	6F	2437	ССК	40	15.0	15.0	15.250	15.375	15.06	15.09
	7F	2442	HT0	98%D			15.250	15.250	15.08	15.02
802.11	8F	2447	4	С						
n	9F	2452	-				15.050	15.055	15.00	15.01
2.4	10F 11F	2457 2462	_		12.0	40.0	15.250	15.375	15.09	15.01
GHz		2402			12.0	10.0				
	3F	2422			14.0	15.0	-	-	-	-
	4F	2427					-	-	-	-
	5F	2432					-	-	-	-
	6F	2437		40	45.0	45 0	-	-	-	-
	7F	2442	OFDM	98%D	15.0	15.0	-	-	-	-
	8F	2447	HT0	C			-	-	-	-
	9F	2452	1				-	-	-	-
	10F	2457	1		12.5	12.5	-	-	-	-
	11F	2462	1		1.0	0.0	_	-	_	_
	L		1				1	1		

Mode	Channel	Frequency (MHz)	Data Rate	Tx BW (MHz)			Power IBm)	Power	Control	Average Measure	e Power ed (dBm)
			(Mbps)		Ch A		Ch B	Power Control Tx A	Power Control Tx B	Tx A	Τx Β́
	5.2	2 GHz									
	36	5180				-		-	-	-	-
	40	5200			13.5		13.5	-	-	-	-
	44	5220			13.5		15.5	-	-	-	-
	48	5240						-	-	-	-
	5.3	8 GHz									
	52	5260				-		-	-	-	-
	56	5280			40.5		40.5	-	-	-	-
	60	5300			13.5		13.5	-	-	-	-
	64	5320						-	-	-	-
	5.6 GHz										
802.11a	100	5500	OFDM					-	-	-	-
	104	5520	6	99%DC				-	-	-	-
	108	5540						-	-	-	-
	112	5560						-	-	-	-
	116	5580						-	-	-	-
	120	5600			13.5		13.5	-	-	-	-
	124	5620						-	-	-	-
	128	5640						-	-	-	-
	132							-	-	-	
	월 130 년 140							-	-	-	
	LΩ 140	5.8 GHz				-		-	-	-	
	<u>60</u>							-	-	-	-
								_	-	-	_
	9 15: 56 15				13.5		13.5	-	-	-	-
	ທີ 16		1					-	-	-	-
	16							-	-	-	-

5 GHz (802.11a)

5 GHz (802.11n)

S.2 GHz S.2 GHz General Ch B Power Tx A Power Tx A Tx A Tx B 3.5 5180 440 5200 448 5220 56 13.5 <th>Mode</th> <th>Channel</th> <th>Frequency (MHz)</th> <th>Data Rate (Mbps)</th> <th>Tx BW (MHz)</th> <th></th> <th>je Powe t (dBm)</th> <th></th> <th>Power</th> <th>Control</th> <th></th> <th>e Power ed (dBm)</th>	Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Tx BW (MHz)		je Powe t (dBm)		Power	Control		e Power ed (dBm)
$802.11n \begin{array}{ c c c c c } \hline 38 & 5180 \\ \hline 44 & 5220 \\ \hline 48 & 5240 \\ \hline 53 & 6Hz \\ \hline 106 & 5500 \\ \hline 106 & 5500 \\ \hline 106 & 5540 \\ \hline 112 & 5660 \\ \hline 112 & 5660 \\ \hline 112 & 5660 \\ \hline 122 & 5660 \\ \hline 122 & 5660 \\ \hline 132 & 58 & 6Hz \\ \hline 132 & 5660 \\ \hline 132 & 58 & 6Hz \\ \hline 132 & 5660 \\ \hline 132 & 58 & 6Hz \\ \hline 132 & 5660 \\ \hline 132 & 58 & 6Hz \\ \hline 132 & 5660 \\ \hline 132 & 58 & 6Hz \\ \hline 132 & 5660 \\ \hline 132 & 517 & 5785 \\ \hline 132 & 513 & 5765 \\ \hline 132 & 132 & 513 & 513 & 50 \\ \hline 132 & 132 & 513 & 513 & 50 \\ \hline 132 & 132 & 513 & 513 & 50 \\ \hline 132 & 132 & 513 & 513 & 50 \\ \hline 132 & 132 & 513 & 576 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 & 1326 \\ \hline$			((()				Control	Control		
$802.11n \begin{array}{ c c c c c } \hline 38 & 5180 \\ \hline 44 & 5220 \\ \hline 48 & 5240 \\ \hline 53 & 6Hz \\ \hline 106 & 5500 \\ \hline 106 & 5500 \\ \hline 106 & 5540 \\ \hline 112 & 5660 \\ \hline 112 & 5660 \\ \hline 112 & 5660 \\ \hline 122 & 5660 \\ \hline 122 & 5660 \\ \hline 132 & 58 & 6Hz \\ \hline 132 & 5660 \\ \hline 132 & 58 & 6Hz \\ \hline 132 & 5660 \\ \hline 132 & 58 & 6Hz \\ \hline 132 & 5660 \\ \hline 132 & 58 & 6Hz \\ \hline 132 & 5660 \\ \hline 132 & 58 & 6Hz \\ \hline 132 & 5660 \\ \hline 132 & 517 & 5785 \\ \hline 132 & 513 & 5765 \\ \hline 132 & 132 & 513 & 513 & 50 \\ \hline 132 & 132 & 513 & 513 & 50 \\ \hline 132 & 132 & 513 & 513 & 50 \\ \hline 132 & 132 & 513 & 513 & 50 \\ \hline 132 & 132 & 513 & 576 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 \\ \hline 132 & 132 & 1326 & 1326 & 1326 \\ \hline$		5.2	GHz									
				-					-	-	-	-
								_		-		
						13.5	13.	5	_	_	_	_
				+					-	-	-	-
		5.3	3 GHz									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									-	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						13.5	40	_	-	-	-	-
				•		13.5	13.	5	13.250	-	13.50	-
		64						ĺ		-		-
		5.6	6 GHz									
									13.750	13.375	13.53	13.54
108 5540 112 5600 124 5620 128 5640 128 5660 128 5660 128 5660 128 5660 13.5 13.57 13.5 13.875 13.75 13.300 13.875 13.375 13.875 13.375 13.75 13.50 13.75 13.50 13.75 13.50 13.75 13.50 13.75 13.50 13.75 13.50 13.75 13.50 13.5 - - - - - - - - - - - - - - - 13.5 13.5 13.5 13.50 13.5 13.50 13.5 13.50 13.5 13.50 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>									-	-	-	-
				t	99%DC				-	-	-	-
								Ì	-	-	-	-
								ĺ	-	-	-	-
128 5640 132 5660 136 5680 140 5700 153 5765 157 5785 161 5805 165 5825 161 5805 165 5825 5.2 GHz 13.5 38 5190 46 5230 5.3 GHz 13.5 5.4 5270 62 5310 5.6 GHz 13.5 100 5550 110 5550 126 5630 126 5630 126 5630 126 5630 126 5630 126 5630 13.5 13.5 13.5 13.55 13.5 13.50 13.5 - 13.5 - 13.5 13.50 13.5 13.50 13.5 - </td <td></td> <td></td> <td>5600</td> <td></td> <td>13.5</td> <td>13.</td> <td>5</td> <td>13.875</td> <td>13.375</td> <td>13.50</td> <td>13.53</td>			5600			13.5	13.	5	13.875	13.375	13.50	13.53
802.11n 132 5660 140 OFDM 5745 9 13.50 13.50 13.50 13.54 13.53 149 5745 9 153 5765 9 157 5785 13.50 13.50 13.54 13.50 161 5805 165 5825 $ -$									-	-	-	-
802.11n N 136 5680 140 5700 5705 9 OFDM 149 OFDM 5785 9 OFDM 153 OFDM 165 OFDM 153 OFDM 165 OFDM 170 OF									-	-	-	-
802.11n 0 140 5700 0FDM 9 5.8 GHz 0FDM HT0 149 5745 5765 - - - 161 5805 161 5805 - - - 165 5825 - - - - - 38 5190 46 5230 - - - - 5.2 GHz - - - - - - - 38 5190 46 5270 - - - - - 5.4 5270 62 5310 13.5 13.5 13.50 13.56 13.57 102 5510 110 5550 13.51 13.50 13.50 13.59 126 5630 - - - - - - 126 5630 - - - - - - - 13.5 13.5 13.50 13.50 13.50 13.50 - - - <t< td=""><td></td><td></td><td></td><td></td><td rowspan="3"></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
S.8 GHz HT0 149 5745 153 5765 157 5785 161 5805 165 5825 165 5825 165 5825 165 5825 187 5100 46 5230 54 5270 62 5310 5.6 GHz 13.5 102 5510 110 5550 126 5630 118 5670 126 5630 118 5670 126 5630 13.5 13.5 13.5 13.55 13.5 13.50 13.5 13.500 13.5 13.500 13.5 13.500 13.5 13.55 13.5 13.500 13.5 13.500 13.5 13.500 13.5 13.500 13.5 13.5 13.5 - 13.5		<u> 원 136</u>										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	802.11n	0 140			-				13.375	13.500	13.54	13.53
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			m 5.8 GHZ									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		- LO 173	5765							-		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						13.5	13	13.5				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ю 161						Ŭ				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										•		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		38 5190				13.5	13	5	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		46	5230					•	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			B GHz			12.5	12	5	12 750	12 625	12 56	10 57
$ \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $									13.750		13.50	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		02	5510			15.0	13.	5		13.300		15.50
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5.6	6 GHz		40							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
126 5630 N 134 5670 H 142 5710 SC - - - SC - - SC - -					30,000	13.5			13.375	13.500	13.57	
134 5670 142 5710 50 - 50 - 142 5710 50 -							13	5				
N 134 5670 142 5710 50 9 5.8 GHz 9 151 5755						13.5		-				
Ω 5.8 GHz -<		<u>₽</u> 134										
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		142 15 142	2 5710						-	-	-	-
151 5755 159 5795 13.5 13.5 - - - - -		to 5.8	5.8 GHz									
ທ່ 159 5795 13.5 13.5		<u> </u>				40.5	40	_	-		-	-
		ഗ് 159	5795			13.5	13.	5	-	-	-	-

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Tx BW (MHz)		Average Power Target (dBm)		Power Control		Average Power Measured (dBm)	
					Ch A		Ch B	Power Control Tx A	Power Control Tx B	Tx A	Tx B
	5.2	GHz									
	42	5210			13.5		13.5	13.625	13.875	13.53	13.58
	5.3	GHz									
	58	5290			12.0		10.0	-	-	-	-
000.44	5.6 GHz										
802.11 ac	106	5530	HT0		13.0		13.5	-	13.625	13.05	13.52
ac	122	5610		80	13.5		13.5	13.875	13.500	13.52	13.56
	N 138	5690		95%DC	13.5		13.5	13.500	13.500	13.50	13.61
	5.65 to 5.835 GHz	.8 GHz									
	155	5775			13.5		13.5	13.875	13.625	13.57	13.59

5 GHz (802.11ac)

NOTE: For 5GHz SAR results refer to report titled "M150814_FCC_8260NGW_SAR_5.6".

3.2 DUT (Bluetooth) Details

Table 5

Transmitter:	WLAN / BT Combo Module
Network Standard:	Bluetooth [™] RF Test Specification
Modulation Type:	Frequency Hopping Spread Spectrum (FHSS)
Frequency Range:	2402 MHz to 2480 MHz
Number of Channels:	79
Carrier Spacing:	1.0 MHz
Antenna Types:	Nissei Inverted F antenna
	BT: Antenna B (2)
Max. Output Power:	7 dBm
Reference Oscillator:	16 MHz (Built-in)
Power Supply:	3.3 VDC from host.

Table 6

Channel Number	Frequency (MHz)	Bluetooth Utility power setting
1	2402	
2	2403	
-	-	
39	2440	
40	2441	7 dBm
41	2442	
-	-	
78	2479	
79	2480	

3.3 DUT (T series LifeBook Convertible PC) Details

Table	7
-------	---

Host Notebook :	LifeBook T series
Model Name:	T936
Serial Number:	Pre-production Sample
Manufacturer:	FUJITSU LIMITED
CPU Type and Speed:	Core i7 2.6GHz
LCD	13.3"QHD: LQ133T1JW17, FHD: LQ133M1JW01
Graphics chip	Non
Wired LAN:	Intel I219LM : 10 Base-T/100 Base-TX/1000Base-T
Modem:	Non
Port Replicator Model:	FPCPR245xx
AC Adapter Model:	90W: A13-090P1A(Chicony), A13-090P2A(Chicony) ADP-90BE D(Delta), ADP-90BE C(Delta) 80W: ADP-80SB A(Delta), ADP-80SB B(Delta) 65W: ADP-65MD B(Delta), ADP-65MD C(Delta) A13-065N2A(Chicony), A13-065N3A(Chicony)
Voltage:	19 V
Current Specs:	4.74A / 4.22A / 3.42A
Watts:	90W / 80W / 65W
Battery type	Li-Polymer
Brand	FUJITSU
Manufacturer	Sony
Rating	3150mAh, 14.4Vdc, 45Wh

3.4 Test Sample Accessories

3.4.1 Battery Types

One type of Fujitsu Lithium Ion battery is used to power the DUT.

Table 8 Battery Details

Model	FPCBP425
V/mAh	14.4V/3150mAh

4.0 TEST SIGNAL, FREQUENCY AND OUTPUT POWER

INTEL's DRTU test tool was used to configure the WLAN for testing. The DUT Wireless LAN operates in 2 modes, OFDM and DSSS. For the SAR measurements the device was operating in continuous transmit mode using programming codes supplied by Fujitsu.

The test results mentioned in this report only apply to the 2450MHz frequency range. An additional report titled "M150814_FCC_8260NGW_SAR_5.6" is specific to the 5GHz range.

The DUT is capable of using two antennas transmitting simultaneously however in this mode; the power level is 3dB lower (50%) than if a single antenna was transmitting, there were no wires or other connections to the DUT during the SAR measurements.

At the beginning of the SAR tests, the conducted power of the device was measured after temporary modification of antenna connector inside the device's TX RX compartment. Measurements were performed with a calibrated Power Meter, and the result of the measurements includes the tune up tolerance of 1 dB. The Transmitter power was set to be equal or higher than power specified by the manufacturer including tune-up.

Channel	Channel Frequency MHz	Data Rate (Mbps)	Maximum Conducted Output Power Measured (dBm)
Channel 40	2441	N/A	6.4

Table 9 Frequency and Conducted Power Results Bluetooth

4.1 Battery Status

The device battery was fully charged prior to commencement of measurement. The battery condition was monitored by measuring the RF field at a defined position inside the phantom before the commencement of each test and again after the completion of the test. It was not possible to perform conducted power measurements at the output of the device, at the beginning and end of each scan due to lack of a suitable antenna port. The uncertainty associated with the power drift was less than 5% and was assessed in the uncertainty budget.

5.0 DETAILS OF TEST LABORATORY

5.1 Location

EMC Technologies Pty Ltd 176 Harrick Road Keilor Park, (Melbourne) Victoria Australia 3042

Telephone:	+61 3 9365 1000
Facsimile:	+61 3 9331 7455
email:	melb@emctech.com.au
website:	www.emctech.com.au

5.2 Accreditations

EMC Technologies Pty. Ltd. is accredited by the National Association of Testing Authorities, Australia (NATA). **NATA Accredited Laboratory Number: 5292**

EMC Technologies Pty Ltd is NATA accredited for the following standards:

AS/NZS 2772.2 2011: ACMA: EN 50360: 2001	RF and microwave radiation hazard measurement Radio communications (Electromagnetic Radiation - Human Exposure) Standard 2014 Product standard to demonstrate the compliance of Mobile Phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz – 3 GHz)
EN 62209-1:2006	Human exposure to radio frequency fields from hand-held and body-mounted devices-Human models, instrumentation and procedures. Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range 300 MHz to 3
EN 62209-2:2010	 GHz) Human Exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models instrumentation and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz
IEEE 1528: 2013	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head Due to Wireless Communications Devices: Measurement Techniques.
Refer to NATA website w	ww.nata.asn.au for the full scope of accreditation.

5.3 Environmental Factors

The measurements were performed in a shielded room with no background RF signals. The temperature in the laboratory was controlled to within $21\pm1^{\circ}$ C, the humidity was 40%. The liquid parameters are measured daily prior to the commencement of each test. Tests were performed to check that reflections within the environment did not influence the SAR measurements. DASY5 SAR measurement system using either the ET3DV6 E-field probe is less than 5μ V in both air and liquid mediums.

6.0 CALIBRATION AND VERIFICATION PROCEDURES AND DATA

6.1 System verification

6.1.1 System verification Results @ 2450MHz

The following table lists the results of the System Verification. The forward power into the reference dipole for SAR System Verification was adjusted to 250 mW.

Currently no IEEE Std 1528-2013 OR EN 62209-2 SAR reference values are available in 5.6 GHz band, as a consequence all system verification results were compared against the SPEAG calibration reference SAR values.

The SPEAG calibration reference SAR value is the SAR system verification result obtained in a specific dielectric liquid using the validation dipole (D2450V2) during calibration. The measured one-gram SAR should be within 10% of the expected target reference values shown in table below (2450MHz) below.

Table 10 Deviation from reference system verification values @ 2450MHz

Frequency and Date	Measured SAR 1g (mW/g)	Measured SAR 1g (Normalize d to 1W)	SPEAG Calibration reference SAR Value 1g (mW/g)	Deviation From SPEAG Reference 1g (%)	Last Validation Date
2450MHz 24th August 2015	13.4	53.60	51.5	4.08	26/03/2015

NOTE: All reference system verification values are referenced to 1W input power.

6.1.2 Liquid Temperature and Humidity

The humidity and dielectric/ambient temperatures were recorded during the assessment of the tissue material dielectric parameters. The difference between the ambient temperature of the liquid during the dielectric measurement and the temperature during tests was less than |2|°C.

Table 11 Temperature and Humidity recorded for each day

Date	Ambient Temperature (°C)	Liquid Temperature (°C)	Humidity (%)
24 th August 2015	21.0	20.5	40

7.0 SAR MEASUREMENT PROCEDURE USING DASY5

The SAR evaluation was performed with the SPEAG DASY5 system. A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the DUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the DUT and the horizontal grid spacing is 12 mm x 12 mm. The actual Area Scan has dimensions of 60mm x 90mm surrounding the test device. Based on this data, the area of the maximum absorption is determined by Spline interpolation.
- c) Around this point, a volume of 30 mm x 30 mm x 30 mm is assessed by measuring 7 x 7 x 7 points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:
 - (i) The data at the surface are extrapolated, since the centre of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 4 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
 - (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
 - (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.

(iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

8.0 MEASUREMENT UNCERTAINTY

The uncertainty analysis is based on the template listed in the IEEE Std 1528-2013 for both device SAR tests and System verification uncertainty. The measurement uncertainty of a specific device is evaluated independently and the total uncertainty for both evaluations (95% confidence level) must be less than 30%.

Error Description	Uncert. Value	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g u _i	10g ui	Vi
Measurement System								
Probe Calibration	6	Ν	1.00	1	1	6.00	6.00	8
Axial Isotropy	4.7	R	1.73	0.7	0.7	1.90	1.90	8
Hemispherical Isotropy	9.6	R	1.73	0.7	0.7	3.88	3.88	8
Boundary Effects	2	R	1.73	1	1	1.15	1.15	8
Linearity	4.7	R	1.73	1	1	2.71	2.71	8
System Detection Limits	1	R	1.73	1	1	0.58	0.58	8
Modulation response	2.4	R	1.73	1	1	1.39	1.39	8
Readout Electronics	0.3	Ν	1.00	1	1	0.30	0.30	8
Response Time	0.8	R	1.73	1	1	0.46	0.46	8
Integration Time	2.6	R	1.73	1	1	1.50	1.50	8
RF Ambient Noise	3	R	1.73	1	1	1.73	1.73	8
RF Ambient Reflections	3	R	1.73	1	1	1.73	1.73	8
Probe Positioner	0.8	R	1.73	1	1	0.46	0.46	8
Probe Positioning	6.7	R	1.73	1	1	3.87	3.87	8
Post Processing	4	R	1.73	1	1	2.31	2.31	8
Test Sample Related								
Power Scaling	0	R	1.73	1	1	0.00	0.00	8
Test Sample Positioning	2.9	Ν	1.00	1	1	2.90	2.90	145
Device Holder Uncertainty	3.6	Ν	1.00	1	1	3.60	3.60	5
Output Power Variation – SAR Drift Measurement	4.50	R	1.73	1	1	2.60	2.60	8
Phantom and Setup								
Phantom Uncertainty	7.6	R	1.73	1	1	4.39	4.39	8
SAR Correction	1.9	R	1.73	1	0.84	1.10	0.92	8
Liquid Conductivity – Measurement uncertainty	2.5	Ν	1.00	0.64	0.71	1.60	1.78	8
Liquid Permittivity – Measurement uncertainty	2.5	Ν	1.00	0.6	0.26	1.50	0.65	8
Temp.unc Conductivity	3.4	R	1.73	0.78	0.71	0.77	0.70	8
Temp. unc Permittivity	0.4	R	1.73	0.23	0.26	0.04	0.05	8
Combined standard Uncertainty (uc)						12.19	12.12	
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=	2		24.38	24.25	

Table 12 Uncertainty Budget for DASY5 Version 52 - DUT SAR test 2450MHz

Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 12.19\%$. The extended uncertainty (K = 2) was assessed to be $\pm 24.38\%$ based on 95% confidence level. The uncertainty is not added to the measurement result.

Error Description	Uncert. Value	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g ui	10g u _i	Vi
Measurement System								
Probe Calibration	6	Ν	1	1	1	6	6	8
Axial Isotropy	4.7	R	1.73	0.7	0.7	1.90	1.90	8
Hemispherical Isotropy	9.6	R	1.73	0.7	0.7	3.88	3.88	8
Linearity	4.7	R	1.73	1	1	2.71	2.71	8
Modulation Response	2.4	R	1.73	1	1	1.39	1.39	8
System Detection Limits	1	R	1.73	1	1	0.58	0.58	8
Boundary Effects	2	R	1.73	1	1	1.15	1.15	8
Readout Electronics	0.3	Ν	1.00	1	1	0.30	0.30	8
Response Time	0.8	R	1.73	1	1	0.46	0.46	8
Integration Time	2.6	R	1.73	1	1	1.50	1.50	8
RF Ambient Noise	3	R	1.73	1	1	1.73	1.73	8
RF Ambient Reflections	3	R	1.73	1	1	1.73	1.73	8
Probe Positioner	0.8	R	1.73	1	1	0.46	0.46	8
Probe Positioning	6.7	R	1.73	1	1	3.87	3.87	8
Post Processing	4	R	1.73	1	1	2.31	2.31	8
Test Sample Related								
Device Holder	3.6	Ν	1.00	1	1	3.60	3.60	5
Test Sample Positioning	2.9	Ν	1.00	1	1	2.90	2.90	145
Power Scaling	0	R	1.73	1	1	0.00	0.00	8
Power Drift	4.71	R	1.73	1	1	2.72	2.72	8
Phantom and Setup								
Phantom Uncertainty	7.6	R	1.73	1	1	4.39	4.39	8
SAR Correction	1.9	R	1.73	1	0.84	1.10	0.92	8
Liquid Conductivity – Measurement uncertainty	2.5	Ν	1.00	0.78	0.71	1.95	1.78	8
Liquid Permittivity – Measurement uncertainty	2.5	Ν	1.00	0.26	0.26	0.65	0.65	8
Temp.unc Conductivity	3.4	R	1.73	0.78	0.71	1.53	1.39	8
Temp. unc Permittivity	0.4	R	1.73	0.23	0.26	0.05	0.06	8
Combined standard Uncertainty (uc)						12.27	12.21	748
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=	2		24.53	24.42	

Table 13 Uncertainty Budget for DASY5 Version 52 – DUT SAR test 2450MHzIEC 62209-2 UNCERTAINTY FOR RSS-102

Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 12.27\%$. The extended uncertainty (K = 2) was assessed to be $\pm 24.53\%$ based on 95% confidence level. The uncertainty is not added to the measurement result.

Error Description	Uncert. Value	Prob. Dist.	Div.	C _i (1g)	C _i (10g)	1g u _i	10g u _i	Vi
Measurement System								
Probe Calibration	5.5	N	1.00	1	1	5.50	5.50	∞
Axial Isotropy	4.7	R	1.73	1	1	2.71	2.71	8
Hemispherical Isotropy	9.6	R	1.73	0	0	0.00	0.00	8
Boundary Effects	1	R	1.73	1	1	0.58	0.58	8
Linearity	4.7	R	1.73	1	1	2.71	2.71	∞
System Detection Limits	1	R	1.73	1	1	0.58	0.58	∞
Readout Electronics	0.3	N	1.00	1	1	0.30	0.30	∞
Response Time	0	R	1.73	1	1	0.00	0.00	∞
Integration Time	0	R	1.73	1	1	0.00	0.00	∞
RF Ambient Noise	1	R	1.73	1	1	0.58	0.58	∞
RF Ambient Reflections	1	R	1.73	1	1	0.58	0.58	∞
Probe Positioner	0.8	R	1.73	1	1	0.46	0.46	∞
Probe Positioning	6.7	R	1.73	1	1	3.87	3.87	∞
Max. SAR Eval.	2	R	1.73	1	1	1.15	1.15	∞
Dipole Related								
Deviation of exp. dipole	5.5	R	1.73	1	1	3.18	3.18	∞
Dipole Axis to Liquid Dist.	2	R	1.73	1	1	1.15	1.15	∞
Input power & SAR drift	5.00	R	1.73	1	1	2.89	2.89	∞
Phantom and Setup								
Phantom Uncertainty	4	R	1.73	1	1	2.31	2.31	∞
SAR Correction	1.9	R	1.73	1	0.84	1.10	0.92	∞
Liquid Conductivity (meas.)	2.5	N	1.00	0.78	0.71	1.95	1.78	∞
Liquid Permittivity (meas.)	2.5	N	1.00	0.26	0.26	0.65	0.65	∞
Temp.unc Conductivity	1.7	R	1.73	0.78	0.71	0.77	0.70	∞
Temp. unc Permittivity	0.3	R	1.73	0.23	0.26	0.04	0.05	∞
Combined standard Uncertainty (u _c)						9.7	9.6	
Expanded Uncertainty (95% CONFIDENCE LEVEL)			k=	2		19.4	19.3	

Table 14 Uncertainty Budget for DASY5 Version 52– System verification 2450MHz

Estimated total measurement uncertainty for the DASY5 measurement system was $\pm 9.7\%$. The extended uncertainty (K = 2) was assessed to be $\pm 19.4\%$ based on 95% confidence level. The uncertainty is not added to the System verification measurement result.

9.0 EQUIPMENT LIST AND CALIBRATION DETAILS

Table 15 SPEAG DASY5 Version 52

Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due	Used For this Test?
Robot - Six Axes	Staubli	RX90BL	N/A	Not applicable	✓
Robot Remote Control	SPEAG	CS7MB	RX90B	Not applicable	✓
SAM Phantom	SPEAG	N/A	1260	Not applicable	
SAM Phantom	SPEAG	N/A	1060	Not applicable	
Flat Phantom	AndreT	10.1	P 10.1	Not Applicable	
Flat Phantom	AndreT	9.1	P 9.1	Not Applicable	
Flat Phantom	SPEAG	ELI 4.0	1101	Not Applicable	✓
Data Acquisition Electronics	SPEAG	DAE3 V1	359	06-June-2015	
Data Acquisition Electronics	SPEAG	DAE3 V1	442	03-Dec-2015	✓
Probe E-Field - Dummy	SPEAG	DP1	N/A	Not applicable	
Probe E-Field	SPEAG	ET3DV6	1380	11-Dec-2015	✓
Probe E-Field	SPEAG	ET3DV6	1377	10-June-2015	
Probe E-Field	SPEAG	ES3DV6	3029	Not Used	
Probe E-Field	SPEAG	EX3DV4	3956	13-June-2015	
Probe E-Field	SPEAG	EX3DV4	3657	11-Dec-2015	
Validation Source 150 MHz	SPEAG	CLA150	4003	3-Dec-2016	
Antenna Dipole 300 MHz	SPEAG	D300V3	1012	11-Dec-2015	
Antenna Dipole 450 MHz	SPEAG	D450V3	1074	11-Dec-2015	
Antenna Dipole 750 MHz	SPEAG	D750V2	1051	13-Dec-2016	
Antenna Dipole 900 MHz	SPEAG	D900V2	047	09-Dec-2017	
Antenna Dipole 1640 MHz	SPEAG	D1640V2	314	05-Dec-2017	
Antenna Dipole 1800 MHz	SPEAG	D1800V2	242	05-Dec-2017	
Antenna Dipole 1950 MHz	SPEAG	D1950V3	1113	6-Dec -2015	
Antenna Dipole 2300 MHz	SPEAG	D2300V2	1032	22-Aug-2016	
Antenna Dipole 2450 MHz	SPEAG	D2450V2	724	04-Dec-2015	✓
Antenna Dipole 2600 MHz	SPEAG	D2600V2	1044	13-Dec-2016	
Antenna Dipole 3500 MHz	SPEAG	D3500V2	1002	13-July-2013	
Antenna Dipole 5600 MHz	SPEAG	D5GHzV2	1008	16-Dec-2016	
RF Amplifier	EIN	603L	N/A	*In test	
RF Amplifier	Mini-Circuits	ZHL-42	N/A	*In test	✓
RF Amplifier	Mini-Circuits	ZVE-8G	N/A	*In test	
Synthesized signal generator	Hewlett Packard	86630A	3250A00328	*In test	
RF Power Meter	Hewlett Packard	437B	3125012786	*In test	✓
RF Power Sensor 0.01 - 18 GHz	Hewlett Packard	8481H	1545A01634	02-Sept-2015	✓
RF Power Meter	Rohde & Schwarz	NRP	101415	30-Sept-2015	
RF Power Sensor	Rohde & Schwarz	NRP - Z81	100174	30-Sept-2015	
RF Power Meter Dual	Hewlett Packard	435A	1733A05847	*In test	✓
RF Power Sensor	Hewlett Packard	8482A	2349A10114	*In test	· · · · · · · · · · · · · · · · · · ·
Network Analyser	Hewlett Packard	8714B	GB3510035	14-Oct-2015	
Network Analyser	Hewlett Packard	8753ES	JP39240130	10-Nov-2015	~
Dual Directional Coupler	Hewlett Packard	778D	1144 04700	*In test	•
Dual Directional Coupler	NARDA	3022	75453	*In test	✓

* Calibrated during the test for the relevant parameters.

10.0 TEST METHODOLOGY

T series LifeBook Convertibles should be evaluated in normal use positions, typical for lap-held bottom-face only. However the number of positions will depend on the number of configurations the laptop can be operated in. The "LIFEBOOK T SERIES" can be used in either a conventional laptop position (see Appendix A) or a Tablet configuration. The antenna location in the "LIFEBOOK T SERIES" is closest to the top of the screen when used in a conventional laptop configuration and due to the separation distances involved between the phantom and the laptop antenna, testing is not required in this position.

10.1 Positions

10.1.1 "Lap Held" Position Definition (0mm spacing)

The DUT was tested in the 2.00 mm flat section of the ELI4 Flat phantom for the "Lap Held" position. The Transceiver was placed at the bottom of the phantom and suspended in such way that the back of the DUT was touching the phantom. This device orientation simulates the PC's normal use – being held on the lap of the user. A spacing of 0mm ensures that the SAR results are conservative and represent a worst-case position.

10.1.2 "Edge On" Position (Portrait or Landscape)

The DUT was tested in the (2.00 mm) flat section of the ELI4 Flat phantom for the "Edge On" position. The Antenna edge of the Transceiver was placed underneath the flat section of the phantom and suspended until the edge touched the phantom. *Refer to Appendix A for photos of measurement positions.*

10.1.3 "Bystander" Position (25mm spacing)

The DUT was tested in the 2.00 mm flat section of the ELI4 Flat phantom for the "Bystander" position. The Transceiver was placed at the bottom of the phantom and suspended in such way that the back of it's LCD screen was parallel to phantom and at 25mm distance. This orientation simulates use of the device in a way that allows occasional RF exposure of the nearby person (Bystander).

10.2 List of All Test Cases (Antenna In/Out, Test Frequencies, User Modes)

The DUT has fixed antennas. Depending on the measured SAR level up to three test channels with the test sample operating at maximum power were recorded. The following table represents the matrix used to determine what testing was required. All relevant provisions of KDB 447498 are applied for SAR measurements of the host system.

Table 16 Testing configurations

Phantom	Device Mode	Antenna	Test Configurations				
Configuration			Channel (Remaining)	Channel (Highest)	Channel (Remaining)		
Lap Held	DSSS 2.4GHz	A		Х			
		В		Х			
Bystander	DSSS 2.4GHz	A		Х			
		В		Х			
Edge On	DSSS 2.4GHz	A		Х			
		В		Х			

Legend

Х

Testing Required in this configuration

Testing required in this configuration only if SAR of middle channel is more than 3dB below the SAR limit or it is the worst case.

NOTE: Throughout this report, Antenna A and B refer to Tx1 and Tx2 in the host respectively.

11.0 SAR MEASUREMENT RESULTS

The SAR values averaged over 1g tissue masses were determined for the sample DUT for all test configurations listed in section 10.2.

11.1 2450MHz SAR Results

There are two modes of operation within the 2450MHz band, they include OFDM and DSSS modulations. Refer to section 10.2 for selection of all device test configurations. Table below displays the SAR results.

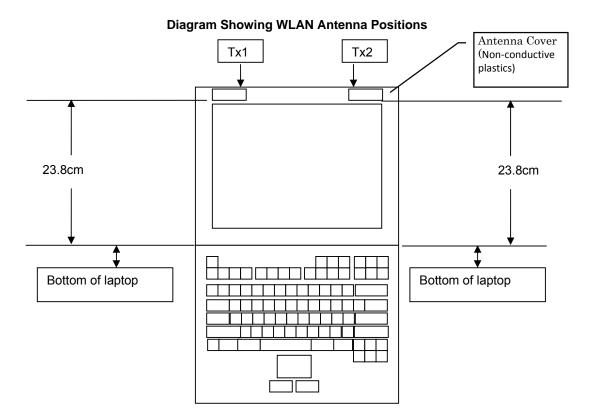
Test Position	Plot No.	Test Mode	Test Ch.	Test Freq.	SAR icluding	Drift (dB)	∈r (target 52.7	σ (target 1.95	Tune Up and DC
				(MHz)	tune up (1g) mW/g		±5% 50.1 to 55.3)	±5% 1.85 to 2.05)	SAR (mW/g)
Body Bystander ANT 1 (DSSS) 24-Aug-2015	1.	DSSS 2450 MHz 1Mbs	7	2442	0.021	-0.20	52.01	1.937	0.021
Body Bystander ANT 2 (DSSS) 24-Aug-2015	2.	DSSS 2450 MHz 1Mbs	7	2442	0.013	0.09	52.01	1.937	0.013
Body Lap Held ANT 1 (DSSS) 24-Aug-2015	3.	DSSS 2450 MHz 1Mbs	1	2412	0.074	-0.11	52.2	1.89	0.075
Body Lap Held ANT 1 (DSSS) 24-Aug-2015	4.	DSSS 2450 MHz 1Mbs	6	2437	0.073	-0.06	52.04	1.929	0.074
Body Lap Held ANT 1 (DSSS) 24-Aug-2015	5.	DSSS 2450 MHz 1Mbs	7	2442	0.061	-0.06	52.01	1.937	0.062
Body Lap Held ANT 1 (DSSS) 24-Aug-2015	6.	DSSS 2450 MHz 1Mbs	12	2467	0.057	-0.14	51.86	1.97	0.057
Body Lap Held ANT 1 (DSSS) 24-Aug-2015	7.	DSSS 2450 MHz 1Mbs	13	2472	0.016	0.08	51.83	1.973	0.016
Body Lap Held ANT 2 (DSSS) 24-Aug-2015	8.	DSSS 2450 MHz 1Mbs	1	2412	0.098	-0.03	52.2	1.89	0.099
Body Lap Held ANT 2 (DSSS) 24-Aug-2015	9.	DSSS 2450 MHz 1Mbs	6	2437	0.127	-0.08	52.04	1.929	0.128
Body Lap Held ANT 2 (DSSS) 24-Aug-2015	10.	DSSS 2450 MHz 1Mbs	7	2442	0.131	-0.07	52.01	1.937	0.132
Body Lap Held ANT 2 (DSSS) 24-Aug-2015	11.	DSSS 2450 MHz 1Mbs	12	2467	0.147	-0.15	51.86	1.97	0.148
Body Lap Held ANT 2 (DSSS) 24-Aug-2015	12.	DSSS 2450 MHz 1Mbs	13	2472	0.046	0.18	51.83	1.973	0.046
Body Edge 1 ANT 1 (DSSS) 24-Aug-2015	13.	DSSS 2450 MHz 1Mbs	1	2412	0.355	-0.08	52.2	1.89	0.359
Body Edge 1 ANT 1 (DSSS) 24-Aug-2015	14.	DSSS 2450 MHz 1Mbs	6	2437	0.345	-0.04	52.04	1.929	0.348
Body Edge 1 ANT 1 (DSSS) 24-Aug-2015	15.	DSSS 2450 MHz 1Mbs	7	2442	0.312	0.03	52.01	1.937	0.315
Body Edge 1 ANT 1 (DSSS) 24-Aug-2015	16.	DSSS 2450 MHz 1Mbs	12	2467	0.303	0.00	51.86	1.97	0.306
Body Edge 1 ANT 1 (DSSS) 24-Aug-2015	17.	DSSS 2450 MHz 1Mbs	13	2472	0.069	0.07	51.83	1.973	0.069
Body Edge 1 ANT 2 (DSSS) 24-Aug-2015	18.	DSSS 2450 MHz 1Mbs	1	2412	0.146	-0.01	52.2	1.89	0.147
Body Edge 1 ANT 2 (DSSS) 24-Aug-2015	19.	DSSS 2450 MHz 1Mbs	6	2437	0.165	0.01	52.04	1.929	0.167
Body Edge 1 ANT 2 (DSSS) 24-Aug-2015	20.	DSSS 2450 MHz 1Mbs	7	2442	0.162	-0.04	52.01	1.937	0.164

Table 17 SAR MEASUREMENT RESULTS

Body Edge 1 ANT 2 (DSSS) 24-Aug-2015	21.	DSSS 2450 MHz 1Mbs	12	2467	0.174	0.04	51.86	1.97	0.176
Body Edge 1 ANT 2 (DSSS) 24-Aug-2015	22.	DSSS 2450 MHz 1Mbs	13	2472	0.052	-0.03	51.83	1.973	0.053
Body Edge 2 ANT 1 (DSSS) 24-Aug-2015	23.	DSSS 2450 MHz 1Mbs	7	2442	0.205	-0.10	52.01	1.937	0.207
Body Edge 4 ANT 2 (DSSS) 24-Aug-2015	24.	DSSS 2450 MHz 1Mbs	1	2412	0.244	0.03	52.2	1.89	0.246
Body Edge 4 ANT 2 (DSSS) 24-Aug-2015	25.	DSSS 2450 MHz 1Mbs	6	2437	0.308	0.01	52.04	1.929	0.311
Body Edge 4 ANT 2 (DSSS) 24-Aug-2015	26.	DSSS 2450 MHz 1Mbs	7	2442	0.303	0.16	52.01	1.937	0.306
Body Edge 4 ANT 2 (DSSS) 24-Aug-2015	27.	DSSS 2450 MHz 1Mbs	12	2467	0.338	0.00	51.86	1.97	0.341
Body Edge 4 ANT 2 (DSSS) 24-Aug-2015	28.	DSSS 2450 MHz 1Mbs	13	2472	0.106	0.01	51.83	1.973	0.107
System Check 24-Aug- 2015	29.	CW	1	2450	13.400	-0.10	51.96	1.949	-

NOTE: The measurement uncertainty of 24.53% for 2.45GHz was not added to the result.

12.0 COMPLIANCE STATEMENT


The Fujitsu T SERIES LIFEBOOK CONVERTIBLE PC, Model: T936 with INTEL M.2 integrated Wireless LAN and Bluetooth Module (INTEL SNOWFIELD PEAK 802.11a/b/g/n/ac), Model: 8260NGW was found to comply with the FCC and RSS-102 SAR requirements.

The highest Measured SAR level was 0.355 mW/g for a 1g cube. The manufacturer's duty cycle is 99%. Scaling the SAR value, the maximum Reported SAR value is 0.359 **mW/g.** This value was measured at 2412 MHz (channel 1) in the "Body Edge 1" position in DSSS modulation mode at the antenna 1. This was below the limit of 1.6 mW/g for uncontrolled exposure, even taking into account the measurement uncertainty of 24.53 %.

13.0 MULTIBAND EVALUATION CONSIDERATIONS

Fujitsu **T SERIES LIFEBOOK CONVERTIBLE** PC, Model: **T936** Worst case WLAN SAR was recorded in 5GHz frequency range, report titled "M150814_FCC_8260NGW_SAR_5.6" contains section that describes multiband evaluation.

