

Report No.: ZR/2020/C004701

Page : 1 of 73

# FCC SAR TEST REPORT

The following samples were submitted and identified on behalf of the client as:

EUT Description GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, GPS and NFC

Company Name Sony Corporation

Company Address 1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan

**Standards** IEEE/ANSI C95.1-1992, IEEE 1528-2013, KDB 248227D01v02r02,

KDB 865664 D01v01r04, KDB 865664 D02v01r02, KDB 941225 D01v03r01, KDB 941225 D06v02r01, KDB 447498 D01v06, KDB 941225 D05v02r05,

KDB 648474 D04 v01r03

FCC ID PY7-63649Q Date of Receipt: 2020-12-23

**Date of Test:** 2021-03-17 to 2021-03-22

Date of Issue: 2021-03-31
Test Result: PASS \*

In the configuration tested, the EUT complied with the standards specified above.

#### Remarks:

This report details the results of the testing carried out on one sample, the results contained in this tes do not relate to other samples of the same product. The manufacturer should ensure that all proc series production are in conformity with the product sample detailed in this report.

Signed on behalf of SGS

Sr. Engineer Supervisor

Jackson Li Simon Ling

Date: Mar. 31, 2021 Date: Mar. 31, 2021

Authorized Signature:

Derde yang

Derek Yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443, or email: CN.Doccheck@gs.com.

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.
中国 • 深圳 • 科技园中区M-10栋一号厂房 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594 sgs.china@sgs.com

Simon ling



Report No.: ZR/2020/C004701

Page: 2 of 73

## **REVISION HISTORY**

| Report Number   | Revision | Description | Issue Date |
|-----------------|----------|-------------|------------|
| ZR/2020/C004701 | 01       | Original    | 2021-03-31 |
|                 |          |             |            |
|                 |          |             |            |
|                 |          |             |            |
|                 |          |             |            |
|                 |          |             |            |
|                 |          |             |            |
|                 |          |             |            |
|                 |          |             |            |
|                 |          |             |            |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

3 of 73 Page:

## **CONTENTS**

| 1 | Ger   | neral information                              | 4  |
|---|-------|------------------------------------------------|----|
|   | 1.1   | Testing Laboratory                             | 4  |
|   | 1.2   | Details of Applicant                           | 4  |
|   | 1.3   | Test Facility                                  | 5  |
|   | 1.4   | Description of EUT                             | 6  |
|   | 1.5   | Test Environment                               | 29 |
|   | 1.6   | Operation Description                          | 29 |
|   | 1.7   | Positioning Procedure                          | 42 |
|   | 1.8   | Evaluation Procedures                          | 44 |
|   | 1.9   | Probe Calibration Procedures                   | 45 |
|   | 1.9.1 | Transfer Calibration with Temperature Probes   | 45 |
|   | 1.9.2 | 2 Calibration with Analytical Fields           | 46 |
|   | 1.10  | The SAR Measurement System                     | 47 |
|   | 1.11  | System Component                               | 48 |
|   | 1.12  | SAR System Check                               | 52 |
|   | 1.13  | Tissue Simulant Fluid for the Frequency Band   | 54 |
|   | 1.14  | Test Standards and Limits                      | 56 |
| 2 | Sur   | nmary of Results                               | 58 |
| 3 | Sim   | nultaneous Transmission Analysis               | 68 |
|   | 3.1   | Simultaneous Transmission Scenarios:           | 68 |
|   | 3.2   | Simultaneous Transmission Combination Scenario | 69 |
| 4 | Inst  | truments List                                  | 70 |
| 5 | Mea   | asurements                                     | 72 |
| 6 | SAI   | R System Performance Check                     | 72 |
| 7 | Pho   | otographs                                      | 72 |
| 8 |       | E & Probe Calibration Certificate              |    |
| 9 |       | R measurement variability and uncertainty      |    |
|   |       |                                                |    |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: ZR/2020/C004701

4 of 73 Page:

## 1 General Information

## 1.1 Testing Laboratory

| Company:   | SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch                             |  |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|            | No. 1 Workshop, M-10, Middle section, Science & Technology Park, Shenzhen, Guangdong, China |  |  |  |  |  |  |  |
| Post code: | 518057                                                                                      |  |  |  |  |  |  |  |
| Telephone: | +86 (0) 755 2601 2053                                                                       |  |  |  |  |  |  |  |
| Fax:       | +86 (0) 755 2671 0594                                                                       |  |  |  |  |  |  |  |

## 1.2 Details of Applicant

|               | · <del>-</del>                              |
|---------------|---------------------------------------------|
| Applicant:    | Sony Corporation                            |
| Address:      | 1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan |
| Manufacturer: | Sony Corporation                            |
| Address:      | 1-7-1 Konan Minato-ku Tokyo, 108-0075 Japan |





Report No.: ZR/2020/C004701

Page: 5 of 73

## 1.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

### • CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

### · A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 3816.01.

### VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

## FCC –Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

## Industry Canada (IC)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

CAB identifier: CN0006

IC#: 4620C.





Report No.: ZR/2020/C004701

6 of 73 Page:

# 1.4 Description of EUT

| EUT Description    | GSM/WCDMA/LTE Phone with BT, DTS/UNII a/b/g/n/ac, GPS and NFC |                                 |                                                  |            |  |  |  |  |
|--------------------|---------------------------------------------------------------|---------------------------------|--------------------------------------------------|------------|--|--|--|--|
| FCC ID             | PY7-63649Q                                                    |                                 |                                                  |            |  |  |  |  |
| SN:                | 005129ADNVM2                                                  |                                 |                                                  |            |  |  |  |  |
| Mode of Operation  | ─────────────────────────────────────                         | ⊠HSUPA ⊠HSPA+ ⊠LTE FDD ⊠LTE TDD |                                                  |            |  |  |  |  |
|                    | GSM                                                           |                                 | 1/8.3                                            |            |  |  |  |  |
|                    | GPRS (support multi class 33 max)                             | 1/2.<br>1/4.                    | )75 (1Dn4<br>77 (1Dn3l<br>15 (1Dn2l<br>.3 (1Dn1U | JP)<br>JP) |  |  |  |  |
| Duty Cycle         | LTE FDD                                                       |                                 | 1:1                                              |            |  |  |  |  |
|                    | LTE TDD                                                       | 1:1.58                          |                                                  |            |  |  |  |  |
|                    | WCDMA                                                         | 1:1                             |                                                  |            |  |  |  |  |
|                    | WLAN802.11 b                                                  | 99%                             |                                                  |            |  |  |  |  |
|                    | WLAN802.11 ac 80M                                             | 94%                             |                                                  |            |  |  |  |  |
|                    | Bluetooth                                                     | 77%                             |                                                  |            |  |  |  |  |
|                    | GSM850                                                        | 824                             | _                                                | 849        |  |  |  |  |
|                    | GSM1900                                                       | 1850                            | _                                                | 1910       |  |  |  |  |
|                    | WCDMA Band IV                                                 | 1710                            | _                                                | 1755       |  |  |  |  |
|                    | LTE FDD Band 4                                                | 1710                            | _                                                | 1755       |  |  |  |  |
|                    | LTE FDD Band 12                                               | 698                             | _                                                | 716        |  |  |  |  |
| TX Frequency Range | LTE TDD Band 41                                               | 2496                            | _                                                | 2690       |  |  |  |  |
| (MHz)              | WiFi 2.4GHz                                                   | 2412                            | _                                                | 2462       |  |  |  |  |
|                    |                                                               | 5150                            |                                                  | 5250       |  |  |  |  |
|                    | WiFi 5GHz                                                     | 5250                            |                                                  | 5350       |  |  |  |  |
|                    |                                                               | 5470                            | _                                                | 5725       |  |  |  |  |
|                    | Divisto eth                                                   | 5725                            |                                                  | 5850       |  |  |  |  |
| N                  | Bluetooth                                                     | 2402                            | _                                                | 2480       |  |  |  |  |

Note: This project WLAN 5GHz (5250-5350 & 5470-5725) does not support Hotspot.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.sepx">http://www.sgs.com/en/Terms-and-Conditions.sepx</a> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.sepx">http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.sepx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

Page: 7 of 73

### **TEST SUMMARY**

|                   | Maximu               | m Reported    | d SAR(W/kg) |                                |  |
|-------------------|----------------------|---------------|-------------|--------------------------------|--|
| Frequency Band    | Head                 | Body-<br>worn | Hotspot     | Product<br>specific<br>10g SAR |  |
| GSM850            | 0.41                 | 0.36          | 0.54        | /                              |  |
| GSM1900           | 0.16                 | 0.13          | 0.29        | /                              |  |
| WCDMA Band IV     | 0.12                 | 0.16          | 0.34        | /                              |  |
| LTE Band 4        | 0.09                 | 0.10          | 0.23        | /                              |  |
| LTE Band 12       | 0.21                 | 0.36          | 0.41        | /                              |  |
| LTE Band 41       | 0.13                 | 0.52          | 0.96        | /                              |  |
| WI-FI (2.4GHz)    | 0.56                 | 0.08          | 0.17        | /                              |  |
| WI-FI (5GHz)      | 0.56                 | 0.23          | 0.29        | 1.15                           |  |
| ВТ                | 0.21                 | 0.03          | 0.07        | /                              |  |
| SAR Limited(W/kg) | 1.6                  |               |             |                                |  |
| Maximum Simultan  | eous Transmission SA | R (W/kg)      |             |                                |  |
| Scenario          | Head                 | Body-<br>worn | Hotspot     | Product<br>specific<br>10g SAR |  |
| Sum SAR           | 1.03                 | 0.78          | 1.32        | 1.15                           |  |
| SPLSR             | N/A                  | N/A           | N/A         | NA                             |  |
| SPLSR Limited     |                      | 0.04          |             |                                |  |

## **DUT Antenna Locations:**

Please see the Appendix D for antenna locations.

The test device is a mobile phone. The overall diagonal dimension of this device is 163.0 mm. Per KDB 648474 D04, because the diagonal distance of this device is ≥160mm, so it is a phablet.

According to the distance between LTE/WCDMA/GSM&WIFI&BT antennas and the sides of the EUT we can draw the conclusion that:

| EUT Sides for SAR Testing             |     |     |     |     |     |     |  |  |
|---------------------------------------|-----|-----|-----|-----|-----|-----|--|--|
| Mode Front Back Left Right Top Bottom |     |     |     |     |     |     |  |  |
| Main Ant (Ant0 & Ant1)                | Yes | Yes | Yes | Yes | No  | Yes |  |  |
| WIFI&BT Ant (Ant6 & Ant7)             | Yes | Yes | Yes | Yes | Yes | No  |  |  |

Table 1: EUT Sides for SAR Testing

#### Note:

1) When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions</a> for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: ZR/2020/C004701

Page: 8 of 73

## Power reduction by country code detection mechanism:

This device uses the mobile country code (MCC) to indicate whether the users in CE countries or FCC countries. The selection between CE countries and FCC countries power levels is based on the country code detection mechanism. It can determine the countries where users are and set the relevant power level for 2/3/4G/WiFi 2.4G antenna accordingly

| Antenna Power Level (dBm) |                                   |  |  |  |  |  |
|---------------------------|-----------------------------------|--|--|--|--|--|
| Band                      | MCC OF FCC COUNTRY (FCC standard) |  |  |  |  |  |
| GSM1900                   | 28.0                              |  |  |  |  |  |
| WCDMA Band IV             | 23.0                              |  |  |  |  |  |
| LTE Band 4                | 21.5                              |  |  |  |  |  |
| LTE Band 41               | 22.8                              |  |  |  |  |  |
| WiFi 2.4G 802.11b         | 19.0                              |  |  |  |  |  |
| WiFi 2.4G 802.11g         | 18.0                              |  |  |  |  |  |
| WiFi 2.4G 802.11n 20M     | 18.0                              |  |  |  |  |  |

### For FCC SAR test:

For FCC SAR test, SAR test should be evaluated at the power level of FCC mobile country code for each exposure conditions.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.genyahor-Cormat documents">http://www.sgs.com/en/Terms-and-Conditions for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en/Cocument.spx">http://www.sgs.com/en/Terms-and-Conditions/Terms-en/Cocument.spx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

Page: 9 of 73

## **GSM** – conducted power table:

| GOIII GOIIG | GSM 850      |          |       |       |         |                  |                                 |          |         |          |              |                  |     |     |     |         |
|-------------|--------------|----------|-------|-------|---------|------------------|---------------------------------|----------|---------|----------|--------------|------------------|-----|-----|-----|---------|
|             | Burst Output | Power(dB | im)   |       | Tungun  | Division Fasters | Frame-Ave                       | Tungun   |         |          |              |                  |     |     |     |         |
| Chanr       | nel          | 128      | 190   | 251   | Tune up | Division Factors | 128                             | 190      | 251     | Tune up  |              |                  |     |     |     |         |
| GSM(GMSK)   | GSM          | 32.74    | 32.69 | 32.61 | 33.50   | -9.19            | 23.55                           | 23.50    | 23.42   | 24.31    |              |                  |     |     |     |         |
|             | 1 TX Slot    | 32.70    | 32.72 | 32.67 | 33.50   | -9.19            | 23.51                           | 23.53    | 23.48   | 24.31    |              |                  |     |     |     |         |
| GPRS/EGPRS  | 2 TX Slots   | 29.97    | 30.00 | 29.95 | 31.50   | -6.18            | 23.79                           | 23.82    | 23.77   | 25.32    |              |                  |     |     |     |         |
| (GMSK)      | 3 TX Slots   | 29.16    | 29.10 | 29.10 | 30.00   | -4.42            | 24.74                           | 24.68    | 24.68   | 25.58    |              |                  |     |     |     |         |
|             | 4 TX Slots   | 27.67    | 27.70 | 27.64 | 29.00   | -3.17            | 24.50                           | 24.53    | 24.47   | 25.83    |              |                  |     |     |     |         |
|             | 1 TX Slot    | 26.26    | 26.34 | 26.42 | 27.00   | -9.19            | 17.07                           | 17.15    | 17.23   | 17.81    |              |                  |     |     |     |         |
| EGPRS(8PSK) | 2 TX Slots   | 25.04    | 24.97 | 24.97 | 25.50   | -6.18            | 18.86                           | 18.79    | 18.79   | 19.32    |              |                  |     |     |     |         |
| EGPRS(8PSK) | 3 TX Slots   | 24.34    | 24.28 | 24.27 | 24.50   | -4.42            | 19.92                           | 19.86    | 19.85   | 20.08    |              |                  |     |     |     |         |
|             | 4 TX Slots   | 23.13    | 23.13 | 23.07 | 23.50   | -3.17            | 19.96                           | 19.96    | 19.90   | 20.33    |              |                  |     |     |     |         |
|             |              |          |       |       | GSM 19  | 00               |                                 |          |         |          |              |                  |     |     |     |         |
|             | Burst Output | Power(dB | lm)   |       | Tungun  | Division Factors | Frame-Average Output Power(dBm) |          |         | T        |              |                  |     |     |     |         |
| Chann       | el           | 512      | 661   | 810   | Tune up | Turic up         | rune up                         | Turie up | rune up | Turic up | 810 Tulle up | Division Factors | 512 | 661 | 810 | Tune up |
| GSM(GMSK)   | GSM          | 27.27    | 26.95 | 27.15 | 28.00   | -9.19            | 18.08                           | 17.76    | 17.96   | 18.81    |              |                  |     |     |     |         |
|             | 1 TX Slot    | 27.05    | 26.97 | 26.92 | 28.00   | -9.19            | 17.86                           | 17.78    | 17.73   | 18.81    |              |                  |     |     |     |         |
| GPRS/EGPRS  | 2 TX Slots   | 25.83    | 25.90 | 25.88 | 27.00   | -6.18            | 19.65                           | 19.72    | 19.70   | 20.82    |              |                  |     |     |     |         |
| (GMSK)      | 3 TX Slots   | 24.61    | 24.54 | 24.63 | 25.00   | -4.42            | 20.19                           | 20.12    | 20.21   | 20.58    |              |                  |     |     |     |         |
|             | 4 TX Slots   | 22.19    | 22.19 | 22.18 | 24.00   | -3.17            | 19.02                           | 19.02    | 19.01   | 20.83    |              |                  |     |     |     |         |
|             | 1 TX Slot    | 23.87    | 23.87 | 23.80 | 24.50   | -9.19            | 14.68                           | 14.68    | 14.61   | 15.31    |              |                  |     |     |     |         |
| ECDDC/0DC/A | 2 TX Slots   | 21.58    | 21.64 | 21.61 | 23.50   | -6.18            | 15.40                           | 15.46    | 15.43   | 17.32    |              |                  |     |     |     |         |
| EGPRS(8PSK) | 3 TX Slots   | 19.58    | 19.54 | 19.60 | 21.50   | -4.42            | 15.16                           | 15.12    | 15.18   | 17.08    |              |                  |     |     |     |         |
| -           | 4 TX Slots   | 18.50    | 18.56 | 18.59 | 20.50   | -3.17            | 15.33                           | 15.39    | 15.42   | 17.33    |              |                  |     |     |     |         |

### Note:

1) . CMW500 measures GSM peak and average output power for active timeslots. For SAR the time based average power is relevant. The difference in between depends on the duty cycle of the TDMA signal:

| No. of timeslots                                     | 1     | 2      | 3      | 4       |
|------------------------------------------------------|-------|--------|--------|---------|
| Duty Cycle                                           | 1:8.3 | 1:4.15 | 1:2.77 | 1:2.075 |
| Time based avg. power compared to slotted avg. power | -9.19 | -6.18  | -4.42  | -3.17   |

2). The frame-averaged power is linearly proportion to the slot number configured and it is linearly scaled the maximum burst-averaged power based on time slots. The calculated method is shown as below:

Frame-averaged power = 10 x log (Burst-averaged power mW x Slot used / 8

3) . When the maximum output power variation across the required test channels is  $> \frac{1}{2}$  dB, instead of the middle channel, the highest output power channel must be used



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions</a> for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

10 of 73 Page:

WCDMA - conducted power table:

|                              | WCDMA Band IV |       |       |       |         |  |  |  |  |
|------------------------------|---------------|-------|-------|-------|---------|--|--|--|--|
| Average Conducted Power(dBm) |               |       |       |       |         |  |  |  |  |
| C                            | Channel       | 1312  | 1412  | 1513  | Tune up |  |  |  |  |
| 14/00144                     | 12.2kbps RMC  | 21.95 | 21.82 | 22.21 | 23.00   |  |  |  |  |
| WCDMA                        | 12.2kbps AMR  | 21.93 | 21.80 | 22.19 | 23.00   |  |  |  |  |
|                              | Subtest 1     | 20.64 | 20.54 | 20.52 | 21.50   |  |  |  |  |
| LICDDA                       | Subtest 2     | 21.00 | 20.84 | 20.85 | 21.50   |  |  |  |  |
| HSDPA                        | Subtest 3     | 20.29 | 20.20 | 20.27 | 21.00   |  |  |  |  |
|                              | Subtest 4     | 20.33 | 20.14 | 20.32 | 21.00   |  |  |  |  |
|                              | Subtest 1     | 20.76 | 20.73 | 20.80 | 21.50   |  |  |  |  |
|                              | Subtest 2     | 18.93 | 18.50 | 18.63 | 19.50   |  |  |  |  |
| HSUPA                        | Subtest 3     | 19.94 | 19.64 | 19.55 | 20.50   |  |  |  |  |
|                              | Subtest 4     | 18.85 | 18.60 | 18.75 | 19.50   |  |  |  |  |
|                              | Subtest 5     | 20.69 | 20.66 | 20.88 | 21.50   |  |  |  |  |
|                              | Subtest 1     | 20.71 | 20.58 | 20.71 | 21.50   |  |  |  |  |
|                              | Subtest 2     | 20.98 | 20.65 | 20.97 | 21.50   |  |  |  |  |
| DC-HSDPA                     | Subtest 3     | 20.42 | 20.43 | 20.48 | 21.00   |  |  |  |  |
|                              | Subtest 4     | 20.21 | 20.00 | 20.15 | 21.00   |  |  |  |  |
| HSPA+                        | 16QAM         | 19.97 | 19.90 | 19.89 | 20.50   |  |  |  |  |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: ZR/2020/C004701

11 of 73 Page:

LTE - conducted power table:

| LTE - condu | LTE B      |         |           | Conducted Power(dBm) |         |         |         |  |
|-------------|------------|---------|-----------|----------------------|---------|---------|---------|--|
| Bandwidth   | Modulation | RB size | RB offset | Channel              | Channel | Channel | Tune up |  |
|             |            |         |           | 19957                | 20175   | 20393   |         |  |
|             |            | 1       | 0         | 19.85                | 19.94   | 20.26   | 21.50   |  |
|             |            | 1       | 2         | 19.98                | 20.09   | 20.32   | 21.50   |  |
|             |            | 1       | 5         | 19.95                | 20.06   | 20.31   | 21.50   |  |
|             | QPSK       | 3       | 0         | 19.91                | 20.02   | 20.30   | 21.50   |  |
|             |            | 3       | 2         | 20.07                | 20.10   | 20.36   | 21.50   |  |
|             |            | 3       | 3         | 19.88                | 19.98   | 20.22   | 21.50   |  |
|             |            | 6       | 0         | 18.98                | 19.03   | 19.34   | 20.50   |  |
|             |            | 1       | 0         | 19.57                | 19.27   | 19.48   | 20.50   |  |
|             |            | 1       | 2         | 19.71                | 19.47   | 19.89   | 20.50   |  |
|             |            | 1       | 5         | 19.12                | 19.24   | 19.32   | 20.50   |  |
| 1.4MHz      | 16QAM      | 3       | 0         | 18.98                | 19.17   | 19.41   | 20.50   |  |
|             |            | 3       | 2         | 19.02                | 19.13   | 19.48   | 20.50   |  |
|             |            | 3       | 3         | 19.09                | 19.11   | 19.47   | 20.50   |  |
|             |            | 6       | 0         | 18.10                | 18.06   | 18.27   | 19.50   |  |
|             | 64QAM      | 1       | 0         | 18.59                | 18.98   | 18.73   | 19.50   |  |
|             |            | 1       | 2         | 18.56                | 18.64   | 18.59   | 19.50   |  |
|             |            | 1       | 5         | 18.50                | 18.78   | 18.49   | 19.50   |  |
|             |            | 3       | 0         | 18.57                | 18.35   | 18.53   | 19.50   |  |
|             |            | 3       | 2         | 18.55                | 18.70   | 18.67   | 19.50   |  |
|             |            | 3       | 3         | 18.35                | 18.62   | 18.53   | 19.50   |  |
|             |            | 6       | 0         | 17.54                | 17.64   | 17.60   | 18.50   |  |
|             |            |         | 55 (/ )   | Channel              | Channel | Channel | Tune up |  |
| Bandwidth   | Modulation | RB size | RB offset | 19965                | 20175   | 20385   |         |  |
|             |            | 1       | 0         | 20.03                | 20.05   | 20.30   | 21.50   |  |
|             |            | 1       | 7         | 19.98                | 20.04   | 20.40   | 21.50   |  |
|             |            | 1       | 14        | 20.12                | 20.14   | 20.26   | 21.50   |  |
|             | QPSK       | 8       | 0         | 19.13                | 19.11   | 19.41   | 20.50   |  |
|             |            | 8       | 4         | 19.07                | 19.14   | 19.40   | 20.50   |  |
|             |            | 8       | 7         | 19.04                | 19.17   | 19.35   | 20.50   |  |
| 3MHz        |            | 15      | 0         | 19.12                | 19.22   | 19.39   | 20.50   |  |
|             |            | 1       | 0         | 19.71                | 19.62   | 19.44   | 20.50   |  |
|             |            | 1       | 7         | 19.42                | 19.07   | 19.97   | 20.50   |  |
|             |            | 1       | 14        | 19.61                | 19.44   | 20.04   | 20.50   |  |
|             | 16QAM      | 8       | 0         | 18.21                | 18.29   | 18.33   | 19.50   |  |
|             |            | 8       | 4         | 18.19                | 18.34   | 18.42   | 19.50   |  |
|             |            | 8       | 7         | 18.09                | 18.20   | 18.44   | 19.50   |  |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

12 of 73 Page:

|               |            | 15      | 0         | 18.10   | 18.13   | 18.42   | 19 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------|------------|---------|-----------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |            | 1       | 0         | 18.92   | 18.54   | 18.58   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |            | 1       | 7         | 18.68   | 19.05   | 18.83   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |            | 1       | 14        | 18.62   | 18.56   | 18.40   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 64QAM      | 8       | 0         | 17.52   | 17.53   | 17.47   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | 0.07       | 8       | 4         | 17.50   | 17.75   | 17.57   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |            | 8       | 7         | 17.42   | 17.56   | 17.62   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |            | 15      | 0         | 17.43   | 17.67   | 17.58   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |            | -       | -         | Channel | Channel | Channel |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Bandwidth     | Modulation | RB size | RB offset | 19975   | 20175   | 20375   | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|               |            | 1       | 0         | 19.99   | 20.15   | 20.28   | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 1       | 13        | 20.02   | 20.11   | 20.45   | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 1       | 24        | 20.09   | 20.06   | 20.37   | 21.50 21.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 20.50 19.50 19.50 19.50 19.50 19.50 18.50 18.50 18.50 Tune up  21.50 21.50 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | QPSK       | 12      | 0         | 19.03   | 19.13   | 19.48   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 12      | 6         | 19.13   | 19.13   | 19.45   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 12      | 13        | 19.11   | 19.13   | 19.43   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 25      | 0         | 19.14   | 19.13   | 19.51   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 1       | 0         | 19.22   | 19.62   | 19.92   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 1       | 13        | 19.08   | 19.23   | 19.63   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 1       | 24        | 19.36   | 19.17   | 20.05   | 19.50 19.50 19.50 19.50 18.50 18.50 18.50 18.50 18.50  Tune up  21.50 20.50 20.50 20.50 20.50 20.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 |
| 5MHz          | 16QAM      | 12      | 0         | 18.19   | 18.21   | 18.48   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 12      | 6         | 18.22   | 18.16   | 18.46   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 12      | 13        | 18.15   | 18.15   | 18.56   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 25      | 0         | 18.11   | 18.14   | 18.56   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 1       | 0         | 18.91   | 18.53   | 18.57   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 1       | 13        | 18.64   | 19.01   | 18.79   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 1       | 24        | 18.61   | 18.55   | 18.39   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | 64QAM      | 12      | 0         | 17.56   | 17.57   | 17.51   | 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 12      | 6         | 17.48   | 17.73   | 17.55   | 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 12      | 13        | 17.39   | 17.53   | 17.59   | 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 25      | 0         | 17.46   | 17.70   | 17.61   | 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Donadoui dala | Madulatian | DD sins | DD effect | Channel | Channel | Channel | Tune up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bandwidth     | Modulation | RB size | RB offset | 20000   | 20175   | 20350   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               |            | 1       | 0         | 19.94   | 20.04   | 20.14   | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 1       | 25        | 19.84   | 20.09   | 20.35   | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 1       | 49        | 19.99   | 19.98   | 20.11   | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | QPSK       | 25      | 0         | 19.11   | 19.16   | 19.37   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10MHz         |            | 25      | 13        | 19.14   | 19.19   | 19.38   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 25      | 25        | 19.00   | 19.24   | 19.38   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |            | 50      | 0         | 19.08   | 19.13   | 19.35   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | 160444     | 1       | 0         | 19.14   | 19.64   | 19.31   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | 16QAM      | 1       | 25        | 19.15   | 19.64   | 19.19   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.sepx">http://www.sgs.com/en/Terms-and-Conditions.sepx</a> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.sepx">http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.sepx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

13 of 73 Page:

|           | ı          | 1       | 1         | 1       | I       | ı       | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|------------|---------|-----------|---------|---------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |            | 1       | 49        | 19.60   | 19.49   | 19.91   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 25      | 0         | 18.12   | 18.25   | 18.44   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 25      | 13        | 18.13   | 18.30   | 18.47   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 25      | 25        | 17.96   | 18.14   | 18.38   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 50      | 0         | 18.12   | 18.18   | 18.30   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 1       | 0         | 18.93   | 18.55   | 18.59   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 1       | 25        | 18.68   | 19.05   | 18.83   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 1       | 49        | 18.64   | 18.58   | 18.42   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | 64QAM      | 25      | 0         | 17.53   | 17.54   | 17.48   | 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 25      | 13        | 17.51   | 17.76   | 17.58   | 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 25      | 25        | 17.40   | 17.54   | 17.60   | 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 50      | 0         | 17.43   | 17.67   | 17.58   | 18.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            |         | 55 (/ )   | Channel | Channel | Channel | Tune up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Bandwidth | Modulation | RB size | RB offset | 20025   | 20175   | 20325   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |            | 1       | 0         | 19.92   | 19.88   | 20.06   | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 1       | 38        | 19.78   | 19.84   | 20.12   | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 1       | 74        | 19.77   | 19.84   | 20.12   | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | QPSK       | 36      | 0         | 18.94   | 19.03   | 19.11   | 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 18.50 18.50 18.50 18.50 21.50 21.50 20.50 20.50 20.50 20.50 20.50 20.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 |
|           |            | 36      | 18        | 18.94   | 19.06   | 19.29   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 36      | 39        | 18.85   | 19.01   | 19.21   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 75      | 0         | 18.86   | 19.00   | 19.18   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |            | 1       | 0         | 18.87   | 19.23   | 19.18   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |            | 1       | 38        | 19.40   | 19.09   | 19.29   | 19.50 19.50 19.50 19.50 18.50 18.50 18.50 18.50 18.50  Tune up  21.50 21.50 20.50 20.50 20.50 20.50 20.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50 19.50                                                                                                                                 |
|           |            | 1       | 74        | 19.32   | 18.97   | 19.37   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 15MHz     | 16QAM      | 36      | 0         | 17.93   | 18.04   | 18.16   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |            | 36      | 18        | 17.85   | 17.98   | 18.30   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 36      | 39        | 17.85   | 18.08   | 18.21   | 19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 75      | 0         | 17.80   | 18.01   | 18.15   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |            | 1       | 0         | 18.89   | 18.51   | 18.55   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |            | 1       | 38        | 18.68   | 19.05   | 18.83   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |            | 1       | 74        | 18.62   | 18.56   | 18.40   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | 64QAM      | 36      | 0         | 17.54   | 17.55   | 17.49   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |            | 36      | 18        | 17.44   | 17.69   | 17.51   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |            | 36      | 39        | 17.37   | 17.51   | 17.57   | 20.50<br>20.50<br>20.50<br>19.50<br>19.50<br>19.50<br>19.50<br>19.50<br>19.50<br>19.50<br>19.50<br>19.50<br>19.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           |            | 75      | 0         | 17.35   | 17.59   | 17.50   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|           |            | . •     |           | Channel | Channel | Channel |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Bandwidth | Modulation | RB size | RB offset | 20050   | 20175   | 20300   | . a.io ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|           |            | 1       | 0         | 19.86   | 19.84   | 20.01   | 21.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 1       | 50        | 19.68   | 20.15   | 20.11   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20MHz     | QPSK       | 1       | 99        | 19.79   | 19.80   | 20.11   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ZUIVII IZ | Qi Oit     | 50      | 0         | 18.90   | 19.80   | 19.00   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |            | 50      | 25        | 18.88   | 18.95   | 19.16   | 20.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

14 of 73 Page:

|       | 50  | 50 | 18.80 | 18.93 | 19.19 | 20.50 |
|-------|-----|----|-------|-------|-------|-------|
|       | 100 | 0  | 18.88 | 18.97 | 18.95 | 20.50 |
|       | 1   | 0  | 18.75 | 19.10 | 19.22 | 20.50 |
|       | 1   | 50 | 19.27 | 19.20 | 19.00 | 20.50 |
|       | 1   | 99 | 19.33 | 19.10 | 19.35 | 20.50 |
| 16QAM | 50  | 0  | 17.92 | 17.87 | 18.03 | 19.50 |
|       | 50  | 25 | 17.86 | 18.00 | 18.09 | 19.50 |
|       | 50  | 50 | 17.75 | 17.91 | 18.14 | 19.50 |
|       | 100 | 0  | 17.89 | 17.98 | 18.15 | 19.50 |
|       | 1   | 0  | 18.89 | 18.51 | 18.55 | 19.50 |
|       | 1   | 50 | 18.54 | 18.91 | 18.69 | 19.50 |
|       | 1   | 99 | 18.65 | 18.59 | 18.43 | 19.50 |
| 64QAM | 50  | 0  | 17.44 | 17.45 | 17.39 | 18.50 |
|       | 50  | 25 | 17.39 | 17.64 | 17.46 | 18.50 |
|       | 50  | 50 | 17.37 | 17.51 | 17.57 | 18.50 |
|       | 100 | 0  | 17.39 | 17.63 | 17.54 | 18.50 |

|           | LTE B      | and 12  |           |         | Conducted | Power(dBm) |                                                                      |
|-----------|------------|---------|-----------|---------|-----------|------------|----------------------------------------------------------------------|
| Bandwidth | Modulation | RB size | RB offset | Channel | Channel   | Channel    | Tunaun                                                               |
| Bandwidth | Modulation | ND SIZE | ND Oliset | 23017   | 23095     | 23173      | Tune up                                                              |
|           |            | 1       | 0         | 23.24   | 23.17     | 23.30      | 24.50                                                                |
|           |            | 1       | 2         | 23.08   | 23.28     | 23.18      | 24.50                                                                |
|           |            | 1       | 5         | 22.91   | 23.14     | 23.17      | 24.50                                                                |
|           | QPSK       | 3       | 0         | 23.38   | 23.29     | 23.27      | 24.50                                                                |
|           |            | 3       | 2         | 23.25   | 23.13     | 23.22      | 24.50                                                                |
|           |            | 3       | 3         | 23.25   | 23.18     | 23.16      | 24.50                                                                |
|           |            | 6       | 0         | 22.34   | 22.35     | 22.44      | 23.50                                                                |
|           |            | 1       | 0         | 22.73   | 22.91     | 22.86      | 23.50                                                                |
|           |            | 1       | 2         | 22.28   | 22.47     | 22.59      | 23.50                                                                |
|           |            | 1       | 5         | 22.19   | 22.06     | 22.58      | 23.50                                                                |
| 1.4MHz    | 16QAM      | 3       | 0         | 22.43   | 22.34     | 22.36      | 24.50<br>24.50<br>24.50<br>24.50<br>24.50<br>23.50<br>23.50<br>23.50 |
|           |            | 3       | 2         | 22.10   | 22.27     | 22.28      | 23.50                                                                |
|           |            | 3       | 3         | 22.42   | 22.41     | 22.44      | 23.50                                                                |
|           |            | 6       | 0         | 21.58   | 21.48     | 21.51      | 22.50                                                                |
|           |            | 1       | 0         | 21.52   | 21.98     | 22.04      | 22.50                                                                |
|           |            | 1       | 2         | 21.41   | 21.54     | 21.41      | 22.50                                                                |
|           |            | 1       | 5         | 21.13   | 21.25     | 21.63      | 22.50                                                                |
|           | 64QAM      | 3       | 0         | 21.47   | 21.23     | 21.14      | 22.50<br>22.50<br>22.50                                              |
|           |            | 3       | 2         | 21.26   | 21.51     | 21.41      | 22.50                                                                |
|           |            | 3       | 3         | 21.11   | 21.14     | 21.24      | 22.50                                                                |
|           |            | 6       | 0         | 20.47   | 20.67     | 20.72      | 21.50                                                                |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

15 of 73 Page:

|           |            |          |            | Channel | Channel | Channel |                                                                                   |
|-----------|------------|----------|------------|---------|---------|---------|-----------------------------------------------------------------------------------|
| Bandwidth | Modulation | RB size  | RB offset  | 23025   | 23095   | 23165   | Tune up                                                                           |
|           |            | 1        | 0          | 23.28   | 23.52   | 23.25   | 24.50                                                                             |
|           |            | 1        | 7          | 23.16   | 23.14   | 23.18   | 24.50                                                                             |
|           |            | 1        | 14         | 23.27   | 23.33   | 23.25   | 24.50                                                                             |
|           | QPSK       | 8        | 0          | 22.39   | 22.38   | 22.42   | 23.50                                                                             |
|           |            | 8        | 4          | 22.49   | 22.49   | 22.51   | 23.50                                                                             |
|           |            | 8        | 7          | 22.26   | 22.36   | 22.30   | 23.50                                                                             |
|           |            | 15       | 0          | 22.41   | 22.21   | 22.29   | 23.50                                                                             |
|           |            | 1        | 0          | 22.74   | 23.07   | 22.92   | 23.50                                                                             |
|           |            | 1        | 7          | 22.57   | 22.79   | 23.02   | 23.50                                                                             |
|           |            | 1        | 14         | 22.36   | 22.50   | 22.65   | 23.50                                                                             |
| 3MHz      | 16QAM      | 8        | 0          | 21.42   | 21.37   | 21.34   | 22.50                                                                             |
|           |            | 8        | 4          | 21.58   | 21.62   | 21.66   | 22.50                                                                             |
|           |            | 8        | 7          | 21.54   | 21.61   | 21.58   | 22.50                                                                             |
|           |            | 15       | 0          | 21.37   | 21.34   | 21.37   | 22.50                                                                             |
|           |            | 1        | 0          | 21.60   | 21.78   | 21.64   | 22.50                                                                             |
|           |            | 1        | 7          | 21.41   | 21.99   | 22.20   | 22.50                                                                             |
|           |            | 1        | 14         | 21.32   | 21.61   | 21.42   | 22.50                                                                             |
|           | 64QAM      | 8        | 0          | 20.56   | 20.55   | 20.39   | 21.50                                                                             |
|           |            | 8        | 4          | 20.42   | 20.35   | 20.72   | 21.50                                                                             |
|           |            | 8        | 7          | 20.39   | 20.33   | 20.41   | 21.50                                                                             |
|           |            | 15       | 0          | 20.27   | 20.37   | 20.24   | 21.50                                                                             |
| Bandwidth | Modulation | RB size  | RB offset  | Channel | Channel | Channel | Tung up                                                                           |
| Bandwidth | Modulation | TID SIZE | TID Oliset | 23035   | 23095   | 23155   | Tune up                                                                           |
|           |            | 1        | 0          | 23.26   | 23.33   | 23.47   | 24.50                                                                             |
|           |            | 1        | 13         | 23.34   | 23.49   | 23.31   | 21.50<br>21.50<br>21.50<br>21.50<br>Tune up                                       |
|           |            | 1        | 24         | 23.45   | 23.60   | 23.45   | 24.50                                                                             |
|           | QPSK       | 12       | 0          | 22.51   | 22.37   | 22.59   | 23.50                                                                             |
|           |            | 12       | 6          | 22.46   | 22.44   | 22.61   | 23.50                                                                             |
|           |            | 12       | 13         | 22.52   | 22.46   | 22.37   | 21.50 21.50 21.50 21.50  Tune up  24.50 24.50 23.50 23.50 23.50 23.50 23.50 23.50 |
|           |            | 25       | 0          | 22.43   | 22.39   | 22.25   | 23.50                                                                             |
|           |            | 1        | 0          | 22.43   | 22.17   | 22.73   | 23.50                                                                             |
| 5MHz      |            | 1        | 13         | 22.57   | 22.86   | 22.40   | 23.50                                                                             |
|           |            | 1        | 24         | 22.31   | 22.69   | 22.42   | 23.50                                                                             |
|           | 16QAM      | 12       | 0          | 21.45   | 21.68   | 21.44   | 22.50                                                                             |
|           |            | 12       | 6          | 21.54   | 21.51   | 21.58   | 22.50                                                                             |
|           |            | 12       | 13         | 21.57   | 21.65   | 21.57   | 22.50                                                                             |
|           |            | 25       | 0          | 21.47   | 21.29   | 21.41   | 22.50                                                                             |
|           |            | 1        | 0          | 21.53   | 21.81   | 21.89   | 22.50                                                                             |
|           | 64QAM      | 1        | 13         | 21.53   | 21.64   | 21.87   | 22.50                                                                             |
|           |            | 1        | 24         | 21.50   | 21.49   | 21.78   | 22.50                                                                             |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

16 of 73 Page:

|           |            | 12      | 0         | 20.17   | 20.07   | 20.37   | 21.50                                                                                                                                               |
|-----------|------------|---------|-----------|---------|---------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|           |            | 12      | 6         | 20.63   | 20.38   | 20.72   | 21.50                                                                                                                                               |
|           |            | 12      | 13        | 20.51   | 20.24   | 20.28   | 21.50                                                                                                                                               |
|           |            | 25      | 0         | 20.33   | 20.42   | 20.33   | 21.50                                                                                                                                               |
| Bandwidth | Modulation | RB size | RB offset | Channel | Channel | Channel | Tungun                                                                                                                                              |
| Bandwidth | Modulation | no size | nd oliset | 23060   | 23095   | 23130   | rune up                                                                                                                                             |
|           |            | 1       | 0         | 23.72   | 23.49   | 23.47   | 24.50                                                                                                                                               |
|           |            | 1       | 25        | 23.71   | 23.53   | 23.72   | 24.50                                                                                                                                               |
|           |            | 1       | 49        | 23.53   | 23.75   | 23.72   | 24.50                                                                                                                                               |
|           | QPSK       | 25      | 0         | 22.62   | 22.54   | 22.73   | 23.50                                                                                                                                               |
|           |            | 25      | 13        | 22.66   | 22.49   | 22.61   | 23.50                                                                                                                                               |
|           |            | 25      | 25        | 22.54   | 22.74   | 22.55   | 23.50                                                                                                                                               |
|           |            | 50      | 0         | 22.97   | 22.75   | 22.48   | 21.50 21.50 21.50 21.50  Tune up  24.50 24.50 24.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 22.50 22.50 22.50 22.50 22.50 22.50 21.50 21.50 21.50 |
|           |            | 1       | 0         | 23.01   | 22.85   | 23.16   | 23.50                                                                                                                                               |
|           |            | 1       | 25        | 22.49   | 22.90   | 23.04   | 23.50                                                                                                                                               |
|           |            | 1       | 49        | 22.91   | 22.57   | 23.13   | 23.50                                                                                                                                               |
| 10MHz     | 16QAM      | 25      | 0         | 21.66   | 21.67   | 21.75   | 22.50                                                                                                                                               |
|           |            | 25      | 13        | 21.49   | 21.56   | 21.72   | 22.50                                                                                                                                               |
|           |            | 25      | 25        | 21.50   | 21.80   | 21.60   | 22.50                                                                                                                                               |
|           |            | 50      | 0         | 21.73   | 21.77   | 21.37   | 22.50                                                                                                                                               |
|           |            | 1       | 0         | 21.54   | 21.77   | 21.72   | 22.50                                                                                                                                               |
|           |            | 1       | 25        | 21.58   | 21.80   | 21.78   | 22.50                                                                                                                                               |
|           |            | 1       | 49        | 21.54   | 21.67   | 21.55   | 22.50                                                                                                                                               |
|           | 64QAM      | 25      | 0         | 20.63   | 20.22   | 20.34   | 24.50 24.50 24.50 23.50 23.50 23.50 23.50 23.50 23.50 23.50 22.50 22.50 22.50 22.50 22.50 22.50 21.50 21.50                                         |
|           |            | 25      | 13        | 20.43   | 20.47   | 20.53   | 21.50                                                                                                                                               |
|           |            | 25      | 25        | 20.48   | 20.60   | 20.59   | 21.50                                                                                                                                               |
|           |            | 50      | 0         | 20.63   | 20.53   | 20.51   | 21.50                                                                                                                                               |

|           | LTE Band     | d 41    |        |         | C       | conducted | Power(dBr | n)      |         |
|-----------|--------------|---------|--------|---------|---------|-----------|-----------|---------|---------|
| Bandwidth | Modulation   | RB size | RB     | Channel | Channel | Channel   | Channel   | Channel | Tung up |
| bandwidth | iviodulation | nd size | offset | 39675   | 40148   | 40620     | 41093     | 41565   | Tune up |
|           |              | 1       | 0      | 21.34   | 21.65   | 21.78     | 21.68     | 21.46   | 22.80   |
|           |              | 1       | 13     | 21.69   | 21.87   | 21.96     | 21.91     | 21.61   | 22.80   |
|           |              | 1       | 24     | 21.55   | 21.78   |           | 22.80     |         |         |
|           | QPSK         | 12      | 0      | 20.56   | 20.84   | 20.86     | 20.85     | 20.65   | 21.80   |
| 5MHz      |              | 12      | 6      | 20.62   | 20.91   | 20.91     | 20.90     | 20.75   | 21.80   |
|           |              | 12      | 13     | 20.55   | 20.71   | 20.81     | 20.71     | 20.55   | 21.80   |
|           |              | 25      | 0      | 20.54   | 20.83   | 20.94     | 20.81     | 20.69   | 21.80   |
|           | 16001        | 1       | 0      | 20.54   | 20.89   | 20.81     | 20.76     | 20.51   | 21.80   |
|           | 16QAM        | 1       | 13     | 20.58   | 20.93   | 21.02     | 21.00     | 20.58   | 21.80   |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

17 of 73 Page:

|           |            | 1       | 24     | 20.52   | 20.90   | 20.84   | 20.81   | 20.68   | 21.80   |
|-----------|------------|---------|--------|---------|---------|---------|---------|---------|---------|
|           |            | 12      | 0      | 19.40   | 19.74   | 19.77   | 19.73   | 19.48   | 20.80   |
|           |            | 12      | 6      | 19.67   | 19.89   | 19.90   | 19.89   | 19.56   | 20.80   |
|           |            | 12      | 13     | 19.70   | 19.88   | 19.82   | 19.83   | 19.56   | 20.80   |
|           |            | 25      | 0      | 19.65   | 19.89   | 19.90   | 19.88   | 19.63   | 20.80   |
|           |            | 1       | 0      | 19.71   | 19.91   | 19.75   | 19.62   | 19.76   | 20.80   |
|           |            | 1       | 13     | 19.48   | 19.86   | 19.98   | 20.14   | 19.65   | 20.80   |
|           |            | 1       | 24     | 19.60   | 19.85   | 19.78   | 20.02   | 19.71   | 20.80   |
|           | 64QAM      | 12      | 0      | 18.42   | 18.64   | 18.51   | 18.87   | 18.22   | 19.80   |
|           |            | 12      | 6      | 18.45   | 18.83   | 19.02   | 18.94   | 18.43   | 19.80   |
|           |            | 12      | 13     | 18.55   | 18.89   | 18.88   | 18.95   | 18.52   | 19.80   |
|           |            | 25      | 0      | 18.65   | 18.96   | 18.71   | 18.62   | 18.63   | 19.80   |
|           |            |         | RB     | Channel | Channel | Channel | Channel | Channel |         |
| Bandwidth | Modulation | RB size | offset | 39700   | 40160   | 40620   | 41080   | 41540   | Tune up |
|           |            | 1       | 0      | 21.52   | 21.74   | 21.79   | 21.65   | 21.35   | 22.80   |
|           |            | 1       | 25     | 21.38   | 21.62   | 21.73   | 21.64   | 21.30   | 22.80   |
|           |            | 1       | 49     | 21.37   | 21.72   | 21.56   | 21.65   | 21.44   | 22.80   |
|           | QPSK       | 25      | 0      | 20.43   | 20.70   | 20.75   | 20.72   | 20.54   | 21.80   |
|           |            | 25      | 13     | 20.48   | 20.69   | 20.94   | 20.82   | 20.67   | 21.80   |
|           |            | 25      | 25     | 20.56   | 20.74   | 20.90   | 20.69   | 20.67   | 21.80   |
|           |            | 50      | 0      | 20.69   | 20.85   | 21.01   | 20.86   | 20.77   | 21.80   |
|           |            | 1       | 0      | 20.58   | 20.64   | 20.91   | 20.93   | 20.42   | 21.80   |
|           |            | 1       | 25     | 20.71   | 20.79   | 20.72   | 20.77   | 20.61   | 21.80   |
|           |            | 1       | 49     | 20.60   | 20.80   | 20.76   | 20.80   | 20.54   | 21.80   |
| 10MHz     | 16QAM      | 25      | 0      | 19.76   | 19.90   | 19.98   | 20.00   | 19.63   | 20.80   |
|           |            | 25      | 13     | 19.76   | 19.79   | 19.97   | 19.81   | 19.77   | 20.80   |
|           |            | 25      | 25     | 19.69   | 19.91   | 19.99   | 19.87   | 19.72   | 20.80   |
|           |            | 50      | 0      | 19.44   | 19.65   | 19.84   | 19.69   | 19.55   | 20.80   |
|           |            | 1       | 0      | 19.66   | 19.93   | 19.73   | 19.86   | 19.61   | 20.80   |
|           |            | 1       | 25     | 19.63   | 19.68   | 20.16   | 20.00   | 19.64   | 20.80   |
|           |            | 1       | 49     | 19.56   | 19.91   | 19.86   | 19.87   | 19.70   | 20.80   |
|           | 64QAM      | 25      | 0      | 18.61   | 18.76   | 19.00   | 18.74   | 18.58   | 19.80   |
|           |            | 25      | 13     | 18.60   | 18.74   | 18.93   | 18.92   | 18.50   | 19.80   |
|           |            | 25      | 25     | 18.34   | 18.73   | 18.50   | 18.68   | 18.50   | 19.80   |
|           |            | 50      | 0      | 18.68   | 18.74   | 18.91   | 18.96   | 18.72   | 19.80   |
| Bandwidth | Modulation | RB size | RB     | Channel | Channel | Channel | Channel | Channel | Tune up |
| _aaa      |            |         | offset | 39725   | 40173   | 40620   | 41068   | 41515   |         |
|           |            | 1       | 0      | 21.11   | 21.44   | 21.66   | 21.60   | 21.44   | 22.80   |
| 15MHz     | QPSK       | 1       | 38     | 21.44   | 21.53   | 21.58   | 21.65   | 21.29   | 22.80   |
|           |            | 1       | 74     | 21.48   | 21.72   | 21.65   | 21.70   | 21.29   | 22.80   |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

18 of 73 Page:

| ĺ         |            | 36      | 0      | 20.52   | 20.79   | 20.85   | 20.79   | 20.59   | 21.80   |
|-----------|------------|---------|--------|---------|---------|---------|---------|---------|---------|
|           |            | 36      | 18     | 20.49   | 20.65   | 20.80   | 20.66   | 20.49   | 21.80   |
|           |            | 36      | 39     | 20.47   | 20.65   | 20.81   | 20.65   | 20.37   | 21.80   |
|           |            | 75      | 0      | 20.54   | 20.74   | 20.79   | 20.67   | 20.48   | 21.80   |
|           |            | 1       | 0      | 20.44   | 20.80   | 20.80   | 20.75   | 20.52   | 21.80   |
|           |            | 1       | 38     | 20.61   | 20.72   | 20.89   | 20.77   | 20.49   | 21.80   |
|           |            | 1       | 74     | 20.44   | 20.87   | 20.71   | 20.67   | 20.42   | 21.80   |
|           | 16QAM      | 36      | 0      | 19.44   | 19.60   | 19.68   | 19.64   | 19.38   | 20.80   |
|           | 100,       | 36      | 18     | 19.39   | 19.55   | 19.74   | 19.62   | 19.38   | 20.80   |
|           |            | 36      | 39     | 19.39   | 19.68   | 19.65   | 19.73   | 19.36   | 20.80   |
|           |            | 75      | 0      | 19.50   | 19.83   | 19.90   | 19.82   | 19.63   | 20.80   |
|           |            | 1       | 0      | 19.44   | 20.13   | 19.78   | 19.98   | 19.47   | 20.80   |
|           |            | 1       | 38     | 19.43   | 19.76   | 19.96   | 19.94   | 19.71   | 20.80   |
|           |            | 1       | 74     | 19.85   | 19.95   | 20.12   | 19.81   | 19.81   | 20.80   |
|           | 64QAM      | 36      | 0      | 18.42   | 18.90   | 18.67   | 18.68   | 18.47   | 19.80   |
|           |            | 36      | 18     | 18.66   | 19.14   | 18.78   | 18.75   | 18.43   | 19.80   |
|           |            | 36      | 39     | 18.45   | 18.89   | 18.59   | 18.66   | 18.27   | 19.80   |
|           |            | 75      | 0      | 18.45   | 18.88   | 18.79   | 18.84   | 18.58   | 19.80   |
|           |            |         | RB     | Channel | Channel | Channel | Channel | Channel |         |
| Bandwidth | Modulation | RB size | offset | 39750   | 40185   | 40620   | 41055   | 41490   | Tune up |
|           |            | 1       | 0      | 21.16   | 21.41   | 21.56   | 21.56   | 21.43   | 22.80   |
|           |            | 1       | 50     | 21.38   | 21.58   | 21.60   | 21.48   | 21.27   | 22.80   |
|           |            | 1       | 99     | 21.47   | 21.58   | 21.81   | 21.51   | 21.41   | 22.80   |
|           | QPSK       | 50      | 0      | 20.62   | 20.75   | 20.76   | 20.72   | 21.38   | 21.80   |
|           |            | 50      | 25     | 20.47   | 20.64   | 20.66   | 20.55   | 20.59   | 21.80   |
|           |            | 50      | 50     | 20.38   | 20.58   | 20.64   | 20.62   | 20.61   | 21.80   |
|           |            | 100     | 0      | 20.49   | 20.67   | 20.77   | 20.71   | 20.50   | 21.80   |
|           |            | 1       | 0      | 20.51   | 20.71   | 20.94   | 20.87   | 20.72   | 21.80   |
|           |            | 1       | 50     | 20.26   | 20.62   | 20.54   | 20.56   | 20.48   | 21.80   |
| 20MHz     |            | 1       | 99     | 20.58   | 20.81   | 20.85   | 20.74   | 20.56   | 21.80   |
| ZUIVITIZ  | 16QAM      | 50      | 0      | 19.68   | 19.84   | 19.89   | 19.85   | 20.76   | 20.80   |
|           |            | 50      | 25     | 19.44   | 19.67   | 19.82   | 19.69   | 19.51   | 20.80   |
|           |            | 50      | 50     | 19.59   | 19.64   | 19.71   | 19.69   | 19.58   | 20.80   |
|           |            | 100     | 0      | 19.50   | 19.67   | 19.78   | 19.68   | 19.39   | 20.80   |
|           |            | 1       | 0      | 19.55   | 20.06   | 19.72   | 19.99   | 19.67   | 20.80   |
|           |            | 1       | 50     | 19.80   | 20.02   | 20.30   | 20.31   | 19.88   | 20.80   |
|           | 64QAM      | 1       | 99     | 19.55   | 20.04   | 20.08   | 19.81   | 19.66   | 20.80   |
|           | 04QAIVI    | 50      | 0      | 18.37   | 18.73   | 18.99   | 18.80   | 18.45   | 19.80   |
|           | _          | ГО      | 2E     | 10.60   | 18.64   | 18.65   | 18.78   | 18.38   | 19.80   |
|           |            | 50      | 25     | 18.68   | 10.04   | 10.05   | 10.70   | 10.00   | 10.00   |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

Page: 19 of 73

100 0 18.88 18.93 19.05 19.03 18.64 19.80

|                    | PCC         |             |            |                      |               |           |                 |             | SC          | C1                   |               | Po    | wer(dBm)              |             |
|--------------------|-------------|-------------|------------|----------------------|---------------|-----------|-----------------|-------------|-------------|----------------------|---------------|-------|-----------------------|-------------|
| DL LTE CA<br>Class | LTE<br>Band | BW<br>(MHz) | Modulation | UL<br>Freq.<br>(MHz) | UL<br>Channel | UL#<br>RB | UL RB<br>Offset | LTE<br>Band | BW<br>(MHz) | DL<br>Freq.<br>(MHz) | DL<br>Channel | (, Δ  | LTE Rel 8<br>Tx.Power | Tune-<br>up |
| CA 41C             | Band 41     | 20M         | QPSK       | 2506                 | 39750         | 1         | 99              | Band 41     | 20M         | 2525.8               | 39948         | 21.40 | 21.47                 | 22.80       |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

Page: 20 of 73

## WiFi 2.4G - conducted power table:

### ANT6

| Mode            | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|-----------------|---------|----------------|--------------------|------------------------|---------|----------|
|                 | 1       | 2412           |                    | 14.48                  | 16.00   | Yes      |
| 802.11b         | 6       | 2437           | 1                  | 14.83                  | 16.00   | Yes      |
|                 | 11      | 2462           |                    | 15.17                  | 16.00   | Yes      |
|                 | 1       | 2412           |                    | 14.51                  | 15.00   | No       |
| 802.11g         | 6       | 2437           | 6                  | 14.53                  | 15.00   | No       |
|                 | 11      | 2462           |                    | 13.77                  | 15.00   | No       |
| 000.44          | 1       | 2412           |                    | 14.13                  | 15.00   | No       |
| 802.11n<br>HT20 | 6       | 2437           | 6.5                | 14.31                  | 15.00   | No       |
| 11120           | 11      | 2462           |                    | 13.84                  | 15.00   | No       |

#### ANT7

| AITII           |         |                |                    |                        |         |          |
|-----------------|---------|----------------|--------------------|------------------------|---------|----------|
| Mode            | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|                 | 1       | 2412           |                    | 15.01                  | 16.00   | Yes      |
| 802.11b         | 6       | 2437           | 1                  | 14.94                  | 16.00   | Yes      |
|                 | 11      | 2462           |                    | 14.95                  | 16.00   | Yes      |
|                 | 1       | 2412           |                    | 13.60                  | 15.00   | No       |
| 802.11g         | 6       | 2437           | 6                  | 13.91                  | 15.00   | No       |
|                 | 11      | 2462           |                    | 13.25                  | 15.00   | No       |
| 000.44          | 1       | 2412           |                    | 14.45                  | 15.00   | No       |
| 802.11n<br>HT20 | 6       | 2437           | 6.5                | 14.09                  | 15.00   | No       |
|                 | 11      | 2462           |                    | 14.13                  | 15.00   | No       |

### MIMO

| IVIIIVIO        |         |                |                    |                        |         |          |
|-----------------|---------|----------------|--------------------|------------------------|---------|----------|
| Mode            | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
| 1               | 1       | 2412           |                    | 17.76                  | 19.00   | Yes      |
| 802.11b         | 6       | 2437           | 1                  | 17.90                  | 19.00   | Yes      |
| 11              | 11      | 2462           |                    | 18.07                  | 19.00   | Yes      |
|                 | 1       | 2412           |                    | 17.09                  | 18.00   | No       |
| 802.11g         | 6       | 2437           | 6                  | 17.24                  | 18.00   | No       |
|                 | 11      | 2462           |                    | 16.53                  | 18.00   | No       |
| 000.44          | 1       | 2412           |                    | 17.30                  | 18.00   | No       |
| 802.11n<br>HT20 | 6       | 2437           | 6.5                | 17.21                  | 18.00   | No       |
| 11120           | 11      | 2462           |                    | 17.00                  | 18.00   | No       |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: ZR/2020/C004701

21 of 73 Page:

## WiFi 5G - conducted power table:

### ANT6

| 5GHz     | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|----------|-----------|---------|----------------|--------------------|------------------------|---------|----------|
|          |           | 36      | 5180           |                    | 14.00                  | 15.00   | No       |
|          | U-NII-1   | 40      | 5200           |                    | 13.92                  | 15.00   | No       |
|          | O-IVII-1  | 44      | 5220           |                    | 14.12                  | 15.00   | No       |
|          |           | 48      | 5240           |                    | 14.48                  | 15.00   | No       |
|          |           | 52      | 5260           |                    | 14.23                  | 15.00   | No       |
|          | U-NII-2A  | 56      | 5280           |                    | 13.46                  | 15.00   | No       |
|          | U-INII-ZA | 60      | 5300           |                    | 14.34                  | 15.00   | No       |
|          |           | 64      | 5320           |                    | 13.99                  | 15.00   | No       |
|          |           | 100     | 5500           |                    | 12.28                  | 13.00   | No       |
|          |           | 104     | 5520           |                    | 13.63                  | 15.00   | No       |
|          |           | 108     | 5540           |                    | 14.33                  | 15.00   | No       |
|          |           | 112     | 5560           |                    | 14.00                  | 15.00   | No       |
| 802.11a  |           | 116     | 5580           | 6                  | 9.38                   | 10.50   | No       |
|          |           | 120     | 5600           |                    | 14.02                  | 15.00   | No       |
|          | U-NII-2C  | 124     | 5620           |                    | 14.35                  | 15.00   | No       |
|          |           | 128     | 5640           |                    | 13.74                  | 15.00   | No       |
|          |           | 132     | 5660           |                    | 14.02                  | 15.00   | No       |
|          |           | 136     | 5680           |                    | 13.97                  | 15.00   | No       |
|          |           | 140     | 5700           |                    | 12.93                  | 14.00   | No       |
|          |           | 144     | 5720           |                    | 14.30                  | 15.00   | No       |
|          |           | 149     | 5745           |                    | 13.39                  | 14.50   | No       |
|          |           | 153     | 5765           |                    | 14.29                  | 15.00   | No       |
|          | U-NII-3   | 157     | 5785           |                    | 14.30                  | 15.00   | No       |
|          | O-IVII-3  | 161     | 5805           |                    | 14.36                  | 15.00   | No       |
|          |           | 165     | 5825           |                    | 13.80                  | 15.00   | No       |
| 5GHz     | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|          |           | 36      | 5180           | ( 1 /              | 14.05                  | 15.00   | No       |
|          |           | 40      | 5200           |                    | 14.35                  | 15.00   | No       |
|          | U-NII-1   | 44      | 5220           |                    | 13.93                  | 15.00   | No       |
|          |           | 48      | 5240           |                    | 13.94                  | 15.00   | No       |
|          |           | 52      | 5260           |                    | 14.01                  | 15.00   | No       |
|          |           | 56      | 5280           |                    | 13.99                  | 15.00   | No       |
|          | U-NII-2A  | 60      | 5300           |                    | 13.87                  | 15.00   | No       |
|          |           | 64      | 5320           |                    | 13.46                  | 15.00   | No       |
|          |           | 100     | 5500           |                    | 12.38                  | 13.00   | No       |
|          |           |         | +              |                    | +                      |         |          |
| 802.11n- |           | 104     | 5520           | MCCO               | 13.91                  | 15.00   | No<br>No |
| HT20     |           | 108     | 5540           | MCS0               | 14.42                  | 15.00   | <b>.</b> |
|          |           | 112     | 5560           |                    | 14.32                  | 15.00   | No<br>No |
|          |           | 116     | 5580           |                    | 10.56                  | 11.50   | No<br>No |
|          | U-NII-2C  | 120     | 5600           |                    | 14.09                  | 15.00   | No       |
|          |           | 124     | 5620           |                    | 13.84                  | 15.00   | No       |
|          |           | 128     | 5640           |                    | 13.65                  | 15.00   | No       |
|          |           | 132     | 5660           |                    | 13.97                  | 15.00   | No       |
|          |           | 136     | 5680           |                    | 14.21                  | 15.00   | No       |
|          |           | 140     | 5700           |                    | 13.23                  | 14.00   | No       |
|          | 1         | 144     | 5720           |                    | 14.08                  | 15.00   | No       |
|          | U-NII-3   | 149     | 5745           |                    | 13.53                  | 14.50   | No       |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

22 of 73 Page:

|             |           | 153     | 5765           |                    | 14.26                  | 15.00   | No       |
|-------------|-----------|---------|----------------|--------------------|------------------------|---------|----------|
|             |           | 157     | 5785           |                    | 14.09                  | 15.00   | No       |
|             |           | 161     | 5805           |                    | 13.89                  | 15.00   | No       |
|             |           | 165     | 5825           |                    | 13.92                  | 15.00   | No       |
| 5GHz        | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|             | U-NII-1   | 38      | 5190           |                    | 14.08                  | 15.00   | No       |
|             | OTVILL    | 46      | 5230           |                    | 13.67                  | 15.00   | No       |
|             | U-NII-2A  | 54      | 5270           |                    | 13.81                  | 15.00   | No       |
|             | O MI ZA   | 62      | 5310           |                    | 13.93                  | 15.00   | No       |
|             |           | 102     | 5510           |                    | 13.37                  | 14.00   | No       |
| 802.11n-    |           | 110     | 5550           | MCS0               | 10.86                  | 12.00   | No       |
| HT40        | U-NII-2C  | 118     | 5590           | WOOO               | 13.68                  | 15.00   | No       |
|             | 0 1411 20 | 126     | 5630           |                    | 13.91                  | 15.00   | No       |
|             |           | 134     | 5670           |                    | 12.68                  | 14.00   | No       |
|             |           | 142     | 5710           |                    | 13.03                  | 15.00   | No       |
|             | U-NII-3   | 151     | 5755           |                    | 13.52                  | 14.50   | No       |
|             | 0 1411 0  | 159     | 5795           |                    | 13.60                  | 15.00   | No       |
| 5GHz        | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|             |           | 36      | 5180           |                    | 14.44                  | 15.00   | No       |
|             | U-NII-1   | 40      | 5200           |                    | 14.39                  | 15.00   | No       |
|             | O-IVII-1  | 44      | 5220           |                    | 14.00                  | 15.00   | No       |
|             |           | 48      | 5240           |                    | 13.82                  | 15.00   | No       |
|             |           | 52      | 5260           |                    | 13.85                  | 15.00   | No       |
|             | U-NII-2A  | 56      | 5280           |                    | 14.03                  | 15.00   | No       |
|             | U-MII-ZA  | 60      | 5300           |                    | 14.14                  | 15.00   | No       |
|             |           | 64      | 5320           |                    | 14.35                  | 15.00   | No       |
|             |           | 100     | 5500           |                    | 11.95                  | 13.50   | No       |
|             |           | 104     |                |                    | 14.22                  | 15.00   | No       |
|             |           | 108     | 5540           |                    | 13.84                  | 15.00   | No       |
|             |           | 112     | 5560           |                    | 14.46                  | 15.00   | No       |
| 802.11ac-20 |           | 116     | 5580           | MCS0               | 10.31                  | 11.00   | No       |
|             | U-NII-2C  | 120     | 5600           |                    | 13.89                  | 15.00   | No       |
|             | 0-1111-20 | 124     | 5620           |                    | 14.30                  | 15.00   | No       |
|             |           | 128     | 5640           |                    | 13.92                  | 15.00   | No       |
|             |           | 132     | 5660           |                    | 13.42                  | 15.00   | No       |
|             |           | 136     | 5680           |                    | 14.24                  | 15.00   | No       |
|             |           | 140     | 5700           |                    | 13.17                  | 14.00   | No       |
|             |           | 144     | 5720           |                    | 13.90                  | 15.00   | No       |
|             |           | 149     | 5745           |                    | 12.83                  | 14.50   | No       |
|             |           | 153     | 5765           |                    | 13.95                  | 15.00   | No       |
|             | U-NII-3   | 157     | 5785           |                    | 13.74                  | 15.00   | No       |
|             |           | 161     | 5805           |                    | 14.10                  | 15.00   | No       |
|             |           | 165     | 5825           |                    | 13.67                  | 15.00   | No       |
| 5GHz        | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|             | U-NII-1   | 38      | 5190           |                    | 14.52                  | 15.00   | No       |
|             | ÷ 1111 1  | 46      | 5230           |                    | 14.13                  | 15.00   | No       |
| 802.11ac-40 | U-NII-2A  | 54      | 5270           | MCS0               | 13.66                  | 15.00   | No       |
|             |           | 62      | 5310           | 300                | 14.06                  | 15.00   | No       |
|             | U-NII-2C  | 102     | 5510           |                    | 12.76                  | 13.50   | No       |
|             |           | 110     | 5550           |                    | 10.91                  | 12.00   | No       |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

23 of 73 Page:

|          | 11       |         | 5590           |                    | 13.82                  | 15.00   | No       |
|----------|----------|---------|----------------|--------------------|------------------------|---------|----------|
|          |          |         | 5630           |                    | 13.68                  | 15.00   | No       |
|          |          | 134     | 5670           |                    | 13.37                  | 14.00   | No       |
|          |          | 142     | 5710           |                    | 14.11                  | 15.00   | No       |
|          | U-NII-3  | 151     | 5755           |                    | 13.62                  | 15.00   | No       |
|          | 0-1111-3 | 159     | 5795           |                    | 13.79                  | 15.00   | No       |
| 5GHz     | mode     | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|          | U-NII-1  | 42      | 5210           |                    | 14.05                  | 15.00   | Yes      |
|          | U-NII-2A | 58      | 5290           |                    | 14.18                  | 15.00   | Yes      |
| 802.11ac |          | 106     | 5530           | MCS0               | 14.20                  | 14.00   | No       |
| 80M      | U-NII-2C | 122     | 5610           | MCSU               | 12.18                  | 13.00   | No       |
|          |          | 138     | 5690           |                    | 13.87                  | 15.00   | Yes      |
|          | U-NII-3  | 155     | 5775           |                    | 13.59                  | 15.00   | Yes      |

### ANT7

| 5GHz             | mode     | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|------------------|----------|---------|----------------|--------------------|------------------------|---------|----------|
|                  |          | 36      | 5180           |                    | 13.59                  | 14.00   | No       |
|                  | 11 800 4 | 40      | 5200           |                    | 13.32                  | 14.00   | No       |
|                  | U-NII-1  | 44      | 5220           |                    | 13.07                  | 14.00   | No       |
|                  |          | 48      | 5240           |                    | 12.79                  | 14.00   | No       |
|                  |          | 52      | 5260           |                    | 12.64                  | 14.00   | No       |
|                  | U-NII-2A | 56      | 5280           |                    | 13.24                  | 14.00   | No       |
|                  |          | 60      | 5300           |                    | 12.53                  | 14.00   | No       |
|                  |          | 64      | 5320           |                    | 12.78                  | 14.00   | No       |
|                  |          | 100     | 5500           |                    | 10.74                  | 12.00   | No       |
|                  |          | 104     | 5520           |                    | 13.10                  | 14.00   | No       |
|                  |          | 108     | 5540           |                    | 12.84                  | 14.00   | No       |
|                  |          | 112     | 5560           |                    | 13.22                  | 14.00   | No       |
| 802.11a          |          | 116     | 5580           | 6                  | 8.61                   | 9.50    | No       |
|                  |          | 120     | 5600           |                    | 12.76                  | 14.00   | No       |
|                  | U-NII-2C | 124     | 5620           |                    | 12.85                  | 14.00   | No       |
|                  |          | 128     | 5640           |                    | 12.81                  | 14.00   | No       |
|                  |          | 132     | 5660           |                    | 13.20                  | 14.00   | No       |
|                  |          | 136     | 5680           |                    | 14.06                  | 14.00   | No       |
|                  |          | 140     | 5700           |                    | 11.74                  | 13.00   | No       |
|                  |          | 144     | 5720           |                    | 12.80                  | 14.00   | No       |
|                  |          | 149     | 5745           |                    | 12.56                  | 13.50   | No       |
|                  |          | 153     | 5765           |                    | 12.89                  | 14.00   | No       |
|                  | U-NII-3  | 157     | 5785           |                    | 12.74                  | 14.00   | No       |
|                  |          | 161     | 5805           |                    | 12.74                  | 14.00   | No       |
|                  |          | 165     | 5825           |                    | 12.69                  | 14.00   | No       |
| 5GHz             | mode     | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|                  |          | 36      | 5180           |                    | 13.62                  | 14.00   | No       |
|                  | 11 800 4 | 40      | 5200           |                    | 12.92                  | 14.00   | No       |
|                  | U-NII-1  | 44      | 5220           |                    | 12.82                  | 14.00   | No       |
| 802.11n-<br>HT20 |          | 48      | 5240           | MCS0               | 12.98                  | 14.00   | No       |
| П120             |          | 52      | 5260           |                    | 12.74                  | 14.00   | No       |
|                  | U-NII-2A | 56      | 5280           |                    | 12.79                  | 14.00   | No       |
|                  |          | 60      | 5300           |                    | 12.86                  | 14.00   | No       |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

24 of 73 Page:

|             |           | 64         | 5320           |                    | 13.49                  | 14.00   | No       |
|-------------|-----------|------------|----------------|--------------------|------------------------|---------|----------|
|             |           | 100        | 5500           |                    | 11.53                  | 12.00   | No       |
|             |           | 104        | 5520           |                    | 13.08                  | 14.00   | No       |
|             |           | 108        | 5540           |                    | 13.07                  | 14.00   | No       |
|             |           | 112        | 5560           |                    | 13.25                  | 14.00   | No       |
|             |           | 116        | 5580           |                    | 9.79                   | 10.50   | No       |
|             |           | 120        | 5600           |                    | 12.99                  | 14.00   | No       |
|             | U-NII-2C  | 124        | 5620           |                    | 12.52                  | 14.00   | No       |
|             |           | 128        | 5640           |                    | 13.15                  | 14.00   | No       |
|             |           | 132        | 5660           |                    | 13.40                  | 14.00   | No       |
|             |           | 136        | 5680           |                    | 13.45                  | 14.00   | No       |
|             |           | 140        | 5700           |                    | 12.15                  | 13.00   | No       |
|             |           | 144        | 5720           |                    | 12.12                  | 14.00   | No       |
|             |           | 149        | 5745           |                    | 12.12                  | 13.50   | No       |
|             |           | 153        | 5765           |                    | 12.90                  | 14.00   | No       |
|             | U-NII-3   | 157        | 5785           |                    | 13.38                  | 14.00   | No       |
|             | 0 1411 0  | 161        | 5805           |                    | 13.24                  | 14.00   | No       |
|             |           | 165        | 5825           |                    | 13.27                  | 14.00   | No       |
| 5GHz        | mode      | Channel    | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|             |           | 38         | 5190           | ( 1 /              | 13.12                  | 14.00   | No       |
|             | U-NII-1   | 46         | 5230           |                    | 12.80                  | 14.00   | No       |
| -           |           | 54         | 5270           |                    | 12.98                  | 14.00   | No       |
|             | U-NII-2A  | 62         | 5310           |                    | 13.13                  | 14.00   | No       |
|             |           | 102        | 5510           |                    | 11.92                  | 13.00   | No       |
| 802.11n-    |           | 110        | 5550           |                    | 9.75                   | 11.00   | No       |
| HT40        |           | 118        | 5590           | MCS0               | 12.83                  | 14.00   | No       |
|             | U-NII-2C  | 126        | 5630           |                    | 12.95                  | 14.00   | No       |
|             |           | 134        | 5670           |                    | 12.63                  | 13.00   | No       |
|             |           | 142        | 5710           |                    | 13.23                  | 14.00   | No       |
|             |           | 151        | 5755           |                    | 12.31                  | 13.50   | No       |
|             | U-NII-3   | 159        | 5795           |                    | 12.75                  | 14.00   | No       |
| 5GHz        | mode      | Channel    | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|             |           | 36         | 5180           |                    | 12.95                  | 14.00   | No       |
|             | U-NII-1   | 40         | 5200           |                    | 13.09                  | 14.00   | No       |
|             | U-INII-1  | 44         | 5220           |                    | 12.88                  | 14.00   | No       |
|             |           | 48         | 5240           |                    | 13.41                  | 14.00   | No       |
|             |           | 52         | 5260           |                    | 12.53                  | 14.00   | No       |
|             | U-NII-2A  | 56         | 5280           |                    | 13.13                  | 14.00   | No       |
|             | U-INII-ZA | 60         | 5300           |                    | 13.20                  | 14.00   | No       |
|             |           | 64         | 5320           |                    | 12.98                  | 14.00   | No       |
|             |           | 100        | 5500           |                    | 11.48                  | 12.50   | No       |
| 802.11ac-20 |           | 104        | 5520           | MCS0               | 13.18                  | 14.00   | No       |
|             |           | 108        | 5540           |                    | 13.13                  | 14.00   | No       |
|             |           | 112        | 5560           |                    | 13.41                  | 14.00   | No       |
|             |           | 116        | 5580           |                    | 9.08                   | 10.00   | No       |
|             | U-NII-2C  | 120        | 5600           |                    | 12.80                  | 14.00   | No       |
|             |           | 124        | 5620           |                    | 13.07                  | 14.00   | No       |
|             |           | 128        | 5640           |                    | 13.15                  | 14.00   | No       |
|             |           |            |                |                    | 12.93                  | 14.00   | No       |
|             |           | 132        | 5660           |                    | 12.93                  | 14.00   | No       |
|             |           | 132<br>136 | 5660<br>5680   |                    | 12.80<br>11.95         | 14.00   | No<br>No |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594

Member of the SGS Group (SGS SA)



Report No.: ZR/2020/C004701

25 of 73 Page:

|             |           | 144     | 5720           |                    | 13.06                  | 14.00   | No       |
|-------------|-----------|---------|----------------|--------------------|------------------------|---------|----------|
|             |           | 149     | 5745           |                    | 12.78                  | 13.50   | No       |
|             |           | 153     | 5765           |                    | 12.95                  | 14.00   | No       |
|             | U-NII-3   | 157     | 5785           |                    | 13.00                  | 14.00   | No       |
|             |           | 161     | 5805           |                    | 13.29                  | 14.00   | No       |
|             |           | 165     | 5825           |                    | 13.30                  | 14.00   | No       |
| 5GHz        | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|             | LI NIII 4 | 38      | 5190           |                    | 12.67                  | 14.00   | No       |
|             | U-NII-1   | 46      | 5230           |                    | 13.01                  | 14.00   | No       |
|             | U-NII-2A  | 54      | 5270           |                    | 12.81                  | 14.00   | No       |
|             | U-MII-ZA  | 62      | 5310           |                    | 13.11                  | 14.00   | No       |
|             |           | 102     | 5510           |                    | 11.90                  | 12.50   | No       |
| 802.11ac-40 |           | 110     | 5550           | MCS0               | 9.99                   | 11.00   | No       |
| 802.11ac-40 | U-NII-2C  | 118     | 5590           | MCSU               | 13.35                  | 14.00   | No       |
|             | 0-INII-20 | 126     | 5630           |                    | 12.97                  | 14.00   | No       |
|             |           | 134     | 5670           |                    | 12.28                  | 13.00   | No       |
|             |           | 142     | 5710           |                    | 12.92                  | 14.00   | No       |
|             | U-NII-3   | 151     | 5755           |                    | 13.28                  | 14.00   | No       |
|             | U-INII-3  | 159     | 5795           |                    | 12.80                  | 14.00   | No       |
| 5GHz        | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|             | U-NII-1   | 42      | 5210           |                    | 13.35                  | 14.00   | Yes      |
|             | U-NII-2A  | 58      | 5290           |                    | 13.48                  | 14.00   | Yes      |
| 802.11ac    |           | 106     | 5530           | MCS0               | 11.95                  | 13.00   | No       |
| 80M         | U-NII-2C  | 122     | 5610           | IVICOU             | 10.86                  | 12.00   | No       |
|             |           | 138     | 5690           | 7                  | 12.53                  | 14.00   | Yes      |
|             | U-NII-3   | 155     | 5775           |                    | 13.43                  | 14.00   | Yes      |

### MIMO

| 5GHz    | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|---------|-----------|---------|----------------|--------------------|------------------------|---------|----------|
|         |           | 36      | 5180           |                    | 16.81                  | 17.54   | No       |
|         | U-NII-1   | 40      | 5200           |                    | 16.64                  | 17.54   | No       |
|         | U-INII-1  | 44      | 5220           |                    | 16.64                  | 17.54   | No       |
|         |           | 48      | 5240           |                    | 16.73                  | 17.54   | No       |
|         |           | 52      | 5260           |                    | 16.52                  | 17.54   | No       |
|         | U-NII-2A  | 56      | 5280           |                    | 16.36                  | 17.54   | No       |
|         | U-INII-ZA | 60      | 5300           |                    | 16.54                  | 17.54   | No       |
|         |           | 64      | 5320           |                    | 16.44                  | 17.54   | No       |
|         |           | 100     | 5500           | 6                  | 14.59                  | 15.54   | No       |
| 802.11a |           | 104     | 5520           |                    | 16.38                  | 17.54   | No       |
| 802.11a |           | 108     | 5540           |                    | 16.66                  | 17.54   | No       |
|         |           | 112     | 5560           |                    | 16.64                  | 17.54   | No       |
|         |           | 116     | 5580           |                    | 12.02                  | 13.04   | No       |
|         | U-NII-2C  | 120     | 5600           |                    | 16.45                  | 17.54   | No       |
|         | U-MII-2C  | 124     | 5620           |                    | 16.67                  | 17.54   | No       |
|         |           | 128     | 5640           |                    | 16.31                  | 17.54   | No       |
|         |           | 132     | 5660           |                    | 16.64                  | 17.54   | No       |
|         |           | 136     | 5680           |                    | 17.03                  | 17.54   | No       |
|         |           | 140     | 5700           |                    | 15.39                  | 16.54   | No       |
|         |           | 144     | 5720           |                    | 16.62                  | 17.54   | No       |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

26 of 73 Page:

| <u> </u>    |            | 149     | 5745           |                    | 16.01                  | 17.04          | No       |
|-------------|------------|---------|----------------|--------------------|------------------------|----------------|----------|
|             |            | 153     | 5765           |                    | 16.66                  | 17.54          | No       |
|             | U-NII-3    | 157     | 5785           |                    | 16.60                  | 17.54          | No       |
|             | 0 14.11 0  | 161     | 5805           |                    | 16.64                  | 17.54          | No       |
|             |            | 165     | 5825           |                    | 16.29                  | 17.54          | No       |
| 5GHz        | mode       | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up        | SAR Test |
|             |            | 36      | 5180           |                    | 16.85                  | 17.54          | No       |
|             |            | 40      | 5200           |                    | 16.70                  | 17.54          | No       |
|             | U-NII-1    | 44      | 5220           |                    | 16.42                  | 17.54          | No       |
|             |            | 48      | 5240           |                    | 16.50                  | 17.54          | No       |
|             |            | 52      | 5260           |                    | 16.43                  | 17.54          | No       |
|             |            | 56      | 5280           |                    | 16.44                  | 17.54          | No       |
|             | U-NII-2A   | 60      | 5300           |                    | 16.40                  | 17.54          | No       |
|             |            | 64      | 5320           |                    | 16.49                  | 17.54          | No       |
|             |            | 100     | 5500           |                    | 14.99                  | 15.54          | No       |
|             |            | 104     | 5520           |                    | 16.53                  | 17.54          | No       |
|             |            | 108     | 5540           |                    | 16.81                  | 17.54          | No       |
|             |            | 112     | 5560           |                    | 16.83                  | 17.54          | No       |
| 802.11n-    |            | 116     | 5580           | MCS0               | 13.20                  | 14.04          | No       |
| HT20        |            | 120     | 5600           |                    | 16.59                  | 17.54          | No       |
|             | U-NII-2C   | 124     | 5620           |                    | 16.24                  | 17.54          | No       |
|             |            | 128     | 5640           |                    | 16.42                  | 17.54          | No       |
|             |            | 132     | 5660           |                    | 16.70                  | 17.54          | No       |
|             |            | 136     | 5680           |                    | 16.86                  | 17.54          | No       |
|             |            | 140     | 5700           |                    | 15.73                  | 16.54          | No       |
|             |            | 144     | 5720           |                    | 16.22                  | 17.54          | No       |
|             |            | 149     | 5745           |                    | 15.89                  | 17.04          | No       |
|             | U-NII-3    | 153     | 5765           |                    | 16.64                  | 17.54          | No       |
|             |            | 157     | 5785           |                    | 16.76                  | 17.54          | No       |
|             |            | 161     | 5805           |                    | 16.59                  | 17.54          | No       |
|             |            | 165     | 5825           |                    | 16.62                  | 17.54          | No       |
| 5GHz        | mode       | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up        | SAR Test |
|             | 11 800 4   | 38      | 5190           |                    | 16.64                  | 17.54          | No       |
|             | U-NII-1    | 46      | 5230           |                    | 16.27                  | 17.54          | No       |
|             | 11 111 04  | 54      | 5270           |                    | 16.43                  | 17.54          | No       |
|             | U-NII-2A   | 62      | 5310           |                    | 16.56                  | 17.54          | No       |
|             |            | 102     | 5510           |                    | 15.72                  | 16.54          | No       |
| 802.11n-    |            | 110     | 5550           | MOCO               | 13.35                  | 14.54          | No       |
| HT40        | LI NIII OC | 118     | 5590           | MCS0               | 16.29                  | 17.54          | No       |
|             | U-NII-2C   | 126     | 5630           |                    | 16.47                  | 17.54          | No       |
|             |            | 134     | 5670           |                    | 15.67                  | 16.54          | No       |
|             |            | 142     | 5710           |                    | 16.14                  | 17.54          | No       |
|             | LLNILO     | 151     | 5755           |                    | 15.97                  | 17.04          | No       |
|             | U-NII-3    | 159     | 5795           |                    | 16.21                  | 17.54          | No       |
| 5GHz        | mode       | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up        | SAR Test |
|             |            | 00      | 5180           |                    | 16.77                  | 17.54          | No       |
|             |            | 36      | 3100           |                    |                        |                |          |
|             | 11 NIII 1  | 40      | 5200           |                    | 16.80                  | 17.54          | No       |
| 802.11ac-20 | U-NII-1    |         |                | MCS0               | 16.80<br>16.49         | 17.54<br>17.54 | No<br>No |
| 802.11ac-20 | U-NII-1    | 40      | 5200           | MCS0               |                        |                |          |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

27 of 73 Page:

|             |           | 56      | 5280           |                    | 16.61                  | 17.54   | No       |
|-------------|-----------|---------|----------------|--------------------|------------------------|---------|----------|
|             |           | 60      | 5300           |                    | 16.71                  | 17.54   | No       |
|             |           | 64      | 5320           |                    | 16.73                  | 17.54   | No       |
| -           |           | 100     | 5500           |                    | 14.73                  | 16.04   | No       |
|             |           | 104     | 5520           |                    | 16.74                  | 17.54   | No       |
|             |           | 108     | 5540           |                    | 16.51                  | 17.54   | No       |
|             |           | 112     | 5560           |                    | 16.98                  | 17.54   | No       |
|             |           | 116     | 5580           |                    | 12.75                  | 13.54   | No       |
|             |           | 120     | 5600           |                    | 16.39                  | 17.54   | No       |
|             | U-NII-2C  | 124     | 5620           |                    | 16.74                  | 17.54   | No       |
|             |           | 128     | 5640           |                    | 16.56                  | 17.54   | No       |
|             |           | 132     | 5660           |                    | 16.19                  | 17.54   | No       |
|             |           | 136     | 5680           |                    | 16.59                  | 17.54   | No       |
|             |           | 140     | 5700           |                    | 15.61                  | 16.54   | No       |
|             |           | 144     | 5720           |                    | 16.51                  | 17.54   | No       |
|             |           | 149     | 5745           |                    | 15.82                  | 17.04   | No       |
|             |           | 153     | 5765           |                    | 16.49                  | 17.54   | No       |
|             | U-NII-3   | 157     | 5785           |                    | 16.40                  | 17.54   | No       |
|             |           | 161     | 5805           |                    | 16.72                  | 17.54   | No       |
|             |           | 165     | 5825           |                    | 16.50                  | 17.54   | No       |
| 5GHz        | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|             |           | 38      | 5190           |                    | 16.70                  | 17.54   | No       |
|             | U-NII-1   | 46      | 5230           |                    | 16.62                  | 17.54   | No       |
| -           | U-NII-2A  | 54      | 5270           |                    | 16.27                  | 17.54   | No       |
|             |           | 62      | 5310           |                    | 16.62                  | 17.54   | No       |
| -           |           | 102     | 5510           |                    | 15.36                  | 16.04   | No       |
|             |           | 110     | 5550           |                    | 13.48                  | 14.54   | No       |
| 802.11ac-40 |           | 118     | 5590           | MCS0               | 16.60                  | 17.54   | No       |
|             | U-NII-2C  | 126     | 5630           |                    | 16.35                  | 17.54   | No       |
|             |           | 134     | 5670           |                    | 15.87                  | 16.54   | No       |
|             |           | 142     | 5710           |                    | 16.57                  | 17.54   | No       |
|             |           | 151     | 5755           |                    | 16.46                  | 17.54   | No       |
|             | U-NII-3   | 159     | 5795           |                    | 16.33                  | 17.54   | No       |
| 5GHz        | mode      | Channel | Frequency(MHz) | Data<br>Rate(Mbps) | Average<br>Power (dBm) | Tune up | SAR Test |
|             | U-NII-1   | 42      | 5210           |                    | 16.72                  | 17.54   | Yes      |
|             | U-NII-2A  | 58      | 5290           |                    | 16.85                  | 17.54   | Yes      |
| 802.11ac    |           | 106     | 5530           | 14000              | 16.23                  | 16.54   | No       |
| 80M         | U-NII-2C  | 122     | 5610           | MCS0               | 14.58                  | 15.54   | No       |
|             | 0 1111 20 | 138     | 5690           | <del>- </del>      | 16.26                  | 17.54   | Yes      |
| -           | U-NII-3   | 155     | 5775           |                    | 16.52                  | 17.54   | Yes      |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

28 of 73 Page:

### BT - conducted power table:

### ANT6

| Atti |          |                              |       |       |         |  |  |  |
|------|----------|------------------------------|-------|-------|---------|--|--|--|
| E    | BT       | Average Conducted Power(dBm) |       |       |         |  |  |  |
| Band | Channel  | 0                            | 39    | 78    | Tune up |  |  |  |
|      | GFSK     | 10.56                        | 11.55 | 12.03 | 12.50   |  |  |  |
| BT   | π/4DQPSK | 8.26                         | 9.15  | 10.33 | 12.50   |  |  |  |
|      | 8DPSK    | 8.13                         | 8.88  | 10.21 | 12.50   |  |  |  |
| Band | Channel  | 0                            | 19    | 39    | Tune up |  |  |  |
| BLE  | 1M       | 4.61                         | 4.68  | 5.46  | 7.50    |  |  |  |
| BLE  | 2M       | 4.39                         | 4.53  | 4.71  | 7.50    |  |  |  |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: ZR/2020/C004701

Page: 29 of 73

## 1.5 Test Environment

Ambient Temperature: 22±2° C Tissue Simulating Liquid: 22±2° C

## 1.6 Operation Description

- 1. The EUT is controlled by using a Radio Communication Tester (MT8821C & CMU200), and the communication between the EUT and the tester is established by air link.
- 2. Measurements are performed respectively on the lowest, middle and highest channels of the operating band(s). The EUT is set to maximum power level during all tests, and at the beginning of each test the battery is fully charged.
- 3. During the SAR testing, the DASY 5 system checks power drift by comparing the e-field strength of one specific location measured at the beginning with that measured at the end of the SAR testing.
- 4. SAR test reduction for GPRS mode is determined by the source-based time-averaged output power. The data mode with highest specified time-averaged output power should be tested for SAR compliance.
- 5. The 3G SAR test reduction procedure is applied to HSDPA with 12.2 kbps RMC as the primary mode. Since the maximum output power in a secondary mode (HSDPA) is  $\leq \frac{1}{4}$  dB higher than the primary mode (WCDMA), SAR measurement is not required for the secondary mode (HSDPA).
- 6. The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) with 12.2 kbps RMC as the primary mode. Since the maximum output power in a secondary mode (HSPA) is  $\leq \frac{1}{4}$  dB higher than the primary mode (WCDMA), SAR measurement is not required for the secondary mode (HSPA).





Report No.: ZR/2020/C004701

Page: 30 of 73

- 7. LTE modes test according to KDB 941225D05v02r05.
  - a. Per Section 5.2.1, the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation.
  - Using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel.
  - When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel.
  - When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.
  - b. Per Section 5.2.2, the largest channel bandwidth and measure SAR for QPSK with 50% RB allocation
  - The procedures required for 1 RB allocation in 5.2.1 are applied to measure the SAR for QPSK with 50% RB allocation.
  - c. Per Section 5.2.3, the largest channel bandwidth and measure SAR for QPSK with 100% RB allocation
  - For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in 5.2.1 and 5.2.2 are ≤ 0.8 W/kg.
  - Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.
  - d. Per Section 5.2.4, Higher order modulations
  - For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in sections 5.2.1, 5.2.2 and 5.2.3 to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > 1/2 dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.
  - e. Per Section 5.3, other channel bandwidth standalone SAR test requirements
  - For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section 5.2 to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > 1/2 dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg. The equivalent channel configuration for the RB allocation, RB offset and modulation etc. is determined for the smaller channel bandwidth according to the same number of RB allocated in the largest channel bandwidth.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions</a> for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: ZR/2020/C004701

Page: 31 of 73

### The EUT LTE test information:

| Test Modulation             |                   | QPSK/16QAM/640   | MAQ      |               |
|-----------------------------|-------------------|------------------|----------|---------------|
|                             | LTE FDD           | Band 4           | 1710     | <b>–</b> 1755 |
| TX Frequency<br>Range (MHz) | LTE TDI           | D Band 12        | 699      | _ 716         |
| i idiigo (iii iz)           | LTE TDI           | D Band 41        | 2496     | <b>–</b> 2690 |
| Bands                       | Test Frequency ID | Bandwidths       | Channels | Frequencies   |
|                             |                   | 1.4              | 19957    | 1710.7        |
|                             |                   | 3                | 19965    | 1711.5        |
|                             | I Danna           | 5                | 19975    | 1712.5        |
|                             | Low Range         | 10               | 20000    | 1715          |
|                             |                   | 15               | 20025    | 1717.5        |
|                             |                   | 20               | 20050    | 1720          |
| LTE B4                      | Mid-Range         | 1.4/3/5/10/15/20 | 20175    | 1732.5        |
|                             | 9                 | 1.4              | 20393    | 1754.3        |
|                             |                   | 3                | 20385    | 1753.5        |
|                             | <b>-</b>          | 5                | 20375    | 1752.5        |
|                             | High Range        | 10               | 20350    | 1750          |
|                             |                   | 15               | 20325    | 1747.5        |
|                             |                   | 20               | 20300    | 1745          |
|                             |                   | 1.4              | 23017    | 699.7         |
|                             | I I I             | 3                | 23025    | 700.5         |
|                             | Low Range         | 5                | 23035    | 701.5         |
|                             |                   | 10               | 23060    | 704           |
| LTE B12                     | Mid-Range         | 1.4/3 /5 /10     | 23095    | 707.5         |
|                             |                   | 1.4              | 23173    | 715.3         |
|                             | High Range        | 3                | 23165    | 714.5         |
|                             | High hange        | 5                | 23155    | 713.5         |
|                             |                   | 10               | 23130    | 711           |
|                             |                   | 5                | 39675    | 2498.5        |
|                             | Low Range         | 10               | 39700    | 2501          |
|                             | Low range         | 15               | 39725    | 2503.5        |
|                             |                   | 20               | 39750    | 2506          |
| LTE B41                     | Mid-Range         | 5/10/15/20       | 40620    | 2593          |
|                             |                   | 5                | 41565    | 2687.5        |
|                             | High Range        | 10               | 41540    | 2685          |
|                             |                   | 15               | 41515    | 2682.5        |
|                             |                   | 20               | 41490    | 2680          |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

32 of 73 Page:

| LTE transmitter and antenna implementation | For each LTE Band the device has one integral antenna used for transmitting. |             |            |            |           |           |           |          |
|--------------------------------------------|------------------------------------------------------------------------------|-------------|------------|------------|-----------|-----------|-----------|----------|
|                                            | Modulation Channel bandwidth / Transmission bandwidth configuration [RB]     |             |            |            |           |           |           | MPR (dB) |
| Maximum power reduction (MPR)              | La v                                                                         | 1.4<br>MHz  | 3.0<br>MHz | 5<br>MHz   | 10<br>MHz | 15<br>MHz | 20<br>MHz |          |
|                                            | QPSK                                                                         | > 5         | >4         | > 8        | > 12      | > 16      | > 18      | . ≤1     |
|                                            | 16 QAM                                                                       | ≤ 5         | ≤ 4        | ≤ 8        | ≤ 12      | ≤ 16      | ≤ 18      | ≤ 1      |
|                                            | 16 QAM                                                                       | > 5         | > 4        | > 8        | > 12      | > 16      | > 18      | ≤ 2      |
|                                            | 64 QAM                                                                       | ≤ 5         | ≤ 4        | ≤8         | ≤ 12      | ≤ 16      | ≤ 18      | ≤ 2      |
|                                            | 64 QAM                                                                       | > 5         | >4         | > 8        | > 12      | > 16      | > 18      | ≤ 3      |
|                                            | 256 QAM                                                                      | ≥1          |            |            |           |           |           | ≤ 5      |
| Spectrum plots for RB configurations       | A properly confimeasurements configuration are                               | , therefore | , spectrur | n plots fo | r each RB |           |           |          |

Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

Page: 33 of 73

### 8. WLAN

Initial Test Position SAR Test Reduction Procedure

DSSS and OFDM configurations are considered separately according to the required SAR procedures. SAR is measured in the initial test position using the 802.11 transmission mode configuration required by the DSSS procedure or initial test configuration and subsequent test configuration(s) according to the OFDM procedures. The initial test position procedure is described in the following:

- 1). When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combinations within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2). When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3). For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested. a) Additional power measurements may be required for this step, which should be limited to those necessary for identifying the subsequent highest output power channels.

**Initial Test Configuration Procedures** 

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required. SAR test reduction for subsequent highest output test channels is determined according to reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions</a> for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: ZR/2020/C004701

Page: 34 of 73

When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested.

Subsequent Test Configuration Procedure

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. The initial test position procedure is applied to next to the ear, UMPC mini-tablet and hotspot mode configurations. When the same maximum output power is specified for multiple transmission modes, additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. The subsequent test configuration and SAR measurement procedures are described in the following.

- 1) . When SAR test exclusion provisions of KDB Publication 447498 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
- 2). When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.
- 3). The number of channels in the initial test configuration and subsequent test configuration can be different due to differences in channel bandwidth. When SAR measurement is required for a subsequent test configuration and the channel bandwidth is smaller than that in the initial test configuration, all channels in the subsequent test configuration that overlap with the larger bandwidth channel tested in the initial test configuration should be used to determine the highest maximum output power channel. This step requires additional power measurement to identify the highest maximum output power channel in the subsequent test configuration to determine SAR test reduction.
- a) SAR should first be measured for the channel with highest measured output power in the subsequent test configuration.
- b) SAR for subsequent highest measured maximum output power channels in the subsequent test configuration is required only when the reported SAR of the preceding higher maximum output power channel(s) in the subsequent test configuration is > 1.2 W/kg or until all required channels are tested. i) For channels with the same measured maximum output power, SAR should be measured using the channel closest to the center frequency of the larger channel bandwidth channel in the initial test configuration.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: ZR/2020/C004701

Page: 35 of 73

4) . SAR measurements for the remaining highest specified maximum output power OFDM transmission mode configurations that have not been tested in the initial test configuration (highest maximum output) or subsequent test configuration(s) (subsequent next highest maximum output power) is determined by recursively applying the subsequent test configuration procedures in this section to the remaining configurations according to the following:

- a) replace "subsequent test configuration" with "next subsequent test configuration" (i.e., subsequent next highest specified maximum output power configuration)
- b) replace "initial test configuration" with "all tested higher output power configurations"

#### 2.4 GHz WiFi SAR Procedures:

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions. When SAR measurement is required for an OFDM configuration, the initial test configuration, subsequent test configuration and initial test position procedures are applied. The SAR test exclusion requirements for 802.11g/n OFDM configurations are described in following.

802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1). When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) . When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) . When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is  $\leq 1.2 \text{ W/kg}$ .

SAR Test Requirements for OFDM configurations



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions</a> for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: ZR/2020/C004701

Page: 36 of 73

When SAR measurement is required for 802.11 g/n OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

#### 5 GHz WiFi SAR Procedures:

U-NII-1 and U-NII-2A Bands

For devices that operate in only one of the U-NII-1 and U-NII-2A bands, the normally required SAR procedures for OFDM configurations are applied. For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following:

- 1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, both bands are tested independently for SAR.
- 2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, both bands are tested independently for SAR.
- 3) The two U-NII bands may be aggregated to support a 160 MHz channel on channel number 50. Without additional testing, the maximum output power for this is limited to the lower of the maximum output power certified for the two bands. When SAR measurement is required for at least one of the bands and the highest reported SAR adjusted by the ratio of specified maximum output power of aggregated to standalone band is > 1.2 W/kg, SAR is required for the 160 MHz channel. This procedure does not apply to an aggregated band with maximum output higher than the standalone band(s); the aggregated band must be tested independently for SAR. SAR is not required when the 160 MHz channel is operating at a reduced maximum power and also qualifies for SAR test exclusion.

U-NII-2C and U-NII-3 Bands

The frequency range covered by these bands is 380 MHz (5.47 – 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements, when Terminal Doppler Weather Radar (TDWR) restriction applies, all channels that operate at 5.60 - 5.65 GHz must be included to apply the SAR test reduction and measurement procedures.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.genyahor-Cormat documents">http://www.sgs.com/en/Terms-and-Conditions for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en/Cocument.spx">http://www.sgs.com/en/Terms-and-Conditions/Terms-en/Cocument.spx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,



Report No.: ZR/2020/C004701

37 of 73 Page:

When the same transmitter and antenna(s) are used for U-NII-2C band and U-NII-3 band or 5.8 GHz band of §15.247, the bands may be aggregated to enable additional channels with 20, 40 or 80 MHz bandwidth to span across the band gap, as illustrated in Appendix B. The maximum output power for the additional band gap channels is limited to the lower of those certified for the bands. Unless band gap channels are permanently disabled, they must be considered for SAR testing. The frequency range covered by these bands is 380 MHz (5.47 - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. To maintain SAR measurement accuracy and to facilitate test reduction, the channels in U-NII-2C band above 5.65 GHz may be grouped with the 5.8 GHz channels in U-NII-3 or §15.247 band to enable two SAR probe calibration frequency points to cover the bands, including the band gap channels. When band gap channels are supported and the bands are not aggregated for SAR testing, band gap channels must be considered independently in each band according to the normally required OFDM SAR measurement and probe calibration frequency points requirements.

OFDM Transmission Mode SAR Test Configuration and Channel Selection Requirements

The initial test configuration for 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. SAR for the initial test configuration is measured using the highest maximum output power channel determined by the default power measurement procedures. When multiple configurations in a frequency band have the same specified maximum output power, the initial test configuration is determined according to the following steps applied sequentially.

- 1) The largest channel bandwidth configuration is selected among the multiple configurations with the same specified maximum output power.
- 2) If multiple configurations have the same specified maximum output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3) If multiple configurations have the same specified maximum output power, largest channel bandwidth and lowest order modulation, the lowest data rate configuration among these configurations is selected.
- 4) When multiple transmission modes (802.11a/g/n/ac) have the same specified maximum output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n. After an initial test configuration is determined, if multiple test channels have the same measured maximum output power, the channel chosen for SAR measurement is determined according to the following. These channel selection procedures apply to both the initial test configuration and subsequent test configuration(s), with respect to the default power measurement procedures or additional power measurements required for further SAR test reduction. The same procedures also apply to subsequent highest output power channel(s) selection.





Report No.: ZR/2020/C004701

Page: 38 of 73

- a) The channel closest to mid-band frequency is selected for SAR measurement.
- b) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

SAR Test Requirements for OFDM configurations:

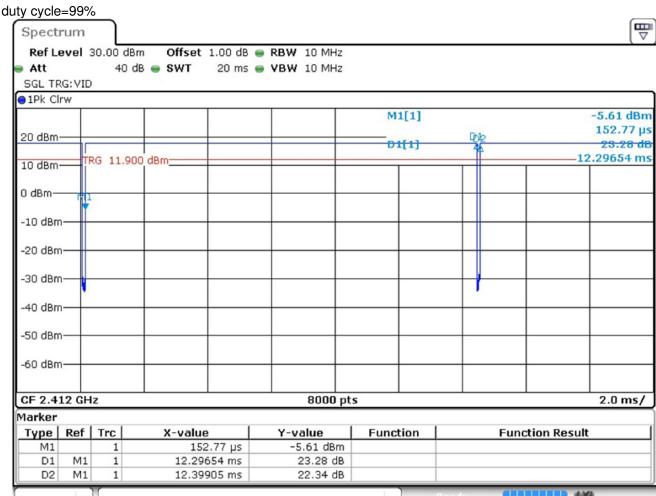
When SAR measurement is required for 802.11 a/n/ac OFDM configurations, each standalone and frequency aggregated band is considered separately for SAR test reduction. When the same transmitter and antenna(s) are used for U-NII-1 and U-NII-2A bands, additional SAR test reduction applies. When band gap channels between U-NII-2C band and 5.8 GHz U-NII-3 or §15.247 band are supported, the highest maximum output power transmission mode configuration and maximum output power channel across the bands must be used to determine SAR test reduction, according to the initial test configuration and subsequent test configuration requirements. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

WiFi CDD/MIMO SAR Considerations

Per KDB 248227D01v02r02, simultaneous transmission provisions in KDB Publication 447498 should be used to determine simultaneous transmission SAR test exclusion for WiFi MIMO. If the sum of 1-g SAR single transmission SAR measurement is <1.6W/kg, no additional SAR measurements for MIMO are required. Alternatively, SAR for MIMO can be measured with all antennas transmitting simultaneously at the specified maximum output power of MIMO operation.

- 9. According to KDB447498D01v06, testing of other required channels is not required when the reported 1-g SAR for the highest output channel is  $\leq 0.8$  W/kg, when the transmission band is  $\leq 100$ MHz.
- 10. According to KDB865664D01v01r04, SAR measurement variability must be assessed for each frequency band. When the original highest measured SAR is ≥ 0.8 W/kg, repeated that measurement once. Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit)
- 11. According to KDB447498D01v06 The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]  $\cdot [\sqrt{f(GHz)}] \le 3.0$  for 1-g SAR, and  $\le 7.5$  for product specific 10-g SAR.






Report No.: ZR/2020/C004701

Page: 39 of 73



2.4GHz Wi-Fi 802.11b:

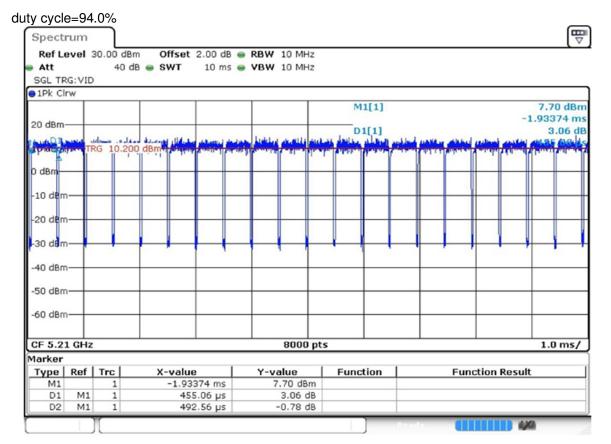




Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.spx">http://www.sgs.com/en/Terms-and-Conditions.spx</a> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.spx">http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.spx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) tested only only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房


邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

Page: 40 of 73

#### 5GHz Wi-Fi 802.11ac 80M:

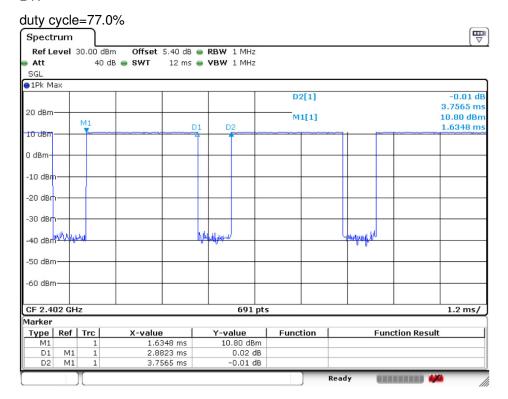




Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.spx">http://www.sgs.com/en/Terms-and-Conditions.spx</a> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.spx">http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.spx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) tested only only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房


邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



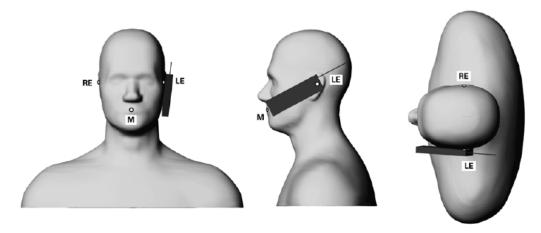
Report No.: ZR/2020/C004701

Page: 41 of 73

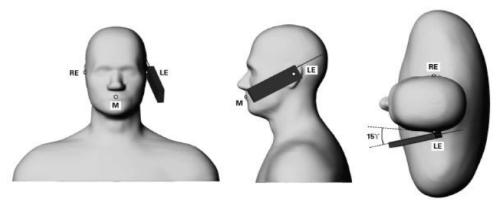
#### BT:








Report No.: ZR/2020/C004701


Page: 42 of 73

#### 1.7 Positioning Procedure

#### **Head SAR measurement statement**



Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning.



Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning.

#### Cheek/Touch Position:

The handset was brought toward the mouth of the head phantom by pivoting against the ear reference point until any point of the mouthpiece or keypad touched the phantom.

#### Ear/Tilt Position:

With the phone aligned in the Cheek/Touch position, the handset was tilted away from the mouth with respect to the test device reference point by 15 degrees.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions</a> for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 邮编: 518057

Member of the SGS Group (SGS SA)



Report No.: ZR/2020/C004701

Page: 43 of 73

#### **Body SAR measurement statement**

Body-worn exposure: 15mm

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative test separation distance configuration may be used to support both SAR conditions. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

#### 2. Hotspot exposure: 10mm

A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge when the form factor of a handset is larger than 9 cm × 5 cm,

Test configurations of WWAN:

- (1) Front side
- (2) Back side
- (3) Bottom side
- (4) Right side
- (5) Left side

#### Test configurations of WLAN:

- (1) Front side
- (2) Back side
- (3) Top side
- (4) Right side
- (5) Left side

#### Extremity exposure conditions

Per FCC KDB 648474D04, for smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the device is marketed as "Phablet".

The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at ≤ 25 mm from that surface or edge, in direct contact with a flat phantom, for Product Specific 10-g SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, Product Specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; however, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

Due to the SAR result, WWAN bands do not need to be test with 0mm for the Product Specific 10-g SAR.





Report No.: ZR/2020/C004701

Page: 44 of 73

#### 1.8 Evaluation Procedures

The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- 1. The extraction of the measured data (grid and values) from the Zoom Scan.
- 2.The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters).
- 3. The generation of a high-resolution mesh within the measured volume.
- 4. The interpolation of all measured values from the measurement grid to the high-resolution grid.
- 5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface.
- 6. The calculation of the averaged SAR within masses of 1g and 10g.

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than 1/20 of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5mm.

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1g and 10g peak evaluations are only available for the predefined cube 7x7x7 scans.

The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of 30x30x30mm contains about 30g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume. In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found.

If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issue defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and its document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) sare retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

Member of the SGS Group (SGS SA)



Report No.: ZR/2020/C004701

Page: 45 of 73

#### 1.9 Probe Calibration Procedures

For the calibration of E-field probes in lossy liquids, an electric field with an accurately known field strength must be produced within the measured liquid. For standardization purposes it would be desirable if all measurements which are necessary to assess the correct field strength would be traceable to standardized measurement procedures. In the following two different calibration techniques are summarized:

#### 1.9.1 Transfer Calibration with Temperature Probes

In lossy liquids the specific absorption rate (SAR) is related both to the electric field (E) and the temperature gradient ( $\delta T / \delta t$ ) in the liquid.

$$SAR = C \frac{\delta T}{\delta t}$$
,

Whereby  $\sigma$  is the conductivity,  $\rho$  the density and c the heat capacity of the liquid.

- 1. Hence, the electric field in lossy liquid can be measured indirectly by measuring the temperature gradient in the liquid. Non-disturbing temperature probes (optical probes or thermistor probes with resistive lines) with high spatial resolution (<1-2 mm) and fast reaction time (<1 s) are available and can be easily calibrated with high precision [1]. The setup and the exciting source have no influence on the calibration; only the relative positioning uncertainties of the standard temperature probe and the E-field probe to be calibrated must be considered. However, several problems limit the available accuracy of probe calibrations with temperature probes:
- 2. The temperature gradient is not directly measurable but must be evaluated from temperature measurements at different time steps. Special precaution is necessary to avoid measurement errors caused by temperature gradients due to energy equalizing effects or convection currents in the liquid. Such effects cannot be completely avoided, as the measured field itself destroys the thermal equilibrium in the liquid. With a careful setup these errors can be kept small.
- 3. The measured volume around the temperature probe is not well defined. It is difficult to calculate the energy transfer from a surrounding gradient temperature field into the probe. These effects must be considered, since temperature probes are calibrated in liquid with homogeneous temperatures. There is no traceable standard for temperature rise measurements.

The calibration depends on the assessment of the specific density, the heat capacity and the conductivity of the medium. While the specific density and heat capacity can be measured accurately with standardized procedures (~ 2% for c; much better for ρ), there is no standard for the measurement of the conductivity. Depending on the method and liquid, the error can well exceed ±5%.

4.Temperature rise measurements are not very sensitive and therefore are often performed at a higher power level than the E-field measurements. The nonlinearities in the system (e.g., power measurements, different components, etc.) must be considered.

Considering these problems, the possible accuracy of the calibration of E-field probes with temperature gradient measurements in a carefully designed setup is about ±10% (RSS) [2]. Recently, a setup which is a combination of the waveguide techniques and the thermal measurements was presented in [3]. The estimated uncertainty of the setup is ±5% (RSS) when the same liquid is used for the calibration and for actual measurements and ±7-9% (RSS) when not, which is in good agreement with the estimates given in [2].





Report No.: ZR/2020/C004701

Page: 46 of 73

#### 1.9.2 Calibration with Analytical Fields

In this method a technical setup is used in which the field can be calculated analytically from measurements of other physical magnitudes (e.g., input power). This corresponds to the standard field method for probe calibration in air; however, there is no standard defined for fields in lossy liquids.

When using calculated fields in lossy liquids for probe calibration, several points must be considered in the assessment of the uncertainty:

- 1. The setup must enable accurate determination of the incident power.
- 2. The accuracy of the calculated field strength will depend on the assessment of the dielectric parameters of the liquid.
- 3. Due to the small wavelength in liquids with high permittivity, even small setups might be above the resonant cutoff frequencies. The field distribution in the setup must be carefully checked for conformity with the theoretical field distribution.

#### References

- 1) N. Kuster, Q. Balzano, and J.C. Lin, Eds., Mobile Communications Safety, Chapman & Hall, London, 1997.
- 2) K. Meier, M. Burkhardt, T. Schmid, and N. Kuster, \Broadband calibration of E-field probes in lossy media", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1954(1962, Oct. 1996.
- 3) K. Jokela, P. Hyysalo, and L. Puranen, \Calibration of specific absorption rate (SAR) probes in waveguide at 900 MHz", IEEE Transactions on Instrumentation and Measurements, vol. 47, no. 2, pp. 432{438, Apr. 1998.



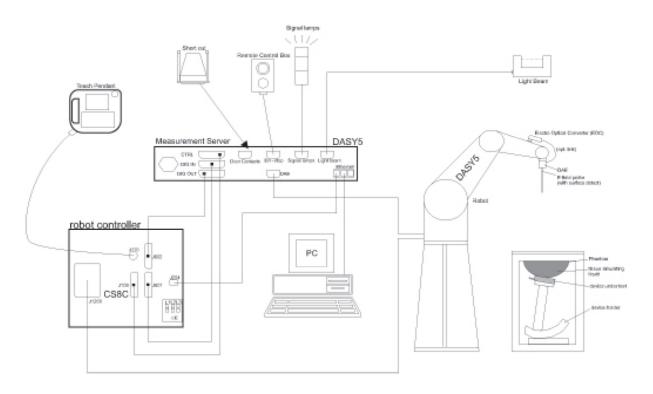


Report No.: ZR/2020/C004701

Page: 47 of 73

#### 1.10 The SAR Measurement System

This SAR Measurement System uses a Computer-controlled 3-D stepper motor system (SPEAG DASY5 professional system). A E-field probe is used to determine the internal electric fields. The SAR can be obtained from the equation SAR=  $\sigma$  (|Ei|2)/  $\rho$  where  $\sigma$  and  $\rho$  are the conductivity and mass density of the tissue-Simulate.


The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stabile RX family) with controller, teach pendant and software .An arm extension for accommodation the data acquisition electronics (DAE).

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion between optical and electrical of the signals for the digital communication to DAE and for the analog signal from the optical surface detection. The EOC is connected to the measurement server.



F-1. SAR Measurement System Configuration





Report No.: ZR/2020/C004701

Page: 48 of 73

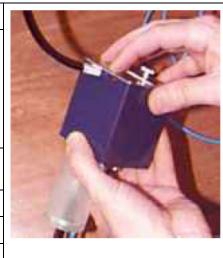
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 7.
- DASY5 software.
- Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand, right-hand and Body Worn usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validating the proper functioning of the system.

### 1.11 System Component

#### **EX3DV4 E-Field Probe**

| EX3DV4 E-FIEIG FIODE |                                                                                                                                                                                                               |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | Symmetrical design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)                                                         |
| Calibration          | ISO/IEC 17025 <u>calibration service</u> available.                                                                                                                                                           |
| Frequency            | 10 MHz to > 6 GHz<br>Linearity: ± 0.2 dB (30 MHz to 6 GHz)                                                                                                                                                    |
| Directivity          | ± 0.3 dB in TSL (rotation around probe axis)<br>± 0.5 dB in TSL (rotation normal to probe axis)                                                                                                               |
| Dynamic Range        | 10 $\mu$ W/g to > 100 mW/g<br>Linearity: $\pm$ 0.2 dB (noise: typically < 1 $\mu$ W/g)                                                                                                                        |
| Dimensions           | Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm                                                                                |
| Application          | High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields); the only probe that enables compliance testing for frequencies up to 6 GHz with precision of better 30%. |
| Compatibility        | DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI                                                                                                                                                                |






Report No.: ZR/2020/C004701

Page: 49 of 73

Data Acquisition Electronics (DAE)

| Model                | DAE4                                                                                                                                                                                                                                                   |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction         | Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY4/5 embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop. |
| Measurement<br>Range | -100 to +300 mV (16 bit resolution and two range settings: 4mV,400mV)                                                                                                                                                                                  |
| Input Offset Voltage | < 5μV (with auto zero)                                                                                                                                                                                                                                 |
| Input Bias Current   | < 50 f A                                                                                                                                                                                                                                               |
| Dimensions           | 60 x 60 x 68 mm                                                                                                                                                                                                                                        |



#### **SAM Twin Phantom**

| Material                                | Vinylester, glass fiber reinforced (VE-GF)                            |
|-----------------------------------------|-----------------------------------------------------------------------|
| Liquid Compatibility                    | Compatible with all SPEAG tissue simulating liquids (incl. DGBE type) |
| Shell Thickness                         | 2 ± 0.2 mm (6 ± 0.2 mm at ear point)                                  |
| Dimensions<br>(incl. Wooden<br>Support) | Length: 1000 mm<br>Width: 500 mm<br>Height: adjustable feet           |
| Filling Volume                          | approx. 25 liters                                                     |
| Wooden Support                          | SPEAG standard phantom table                                          |



The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.

Twin SAM V5.0 has the same shell geometry and is manufactured from the same material as Twin SAM V4.0, but has reinforced top structure.





Report No.: ZR/2020/C004701

Page: 50 of 73

#### **ELI Phantom**

| Material        | Vinylester, glass fiber reinforced (VE-GF) |
|-----------------|--------------------------------------------|
| Liquid          | Compatible with all SPEAG tissue           |
| Compatibility   | simulating liquids (incl. DGBE type)       |
| Shell Thickness | 2.0 ± 0.2 mm (bottom plate)                |
| Dimensions      | Major axis: 600 mm                         |
| Difficitsions   | Minor axis: 400 mm                         |
| Filling Volume  | approx. 30 liters                          |
| Wooden Support  | SPEAG standard phantom table               |



Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

ELI V5.0 has the same shell geometry and is manufactured from the same material as ELI4, but has reinforced top structure.





Report No.: ZR/2020/C004701

Page: 51 of 73

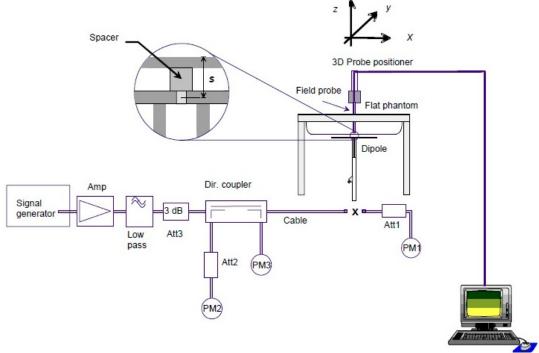
#### **Device Holder for Transmitters**



F-2. Device Holder for Transmitters

- The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centres for both scales are the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.
- The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity  $\varepsilon$ =3 and loss tangent  $\delta$ =0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.






Report No.: ZR/2020/C004701

Page: 52 of 73

#### 1.12 SAR System Check

The microwave circuit arrangement for system Check is sketched in F-12. The daily system accuracy verification occurs within the flat section of the SAM phantom. A SAR measurement was performed to see if the measured SAR was within +/- 10% from the target SAR values. The tests were conducted on the same days as the measurement of the EUT. The obtained results from the system accuracy verification are displayed in the following table (A power level of 250mW (below 3GHz) or 100mW (3-6GHz) was input to the dipole antenna). During the tests, the ambient temperature of the laboratory was in the range 22±2°C, the relative humidity was in the range 60% and the liquid depth above the ear reference points was above 15±0.5 cm in all the cases. It is seen that the system is operating within its specification, as the results are within acceptable tolerance of the reference values.



F-12. The block diagram of system check



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issued selfined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

邮编: 518057

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

53 of 73 Page:

| Validation Kit |               | Measured<br>SAR<br>250mW | Measured<br>SAR 250mW | Measured<br>SAR<br>(normalized<br>to 1W)<br>1g (W/kg) | Measured<br>SAR<br>(normalized<br>to 1W)<br>10g (W/kg) | Target SAR<br>(normalized to<br>1W) (±10%)<br>1-g(W/kg) | Target SAR<br>(normalized to<br>1W) (±10%)<br>10-g(W/kg) | Liquid<br>Temp.<br>(°C) | Measured Date |
|----------------|---------------|--------------------------|-----------------------|-------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|-------------------------|---------------|
| D750V3         | Head          | 2.11                     | 1.38 8.44             |                                                       | 5.52                                                   | 8.39<br>(7.55~9.23)                                     | 5.63<br>(5.07~6.19)                                      | 22.1                    | 2021/3/18     |
| D835V2         | Head          | 2.37                     | 1.54                  | 9.48                                                  | 6.16                                                   | 9.64<br>(8.68~10.60)                                    | 6.29<br>(5.66~6.92)                                      | 22.1                    | 2021/3/18     |
| D1750V2        | Head          | 9.28                     | 4.94                  | 37.12                                                 | 19.76                                                  | 36.3<br>(32.67~39.93)                                   | 19.2<br>(17.28~21.12)                                    | 22.2                    | 2021/3/22     |
| D1900V2        | Head          | 8.90                     | 4.62                  | 35.60                                                 | 18.48                                                  | 39.3<br>(35.37~43.23)                                   | 20.2<br>(18.18~22.22)                                    | 22.3                    | 2021/3/19     |
| D2450V2        | Head          | 12.90                    | 5.91                  | 51.60                                                 | 23.64                                                  | 51.9<br>(46.71~57.09)                                   | 23.8<br>(21.42~26.18)                                    | 22.0                    | 2021/3/21     |
| D2600V2        | Head          | 13.60                    | 6.10                  | 54.40                                                 | 24.40                                                  | 56.8<br>(51.12~62.48)                                   | 24.9<br>(22.41~27.39)                                    | 22.1                    | 2021/3/17     |
| Validat        | ion Kit       | Measured<br>SAR<br>100mW | Measured<br>SAR 100mW | Measured<br>SAR<br>(normalized<br>to 1W)              | Measured<br>SAR<br>(normalized<br>to 1W)               | Target SAR<br>(normalized to<br>1W) (±10%)              | Target SAR<br>(normalized to<br>1W) (±10%)               | Liquid<br>Temp.<br>(°C) | Measured Date |
|                |               | 1g (W/kg)                | 10g (W/kg)            | 1g (W/kg)                                             | 10g (W/kg)                                             | 1-g(W/kg)                                               | 10-g(W/kg)                                               |                         |               |
|                | Head(5.25GHz) | 7.67                     | 2.20                  | 76.70                                                 | 22.00                                                  | 75.2<br>(67.68~82.72)                                   | 21.5<br>(19.35~23.65)                                    | 22.2                    | 2021/3/21     |
| D5GHzV2        | Head(5.6GHz)  | 8.41                     | 2.39                  | 84.10                                                 | 23.90                                                  | 80<br>(72~88)                                           | 22.7<br>(20.43~24.97)                                    | 22.2                    | 2021/3/21     |
|                | Head(5.75GHz) | 8.32                     | 2.37                  | 83.20                                                 | 23.70                                                  | 78.7<br>(70.83~86.57)                                   | 22.3<br>(20.07~24.53)                                    | 22.2                    | 2021/3/21     |

Table 1. Results of system check





Report No.: ZR/2020/C004701

Page: 54 of 73

### 1.13 Tissue Simulant Fluid for the Frequency Band

The dielectric properties for this Tissue Simulate Liquids were measured by using the Agilent Model 85070E Dielectric Probe in conjunction with Agilent E5071C Network Analyzer (300 KHz-8500 MHz). The Conductivity (σ) and Permittivity (ρ) are listed in bellow table. For the SAR measurement given in this report. The temperature variation of the Tissue Simulate Liquids was 22±2℃.

|             | Measured           | Target Tiss            | sue (±5%)           | Measure | d Tissue | Liquid Temp. | Measured Date |
|-------------|--------------------|------------------------|---------------------|---------|----------|--------------|---------------|
| Tissue Type | Frequency<br>(MHz) | εr                     | σ(S/m)              | εr      | σ(S/m)   | (°C)         |               |
| 750 Head    | 750                | 41.9<br>(39.81~44)     | 0.89<br>(0.85~0.94) | 43.670  | 0.862    | 22.1         | 2021/3/18     |
| 835 Head    | 835                | 41.5<br>(39.43~43.58)  | 0.90<br>(0.86~0.95) | 43.077  | 0.887    | 22.1         | 2021/3/18     |
| 1750 Head   | 1750               | 40.1<br>(38.10~42.11)  | 1.37<br>(1.30~1.44) | 40.679  | 1.336    | 22.2         | 2021/3/22     |
| 1900 Head   | 1900               | 40.0<br>(38.00~42.00)  | 1.40<br>(1.33~1.47) | 38.457  | 1.449    | 22.3         | 2021/3/19     |
| 2450 Head   | 2450               | 39.20<br>(37.24~41.16) | 1.80<br>(1.71~1.89) | 39.326  | 1.765    | 22.0         | 2021/3/21     |
| 2600 Head   | 2600               | 39.0<br>(37.05~40.95)  | 1.96<br>(1.86~2.06) | 38.835  | 1.934    | 22.1         | 2021/3/17     |
| 5250Head    | 5250               | 35.9<br>(34.11~37.70)  | 4.71<br>(4.47~4.95) | 36.011  | 4.721    | 22.2         | 2021/3/21     |
| 5600 Head   | 5600               | 35.5<br>(33.73~37.28)  | 5.07<br>(4.82~5.32) | 35.059  | 5.107    | 22.2         | 2021/3/21     |
| 5750 Head   | 5750               | 35.4<br>(33.63~37.17)  | 5.22<br>(4.96~5.48) | 34.695  | 5.279    | 22.2         | 2021/3/21     |

Table 2. Dielectric Parameters of Tissue Simulant Fluid



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.genyahor-Cormat documents">http://www.sgs.com/en/Terms-and-Conditions for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en/Cocument.spx">http://www.sgs.com/en/Terms-and-Conditions/Terms-en/Cocument.spx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

Page: 55 of 73

The composition of the tissue simulating liquid:

| Ingredients   |       | Frequency (MHz) |           |           |           |  |  |  |  |  |  |
|---------------|-------|-----------------|-----------|-----------|-----------|--|--|--|--|--|--|
| (% by weight) | 450   | 900             | 1800-2000 | 2300-2500 | 2500-2700 |  |  |  |  |  |  |
| Water         | 38.56 | 40.30           | 55.24     | 55.00     | 54.92     |  |  |  |  |  |  |
| Salt (NaCl)   | 3.95  | 1.38            | 0.31      | 0.2       | 0.23      |  |  |  |  |  |  |
| Sucrose       | 56.32 | 57.90           | 0         | 0         | 0         |  |  |  |  |  |  |
| HEC           | 0.98  | 0.24            | 0         | 0         | 0         |  |  |  |  |  |  |
| Bactericide   | 0.19  | 0.18            | 0         | 0         | 0         |  |  |  |  |  |  |
| Tween         | 0     | 0               | 44.45     | 44.80     | 44.85     |  |  |  |  |  |  |

Salt: 99+% Pure Sodium Chloride Sucrose: 98+% Pure Sucrose Water: De-ionized, 16 MΩ+ resistivity HEC: Hydroxyethyl Cellulose

Tween: Polyoxyethylene (20) sorbitan monolaurate

HSL5GHz is composed of the following ingredients:

Water: 50-65% Mineral oil: 10-30% Emulsifiers: 8-25%

Sodium salt: 0-1.5%

Table 3. Recipes for tissue simulating liquid



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.genyahor-Cormat documents">http://www.sgs.com/en/Terms-and-Conditions for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en/Cocument.spx">http://www.sgs.com/en/Terms-and-Conditions/Terms-en/Cocument.spx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

Page: 56 of 73

#### 1.14 Test Standards and Limits

According to FCC 47CFR §2.1093(d) The limits to be used for evaluation are based generally on criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate ("SAR") in Section 4.2 of "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz," ANSI/IEEE C95.1, By the Institute of Electrical and Electronics Engineers, Inc., New York, New York 10017.

These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in "Biological Effects and Exposure Criteria for Radio frequency Electromagnetic Fields," NCRP Report No. 86, Section 17.4.5. Copyright NCRP, 1986, Bethesda, Maryland 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards. The criteria to be used are specified in paragraphs (d)(1) and (d)(2) of this section and shall apply for portable devices transmitting in the frequency range from 100 kHz to 6 GHz. Portable devices that transmit at frequencies above 6 GHz are to be evaluated in terms of the MPE limits specified in § 1.1310 of this chapter.

Measurements and calculations to demonstrate compliance with MPE field strength or power density limits for devices operating above 6 GHz should be made at a minimum distance of 5 cm from the radiating source.

1. Limits for Occupational/Controlled exposure: 0.4 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 8 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube). Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 20 W/kg, as averaged over a 10 grams of tissue (defined as a tissue volume in the shape of a cube).

Occupational/Controlled limits apply when persons are exposed as a consequence of their employment provided these persons are fully aware of and exercise control over their exposure. Awareness of exposure can be accomplished by use of warning labels or by specific training or education through appropriate means, such as an RF safety program in a work environment.

2. Limits for General Population/Uncontrolled exposure: 0.08 W/kg as averaged over the whole-body and spatial peak SAR not exceeding 1.6 W/kg as averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube).





Report No.: ZR/2020/C004701

Page: 57 of 73

Exceptions are the hands, wrists, feet and ankles where the spatial peak SAR shall not exceed 4 W/kg, as averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube).

General Population/Uncontrolled limits apply when the general public may be exposed, or when persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or do not exercise control over their exposure.

Warning labels placed on consumer devices such as cellular telephones will not be sufficient reason to allow these devices to be evaluated subject to limits for occupational/controlled exposure in paragraph (d)(1) of this section(Table .4)

| Human Exposure                            | Uncontrolled Environment General Population | Controlled Environment Occupational |
|-------------------------------------------|---------------------------------------------|-------------------------------------|
| Spatial Peak SAR<br>(Brain)               | 1.60 W/kg                                   | 8.00 W/kg                           |
| Spatial Average SAR<br>(Whole Body)       | 0.08 W/kg                                   | 0.40 W/kg                           |
| Spatial Peak SAR (Hands/Feet/Ankle/Wrist) | 4.00 W/kg                                   | 20.00 W/kg                          |

Table 4. RF exposure limits

#### Notes:

- 1. Uncontrolled environments are defined as locations where there is potential exposure of individuals who have no knowledge or control of their potential exposure.
- 2. Controlled environments are defined as locations where there is potential exposure of individuals who have knowledge of their potential exposure and can exercise control over their exposure.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions</a> for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86–755) 26012053 f (86–755) 26710594 www.sgsgroup.com.cn

中国・深圳・科技园中区M-10栋一号厂房 邮

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

58 of 73 Page:

# 2 Summary of Results

#### <GSM 850>

|               |           |                   |                      | Ant0 Test I      | Record             |                      |       |               |                     |                |
|---------------|-----------|-------------------|----------------------|------------------|--------------------|----------------------|-------|---------------|---------------------|----------------|
| Test position | Test mode | Test<br>Ch./Freq. | Duty Cycle           | SAR<br>(W/kg)1-g | Power<br>Drift(dB) | Conducted Power(dBm) |       | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp |
|               |           |                   |                      | Head Tes         | t data             |                      |       |               |                     |                |
| Left cheek    | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.195            | 0.01               | 27.70                | 29.00 | 1.349         | 0.263               | 22.1           |
| Left tilted   | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.127            | 0.06               | 27.70                | 29.00 | 1.349         | 0.171               | 22.1           |
| Right cheek   | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.304            | 0.14               | 27.70                | 29.00 | 1.349         | 0.410               | 22.1           |
| Right tilted  | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.155            | 0.11               | 27.70                | 29.00 | 1.349         | 0.209               | 22.1           |
|               |           |                   | Body worn            | Test data        | Separate 1         | 5mm)                 |       |               |                     |                |
| Front side    | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.213            | 0.01               | 27.70                | 29.00 | 1.349         | 0.287               | 22.1           |
| Back side     | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.263            | -0.15              | 27.70                | 29.00 | 1.349         | 0.355               | 22.1           |
|               |           |                   | Hotspot <sup>-</sup> | Test data(S      | eparate 10         | mm)                  |       |               |                     |                |
| Front side    | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.205            | 0.07               | 27.70                | 29.00 | 1.349         | 0.277               | 22.1           |
| Back side     | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.397            | -0.14              | 27.70                | 29.00 | 1.349         | 0.536               | 22.1           |
| Left side     | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.138            | 0.06               | 27.70                | 29.00 | 1.349         | 0.186               | 22.1           |
| Right side    | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.181            | 0.05               | 27.70                | 29.00 | 1.349         | 0.244               | 22.1           |
| Bottom side   | GPRS 4TS  | 190/836.6         | 1:2.075              | 0.159            | 0.11               | 27.70                | 29.00 | 1.349         | 0.214               | 22.1           |

#### <GSM 1900>

|               |           |                   |            | Ant1 T           | est Record         |                      |                       |               |                     |                |
|---------------|-----------|-------------------|------------|------------------|--------------------|----------------------|-----------------------|---------------|---------------------|----------------|
| Test position | Test mode | Test<br>Ch./Freq. | Duty Cycle | SAR<br>(W/kg)1-g | Power<br>Drift(dB) | Conducted Power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp |
|               |           |                   |            |                  | Test data          |                      |                       |               |                     |                |
| Left cheek    | GPRS 4TS  | 661/1880          | 1:2.075    | 0.104            | 0.01               | 22.19                | 24.00                 | 1.517         | 0.158               | 22.3           |
| Left tilted   | GPRS 4TS  | 661/1880          | 1:2.075    | 0.003            | 0.05               | 22.19                | 24.00                 | 1.517         | 0.005               | 22.3           |
| Right cheek   | GPRS 4TS  | 661/1880          | 1:2.075    | 0.071            | 0.19               | 22.19                | 24.00                 | 1.517         | 0.108               | 22.3           |
| Right tilted  | GPRS 4TS  | 661/1880          | 1:2.075    | 0.002            | 0.05               | 22.19                | 24.00                 | 1.517         | 0.003               | 22.3           |
|               |           |                   | Body       | worn Test of     | data(Separa        | te 15mm)             |                       |               |                     |                |
| Front side    | GPRS 4TS  | 661/1880          | 1:2.075    | 0.062            | 0.05               | 22.19                | 24.00                 | 1.517         | 0.094               | 22.3           |
| Back side     | GPRS 4TS  | 661/1880          | 1:2.075    | 0.086            | -0.15              | 22.19                | 24.00                 | 1.517         | 0.131               | 22.3           |
|               |           |                   | Hots       | spot Test da     | ata(Separate       | 10mm)                |                       |               |                     |                |
| Front side    | GPRS 4TS  | 661/1880          | 1:2.075    | 0.158            | 0.11               | 22.19                | 24.00                 | 1.517         | 0.240               | 22.3           |
| Back side     | GPRS 4TS  | 661/1880          | 1:2.075    | 0.193            | 0.15               | 22.19                | 24.00                 | 1.517         | 0.293               | 22.3           |
| Left side     | GPRS 4TS  | 661/1880          | 1:2.075    | 0.105            | 0.06               | 22.19                | 24.00                 | 1.517         | 0.159               | 22.3           |
| Right side    | GPRS 4TS  | 661/1880          | 1:2.075    | 0.001            | 0.01               | 22.19                | 24.00                 | 1.517         | 0.002               | 22.3           |
| Bottom side   | GPRS 4TS  | 661/1880          | 1:2.075    | 0.157            | 0.03               | 22.19                | 24.00                 | 1.517         | 0.238               | 22.3           |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

59 of 73 Page:

#### <WCDMA Band IV>

| < WCDIVIA B      |                |                   |               | Ant                  | 1 Test Rec         | ord                     |                       |               |                     |                |
|------------------|----------------|-------------------|---------------|----------------------|--------------------|-------------------------|-----------------------|---------------|---------------------|----------------|
| Test<br>position | Test<br>mode   | Test<br>Ch./Freq. | Duty<br>Cycle | SAR<br>(W/kg)1-<br>g | Power<br>Drift(dB) | Conducted<br>Power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp |
|                  | Head Test data |                   |               |                      |                    |                         |                       |               |                     |                |
| Left cheek       | RMC            | 1412/1732.4       | 1:1           | 0.088                | 0.01               | 21.82                   | 23.00                 | 1.312         | 0.115               | 22.1           |
| Left tilted      | RMC            | 1412/1732.4       | 1:1           | 0.084                | 0.08               | 21.82                   | 23.00                 | 1.312         | 0.110               | 22.1           |
| Right cheek      | RMC            | 1412/1732.4       | 1:1           | 0.092                | 0.16               | 21.82                   | 23.00                 | 1.312         | 0.120               | 22.1           |
| Right tilted     | RMC            | 1412/1732.4       | 1:1           | 0.069                | 0.01               | 21.82                   | 23.00                 | 1.312         | 0.091               | 22.1           |
|                  |                |                   | В             | ody worn Te          | est data(Sep       | arate 15mm)             |                       |               |                     |                |
| Front side       | RMC            | 1412/1732.4       | 1:1           | 0.108                | 0.06               | 21.82                   | 23.00                 | 1.312         | 0.142               | 22.1           |
| Back side        | RMC            | 1412/1732.4       | 1:1           | 0.122                | 0.08               | 21.82                   | 23.00                 | 1.312         | 0.160               | 22.1           |
|                  |                |                   |               | Hotspot Tes          | t data(Sepa        | rate 10mm)              |                       |               |                     |                |
| Front side       | RMC            | 1412/1732.4       | 1:1           | 0.242                | -0.07              | 21.82                   | 23.00                 | 1.312         | 0.318               | 22.1           |
| Back side        | RMC            | 1412/1732.4       | 1:1           | 0.260                | -0.16              | 21.82                   | 23.00                 | 1.312         | 0.341               | 22.1           |
| Left side        | RMC            | 1412/1732.4       | 1:1           | 0.131                | 0.06               | 21.82                   | 23.00                 | 1.312         | 0.172               | 22.1           |
| Right side       | RMC            | 1412/1732.4       | 1:1           | 0.048                | 0.09               | 21.82                   | 23.00                 | 1.312         | 0.063               | 22.1           |
| Bottom side      | RMC            | 1412/1732.4       | 1:1           | 0.234                | -0.05              | 21.82                   | 23.00                 | 1.312         | 0.307               | 22.1           |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

60 of 73 Page:

#### <LTE Band 4>

|               |     |             |                | Ant1          | Test Rec             | ord       |                      |                       |               |                     |                 |
|---------------|-----|-------------|----------------|---------------|----------------------|-----------|----------------------|-----------------------|---------------|---------------------|-----------------|
| Test position | BW. | Test mode   | Test Ch./Freq. | Duty<br>Cycle | SAR<br>(W/kg)1-<br>g |           | Conducted power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp. |
|               |     |             |                | Head T        | est data(            | RB)       |                      |                       |               |                     |                 |
| Left cheek    | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.067                | 0.06      | 20.15                | 21.50                 | 1.365         | 0.091               | 22.2            |
| Left tilted   | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.051                | 0.15      | 20.15                | 21.50                 | 1.365         | 0.070               | 22.2            |
| Right cheek   | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.061                | 0.18      | 20.15                | 21.50                 | 1.365         | 0.083               | 22.2            |
| Right tilted  | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.051                | -0.01     | 20.15                | 21.50                 | 1.365         | 0.070               | 22.2            |
|               |     |             |                | He            | ad Test d            | ata(50%F  | RB)                  |                       |               |                     |                 |
| Left cheek    | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.058                | 0.02      | 19.27                | 20.50                 | 1.327         | 0.077               | 22.2            |
| Left tilted   | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.043                | 0.08      | 19.27                | 20.50                 | 1.327         | 0.057               | 22.2            |
| Right cheek   | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.053                | -0.03     | 19.27                | 20.50                 | 1.327         | 0.070               | 22.2            |
| Right tilted  | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.042                | 0.06      | 19.27                | 20.50                 | 1.327         | 0.056               | 22.2            |
|               |     |             | Body wo        | rn Test d     | ata(Separ            | ate 15mn  | n 1RB)               |                       |               |                     |                 |
| Front side    | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.063                | -0.09     | 20.15                | 21.50                 | 1.365         | 0.086               | 22.2            |
| Back side     | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.072                | -0.01     | 20.15                | 21.50                 | 1.365         | 0.098               | 22.2            |
|               |     |             |                | dy worn T     | est data (           | Separate  | 15mm 50%R            | B)                    |               |                     |                 |
| Front side    | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.061                | 0.02      | 19.27                | 20.50                 | 1.327         | 0.081               | 22.2            |
| Back side     | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.065                | -0.05     | 19.27                | 20.50                 | 1.327         | 0.086               | 22.2            |
|               |     |             |                | Test dat      | a(Separat            | e 10mm    |                      |                       |               |                     |                 |
| Front side    | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.145                | 0.00      | 20.15                | 21.50                 | 1.365         | 0.198               | 22.2            |
| Back side     | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.167                | -0.07     | 20.15                | 21.50                 | 1.365         | 0.228               | 22.2            |
| Left side     | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.108                | 0.01      | 20.15                | 21.50                 | 1.365         | 0.147               | 22.2            |
| Right side    | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.041                | 0.06      | 20.15                | 21.50                 | 1.365         | 0.056               | 22.2            |
| Bottom side   | 20  | QPSK 1RB_50 | 20175/1732.5   | 1:1           | 0.152                | -0.11     | 20.15                | 21.50                 | 1.365         | 0.207               | 22.2            |
|               |     |             | Ho             | tspot Te      | st data (S           | eparate 1 | 0mm 50%RB            | )                     |               |                     |                 |
| Front side    | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.142                | -0.13     | 19.27                | 20.50                 | 1.327         | 0.188               | 22.2            |
| Back side     | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.154                | 0.03      | 19.27                | 20.50                 | 1.327         | 0.204               | 22.2            |
| Left side     | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.059                | 0.03      | 19.27                | 20.50                 | 1.327         | 0.078               | 22.2            |
| Right side    | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.033                | 0.06      | 19.27                | 20.50                 | 1.327         | 0.044               | 22.2            |
| Bottom side   | 20  | QPSK 50RB_0 | 20175/1732.5   | 1:1           | 0.150                | -0.19     | 19.27                | 20.50                 | 1.327         | 0.199               | 22.2            |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

中国·深圳·科技园中区M-10栋一号厂房

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

61 of 73 Page:

#### <LTE Band 12>

|               |     |              |                   | -             | Ant0 Test R      | ecord              |                      |                       |               |                     |                 |
|---------------|-----|--------------|-------------------|---------------|------------------|--------------------|----------------------|-----------------------|---------------|---------------------|-----------------|
| Test position | BW. | Test mode    | Test<br>Ch./Freq. | Duty<br>Cycle | SAR<br>(W/kg)1-g | Power<br>Drift(dB) | Conducted power(dBm) | Tune up<br>Limit(dBm) | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp. |
|               |     |              |                   | He            | ead Test dat     | ta(1RB)            |                      |                       |               |                     |                 |
| Left cheek    | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.133            | 0.05               | 23.75                | 24.50                 | 1.189         | 0.158               | 22.1            |
| Left tilted   | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.081            | -0.02              | 23.75                | 24.50                 | 1.189         | 0.096               | 22.1            |
| Right cheek   | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.179            | -0.03              | 23.75                | 24.50                 | 1.189         | 0.213               | 22.1            |
| Right tilted  | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.094            | 0.19               | 23.75                | 24.50                 | 1.189         | 0.112               | 22.1            |
|               |     |              |                   | Hea           | d Test data      | (50%RB)            |                      |                       |               |                     |                 |
| Left cheek    | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.111            | 0.13               | 22.74                | 23.50                 | 1.191         | 0.132               | 22.1            |
| Left tilted   | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.071            | 0.05               | 22.74                | 23.50                 | 1.191         | 0.085               | 22.1            |
| Right cheek   | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.131            | -0.01              | 22.74                | 23.50                 | 1.191         | 0.156               | 22.1            |
| Right tilted  | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.059            | 0.15               | 22.74                | 23.50                 | 1.191         | 0.070               | 22.1            |
|               |     |              | Boo               | dy worn T     | est data(Se      | parate 15mi        | m 1RB)               |                       |               |                     |                 |
| Front side    | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.215            | 0.02               | 23.75                | 24.50                 | 1.189         | 0.256               | 22.1            |
| Back side     | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.306            | -0.04              | 23.75                | 24.50                 | 1.189         | 0.364               | 22.1            |
|               |     |              | Body              | worn Tes      | t data (Sepa     | arate 15mm         | 50%RB)               |                       |               |                     |                 |
| Front side    | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.181            | 0.02               | 22.74                | 23.50                 | 1.191         | 0.216               | 22.1            |
| Back side     | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.251            | -0.03              | 22.74                | 23.50                 | 1.191         | 0.299               | 22.1            |
|               |     |              | Ho                | tspot Tes     | st data(Sepa     | rate 10mm          | 1RB)                 |                       |               |                     |                 |
| Front side    | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.181            | -0.01              | 23.75                | 24.50                 | 1.189         | 0.215               | 22.1            |
| Back side     | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.348            | 0.04               | 23.75                | 24.50                 | 1.189         | 0.414               | 22.1            |
| Left side     | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.208            | -0.09              | 23.75                | 24.50                 | 1.189         | 0.247               | 22.1            |
| Right side    | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.301            | -0.05              | 23.75                | 24.50                 | 1.189         | 0.358               | 22.1            |
| Bottom side   | 10  | QPSK 1RB_49  | 23095/707.5       | 1:1           | 0.081            | 0.05               | 23.75                | 24.50                 | 1.189         | 0.096               | 22.1            |
|               |     |              | Hots              | pot Test      | data (Separ      | ate 10mm 5         | 0%RB)                |                       |               |                     |                 |
| Front side    | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.175            | 0.06               | 22.74                | 23.50                 | 1.191         | 0.208               | 22.1            |
| Back side     | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.281            | -0.02              | 22.74                | 23.50                 | 1.191         | 0.335               | 22.1            |
| Left side     | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.171            | 0.06               | 22.74                | 23.50                 | 1.191         | 0.204               | 22.1            |
| Right side    | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.251            | 0.03               | 22.74                | 23.50                 | 1.191         | 0.299               | 22.1            |
| Bottom side   | 10  | QPSK 25RB_25 | 23095/707.5       | 1:1           | 0.062            | 0.11               | 22.74                | 23.50                 | 1.191         | 0.074               | 22.1            |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

中国·深圳·科技园中区M-10栋一号厂房

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

62 of 73 Page:

#### <LTE Band 41>

|               |     |              |                   | Ant0          | Test Rec             | ord                |                      |       |               |       |                 |
|---------------|-----|--------------|-------------------|---------------|----------------------|--------------------|----------------------|-------|---------------|-------|-----------------|
| Test position | BW. | Test mode    | Test<br>Ch./Freq. | Duty<br>Cycle | SAR<br>(W/kg)1-<br>q | Power<br>Drift(dB) | Conducted power(dBm) |       | Scaled factor |       | Liquid<br>Temp. |
|               |     |              |                   | Head          | Test data(           | 1RB)               | •                    |       |               |       |                 |
| Left cheek    | 20  | QPSK 1RB 99  | 40620/2593        | 1:1.58        | 0.106                | 0.04               | 21.81                | 22.80 | 1.256         | 0.133 | 22.1            |
| Left tilted   | 20  | QPSK 1RB_99  | 40620/2593        | 1:1.58        | 0.033                | 0.16               | 21.81                | 22.80 | 1.256         | 0.041 | 22.1            |
| Right cheek   | 20  | QPSK 1RB_99  | 40620/2593        | 1:1.58        | 0.032                | 0.03               | 21.81                | 22.80 | 1.256         | 0.040 | 22.1            |
| Right tilted  | 20  | QPSK 1RB_99  | 40620/2593        | 1:1.58        | 0.013                | 0.13               | 21.81                | 22.80 | 1.256         | 0.016 | 22.1            |
|               |     |              |                   | Head To       | est data(5           | 0%RB)              |                      |       |               |       |                 |
| Left cheek    | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.051                | 0.19               | 21.38                | 21.80 | 1.102         | 0.056 | 22.1            |
| Left tilted   | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.022                | 0.01               | 21.38                | 21.80 | 1.102         | 0.024 | 22.1            |
| Right cheek   | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.020                | 0.06               | 21.38                | 21.80 | 1.102         | 0.022 | 22.1            |
| Right tilted  | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.008                | -0.10              | 21.38                | 21.80 | 1.102         | 0.009 | 22.1            |
|               |     |              | Body w            | orn Test      | data(Sepa            | rate 15mm          | 1RB)                 |       |               |       |                 |
| Front side    | 20  | QPSK 1RB_99  | 40620/2593        | 1:1.58        | 0.088                | -0.09              | 21.81                | 22.80 | 1.256         | 0.111 | 22.1            |
| Back side     | 20  | QPSK 1RB_99  | 40620/2593        | 1:1.58        | 0.413                | -0.01              | 21.81                | 22.80 | 1.256         | 0.519 | 22.1            |
|               |     |              | Body wor          | n Test da     | ta (Separa           | te 15mm 5          | 0%RB)                |       |               |       |                 |
| Front side    | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.077                | -0.09              | 21.38                | 21.80 | 1.102         | 0.085 | 22.1            |
| Back side     | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.220                | -0.01              | 21.38                | 21.80 | 1.102         | 0.242 | 22.1            |
|               |     |              |                   | ot Test da    | ata(Separa           | te 10mm 1          |                      |       |               |       |                 |
| Front side    | 20  | QPSK 1RB_99  | 40620/2593        | 1:1.58        | 0.165                | 0.18               | 21.81                | 22.80 | 1.256         | 0.207 | 22.1            |
| Back side     | 20  | QPSK 1RB_99  | 40620/2593        | 1:1.58        | 0.767                | 0.15               | 21.81                | 22.80 | 1.256         | 0.963 | 22.1            |
| Left side     | 20  | QPSK 1RB_99  | 40620/2593        | 1:1.58        | 0.055                | 0.02               | 21.81                | 22.80 | 1.256         | 0.069 | 22.1            |
| Right side    | 20  | QPSK 1RB_99  | 40620/2593        | 1:1.58        | 0.065                | 0.16               | 21.81                | 22.80 | 1.256         | 0.082 | 22.1            |
| Bottom side   | 20  | QPSK 1RB_99  | 40620/2593        | 1:1.58        | 0.471                | 0.11               | 21.81                | 22.80 | 1.256         | 0.592 | 22.1            |
| Back side     | 20  | QPSK 1RB_99  | 39750/2506        | 1:1.58        | 0.599                | 0.03               | 21.47                | 22.80 | 1.358         | 0.814 | 22.1            |
| Back side     | 20  | QPSK 1RB_99  | 40185/2549.5      | 1:1.58        | 0.621                | 0.13               | 21.58                | 22.80 | 1.324         | 0.822 | 22.1            |
| Back side     | 20  | QPSK 1RB_0   | 41055/2636.5      | 1:1.58        | 0.551                | 0.06               | 21.56                | 22.80 | 1.330         | 0.733 | 22.1            |
| Back side     | 20  | QPSK 1RB_0   | 41490/2680        | 1:1.58        | 0.457                | 0.05               | 21.43                | 22.80 | 1.371         | 0.626 | 22.1            |
|               |     |              | Hotspot           | Test data     | (Separate            | e 10mm 50°         | %RB)                 |       |               |       |                 |
| Front side    | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.190                | 0.01               | 21.38                | 21.80 | 1.102         | 0.209 | 22.1            |
| Back side     | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.563                | 0.11               | 21.38                | 21.80 | 1.102         | 0.620 | 22.1            |
| Left side     | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.049                | 0.16               | 21.38                | 21.80 | 1.102         | 0.054 | 22.1            |
| Right side    | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.058                | 0.02               | 21.38                | 21.80 | 1.102         | 0.064 | 22.1            |
| Bottom side   | 20  | QPSK 50RB_0  | 41490/2680        | 1:1.58        | 0.441                | 0.13               | 21.38                | 21.80 | 1.102         | 0.486 | 22.1            |
|               |     |              |                   |               |                      | 10mm 100           |                      |       |               |       |                 |
| Back side     | 20  | QPSK 100RB_0 | 40620/2593        | 1:1.58        | 0.561                | 0.13               | 20.82                | 21.80 | 1.253         | 0.703 | 22.1            |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

Page: 63 of 73

#### W:E: 0 40

| <wifi 2.4g<="" th=""><th>&gt;</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></wifi> | >                             |                   |               |                                |                                  |                     |                       |                       |                |                       |                 |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------|---------------|--------------------------------|----------------------------------|---------------------|-----------------------|-----------------------|----------------|-----------------------|-----------------|
|                                                                                                                                     |                               |                   |               | Wi-Fi 2                        | .4G SAR Tes                      | st Record A         | NT6                   |                       |                |                       |                 |
| Test position                                                                                                                       | Test<br>mode                  | Test<br>Ch./Freq. | Duty<br>Cycle | Duty Cycle<br>Scaled<br>factor | SAR<br>(W/kg)1-g                 | Power drift(dB)     | Conducted power(dBm)  | Tune up<br>Limit(dBm) | Scaled factor  | Scaled<br>SAR(W/kg)   | Liquid<br>Temp. |
|                                                                                                                                     |                               |                   |               |                                | Head Tes                         | t data              |                       |                       |                |                       |                 |
| Left cheek                                                                                                                          | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.201                            | 0.06                | 15.17                 | 16.00                 | 1.211          | 0.246                 | 22.0            |
| Left tilted                                                                                                                         | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.115                            | -0.06               | 15.17                 | 16.00                 | 1.211          | 0.141                 | 22.0            |
| Right cheek                                                                                                                         | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.458                            | 0.04                | 15.17                 | 16.00                 | 1.211          | 0.560                 | 22.0            |
| Right tilted                                                                                                                        | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.238                            | 0.02                | 15.17                 | 16.00                 | 1.211          | 0.291                 | 22.0            |
|                                                                                                                                     |                               |                   |               | Body wo                        |                                  | Separate 15         |                       |                       |                | T                     |                 |
| Front side                                                                                                                          | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.001                            | 0.01                | 15.17                 | 16.00                 | 1.211          | 0.001                 | 22.0            |
| Back side                                                                                                                           | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.064                            | -0.08               | 15.17                 | 16.00                 | 1.211          | 0.078                 | 22.0            |
| Fuent side                                                                                                                          | 000 115                       | 11/0400           | 00.000/       |                                | t Test data (S                   |                     |                       | 10.00                 | 1 011          | T 0.000               | 00.0            |
| Front side                                                                                                                          | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.056                            | 0.11                | 15.17                 | 16.00                 | 1.211          | 0.068                 | 22.0            |
| Back side                                                                                                                           | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.141                            | -0.02               | 15.17                 | 16.00                 | 1.211          | 0.172                 | 22.0            |
| Left side                                                                                                                           | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.042                            | 0.03                | 15.17                 | 16.00                 | 1.211          | 0.051                 | 22.0            |
| Right side                                                                                                                          | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.002                            | 0.02                | 15.17                 | 16.00                 | 1.211          | 0.002                 | 22.0            |
| Top side                                                                                                                            | 802.11b                       | 11/2462           | 99.00%        | 1.01                           | 0.075                            | 0.15                | 15.17                 | 16.00                 | 1.211          | 0.092                 | 22.0            |
|                                                                                                                                     |                               |                   |               | Wi-Fi 2                        | .4G SAR Tes                      | st Record A         | NT7                   |                       |                |                       |                 |
| Test position                                                                                                                       | Test<br>mode                  | Test<br>Ch./Freq. | Duty<br>Cycle | Duty Cycle<br>Scaled<br>factor | SAR<br>(W/kg)1-g                 | Power drift(dB)     | Conducted power(dBm)  | Tune up<br>Limit(dBm) | Scaled factor  | Scaled<br>SAR(W/kg)   | Liquid<br>Temp. |
|                                                                                                                                     |                               |                   |               |                                | Head Tes                         | t data              |                       |                       |                |                       |                 |
| Left cheek                                                                                                                          | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.093                            | 0.09                | 15.01                 | 16.00                 | 1.256          | 0.118                 | 22.0            |
| Left tilted                                                                                                                         | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.002                            | 0.01                | 15.01                 | 16.00                 | 1.256          | 0.003                 | 22.0            |
| Right cheek                                                                                                                         | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.002                            | 0.06                | 15.01                 | 16.00                 | 1.256          | 0.003                 | 22.0            |
| Right tilted                                                                                                                        | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.001                            | 0.01                | 15.01                 | 16.00                 | 1.256          | 0.001                 | 22.0            |
|                                                                                                                                     |                               |                   |               | Body wo                        | orn Test data                    | Separate 15         | 5mm)                  |                       |                |                       |                 |
| Front side                                                                                                                          | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.012                            | -0.03               | 15.01                 | 16.00                 | 1.256          | 0.015                 | 22.0            |
| Back side                                                                                                                           | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.014                            | 0.06                | 15.01                 | 16.00                 | 1.256          | 0.018                 | 22.0            |
|                                                                                                                                     |                               |                   |               |                                | t Test data (S                   | Separate 10         |                       |                       |                |                       |                 |
| Front side                                                                                                                          | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.001                            | 0.03                | 15.01                 | 16.00                 | 1.256          | 0.001                 | 22.0            |
| Back side                                                                                                                           | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.044                            | -0.02               | 15.01                 | 16.00                 | 1.256          | 0.056                 | 22.0            |
| Left side                                                                                                                           | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.002                            | 0.16                | 15.01                 | 16.00                 | 1.256          | 0.003                 | 22.0            |
| Right side                                                                                                                          | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.001                            | 0.17                | 15.01                 | 16.00                 | 1.256          | 0.001                 | 22.0            |
| Top side                                                                                                                            | 802.11b                       | 1/2412            | 99.00%        | 1.01                           | 0.002                            | 0.03                | 15.01                 | 16.00                 | 1.256          | 0.003                 | 22.0            |
|                                                                                                                                     |                               |                   |               | Wi-Fi 2.4                      | 4G SAR Test                      | t Record (M         | IIMO)                 |                       |                |                       |                 |
| Test position                                                                                                                       | Test<br>mode                  | Test<br>Ch./Freq. | Duty<br>Cycle | Duty Cycle<br>Scaled<br>factor | SAR<br>(W/kg)1-g                 | Power drift(dB)     | Conducted power(dBm)  | Tune up<br>Limit(dBm) | Scaled factor  | Scaled<br>SAR(W/kg)   | Liquid<br>Temp. |
|                                                                                                                                     |                               |                   |               |                                | Head Tes                         | t data              |                       |                       |                |                       |                 |
| Left cheek                                                                                                                          | 802.11b                       | 6/2437            | 99.00%        | 1.01                           | 0.179                            | 0.06                | 18.07                 | 19.00                 | 1.238          | 0.224                 | 22.0            |
| Left tilted                                                                                                                         | 802.11b                       | 6/2437            | 99.00%        | 1.01                           | 0.136                            | 0.02                | 18.07                 | 19.00                 | 1.238          | 0.170                 | 22.0            |
| Right cheek                                                                                                                         | 802.11b                       | 6/2437            | 99.00%        | 1.01                           | 0.378                            | 0.04                | 18.07                 | 19.00                 | 1.238          | 0.473                 | 22.0            |
| Right tilted                                                                                                                        | 802.11b                       | 6/2437            | 99.00%        | 1.01                           | 0.223                            | 0.09                | 18.07                 | 19.00                 | 1.238          | 0.279                 | 22.0            |
|                                                                                                                                     |                               |                   |               |                                | orn Test data                    |                     |                       |                       |                |                       |                 |
| Front side                                                                                                                          | 802.11b                       | 6/2437            | 99.00%        | 1.01                           | 0.045                            | -0.02               | 18.07                 | 19.00                 | 1.238          | 0.056                 | 22.0            |
| Daal, aida                                                                                                                          |                               |                   |               |                                |                                  |                     | 18.07                 | 19.00                 | 1.238          | 0.000                 | 22.0            |
| Back side                                                                                                                           | 802.11b                       | 6/2437            | 99.00%        | 1.01                           | 0.052                            | 0.03                | 10.07                 | 13.00                 | 1.230          | 0.066                 | 22.0            |
| Back side                                                                                                                           |                               | 6/2437            | 99.00%        |                                | 0.052<br>It Test data (S         |                     |                       | 10.00                 | 1.230          | 0.066                 | 22.0            |
| Front side                                                                                                                          |                               | 6/2437<br>6/2437  | 99.00%        |                                |                                  |                     |                       | 19.00                 | 1.238          | 0.101                 | 22.0            |
|                                                                                                                                     | 802.11b                       |                   |               | Hotspo                         | t Test data (S                   | Separate 10         | mm)                   |                       |                |                       |                 |
| Front side Back side Left side                                                                                                      | 802.11b<br>802.11b            | 6/2437            | 99.00%        | Hotspo<br>1.01                 | t Test data (S<br>0.081          | Separate 10<br>0.03 | mm)<br>18.07          | 19.00                 | 1.238          | 0.101                 | 22.0            |
| Front side<br>Back side                                                                                                             | 802.11b<br>802.11b<br>802.11b | 6/2437<br>6/2437  | 99.00%        | Hotspo<br>1.01<br>1.01         | t Test data (S<br>0.081<br>0.108 | 0.03<br>-0.04       | mm)<br>18.07<br>18.07 | 19.00<br>19.00        | 1.238<br>1.238 | 0.101<br><b>0.135</b> | 22.0<br>22.0    |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

中国·深圳·科技园中区M-10栋一号厂房

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

64 of 73 Page:

#### <WiFi 5G>

|                |                          |                   |               | Wi-Fi                          | 5G SAR Test      | Record ANT         | 6                    |                       |                |                     |                 |
|----------------|--------------------------|-------------------|---------------|--------------------------------|------------------|--------------------|----------------------|-----------------------|----------------|---------------------|-----------------|
| Test position  | Test mode                | Test<br>Ch./Freq. | Duty<br>Cycle | Duty Cycle<br>Scaled<br>factor | SAR<br>(W/kg)1-g | Power<br>drift(dB) | Conducted power(dBm) | Tune up<br>Limit(dBm) | Scaled factor  | Scaled<br>SAR(W/kg) | Liquid<br>Temp. |
|                |                          | -                 | -             |                                | ead Test data    | of LI-NII-2A       |                      |                       |                |                     | _               |
| Left cheek     | 802.11ac80               | 58/5290           | 94.00%        | 1.064                          | 0.225            | 0.03               | 14.18                | 15.00                 | 1.208          | 0.289               | 22.2            |
|                | 802.11ac80               | 58/5290           | 94.00%        | 1.064                          | 0.278            | 0.12               | 14.18                | 15.00                 | 1.208          | 0.357               | 22.2            |
| Right cheek    |                          |                   | 94.00%        | 1.064                          | 0.316            | 0.03               | 14.18                | 15.00                 | 1.208          | 0.406               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.439            | -0.04              | 14.18                | 15.00                 | 1.208          | 0.564               | 22.2            |
| <u> </u>       |                          |                   | •             | He                             | ad Test data     | of U-NII-2C        |                      |                       |                | •                   |                 |
| Left cheek     | 802.11ac80               | 138/5690          | 94.00%        | 1.064                          | 0.111            | 0.03               | 13.87                | 15.00                 | 1.297          | 0.153               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.139            | -0.12              | 13.87                | 15.00                 | 1.297          | 0.192               | 22.2            |
| Right cheek    |                          |                   | 94.00%        | 1.064                          | 0.158            | -0.01              | 13.87                | 15.00                 | 1.297          | 0.218               | 22.2            |
| Right tilted   | 802.11ac80               | 138/5690          | 94.00%        | 1.064                          | 0.175            | 0.09               | 13.87                | 15.00                 | 1.297          | 0.242               | 22.2            |
|                |                          |                   |               |                                | ead Test data    |                    |                      |                       |                |                     |                 |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.118            | 0.02               | 13.59                | 15.00                 | 1.384          | 0.174               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.152            | 0.03               | 13.59                | 15.00                 | 1.384          | 0.224               | 22.2            |
| Right cheek    |                          |                   | 94.00%        | 1.064                          | 0.159            | 0.02               | 13.59                | 15.00                 | 1.384          | 0.234               | 22.2            |
| Right tilted   | 802.11ac80               | 155/5775          | 94.00%        | 1.064                          | 0.106            | -0.18              | 13.59                | 15.00                 | 1.384          | 0.156               | 22.2            |
|                |                          |                   |               |                                | st data of U-N   |                    |                      |                       |                |                     |                 |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.059            | 0.11               | 14.18                | 15.00                 | 1.208          | 0.076               | 22.2            |
| Back side      | 802.11ac80               | 58/5290           | 94.00%        | 1.064                          | 0.101            | -0.09              | 14.18                | 15.00                 | 1.208          | 0.130               | 22.2            |
|                |                          |                   |               |                                | st data of U-N   |                    |                      |                       |                |                     |                 |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.088            | 0.08               | 13.87                | 15.00                 | 1.297          | 0.121               | 22.2            |
| Back side      | 802.11ac80               | 138/5690          | 94.00%        | 1.064                          | 0.093            | -0.14              | 13.87                | 15.00                 | 1.297          | 0.128               | 22.2            |
| Fueret etale   | 000 1100                 | 155/5775          |               |                                | est data of U-I  |                    |                      | 15.00                 | 1 004          | 0.110               | 00.0            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.075            | -0.18              | 13.59                | 15.00                 | 1.384          | 0.110               | 22.2            |
| Back side      | 802.11ac80               | 155/5775          | 94.00%        | 1.064                          | 0.119            | 0.09               | 13.59                | 15.00                 | 1.384          | 0.175               | 22.2            |
| Fueret etale   | 000 1100                 | 40/5010           | 04.000/       |                                | st data of U-N   |                    |                      | 15.00                 | 1 0 1 5        | 0.010               | 00.0            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.010            | 0.18               | 14.05                | 15.00                 | 1.245          | 0.013               | 22.2            |
|                | 802.11ac80<br>802.11ac80 |                   | 94.00%        | 1.064                          | 0.171<br>0.138   | 0.05               | 14.05                | 15.00<br>15.00        | 1.245<br>1.245 | 0.226               | 22.2<br>22.2    |
|                | 802.11ac80               |                   | 94.00%        | 1.064<br>1.064                 | 0.138            | -0.07<br>-0.06     | 14.05<br>14.05       | 15.00                 | 1.245          | 0.183<br>0.068      | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.031            | 0.11               | 14.05                | 15.00                 | 1.245          | 0.066               | 22.2            |
| rop side       | 002.11acou               | 42/3210           | 94.00%        |                                | t data of U-NI   |                    |                      | 15.00                 | 1.243          | 0.146               | 22.2            |
| Front side     | 802.11ac80               | 155/5775          | 94.00%        | 1.064                          | 0.089            | 0.08               | 13.59                | 15.00                 | 1.384          | 0.131               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.009            | 0.08               | 13.59                | 15.00                 | 1.384          | 0.155               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.103            | -0.08              | 13.59                | 15.00                 | 1.384          | 0.109               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.074            | 0.07               | 13.59                | 15.00                 | 1.384          | 0.105               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.071            | 0.07               | 13.59                | 15.00                 | 1.384          | 0.103               | 22.2            |
| Test position  |                          | Test              | Duty          | Duty Cycle<br>Scaled           | SAR              | Power              | Conducted            | Tune up               | Scaled         | Scaled              | Liquid          |
| ·              |                          | Ch./Freq.         | Cycle         | factor                         | (W/kg)10-g       | ` ′                | power(dBm)           | ` ,                   | tactor         | SAR(W/kg)           | Temp.           |
|                |                          |                   | Product       | specific 10g                   | SAR Test data    | a of U-NII-2A(     | Separate 0mr         | n)                    |                |                     |                 |
| Front side     | 802.11ac80               | 58/5290           | 94.00%        | 1.064                          | 0.161            | -0.13              | 14.18                | 15.00                 | 1.208          | 0.207               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.381            | 0.06               | 14.18                | 15.00                 | 1.208          | 0.490               | 22.2            |
| Left side      | 802.11ac80               | 58/5290           | 94.00%        | 1.064                          | 0.191            | 0.17               | 14.18                | 15.00                 | 1.208          | 0.245               | 22.2            |
| Right side     | 802.11ac80               | 58/5290           | 94.00%        | 1.064                          | 0.015            | 0.18               | 14.18                | 15.00                 | 1.208          | 0.019               | 22.2            |
| Top side       | 802.11ac80               | 58/5290           | 94.00%        | 1.064                          | 0.359            | 0.19               | 14.18                | 15.00                 | 1.208          | 0.461               | 22.2            |
|                |                          |                   |               | specific 10g                   |                  | a of U-NII-2C      | Separate 0mr         |                       |                |                     |                 |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.094            | -0.13              | 13.87                | 15.00                 | 1.297          | 0.130               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.792            | 0.00               | 13.87                | 15.00                 | 1.297          | 1.093               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.159            | 0.18               | 13.87                | 15.00                 | 1.297          | 0.219               | 22.2            |
|                | 802.11ac80               |                   | 94.00%        | 1.064                          | 0.026            | 0.01               | 13.87                | 15.00                 | 1.297          | 0.036               | 22.2            |
| Top side       | 802.11ac80               | 138/5690          | 94.00%        | 1.064                          | 0.189            | -0.05              | 13.87                | 15.00                 | 1.297          | 0.261               | 22.2            |
|                |                          |                   |               | Wi-Fi                          | 5G SAR Test      | Record ANT         | 7                    |                       |                |                     |                 |
| Test position  | Test mode                | Test              | Duty          | Duty Cycle<br>Scaled           | SAR              | Power              | Conducted            | Tune up               | Scaled         | Scaled              | Liquid          |
| . cat position | . cot mode               | Ch./Freq.         | Cycle         | factor                         | (W/kg)1-g        | drift(dB)          | power(dBm)           | Limit(dBm)            | factor         | SAR(W/kg)           | Temp.           |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.sepx">http://www.sgs.com/en/Terms-and-Conditions.sepx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents as <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.sepx">http://www.sgs.com/en/Terms-and-Conditions/Terms-en-Document.sepx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

65 of 73 Page:

|                                                    |                                                      |                                              |                                                 | He                               | ead Test data                    | of U-NII-2A                   |                                  |                                  |                         |                         |                      |
|----------------------------------------------------|------------------------------------------------------|----------------------------------------------|-------------------------------------------------|----------------------------------|----------------------------------|-------------------------------|----------------------------------|----------------------------------|-------------------------|-------------------------|----------------------|
| Left cheek                                         | 802.11ac80                                           | 58/5290                                      | 94.00%                                          | 1.064                            | 0.030                            | 0.04                          | 13.48                            | 14.00                            | 1.127                   | 0.036                   | 22.2                 |
| Left tilted                                        | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.021                            | 0.17                          | 13.48                            | 14.00                            | 1.127                   | 0.025                   | 22.2                 |
| Right cheek                                        | 802.11ac80                                           | 58/5290                                      | 94.00%                                          | 1.064                            | 0.029                            | 0.03                          | 13.48                            | 14.00                            | 1.127                   | 0.035                   | 22.2                 |
| Right tilted                                       | 802.11ac80                                           | 58/5290                                      | 94.00%                                          | 1.064                            | 0.024                            | -0.11                         | 13.48                            | 14.00                            | 1.127                   | 0.029                   | 22.2                 |
| -                                                  | _                                                    |                                              | •                                               | He                               | ead Test data                    | of U-NII-2C                   |                                  |                                  |                         |                         | •                    |
| Left cheek                                         | 802.11ac80                                           | 138/5690                                     | 94.00%                                          | 1.064                            | 0.029                            | -0.07                         | 12.53                            | 14.00                            | 1.403                   | 0.043                   | 22.2                 |
| Left tilted                                        | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.030                            | -0.03                         | 12.53                            | 14.00                            | 1.403                   | 0.045                   | 22.2                 |
| Right cheek                                        | 802.11ac80                                           | 138/5690                                     | 94.00%                                          | 1.064                            | 0.027                            | -0.03                         | 12.53                            | 14.00                            | 1.403                   | 0.040                   | 22.2                 |
| Right tilted                                       | 802.11ac80                                           | 138/5690                                     | 94.00%                                          | 1.064                            | 0.026                            | -0.13                         | 12.53                            | 14.00                            | 1.403                   | 0.039                   | 22.2                 |
|                                                    |                                                      |                                              | ,                                               |                                  | ead Test data                    |                               | _                                |                                  | •                       |                         | 1                    |
| Left cheek                                         | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.039                            | 0.02                          | 13.43                            | 14.00                            | 1.140                   | 0.047                   | 22.2                 |
| Left tilted                                        | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.013                            | 0.01                          | 13.43                            | 14.00                            | 1.140                   | 0.016                   | 22.2                 |
|                                                    | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.027                            | -0.08                         | 13.43                            | 14.00                            | 1.140                   | 0.033                   | 22.2                 |
| Right tilted                                       | 802.11ac80                                           | 155/5775                                     | 94.00%                                          | 1.064                            | 0.010                            | -0.01                         | 13.43                            | 14.00                            | 1.140                   | 0.012                   | 22.2                 |
|                                                    | 00011 00                                             | 50/5000                                      |                                                 |                                  | st data of U-N                   |                               |                                  | 1100                             | 4.407                   | 0.004                   | 00.0                 |
| Front side                                         | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.051                            | 0.16                          | 13.48                            | 14.00                            | 1.127                   | 0.061                   | 22.2                 |
| Back side                                          | 802.11ac80                                           | 58/5290                                      | 94.00%                                          | 1.064                            | 0.123                            | -0.02                         | 13.48                            | 14.00                            | 1.127                   | 0.148                   | 22.2                 |
| Frant side                                         | 000 1100                                             | 100/5000                                     | 94.00%                                          |                                  | st data of U-N                   |                               |                                  | 14.00                            | 1 400                   | 0.070                   | 00.0                 |
| Front side                                         | 802.11ac80                                           |                                              | 94.00%                                          | 1.064<br>1.064                   | 0.051                            | -0.04                         | 12.53                            | 14.00                            | 1.403                   | 0.076                   | 22.2                 |
| Back side                                          | 802.11ac80                                           | 138/3690                                     |                                                 |                                  | 0.078<br>est data of U-1         | -0.17                         | 12.53                            | 14.00                            | 1.403                   | 0.116                   | 22.2                 |
| Front side                                         | 802.11ac80                                           | 155/5775                                     | 94.00%                                          | 1.064                            | 0.036                            | 0.16                          | 13.43                            | 14.00                            | 1.140                   | 0.044                   | 22.2                 |
| Back side                                          | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.050                            | -0.06                         | 13.43                            | 14.00                            | 1.140                   | 0.044                   | 22.2                 |
| Dack side                                          | 002.11acou                                           | 133/3113                                     | 34.00 /6                                        |                                  | st data of U-N                   |                               |                                  | 14.00                            | 1.140                   | 0.002                   | 22.2                 |
| Front side                                         | 802.11ac80                                           | 42/5210                                      | 94.00%                                          | 1.064                            | 0.065                            | 0.09                          | 13.35                            | 14.00                            | 1.161                   | 0.080                   | 22.2                 |
| Back side                                          | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.232                            | 0.09                          | 13.35                            | 14.00                            | 1.161                   | 0.287                   | 22.2                 |
| Left side                                          | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.076                            | 0.11                          | 13.35                            | 14.00                            | 1.161                   | 0.094                   | 22.2                 |
| Right side                                         | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.089                            | 0.13                          | 13.35                            | 14.00                            | 1.161                   | 0.110                   | 22.2                 |
| Top side                                           | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.061                            | -0.08                         | 13.35                            | 14.00                            | 1.161                   | 0.075                   | 22.2                 |
| - 1                                                |                                                      |                                              | 1                                               |                                  | t data of U-NI                   |                               |                                  |                                  |                         |                         |                      |
| Front side                                         | 802.11ac80                                           | 155/5775                                     | 94.00%                                          | 1.064                            | 0.071                            | -0.06                         | 13.43                            | 14.00                            | 1.140                   | 0.086                   | 22.2                 |
| Back side                                          | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.168                            | 0.02                          | 13.43                            | 14.00                            | 1.140                   | 0.204                   | 22.2                 |
| Left side                                          | 802.11ac80                                           | 155/5775                                     | 94.00%                                          | 1.064                            | 0.088                            | -0.13                         | 13.43                            | 14.00                            | 1.140                   | 0.107                   | 22.2                 |
| Right side                                         | 802.11ac80                                           | 155/5775                                     | 94.00%                                          | 1.064                            | 0.102                            | -0.12                         | 13.43                            | 14.00                            | 1.140                   | 0.124                   | 22.2                 |
| Top side                                           | 802.11ac80                                           | 155/5775                                     | 94.00%                                          | 1.064                            | 0.063                            | -0.13                         | 13.43                            | 14.00                            | 1.140                   | 0.076                   | 22.2                 |
| Test position                                      | Test mode                                            | Test<br>Ch./Freq.                            | Cycle                                           | Duty Cycle<br>Scaled<br>factor   | SAR<br>(W/kg)10-g                | Power<br>drift(dB)            | Conducted power(dBm)             | ` '                              | Scaled factor           | Scaled<br>SAR(W/kg)     | Liquid<br>Temp.      |
|                                                    | haa 4 : = =                                          | E0/E005                                      |                                                 |                                  | SAR Test dat                     |                               |                                  |                                  | 4 4                     | 0.000                   | 00.5                 |
| Front side                                         | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.025                            | -0.19                         | 13.48                            | 14.00                            | 1.127                   | 0.030                   | 22.2                 |
| Back side                                          | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.051                            | -0.01                         | 13.48                            | 14.00                            | 1.127                   | 0.061                   | 22.2                 |
| Left side                                          | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.019                            | -0.17                         | 13.48                            | 14.00                            | 1.127                   | 0.023                   | 22.2                 |
|                                                    | 802.11ac80                                           |                                              | 94.00%                                          | 1.064                            | 0.152                            | 0.03                          | 13.48                            | 14.00                            | 1.127                   | 0.182                   | 22.2                 |
| Right side                                         |                                                      |                                              | 94.00%                                          | 1.064                            | 0.026                            | 0.19                          | 13.48                            | 14.00                            | 1.127                   | 0.031                   | 22.2                 |
| Top side                                           | 802.11ac80                                           | 30/3290                                      |                                                 | angoific 10-                     | C V D T ~~+ ~-+                  |                               | Separate umi                     | 11)                              |                         |                         |                      |
| Top side                                           |                                                      |                                              | Product                                         |                                  | SAR Test data                    |                               |                                  |                                  | 1 //00                  | 0.046                   | 20.0                 |
| Top side Front side                                | 802.11ac80                                           | 138/5690                                     | Product<br>94.00%                               | 1.064                            | 0.031                            | 0.03                          | 12.53                            | 14.00                            | 1.403                   | 0.046                   | 22.2                 |
| Top side Front side Back side                      | 802.11ac80<br>802.11ac80                             | 138/5690<br>138/5690                         | Product 94.00% 94.00%                           | 1.064<br>1.064                   | 0.031<br>0.773                   | 0.03<br>0.10                  | 12.53<br>12.53                   | 14.00<br>14.00                   | 1.403                   | 1.154                   | 22.2                 |
| Front side Back side Left side                     | 802.11ac80<br>802.11ac80<br>802.11ac80               | 138/5690<br>138/5690<br>138/5690             | Product 94.00% 94.00% 94.00%                    | 1.064<br>1.064<br>1.064          | 0.031<br>0.773<br>0.016          | 0.03<br>0.10<br>-0.16         | 12.53<br>12.53<br>12.53          | 14.00<br>14.00<br>14.00          | 1.403<br>1.403          | <b>1.154</b><br>0.024   | 22.2<br>22.2         |
| Top side Front side Back side Left side Right side | 802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80 | 138/5690<br>138/5690<br>138/5690<br>138/5690 | Product<br>94.00%<br>94.00%<br>94.00%<br>94.00% | 1.064<br>1.064<br>1.064<br>1.064 | 0.031<br>0.773<br>0.016<br>0.229 | 0.03<br>0.10<br>-0.16<br>0.01 | 12.53<br>12.53<br>12.53<br>12.53 | 14.00<br>14.00<br>14.00<br>14.00 | 1.403<br>1.403<br>1.403 | 1.154<br>0.024<br>0.342 | 22.2<br>22.2<br>22.2 |
| Front side Back side Left side                     | 802.11ac80<br>802.11ac80<br>802.11ac80               | 138/5690<br>138/5690<br>138/5690<br>138/5690 | Product 94.00% 94.00% 94.00%                    | 1.064<br>1.064<br>1.064          | 0.031<br>0.773<br>0.016          | 0.03<br>0.10<br>-0.16         | 12.53<br>12.53<br>12.53          | 14.00<br>14.00<br>14.00          | 1.403<br>1.403          | <b>1.154</b><br>0.024   | 22.2<br>22.2         |

| Test position | Test mode  | Test<br>Ch./Freq. | Duty<br>Cycle | Duty Cycle<br>Scaled<br>factor | SAR<br>(W/kg)1-g | Power<br>drift(dB) | Conducted power(dBm) |       | Scaled factor | Scaled<br>SAR(W/kg) | Liquid<br>Temp. |
|---------------|------------|-------------------|---------------|--------------------------------|------------------|--------------------|----------------------|-------|---------------|---------------------|-----------------|
|               |            |                   |               | He                             | ead Test data    | of U-NII-2A        |                      |       |               |                     |                 |
| Left cheek    | 802.11ac80 | 58/5290           | 94.00%        | 1.064                          | 0.201            | 0.00               | 16.85                | 17.54 | 1.171         | 0.250               | 22.2            |
| Left tilted   | 802.11ac80 | 58/5290           | 94.00%        | 1.064                          | 0.261            | 0.12               | 16.85                | 17.54 | 1.171         | 0.325               | 22.2            |
| Right cheek   | 802.11ac80 | 58/5290           | 94.00%        | 1.064                          | 0.255            | -0.11              | 16.85                | 17.54 | 1.171         | 0.318               | 22.2            |
| Right tilted  | 802.11ac80 | 58/5290           | 94.00%        | 1.064                          | 0.391            | 0.04               | 16.85                | 17.54 | 1.171         | 0.487               | 22.2            |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

中国·深圳·科技园中区M-10栋一号厂房

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

Page: 66 of 73

|                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   | He                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ead Test data     | of U-NII-2C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 802 11ac80                                     | 138/5690                                                                                                                                                                                                                                                                                                                                                                 | 94 00%                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 342                                                                 | 0.116               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                     | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                     | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                     | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 002.114000                                     | 100/3030                                                                                                                                                                                                                                                                                                                                                                 | 34.00 /8                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.042                                                                 | 0.104               | LL.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802 11ac80                                     | 155/5775                                                                                                                                                                                                                                                                                                                                                                 | 94 00%                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 264                                                                 | 0.156               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                     | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                     | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| •                                              |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                     | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 002.114000                                     | 133/3773                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.204                                                                 | 0.112               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 58/5290                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.071             | -0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.171                                                                 | 0.088               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.111             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.171                                                                 | 0.138               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1                                              |                                                                                                                                                                                                                                                                                                                                                                          | В                                                                                                                                                                                                                                                                                                                                                                                 | ody worn Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st data of U-N    | III-2C(Separat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e 15mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l                                                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 802.11ac80                                     | 138/5690                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.106             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.342                                                                 | 0.151               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 138/5690                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.159             | -0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.342                                                                 | 0.227               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u>.                                      </u> |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   | Body worn T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | est data of U-N   | VII-3(Separate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e 15mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 802.11ac80                                     | 155/5775                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.061             | -0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.264                                                                 | 0.082               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 155/5775                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.106             | -0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.264                                                                 | 0.143               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   | Hotspot Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | st data of U-N    | II-1(Separate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                     | •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 802.11ac80                                     | 42/5210                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.101             | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.207                                                                 | 0.130               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 42/5210                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.200             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.207                                                                 | 0.257               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 42/5210                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.133             | -0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.207                                                                 | 0.171               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 42/5210                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.091             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.207                                                                 | 0.117               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 42/5210                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.198             | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.207                                                                 | 0.254               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   | Hotspot Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t data of U-NI    | I-3 (Separate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 802.11ac80                                     | 155/5775                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.102             | -0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.264                                                                 | 0.137               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 155/5775                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.177             | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.264                                                                 | 0.238               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 155/5775                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.068             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.264                                                                 | 0.091               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 155/5775                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.094             | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.264                                                                 | 0.126               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 155/5775                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.091             | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.264                                                                 | 0.122               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Test mode                                      | Test<br>Ch./Freq.                                                                                                                                                                                                                                                                                                                                                        | Duty<br>Cycle                                                                                                                                                                                                                                                                                                                                                                     | Scaled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAR<br>(W/kg)10-g | Power<br>drift(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Conducted power(dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tune up<br>Limit(dBm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scaled factor                                                         | Scaled<br>SAR(W/kg) | Liquid<br>Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          | Product                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAR Test data     | a of U-NII-2A(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Separate 0mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 802.11ac80                                     | 58/5290                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.165             | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.171                                                                 | 0.206               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 58/5290                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.492             | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.171                                                                 | 0.613               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 58/5290                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.195             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.171                                                                 | 0.243               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 58/5290                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.166             | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.171                                                                 | 0.207               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 58/5290                                                                                                                                                                                                                                                                                                                                                                  | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.406             | -0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.171                                                                 | 0.506               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          | Product                                                                                                                                                                                                                                                                                                                                                                           | specific 10g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAR Test data     | a of U-NII-2C(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Separate 0mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 802.11ac80                                     | 138/5690                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.106             | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.342                                                                 | 0.151               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.404             | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17 E A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 0 10                                                                | 0.004               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80                                     | 138/5690                                                                                                                                                                                                                                                                                                                                                                 | 94.00%                                                                                                                                                                                                                                                                                                                                                                            | 1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.421             | -0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.342                                                                 | 0.601               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 802.11ac80<br>802.11ac80                       |                                                                                                                                                                                                                                                                                                                                                                          | 94.00%<br>94.00%                                                                                                                                                                                                                                                                                                                                                                  | 1.064<br>1.064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.421             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.342                                                                 | 0.601               | 22.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                | 138/5690                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                | 802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80<br>802.11ac80 | 802.11ac80 138/5690 802.11ac80 138/5690 802.11ac80 155/5775 802.11ac80 42/5210 802.11ac80 42/5210 802.11ac80 42/5210 802.11ac80 42/5210 802.11ac80 42/5210 802.11ac80 42/5210 802.11ac80 155/5775 802.11ac80 155/5775 802.11ac80 155/5775 802.11ac80 155/5775 802.11ac80 155/5775 802.11ac80 155/5775 802.11ac80 58/5290 802.11ac80 58/5290 802.11ac80 58/5290 802.11ac80 58/5290 | 802.11ac80 138/5690 94.00% 802.11ac80 138/5690 94.00% 802.11ac80 138/5690 94.00% 802.11ac80 155/5775 94.00% 802.11ac80 155/5775 94.00% 802.11ac80 155/5775 94.00% 802.11ac80 155/5775 94.00% 802.11ac80 58/5290 94.00% 802.11ac80 138/5690 94.00% 802.11ac80 138/5690 94.00% 802.11ac80 138/5690 94.00% 802.11ac80 155/5775 94.00% 802.11ac80 155/5775 94.00% 802.11ac80 155/5775 94.00% 802.11ac80 42/5210 94.00% 802.11ac80 155/5775 94.00% 802.11ac80 58/5290 94.00% | 802.11ac80        | 802.11ac80 138/5690 94.00% 1.064 0.111 802.11ac80 138/5690 94.00% 1.064 0.139 802.11ac80 138/5690 94.00% 1.064 0.129  Head Test data 802.11ac80 155/5775 94.00% 1.064 0.112 802.11ac80 155/5775 94.00% 1.064 0.112 802.11ac80 155/5775 94.00% 1.064 0.112 802.11ac80 155/5775 94.00% 1.064 0.109 802.11ac80 155/5775 94.00% 1.064 0.083  Body worn Test data of U-N 802.11ac80 58/5290 94.00% 1.064 0.111  Body worn Test data of U-N 802.11ac80 138/5690 94.00% 1.064 0.106 802.11ac80 155/5775 94.00% 1.064 0.106 802.11ac80 138/5690 94.00% 1.064 0.106 802.11ac80 155/5775 94.00% 1.064 0.061 802.11ac80 155/5775 94.00% 1.064 0.106  Hotspot Test data of U-N 802.11ac80 42/5210 94.00% 1.064 0.101 802.11ac80 42/5210 94.00% 1.064 0.101 802.11ac80 42/5210 94.00% 1.064 0.109 802.11ac80 42/5210 94.00% 1.064 0.109 802.11ac80 155/5775 94.00% 1.064 0.091 802.11ac80 58/5290 94.00% 1.064 0.094 802.11ac80 58/5290 94.00% 1.064 0.095 802.11ac80 58/5290 94.00% 1.064 0.095 802.11ac80 58/5290 94.00% 1.064 0.095 802.11ac80 58/5290 94.00% 1.064 0.195 802.11ac80 58/5290 94.00% 1.064 0.196 802.11ac80 58/5290 94.00% 1.064 0.106 | 802.11ac80 138/5690 94.00% 1.064 0.111 0.16 802.11ac80 138/5690 94.00% 1.064 0.139 -0.01 802.11ac80 138/5690 94.00% 1.064 0.129 0.13  Head Test data of U-NII-3 802.11ac80 155/5775 94.00% 1.064 0.116 -0.17 802.11ac80 155/5775 94.00% 1.064 0.112 0.04 802.11ac80 155/5775 94.00% 1.064 0.109 -0.14 802.11ac80 155/5775 94.00% 1.064 0.083 -0.02  Body worn Test data of U-NII-2A (Separa Separate S | 802.11ac80 138/5690 94.00% 1.064 0.081 0.03 16.26 802.11ac80 138/5690 94.00% 1.064 0.111 0.16 16.26 802.11ac80 138/5690 94.00% 1.064 0.139 -0.01 16.26 802.11ac80 138/5690 94.00% 1.064 0.129 0.13 16.26 802.11ac80 155/5775 94.00% 1.064 0.112 0.04 16.52 802.11ac80 155/5775 94.00% 1.064 0.112 0.04 16.52 802.11ac80 155/5775 94.00% 1.064 0.112 0.04 16.52 802.11ac80 155/5775 94.00% 1.064 0.109 -0.14 16.52 802.11ac80 155/5775 94.00% 1.064 0.083 -0.02 16.52 802.11ac80 155/5775 94.00% 1.064 0.083 -0.02 16.52 802.11ac80 155/5775 94.00% 1.064 0.083 -0.02 16.52 802.11ac80 158/5290 94.00% 1.064 0.071 -0.19 16.85 802.11ac80 158/5290 94.00% 1.064 0.071 -0.19 16.85 802.11ac80 138/5690 94.00% 1.064 0.111 0.07 16.85 802.11ac80 138/5690 94.00% 1.064 0.106 0.06 16.26 802.11ac80 155/5775 94.00% 1.064 0.159 -0.03 16.26 802.11ac80 155/5775 94.00% 1.064 0.106 0.06 16.26 802.11ac80 155/5775 94.00% 1.064 0.106 0.06 16.26 802.11ac80 155/5775 94.00% 1.064 0.106 0.06 16.52 802.11ac80 155/5775 94.00% 1.064 0.106 0.06 16.52 802.11ac80 155/5775 94.00% 1.064 0.106 0.016 0.17 16.52 802.11ac80 42/5210 94.00% 1.064 0.101 0.002 16.72 802.11ac80 42/5210 94.00% 1.064 0.198 0.16 16.72 802.11ac80 42/5210 94.00% 1.064 0.091 0.06 16.72 802.11ac80 155/5775 94.00% 1.064 0.091 0.06 16.72 802.11ac80 155/5775 94.00% 1.064 0.091 0.06 16.72 802.11ac80 155/5775 94.00% 1.064 0.091 0.08 10.62 802.11ac80 155/5775 94.00% 1.064 0.091 0.08 10.52 802.11ac80 155/5775 94.00% 1.064 0.091 0.08 10.52 802.11ac80 155/5775 94.00% 1.064 0.091 0.08 10.52 802.11ac80 155/5775 94.00% 1.064 0.091 0.008 0.04 16.52 802.11ac80 155/5775 94.00% 1.064 0.091 0.091 0.08 16.55 802.11ac80 155/5775 94.00% 1.064 0.091 0.091 0.006 16.85 802.11ac80 155/5799 94.00% 1.064 0.091 0.091 0. | BOC.11ac80   138/5690   94.00%   1.064   0.081   0.03   16.26   17.54 |                     | 802.11ac80   38/5690   94.00%   1.064   0.081   0.03   16.26   17.54   1.342   0.116   802.11ac80   138/5690   94.00%   1.064   0.111   0.16   16.26   17.54   1.342   0.159   802.11ac80   138/5690   94.00%   1.064   0.139   -0.01   16.26   17.54   1.342   0.159   802.11ac80   138/5690   94.00%   1.064   0.129   0.13   16.26   17.54   1.342   0.159   802.11ac80   155/5775   94.00%   1.064   0.116   -0.17   16.52   17.54   1.264   0.151   802.11ac80   155/5775   94.00%   1.064   0.119   -0.14   16.52   17.54   1.264   0.151   802.11ac80   155/5775   94.00%   1.064   0.109   -0.14   16.52   17.54   1.264   0.151   802.11ac80   155/5775   94.00%   1.064   0.083   -0.02   16.52   17.54   1.264   0.112   802.11ac80   58/5290   94.00%   1.064   0.071   -0.19   16.85   17.54   1.171   0.088   802.11ac80   58/5290   94.00%   1.064   0.111   0.07   16.85   17.54   1.171   0.088   802.11ac80   138/5690   94.00%   1.064   0.159   -0.03   16.26   17.54   1.342   0.151   802.11ac80   138/5690   94.00%   1.064   0.159   -0.03   16.26   17.54   1.342   0.227   802.11ac80   138/5690   94.00%   1.064   0.159   -0.03   16.26   17.54   1.342   0.227   802.11ac80   155/5775   94.00%   1.064   0.061   -0.16   16.52   17.54   1.264   0.082   802.11ac80   155/5775   94.00%   1.064   0.010   -0.16   16.52   17.54   1.264   0.082   802.11ac80   155/5775   94.00%   1.064   0.109   -0.16   16.52   17.54   1.264   0.082   802.11ac80   155/5775   94.00%   1.064   0.091   -0.16   16.52   17.54   1.264   0.082   802.11ac80   155/5775   94.00%   1.064   0.109   -0.16   16.52   17.54   1.264   0.143   802.11ac80   42/5210   94.00%   1.064   0.109   -0.16   16.52   17.54   1.207   0.171   802.11ac80   42/5210   94.00%   1.064   0.109   -0.16   16.52   17.54   1.207   0.171   802.11ac80   42/5210   94.00%   1.064   0.109   -0.16   16.72   17.54   1.207   0.171   802.11ac80   155/5775   94.00%   1.064   0.109   -0.06   16.72   17.54   1.207   0.254   802.11ac80   155/5775   94.00%   1.064   0.109   -0.06   16.72   17.54   1.207   0.171   802.11ac8 |

Note: This project WLAN 5GHz (5250-5350 & 5470-5725) does not support Hotspot.



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

67 of 73 Page:

#### <BT>

| 7012                           |              |                   |               |                                |                  |                    |                      |                       |               |       |                 |  |  |  |
|--------------------------------|--------------|-------------------|---------------|--------------------------------|------------------|--------------------|----------------------|-----------------------|---------------|-------|-----------------|--|--|--|
| Bluetooth SAR Test Record ANT6 |              |                   |               |                                |                  |                    |                      |                       |               |       |                 |  |  |  |
| Test position                  | Test<br>mode | Test<br>Ch./Freq. | Duty<br>Cycle | Duty Cycle<br>Scaled<br>factor | SAR<br>(W/kg)1-g | Power<br>drift(dB) | Conducted power(dBm) | Tune up<br>Limit(dBm) | Scaled factor |       | Liquid<br>Temp. |  |  |  |
|                                |              |                   |               |                                | Head Tes         | t data             |                      |                       |               |       |                 |  |  |  |
| Left cheek                     |              |                   |               |                                |                  |                    |                      |                       |               |       |                 |  |  |  |
| Left tilted                    |              |                   |               |                                |                  |                    |                      |                       |               |       |                 |  |  |  |
| Right cheek                    |              |                   |               |                                |                  |                    |                      |                       |               |       |                 |  |  |  |
| Right tilted                   | DH5          | 78/2480           | 0.77          | 1.30                           | 0.076            | -0.01              | 12.03                | 12.50                 | 1.114         | 0.110 | 22              |  |  |  |
|                                |              |                   |               | Body wo                        | orn Test data(   | Separate 15        | mm)                  |                       |               |       |                 |  |  |  |
| Front side                     | DH5          | 78/2480           | 0.77          | 1.30                           | 0.002            | 0.06               | 12.03                | 12.50                 | 1.114         | 0.003 | 22              |  |  |  |
| Back side                      | DH5          | 78/2480           | 0.77          | 1.30                           | 0.024            | 0.01               | 12.03                | 12.50                 | 1.114         | 0.034 | 22              |  |  |  |
|                                |              |                   |               | Hotspo                         | t Test data (S   | Separate 10n       | nm)                  |                       |               |       |                 |  |  |  |
| Front side                     | DH5          | 78/2480           | 0.77          | 1.30                           | 0.006            | 0.01               | 12.03                | 12.50                 | 1.114         | 0.009 | 22              |  |  |  |
| Back side                      | DH5          | 78/2480           | 0.77          | 1.30                           | 0.048            | -0.09              | 12.03                | 12.50                 | 1.114         | 0.069 | 22              |  |  |  |
| Left side                      | DH5          | 78/2480           | 0.77          | 1.30                           | 0.002            | 0.12               | 12.03                | 12.50                 | 1.114         | 0.003 | 22              |  |  |  |
| Right side                     | DH5          | 78/2480           | 0.77          | 1.30                           | 0.001            | 0.01               | 12.03                | 12.50                 | 1.114         | 0.001 | 22              |  |  |  |
| Top side                       | DH5          | 78/2480           | 0.77          | 1.30                           | 0.003            | -0.12              | 12.03                | 12.50                 | 1.114         | 0.004 | 22              |  |  |  |





Report No.: ZR/2020/C004701

Page: 68 of 73

# 3 Simultaneous Transmission Analysis

#### 3.1 Simultaneous Transmission Scenarios:

| NO. | Simultaneous Transmission Configuration | Head | Body worn | Hotspot |
|-----|-----------------------------------------|------|-----------|---------|
| 1   | GSM + WiFi                              | Yes  | Yes       | Yes     |
| 2   | GSM + BT                                | Yes  | Yes       | Yes     |
| 3   | WCDMA + WiFi                            | Yes  | Yes       | Yes     |
| 4   | WCDMA + BT                              | Yes  | Yes       | Yes     |
| 5   | LTE + WiFi                              | Yes* | Yes       | Yes     |
| 6   | LTE + BT                                | Yes  | Yes       | Yes     |
| 7   | BT + 5G WIFI                            | Yes  | Yes       | Yes     |
| 8   | BT + 2.4G WIFI(ANT6)                    | No   | No        | No      |
| 9   | BT + 2.4G WIFI(ANT7)                    | Yes  | Yes       | Yes     |
| 10  | GSM + BT + 5G WIFI                      | Yes  | Yes       | Yes     |
| 11  | WCDMA + BT + 5G WIFI                    | Yes  | Yes       | Yes     |
| 12  | LTE + BT + 5G WIFI                      | Yes* | Yes       | Yes     |

#### Note:

- 1) Wi-Fi 2.4G(ANT6) and Bluetooth (ANT6) can't transmit simultaneously.
- 2) The device does not support DTM function.
- 3) \* VoLTE or pre-installed VOIP applications are considered.
- 4) This project WLAN 5GHz (5250-5350 & 5470-5725) does not support Hotspot.





Report No.: ZR/2020/C004701

69 of 73 Page:

#### 3.2 Simultaneous Transmission Combination Scenario

|          |             |        |           | 1                |        |                   |                   | 2            | 3                | 4     | 5                    | 1+2              | 1+3              | 1+4          | 1+3+4            | 1+4+5        |
|----------|-------------|--------|-----------|------------------|--------|-------------------|-------------------|--------------|------------------|-------|----------------------|------------------|------------------|--------------|------------------|--------------|
| Test     | position    |        | Main Ante | enna SAR         | max (W | /kg)              |                   |              | BT Ant<br>max (W |       | WIFI<br>2.4G<br>ANT7 | Summed<br>1g     | Summed<br>1g     | Summed<br>1g | Summed<br>1g     | Summed<br>1g |
|          |             | GSM850 | GSM1900   | WCDMA<br>Band IV |        | LTE<br>Band<br>12 | LTE<br>Band<br>41 | WiFi<br>2.4G | WiFi<br>5G       | ВТ    | WiFi<br>2.4G         | SARmax<br>(W/kg) | SARmax<br>(W/kg) |              | SARmax<br>(W/kg) |              |
|          | Left Touch  | 0.263  | 0.158     | 0.115            | 0.091  | 0.158             | 0.133             | 0.246        | 0.289            | 0.100 | 0.118                | 0.509            | 0.552            | 0.363        | 0.652            | 0.481        |
| Head     | Left Tilt   | 0.171  | 0.005     | 0.110            | 0.070  | 0.096             | 0.041             | 0.170        | 0.357            | 0.056 | 0.003                | 0.341            | 0.528            | 0.227        | 0.584            | 0.230        |
| пеац     | Right Touch | 0.410  | 0.108     | 0.120            | 0.083  | 0.213             | 0.040             | 0.560        | 0.406            | 0.214 | 0.003                | 0.970            | 0.816            | 0.624        | 1.030            | 0.627        |
|          | Right Tilt  | 0.209  | 0.003     | 0.091            | 0.070  | 0.112             | 0.016             | 0.291        | 0.564            | 0.110 | 0.001                | 0.500            | 0.773            | 0.319        | 0.883            | 0.320        |
| Body     | Front       | 0.287  | 0.094     | 0.142            | 0.086  | 0.256             | 0.111             | 0.056        | 0.151            | 0.003 | 0.015                | 0.343            | 0.438            | 0.290        | 0.441            | 0.305        |
| 15mm     | Back        | 0.355  | 0.131     | 0.160            | 0.098  | 0.364             | 0.519             | 0.078        | 0.227            | 0.034 | 0.018                | 0.597            | 0.746            | 0.553        | 0.780            | 0.571        |
|          | Front       | 0.277  | 0.240     | 0.318            | 0.198  | 0.215             | 0.209             | 0.101        | 0.137            | 0.009 | 0.001                | 0.419            | 0.455            | 0.327        | 0.464            | 0.328        |
|          | Back        | 0.536  | 0.293     | 0.341            | 0.228  | 0.414             | 0.963             | 0.172        | 0.287            | 0.069 | 0.056                | 1.135            | 1.250            | 1.032        | 1.319            | 1.088        |
| Hotspot  | Left        | 0.186  | 0.159     | 0.172            | 0.147  | 0.247             | 0.069             | 0.064        | 0.183            | 0.003 | 0.003                | 0.311            | 0.430            | 0.250        | 0.433            | 0.253        |
| liotspot | Right       | 0.244  | 0.002     | 0.063            | 0.056  | 0.358             | 0.082             | 0.004        | 0.126            | 0.001 | 0.001                | 0.362            | 0.484            | 0.359        | 0.485            | 0.360        |
|          | Top         | /      | /         | /                | /      | /                 | /                 | 0.092        | 0.254            | 0.004 | 0.003                | 0.092            | 0.254            | 0.004        | 0.258            | 0.007        |
|          | Bottom      | 0.214  | 0.238     | 0.307            | 0.207  | 0.096             | 0.592             | /            | /                | /     | /                    | 0.592            | 0.592            | 0.592        | 0.592            | 0.592        |
|          | Front       | /      | /         | /                | /      | /                 | /                 | /            | 0.207            | /     |                      | /                | 0.207            | /            | 0.207            | /            |
| Product  | Back        | /      | /         | /                | /      | /                 | /                 | /            | 1.154            | /     |                      | /                | 1.154            | /            | 1.154            | /            |
| specific | Left        | /      | /         | /                | /      | /                 | /                 | /            | 0.245            | /     |                      | /                | 0.245            | /            | 0.245            | /            |
| 10g      | Right       | /      | /         | /                | /      | /                 | /                 | /            | 0.342            | /     |                      | /                | 0.342            | /            | 0.342            | /            |
| SAR      | Top         | /      | /         | /                | /      | /                 | /                 | /            | 0.506            | /     |                      | /                | 0.506            | /            | 0.506            | /            |
|          | Bottom      | /      | /         | /                | /      | /                 | /                 | /            | /                | /     |                      | /                | /                | /            | /                | /            |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

70 of 73 Page:

#### 4 Instruments List

| - T   1     | TISTIUMENTS LIS                                                                                                  |                                          | -5 ( ) :         |                 |                     |                         |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------|-----------------|---------------------|-------------------------|--|--|--|--|
|             | Test Platform SPEAG DASY5 Professional  Location SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch |                                          |                  |                 |                     |                         |  |  |  |  |
|             |                                                                                                                  |                                          |                  |                 |                     | nch                     |  |  |  |  |
|             | Description                                                                                                      | SAR Test Syste                           | em (Frequency ra | nge 300MHz-6GHz | )                   |                         |  |  |  |  |
|             | Software Reference                                                                                               | DASY52; SEM                              | CAD              |                 |                     |                         |  |  |  |  |
|             |                                                                                                                  | Ha                                       | ardware Referen  | ce              |                     |                         |  |  |  |  |
|             | Equipment                                                                                                        | Manufacturer                             | Model            | Serial Number   | Calibration<br>Date | Due date of calibration |  |  |  |  |
| $\boxtimes$ | Twin Phantom                                                                                                     | SPEAG                                    | SAM 2            | 1913            | NCR                 | NCR                     |  |  |  |  |
| $\boxtimes$ | DAE                                                                                                              | SPEAG                                    | DAE4             | 1267            | 2020-06-12          | 2021-06-11              |  |  |  |  |
| $\boxtimes$ | E-Field Probe                                                                                                    | SPEAG                                    | EX3DV4           | 3748            | 2020-07-29          | 2021-07-28              |  |  |  |  |
| $\boxtimes$ | Validation Kits                                                                                                  | SPEAG                                    | D750V3           | 1160            | 2019-05-22          | 2022-05-21              |  |  |  |  |
| $\boxtimes$ | Validation Kits                                                                                                  | SPEAG                                    | D835V2           | 4d105           | 2019-12-17          | 2022-12-16              |  |  |  |  |
| $\boxtimes$ | Validation Kits                                                                                                  | SPEAG                                    | D1750V2          | 1149            | 2019-05-21          | 2022-05-20              |  |  |  |  |
| $\boxtimes$ | Validation Kits                                                                                                  | SPEAG                                    | D1900V2          | 5d028           | 2019-12-17          | 2022-12-16              |  |  |  |  |
| $\boxtimes$ | Validation Kits                                                                                                  | SPEAG                                    | D2450V2          | 733             | 2019-12-17          | 2022-12-16              |  |  |  |  |
| $\boxtimes$ | Validation Kits                                                                                                  | SPEAG                                    | D2600V2          | 1125            | 2019-05-20          | 2022-05-19              |  |  |  |  |
| $\boxtimes$ | Validation Kits                                                                                                  | SPEAG                                    | D5GHzV2          | 1165            | 2019-12-20          | 2022-12-19              |  |  |  |  |
| $\boxtimes$ | Agilent Network<br>Analyzer                                                                                      | Agilent                                  | E5071C           | MY46523590      | 2020-04-02          | 2021-04-01              |  |  |  |  |
| $\boxtimes$ | Dielectric Probe Kit                                                                                             | Agilent                                  | 85070E           | US01440210      | NCR                 | NCR                     |  |  |  |  |
| $\boxtimes$ | Universal Radio<br>Communication Tester                                                                          | R&S                                      | CMW500           | 124587          | 2020-04-02          | 2021-04-01              |  |  |  |  |
| $\boxtimes$ | Radio Communication<br>Analyzer                                                                                  | Anritsu<br>Corporation                   | MT8821C          | 6201502984      | 2020-06-11          | 2021-06-10              |  |  |  |  |
| $\boxtimes$ | RF Bi-Directional<br>Coupler                                                                                     | Agilent                                  | 86205-60001      | MY31400031      | NCR                 | NCR                     |  |  |  |  |
| $\boxtimes$ | Signal Generator                                                                                                 | Agilent                                  | N5171B           | MY53050736      | 2020-04-15          | 2021-04-14              |  |  |  |  |
| $\boxtimes$ | Preamplifier                                                                                                     | Mini-Circuits                            | ZHL-42W          | 15542           | NCR                 | NCR                     |  |  |  |  |
| $\boxtimes$ | Preamplifier                                                                                                     | Compliance<br>Directions<br>Systems Inc. | AMP28-3W         | 073501433       | NCR                 | NCR                     |  |  |  |  |
| $\boxtimes$ | Power Meter                                                                                                      | Agilent                                  | E4416A           | GB41292095      | 2020-04-15          | 2021-04-14              |  |  |  |  |
| $\boxtimes$ | Power Sensor                                                                                                     | Agilent                                  | 8481H            | MY41091234      | 2020-04-15          | 2021-04-14              |  |  |  |  |
| $\boxtimes$ | Power Sensor                                                                                                     | R&S                                      | NRP-Z92          | 100025          | 2020-04-16          | 2021-04-15              |  |  |  |  |
| $\boxtimes$ | Attenuator                                                                                                       | SHX                                      | TS2-3dB          | 30704           | NCR                 | NCR                     |  |  |  |  |
| $\boxtimes$ | Coaxial low pass filter                                                                                          | Mini-Circuits                            | VLF-2500(+)      | NA              | NCR                 | NCR                     |  |  |  |  |
| $\boxtimes$ | Coaxial low pass filter                                                                                          | Microlab Fxr                             | LA-F13           | NA              | NCR                 | NCR                     |  |  |  |  |
| $\boxtimes$ | DC POWER SUPPLY                                                                                                  | SAKO                                     | SK1730SL5A       | NA              | NCR                 | NCR                     |  |  |  |  |



Unless otherwise agreed in writing, this document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a> and, for electronic format documents subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx">http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Attention: To check the authenticity of testing /inspection report & certificate, please contact us at telephone: (86-755) 8307 1443,

No.1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, China 518057 t (86-755) 26012053 f (86-755) 26710594 www.sgsgroup.com.cn 中国·深圳·科技园中区M-10栋一号厂房

邮编: 518057 t (86-755) 26012053 f (86-755) 26710594



Report No.: ZR/2020/C004701

71 of 73 Page:

| $\boxtimes$ | Speed reading thermometer             | MingGao | T809    | NA | 2020-04-15 | 2021-04-14 |
|-------------|---------------------------------------|---------|---------|----|------------|------------|
| $\boxtimes$ | Humidity and<br>Temperature Indicator | KIMTOKA | KIMTOKA | NA | 2020-04-21 | 2021-04-20 |

Note: All the equipments are within the valid period when the tests are performed.





Report No.: ZR/2020/C004701

Page: 72 of 73

#### 5 Measurements

Please see the Appendix B

# **6 SAR System Performance Check**

Please see the Appendix A

# 7 Photographs

Please see the Appendix D

### 8 DAE & Probe Calibration Certificate

Please see the Appendix C





Report No.: ZR/2020/C004701

Page: 73 of 73

# 9 SAR measurement variability and uncertainty

#### SAR measurement variability

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is remounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is  $\geq$  0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

#### SAR measurement variability

Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.



