Document # SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN Page 1(1) Author Data Daoud Attayi Dates of Test **Sep. 23 - 30, 2003** Test Report No RIM-0054-0309-07 L6AR6030GN ## **SAR Compliance Test Report** **Testing Lab:** Research In Motion Limited **Applicant:** Research In Motion Limited 305 Phillip Street Waterloo, Ontario Canada N2L 3W8 295 Phillip Street Waterloo, Ontario Canada N2L 3W8 Phone: 519-888-7465 Phone: 519-888-7465 Fax: 519-880-8173 Fax: 519-888-6906 Web site: www.rim.net Web site: www.rim.net Statement of Compliance: Research In Motion Limited, declares under its sole responsibility that the product to which this declaration relates, is in conformity with the appropriate RF exposure standards, recommendations and guidelines. It also declares that the product was tested in accordance with the appropriate measurement standards, guidelines and in accordance with the appropriate measurement standards, guidelines and recommended practices. Any deviations from these standards, guidelines and recommended practices are noted below: (none) **Device Category:** This wireless handheld is a portable device, designed to be used in direct contact with the user's head, hand and to be carried in approved accessories when carried on the user's body. RF exposure environment: This wireless portable device has been shown to be in compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in OET Bulletin 65 Supplement C (Edition 01-01), FCC 96-326 and IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in OET Bulletin 65 Supplement C (Edition 01- Paul & Cardinal Daond Attai 01) and ANSI/IEEE Std. C95.3-1991. Approved by: Signatures Date Paul G. Cardinal, Ph.D. Manager, Compliance & Certification 03 Oct., 2003 Tested and documented by: Daoud Attayi Compliance Specialist Sep. 30, 2003 # RESEARCH IN MOTION Author Data # SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN Dates of Test Test Rep L6AR6030GN 2(2) Daoud Attayi Sep. 23 - 30, 2003 RIM-0054-0309-07 ### **CONTENTS** | GENERAL INFORMATION | 1 | |--|----------| | 1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS | 4 | | 1.1 PICTURE OF HANDHELD | 4 | | 1.2 ANTENNA DESCRIPTION | 4 | | 1.3 HANDHELD DESCRIPTION | 4 | | 1.4 BODY WORN ACCESSORIES | 5 | | 1.5 HEADSETS | 6 | | 1.6 PROCEDURE USED TO ESTABLISHING THE TEST SIGNAL | 6 | | | | | 2.0 DESCRIPTION OF THE TEST EQUIPMENT | 6 | | 2.1 SAR MEASUREMENT SYSTEM | 6 | | 2.2 DESCRIPTION OF THE TEST SETUP | 8 | | 2.2.1 HANDHELD AND BASE STATION SIMULATOR | 8 | | 2.2.2 DASY SETUP | 8 | | | | | 3.0 ELECTRIC FIELD PROBE CALIBRATION | 8 | | 3.1 PROBE SPECIFICATION | 8 | | 3.2 PROBE CALIBRATION AND MEASUREMENT ERROR | 9 | | | | | 4.0 SAR MEASUREMENT SYSTEM VERIFICATION | 9 | | 4.1 SYSTEM ACCURACY VERIFICATION for Head Adjacent Use | 9 | | | | | 5.0 PHANTOM DESCRIPTION | 10 | | | | | 6.0 TISSUE DIELECTRIC PROPERTY | 11 | | 6.1 COMPOSITION OF TISSUE SIMULANT | 11 | | 6.1.1 EQUIPMENT | 11 | | 6.1.2 PREPARATION PROCEDURE | 11 | | 6.2 ELECTRICAL PARAMETERS OF THE TISSUE SIMULATING LIQUID | 12 | | 6.2.1 EQUIPMENT | 12 | | 6.2.2 TEST CONFIGURATION | 13 | | 6.2.3 TEST PROCEDURE | 13 | | | | | 7.0 SAR SAFETY LIMITS | 15 | | | | | 8.0 DEVICE POSITIONING | 16 | | 8.1 DEVICE HOLDER | | | 8.2 DESCRIPTION OF TEST POSITION | 16 | | | 16
17 | | 8.2.1 TEST POSITION OF DEVICE RELATIVE TO HEAD | | | 8.2.1 TEST POSITION OF DEVICE RELATIVE TO HEAD 8.2.1.1 DEFINITION OF THE "CHEEK" POSITION | 17 | | | 17
17 | # SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN Page 3(3) Daoud Attayi Sep. 23 - 30, 2003 RIM-0054-0309-07 L6AR6030GN | 9.0 HIGH LEVEL EVALUATION | 20 | |---|----| | 9.1 MAXIMUM SEARCH | 20 | | 9.2 EXTRAPOLATION | | | 9.3 BOUNDARY CORRECTION | 20 | | 9.4 PEAK SEARCH FOR 1G AND 10G AVERAGED SAR | 20 | | | | | 10.0 MEASUREMENT UNCERTAINTIES | 21 | | | | | 11.0 SAR TEST RESULTS | 22 | | 11.1 HEAD CONFIGURATION | 22 | | 11.2 BODY-WORN CONFIGURATION USING HOLSTERS | 22 | | 11.3 BODY-WORN CONFIGURATION USING FOLDING LEATHER CASE | 23 | | | | | 12.0 REFERENCES | 24 | APPENDIX A: SAR DISTRIBUTION COMPARISON FOR THE ACCURACY VERIFICATION APPENDIX B: SAR DISTRIBUTION PLOTS FOR HEAD CONFIGURATION APPENDIX C: SAR DISTRIBUTION PLOTS FOR BODY-WORN CONFIGURATION APPENDIX D: PROBE & DIPOLE CALIBRATION DATA APPENDIX E: SAR TEST SETUP PHOTOGRAPHS ## 1.0 OPERATING CONFIGURATIONS AND TEST CONDITIONS Figure 1. BlackBerry Wireless Handheld ### 1.2 Antenna description | Type | Internal fixed antenna | |---------------|------------------------| | Location | Left Side | | Configuration | Internal fixed antenna | Table 1. Antenna description ## 1.3 Handheld description | Handheld Model | R6030GN | | | |---|---------------------------|---------------------|---------------------| | FCC ID | L6AR6030GN | | | | Serial Number | 205NA-303X6 | | | | Prototype or Production Unit | Pre-production | | | | Mode(s) of Operation | GSM 850 | DCS 1800 | PCS 1900 | | Maximum conducted RF Output | | | | | Power | 32.00 dBm | 30.00 dBm | 31.00 dBm | | Tolerance in Power Setting | $31.7 \pm 0.3 \text{ dB}$ | $29.7 \pm 0.3 dB$ | $30.7 \pm 0.3 dB$ | | Duty Cycle | 1:8 | 1:8 | 1:8 | | Transmitting Frequency Range (s) | 824.20-948.80 MHz | 1710.20-1784.80 MHz | 1850.20-1909.80 MHz | Table 2. Test device description **Note:** DCS 1800 band cannot be used in North America, therefore there is no SAR results presented in this report for FCC submission. A separate report is generated for this band. Daoud Attayi Sep. 23 - 30, 2003 RIM-0054-0309-07 L6AR6030GN ### 1.4 Body worn accessories ### **Holsters and Folding Leather Case** The holsters, with integral belt-clip, is designed to allow the BlackBerry handheld to slide in only one way, and that is with the keyboard side facing the user (facing the belt-clip) while in the holster. This positioning has the benefit of protecting the keypad and the large LCD from damage. 5(5) The middle portion of Figure 2 shows the holster with the handheld keyboard side facing the user and with the keyboard side facing away from user. Photo to the right shows that the device with keyboard away from the user does not fit into the holster. Figure 2. Top photo shows Body-Worn Plastic Holster ASY-03991-001, Leather Swivel Hoslter HDW-04890-001 and Folding Leather Case HDW-04889-001 The device-to-phantom spacing when the handheld is in holster is 15 mm as shown in the bottom portion of Figure 2. # SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN Page 6(6) 6(6) Daoud Attayi Dates of Test **Sep. 23 - 30, 2003** RIM-0054-0309-07 L6AR6030GN ### 1.5 Headsets The RIM Blackberry Wireless handheld was tested with and without headset model number HDW-03458-001. The SAR values are shown in Table 15. ### 1.6 Procedure used to establish the test signal The Handheld was put into test mode for the SAR measurements by enabling a call via a Rohde & Schwartz CMU 200 Base Station Simulator test instrument. A SIM card was placed in the Handheld to enable the interaction between the BSS communications test instrument and the Handheld. The CMU 200 communications test instrument then sent out a command for the Handheld to transmit at full power at the specified frequency. ### 2.0 DESCRIPTION OF THE TEST EQUIPMENT ### 2.1 SAR measurement system SAR measurements were performed using a Dosimetric Assessment System (DASY4), an automated SAR measurement system manufactured by Schmid & Partner Engineering AG (SPEAG), of Zurich, Switzerland. The DASY4 system for performing compliance tests consists of the following items: - · A standard high precision 6-axis robot (Stäubli RX family) with controller and software. - · An arm extension for accommodating the data acquisition electronics (DAE). - · A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system. - \cdot A DAE module which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the Electro-optical coupler (EOC). - · A unit to operate the optical surface detector which is connected to the EOC. - · The EOC performs the conversion from an optical signal into the digital electric signal of the DAE. The EOC is connected to the PC plug-in card. - · The functions of the PC plug-in card based on a DSP is to perform the time critical tasks such as signal filtering, surveillance of the robot operation fast movement interrupts. - · A computer operating Windows NT. - · DASY4 software version 3.1C. - \cdot Remote control with teach pendant and additional circuitry for robot safety such as warning lamps, etc. - · The SAM Twin Phantom enabling testing left-hand and right-hand usage. - · The device holder for handheld mobile phones. - · Tissue simulating liquid mixed according to the given recipes (see Application Note). - · System validation dipoles allowing for the validation of proper functioning of the system. **Figure 3: System Description** ## 2.1.1 Equipment List | Manufacturer | Test Equipment | Model
Number | Serial Number | Cal. Due
Date | |---------------------------------------|-------------------------------------|-----------------|---------------|------------------| | SCHMID & Partner
Engineering AG | E-field probe | ET3DV6 | 1644 | 21/10/2003 | | SCHMID & Partner
Engineering AG | Data Acquisition Electronics (DAE3) | DAE3 V1 | 472 | 19/08/2004 | | SCHMID &
Partner
Engineering AG | Dipole Validation Kit | D835V2 | 446 | 21/08/2005 | | SCHMID & Partner
Engineering AG | Dipole Validation Kit | D1900V2 | 545 | 22/08/2005 | | Agilent Technologies | Signal generator | HP 8648C | 4037U03155 | 01/08/2005 | | Agilent Technologies | Power meter | E4419B | GB40202821 | 31/07/2004 | | Agilent Technologies | Power sensor | 8482A | US37295126 | 07/08/2004 | | Amplifier Research | Amplifier | 5S1G4M3 | 300986 | CNR | | Agilent Technologies Network analyzer | | 8753ES | US39174857 | 31/07/2004 | | Rohde & Schwarz | Digital communication tester | CMU 200 | 100250 | 03/04/2004 | Table 3. Equipment list Page 8(8) ### 2.2 Description of the test setup Before a SAR test is conducted the Handheld and the DASY equipment are setup as follows: ### 2.2.1 Handheld and base station simulator setup - Insert SIM card into the Handheld's SIM card slot and power it up. - Turn on the CMU 200 test set and set the carrier frequency and power to the appropriate values. - Connect an antenna to the RF IN/OUT of the communication test set and place it close to the Handheld. ### 2.2.2 DASY setup - Turn the computer on and log on to Windows NT. - Start DASY4 software by clicking on the icon located on the Windows desktop. Once the software loads, click on the Change to Robot toolbar button to open the State and Robot Monitoring Windows. - Once the DASY State dialog opens you can ignore all errors and click OK to open the Robot Monitoring window. - Mount the DAE unit and the probe. Turn on the DAE unit. - Turn the Robot Controller on by turning the main power switch to the horizontal position - Align the probe and click the align probe in the light beam button to correct the probe offset. - Open a program and configure it to the proper parameters - Establish a connection between the Handheld and the communications test instrument. Place the Handheld on the stand and adjust it under the phantom. - Start SAR measurements. ### 3.0 ELECTRIC FIELD PROBE CALIBRATION ### 3.1 Probe Specification SAR measurements were conducted using the dosimetric probe ET3DV6, designed by Schmid & Partner Engineering AG for the measurement of SAR. The probe is constructed using the thin film technique, with printed resistive lines on ceramic substrates. It has a symmetrical design with triangular core, built-in optical fiber for the surface detection system and built-in shielding against static discharge. The probe is sensitive to E-fields and thus incorporates three small dipoles arranged so that the overall response is close to isotropic. The table below summarizes the technical data for the probe. Sep. 23 - 30, 2003 | Property | Data | |---|-------------------------| | Frequency range | 30 MHz – 3 GHz | | Linearity | ±0. 1 dB | | Directivity (rotation around probe axis) | = ±0.2 dB | | Directivity (rotation normal to probe axis) | ±0. 4 dB | | Dynamic Range | 5 mW/kg – 100 W/kg | | Probe positioning repeatability | ±0.2 mm | | Spatial resolution | < 0.125 mm ³ | RIM-0054-0309-07 9(9) L6AR6030GN **Table 4. Probe specification** ### 3.2 Probe calibration and measurement errors **Daoud Attayi** The probe was calibrated on 21/10/2002 with an accuracy better than $\pm 10\%$. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe were tested. The probe calibration parameters are shown on Appendix D. ### 4.0 SAR MEASUREMENT SYSTEM VERIFICATION Prior to conducting SAR evaluation, the measurements were validated using the dipole validation kit and a flat phantom. A power level of 1.0 W was applied to the dipole antenna. The verification results are in the table below with a comparison to reference values. Printouts are shown in Appendix A. All the measured parameters are satisfactory. ### 4.1 System accuracy verification for Head Adjacent use | e (MII-) | T: 1/ /3/ | SAR (W/kg) | Dielectric Parameters | | Liquid Temp | | |----------|-----------------------|-------------|-----------------------|---------|-------------|--| | f (MHz) | Limits / Measured | 1 g/ 10 g | $\epsilon_{\rm r}$ | σ [S/m] | (°C) | | | | Measured | 10.0 / 6.5 | 41.3 | 0.89 | 22.2 | | | 835 | Recommended
Limits | 9.6 / 6.2 | 43.3 | 0.91 | N/A | | | 1000 | Measured | 40.9 / 21.2 | 39.9 | 1.46 | 23.2 | | | 1900 | Recommended
Limits | 41.2 / 21.3 | 40.2 | 1.46 | N/A | | Table 5. System accuracy (Validation for Head Adjacent use) **Daoud Attayi** # SAR Compliance Test Report for BlackBerry Wireless 10(10) Handheld Model No. R6030GN Dates of Test Sep. 23 - 30, 2003 RIM-0054-0309-07 L6AR6030GN #### 5.0 PHANTOM DESCRIPTION The SAM Twin Phantom, manufactured by SPEAG, was used during the SAR measurements. The phantom is made of a fiberglass shell integrated with a wooden table. The SAM Twin Phantom is a fiberglass shell phantom with 2 mm shell thickness. It has three measurement areas: Left hand Right hand Flat phantom The phantom table dimensions are: 100x50x85 cm (LxWxH). The table is intended for use with free standing robots. The bottom shelf contains three pair of bolts for locking the device holder in place. The device holder positions are adjusted to the standard measurement positions in the three sections. Only one device holder is necessary if two phantoms are used (e.g., for different solutions). A white cover is provided to top the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. Free space scans of devices on the cover are possible; however the optical surface detector does not work properly at the cover surface. Place a sheet of white paper on the cover when using optical surface detection. Liquid depth of = 15 cm is maintained in the phantom for all the measurement. Figure 4 **SAM Twin Phantom** # SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN L6AR6030GN 11(11) **Daoud Attayi** Sep. 23 - 30, 2003 Dates of Test RIM-0054-0309-07 #### 6.0 TISSUE DIELECTRIC PROPERTY #### 6.1 Composition of tissue simulant The composition of the brain and muscle simulating liquids for 800-900 MHz and 1800-1900 MHz are shown in the table below. | INGREDIENT | MIXTURE 800-900MHz | | MIXTURE 1800–1900MHz | | |-------------|--------------------|----------|----------------------|----------| | INGREDIENT | Brain % | Muscle % | Brain % | Muscle % | | Water | 51.07 | 65.45 | 54.88 | 69.91 | | Sugar | 47.31 | 34.31 | 0 | 0 | | Salt | 1.15 | 0.62 | 0.21 | 0.13 | | HEC | 0.23 | 0 | 0 | 0 | | Bactericide | 0.24 | 0.10 | 0 | 0 | | DGBE | 0 | 0 | 44.91 | 29.96 | Table 6. Tissue simulant recipe ### 6.1.1 **Equipment** | Manufacturer | Test Equipment | Model Number | Serial Number | Cal. Due
Date | |-----------------|---------------------|--------------|---------------|------------------| | Pyrex, England | Graduated Cylinder | N/A | N/A | N/A | | Pyrex, USA | Beaker | N/A | N/A | N/A | | Acculab | Weight Scale | V1-1200 | 018WB2003 | N/A | | Hart Scientific | Digital Thermometer | 61161-302 | 21352860 | 15/09/2005 | | IKA Works Inc. | Hot Plate | RC Basic | 3.107433 | N/A | Table 7. Tissue simulant preparation equipment ### 6.1.2 **Preparation procedure** ### **800-900 MHz liquids** - Fill the container with water. Begin heating and stirring. - Add the Cellulose, the preservative substance and the salt. After several hours, the liquid will become more transparent again. The container must be covered to prevent evaporation. - Add Sugar. Stir it well until the sugar is sufficiently dissolved. - Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation. - Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements. ### 1800-1900 MHz liquid • Fill the container with water. Begin heating and stirring. ## SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN L6AR6030GN 12(12) **Daoud Attayi** Sep. 23 - 30, 2003 RIM-0054-0309-07 - Add the salt and Glycol. The container must be covered to prevent evaporation. - Keep the liquid hot but below the boiling point for at least an hour. The container must be covered to prevent evaporation. - Remove the container from, and turn the hotplate off and allow the liquid to cool off to room temperature prior to performing dielectric measurements. #### 6.2 Electrical parameters of the tissue simulating liquid Dates of Test The tissue dielectric parameters shall be measured before a batch can be used for SAR measurements to ensure that the simulated tissue was properly made and will simulate the desired human characteristic. Limits and measured electrical parameters are show in the table below. Recommended limits are adopted from IEEE P1528/D1.2, April 21, 2003: "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", SPEAG dipole calibration certificates and from FCC Tissue Dielectric Properties web page at http://www.fcc.gov/fcc-bin/dielec.sh | f (MIIa) | Tissue | Limits / Measured | Dielectric Parameters | | Liquid Temp | |---------------|--------|--------------------|-----------------------|---------|---------------| | f (MHz) | Type | Limits / Measured | $\epsilon_{\rm r}$ | σ [S/m] | (° C) | | | Head | Measured | 41.3 | 0.89 | 22.2 | | | Ticau | Recommended Limits | 43.3 | 0.91 | N/A | | 835
Muscle | Muscle | Measured | 53.1 | 0.97 | 22.0 | | | Muscic | Recommended Limits | 55.2 | 0.97 | N/A | | | Head | Measured | 39.9 | 1.46 | 23.2 | | 1000 | | Recommended Limits | 40.2 | 1.46 | N/A | | 1900 | Muscle | Measured | 51.0 | 1.53 | 22.0 | | | Muscic | Recommended Limits | 53.3 | 1.52 | N/A | Table 8. Electrical parameters of tissue simulating liquid ### 6.2.1 **Equipment** | Manufacturer | Test Equipment | Model Number | Serial Number | Cal.
Due
Date | |----------------------|----------------------|--------------|---------------|------------------| | Agilent Technologies | Network analyzer | 8753ES | US39174857 | 31/07/2004 | | Agilent Technologies | Dielectric probe kit | HP 85070C | US9936135 | CNR | | Dell | PC using GPIB card | GX110 | 347 | N/A | | Hart Scientific | Digital Thermometer | 61161-302 | 21352860 | 15/09/2005 | Table 9. Equipment required for electrical parameter measurements ### 6.2.2 Test Configuration Figure 5: Test configuration ### 6.2.3 Procedure - 1. Turn NWA on and allow at least 30 minutes for warm up. - 2. Mount dielectric probe kit so that interconnecting cable to NWA will not be moved during measurements or calibration. - 3. Pour de-ionized water and measure water temperature $(\pm 1^{\circ})$. - 4. Set water temperature in HP-Software (Calibration Setup). - 5. Perform calibration. - 6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with >8mm thickness $\varepsilon'=10.0$, $\varepsilon''=0.0$). If measured parameters do not fit within tolerance, repeat calibration (± 0.2 for ε' : ± 0.1 for ε''). - 7. Relative permittivity $\mathbf{\varepsilon}\mathbf{r} = \mathbf{\varepsilon}'$ and conductivity can be calculated from $\mathbf{\varepsilon}''$ $\mathbf{\sigma} = \mathbf{\omega} \, \mathbf{\varepsilon}_0 \, \mathbf{\varepsilon}''$ - 8. Measure liquid shortly after calibration. - 9. Stir the liquid to be measured. Take a sample (~50ml) with a syringe from the center of the liquid container. - 10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles. - 11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit. - 12. Perform measurements. - 13. Adjust medium parameters in DASY4 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Brain 900 MHz) and press 'Option'-button. - 14. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 900 MHz). Sample calculation for 835 MHz head tissue dielectric parameters using data from Table 10. Relative permittivity $\mathbf{Er} = \mathbf{E'} = 41.29$ Conductivity $\mathbf{\sigma} = \mathbf{\omega} \ \mathbf{\epsilon_0} \ \mathbf{E''} = 2 \ x \ 3.1416 \ x \ 835 \ e+6 \ x \ 8.854e-12 \ x \ 19.214 = 0.89 \ S/m$ SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN Dates of Test Test Report No CC ID Daoud Attayi Sep. 23 - 30, 2003 RIM-0054-0309-07 L6AR6030GN 14(14) | SubTitle September 30, 2003 09.58 AM | Title | | | Title | | | |--|-----------------------------|-------------------|---------------------------|----------------|--|---------| | Frequency 800.000000 MHz 41.6859 19.2809 800.000000 MHz 53.5004 20.9868 801.000000 MHz 41.6622 19.2816 801.000000 MHz 53.4718 20.9545 802.000000 MHz 41.6487 19.2797 802.000000 MHz 53.4718 20.9588 803.000000 MHz 41.6283 19.2794 803.000000 MHz 53.4831 20.9629 804.000000 MHz 41.6283 19.2794 804.000000 MHz 53.4831 20.9629 805.000000 MHz 41.6258 19.2851 805.000000 MHz 53.4618 20.9561 807.000000 MHz 41.5951 19.2650 808.000000 MHz 53.4512 20.9681 807.000000 MHz 41.5951 19.2660 808.000000 MHz 53.4500 20.9681 809.000000 MHz 41.5819 19.2660 808.000000 MHz 53.4370 20.9575 809.000000 MHz 41.5692 19.2834 810.000000 MHz 53.4904 20.9474 811.000000 MHz 41.5255 19.2607 812.000000 MHz 53.3996 20.9495 813.000000 MHz 41.5255 19.2607 812.000000 MHz 53.3997 20.9858 813.000000 MHz 41.5245 19.2574 813.000000 MHz 53.3702 20.9368 813.000000 MHz 41.5245 19.2574 813.000000 MHz 53.3702 20.9368 815.000000 MHz 41.5245 19.2574 813.000000 MHz 53.3702 20.9358 815.000000 MHz 41.4911 19.2713 816.000000 MHz 53.3405 20.9416 815.000000 MHz 41.4768 19.2663 817.000000 MHz 53.3404 20.9474 816.00000 MHz 41.4911 19.2713 816.000000 MHz 53.3404 20.9915 819.000000 MHz 41.4819 19.2359 819.000000 MHz 53.3404 20.8915 819.000000 MHz 41.4819 19.2359 819.000000 MHz 53.3340 40.8915 822.000000 MHz 41.44181 19.2275 825.000000 MHz 53.3340 20.9825 822.000000 MHz 41.4141 19.2275 825.000000 MHz 53.2242 20.8744 825.000000 MHz 41.3497 19.2265 825.000000 MHz 53.2242 20.8862 825.000000 MHz 41.3497 19.2164 828.000000 MHz 53.2240 20.8862 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2240 20.8862 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2245 20.8863 833.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2245 20.8863 833.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2245 20.8863 833.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2445 20.8863 833.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2445 20.8863 833.000000 MHz 41.3446 19.2030 831.000000 MHz 53.1846 20.8863 833.000000 MHz 41.3446 19.2030 831.000000 MHz 53.1846 20.8863 833.000000 MHz 41.3585 19.2049 833.000000 MHz 53.186 | | | | | | | | 800.000000 MHz | September 29, 2003 09:51 Am | | | | | | | 801.000000 MHz | | The second second | and the first accompanies | | the side of the same sa | | | 802.000000 MHz 41.6487 19.2797 802.000000 MHz 53.4718 20.9598 803.000000 MHz 41.6609 19.2924 803.000000 MHz 53.4831 20.9629 804.000000 MHz 41.6283 19.2794 805.000000 MHz 53.4618 20.9561 805.000000 MHz 41.6258 19.2851 806.000000 MHz 53.4312 20.9681 807.00000 MHz 41.5993 19.2542 807.000000 MHz 53.4312 20.9681 808.000000 MHz 41.5819 19.2660 808.000000 MHz 53.4370 20.9575 809.000000 MHz 41.5692 19.2834 810.000000 MHz 53.3996 20.9495 812.000000 MHz 41.5692 19.2372 811.000000 MHz 53.3997 20.9858 812.000000 MHz 41.52245 19.2574 813.000000 MHz 53.3402 20.9416 814.000000 MHz 41.52245 19.2574 813.000000 MHz 53.3728 20.9151 817.000000 MHz 41.4811 19.2713 816.000000 MHz 53.3414 20.9416 818.00000 | 800.000000 MHz | 41.6859 | | | | | | 803.000000 MHz | 801.000000 MHz | | | | | | | 804.000000 MHz | | | | | | | | 805.000000 MHz | | | | | | | | 806.000000 MHz | | | | | | | |
807.000000 MHz | 805.000000 MHz | | | | | | | 808.000000 MHz | 806.000000 MHz | | 19.2851 | | | | | 809.000000 MHz 41.5819 19.2640 809.00000 MHz 53.3996 20.9495 810.000000 MHz 41.5692 19.2834 810.000000 MHz 53.4094 20.9474 811.000000 MHz 41.5602 19.2372 811.000000 MHz 53.3997 20.9858 812.000000 MHz 41.5325 19.2607 812.000000 MHz 53.3702 20.9358 813.000000 MHz 41.5245 19.2574 813.000000 MHz 53.4052 20.9416 814.000000 MHz 41.5284 19.2268 814.000000 MHz 53.3728 20.9151 815.000000 MHz 41.4981 19.2713 816.000000 MHz 53.3759 20.9998 816.000000 MHz 41.4911 19.2713 816.000000 MHz 53.3404 20.8915 818.000000 MHz 41.4819 19.2643 817.000000 MHz 53.3404 20.8915 818.000000 MHz 41.4819 19.2359 819.000000 MHz 53.33404 20.8915 819.000000 MHz 41.4468 19.2425 820.000000 MHz 53.3343 20.9242 820.000000 MHz 41.4319 19.2359 819.000000 MHz 53.33136 20.8827 821.000000 MHz 41.4319 19.2065 822.000000 MHz 53.33136 20.8827 822.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2913 20.9168 824.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2913 20.9168 825.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2913 20.9168 827.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3497 19.2381 826.000000 MHz 53.2445 20.8500 829.000000 MHz 41.3497 19.2116 828.000000 MHz 53.2445 20.8500 829.000000 MHz 41.3497 19.2116 828.000000 MHz 53.2445 20.8500 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2445 20.8500 829.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2445 20.8500 832.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2416 20.8426 830.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1816 20.88295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1816 20.88295 835.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1846 20.8683 835.000000 MHz 53.1845 20.8683 835.000000 MHz 53.1846 20.8683 835.000000 MHz 53.1845 20.8683 835.000000 MHz 53.1845 20.8683 835.000000 MHz 53.1845 20.8383 | 807.000000 MHz | | 19.2542 | | | | | 810.000000 MHz | 808.000000 MHz | 41.5951 | | | | | | 811.000000 MHz 41.5602 19.2372 811.000000 MHz 53.3997 20.9858 812.000000 MHz 41.5325 19.2607 812.000000 MHz 53.3702 20.9358 813.000000 MHz 41.5245 19.2574 813.000000 MHz 53.4052 20.9416 814.000000 MHz 41.4983 19.2268 814.000000 MHz 53.3728 20.9151 815.000000 MHz 41.5284 19.2452 815.000000 MHz 53.3759 20.9098 816.000000 MHz 41.4911 19.2713 816.000000 MHz 53.3414 20.9401 817.000000 MHz 41.468 19.2643 817.000000 MHz 53.3404 20.8915 818.000000 MHz 41.4819 19.2359 819.000000 MHz 53.3588 20.8975 819.000000 MHz 41.4768 19.2425 820.000000 MHz 53.3316 20.8827 821.000000 MHz 41.4319 19.2050 822.000000 MHz 53.3316 20.8827 822.000000 MHz 41.4319 19.2065 822.000000 MHz 53.3316 20.8827 823.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2242 20.8909 823.000000 MHz 41.4141 19.2172 823.000000 MHz 53.2242 20.8909 823.000000 MHz 41.4141 19.2172 823.000000 MHz 53.2241 20.8909 823.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2241 20.8909 826.000000 MHz 41.3392 19.2381 826.000000 MHz 53.2245 20.8500 828.000000 MHz 41.3497 19.2116 828.000000 MHz 53.2245 20.8500 828.000000 MHz 41.3497 19.2116 828.000000 MHz 53.22416 20.8426 830.000000 MHz 41.3446 19.2030 831.000000 MHz 53.22416 20.8426 832.000000 MHz 41.3446 19.2030 831.000000 MHz 53.22416 20.8590 832.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2416 20.8426 832.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2632 20.8590 832.000000 MHz 41.3446 19.2030 831.000000 MHz 53.1866 20.8693 834.000000 MHz 41.3445 19.2064 832.000000 MHz 53.1866 20.8695 833.000000 MHz 41.3445 19.2064 832.000000 MHz 53.1866 20.8683 834.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1866 20.8683 834.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1413 20.8383 | 809.000000 MHz | 41.5819 | 19.2640 | | | | | 812.000000 MHz 41.5325 19.2607 812.000000 MHz 53.3702 20.9358 813.000000 MHz 41.5245 19.2574 813.000000 MHz 53.4052 20.9416 814.000000 MHz 41.4983 19.2268 814.000000 MHz 53.3728 20.9151 815.000000 MHz 41.5284 19.2452 815.000000 MHz 53.3759 20.9098 816.000000 MHz 41.4911 19.2713 816.000000 MHz 53.3414 20.9401 817.000000 MHz 41.4768 19.2643 817.000000 MHz 53.3404 20.8915 818.000000 MHz 41.5087 19.2501 818.000000 MHz 53.3588 20.8975 819.000000 MHz 41.4819 19.2359 819.000000 MHz 53.3343 20.9242 820.000000 MHz 41.4768 19.2425 820.000000 MHz 53.33136 20.8827 821.000000 MHz 41.4234 19.2090 821.000000 MHz 53.3316 20.8827 822.000000 MHz 41.41319 19.2065 822.000000 MHz 53.3306 20.9002 823.000000 MHz 41.4148 19.2322 824.000000 MHz 53.2824 20.8909 823.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2213 20.9168 824.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2210 20.8862 826.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2245 20.8500 828.000000 MHz 41.3497 19.2116 828.000000 MHz 53.2245 20.8500 829.000000 MHz 41.3497 19.2116 828.000000 MHz 53.2245 20.8500 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2245 20.8500 832.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2245 20.8590 832.000000 MHz 41.3466 19.2030 831.000000 MHz 53.2240 20.8734 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1861 20.8495 834.000000 20.849 | 810.000000 MHz | 41.5692 | 19.2834 | | 53.4094 | | | 813.000000 MHz 41.5245 19.2574 813.000000 MHz 53.4052 20.9416 814.000000 MHz 41.4983 19.2268 814.000000 MHz 53.3728 20.9151 815.000000 MHz 41.5284 19.2452 815.000000 MHz 53.3759 20.9098 816.000000 MHz 41.4911 19.2713 816.000000 MHz 53.3414 20.9401 817.000000 MHz 41.4768 19.2643 817.000000 MHz 53.3404 20.8915 818.000000 MHz 41.5087 19.2501 818.000000 MHz 53.3588 20.8975 819.000000 MHz 41.4819 19.2359 819.000000 MHz 53.3343 20.9242 820.000000 MHz 41.4768 19.2425 820.000000 MHz 53.3343 20.9242 822.000000 MHz 41.4234 19.2090 821.000000 MHz 53.3306 20.9002 822.000000 MHz 41.4319 19.2065 822.000000 MHz 53.2824 20.8909 823.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2824 20.8909 824.000000 MHz 41.4141 19.2275 825.000000 MHz 53.2247 20.8744 825.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2240 20.8862 826.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2245 20.8500 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2245 20.8500 832.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2245 20.8500 832.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2409 20.8718 833.000000 MHz 41.3423 19.1767 833.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 53.1861 20.8415 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1816 20.8415 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1413 20.8383 | 811.000000 MHz | 41.5602 | 19.2372 | | | | | 814.000000 MHz | 812.000000 MHz | 41.5325 | 19.2607 | | | | | 815.000000 MHz | 813.000000 MHz | 41.5245 | 19.2574 | 813.000000 MHz | | | | 816.000000 MHz 41.4911 19.2713 816.000000 MHz 53.3414 20.9401 817.000000 MHz 41.4768 19.2643 817.000000 MHz 53.3404 20.8915 818.000000 MHz 41.5087 19.2501 818.000000 MHz 53.3588 20.8975 819.000000 MHz 41.4819 19.2359 819.000000 MHz 53.3343 20.9242 820.000000 MHz 41.4768 19.2425 820.000000 MHz 53.3306 20.8827 821.000000 MHz 41.4234 19.2090 821.000000 MHz 53.3306 20.9002 822.000000 MHz 41.4319 19.2065 822.000000 MHz 53.2824 20.8909 823.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2291 20.9168 824.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2427 20.8744 825.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2530 20.8734 827.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3446 19.2049 830.00000 MHz 53.2416 20.842 | 814.000000 MHz | 41.4983 | 19.2268 | 814.000000 MHz | | | | 817.000000 MHz | 815.000000 MHz | 41.5284 | 19.2452 | 815.000000 MHz | | | | 818.000000 MHz 41.5087 19.2501 818.000000 MHz 53.3588 20.8975 819.000000 MHz 41.4819 19.2359 819.000000 MHz 53.3343 20.9242 820.000000 MHz 41.4768 19.2425 820.000000 MHz 53.3136 20.8827 821.000000 MHz 41.4234 19.2090 821.000000 MHz 53.3306 20.9002 822.000000 MHz 41.4319 19.2065 822.000000 MHz 53.2824 20.8909 823.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2913 20.9168 824.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2427 20.8744 825.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2452 20.8500 828.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 829.000000 MHz 41.3497 19.2116 828.000000 MHz 53.2416 20.8426 830.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1866 20.86 | 816.000000 MHz | 41.4911 | 19.2713 | 816.000000 MHz | | | | 819.000000 MHz 41.4819 19.2359 819.000000 MHz 53.3343 20.9242 820.000000 MHz 41.4768 19.2425 820.000000 MHz 53.3136 20.8827 821.000000 MHz 41.4234 19.2090 821.000000 MHz 53.3306 20.9002 822.000000 MHz 41.4319 19.2065 822.000000 MHz 53.2824 20.8909 823.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2913 20.9168 824.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2427 20.8744 825.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2530 20.8734 827.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2445 20.8632 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2416 20.8426 830.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1861 20.86 | 817.000000 MHz | 41.4768 | 19.2643 | 817.000000 MHz | 53.3404 | 20.8915 | | 820.000000 MHz 41.4768 19.2425 820.000000 MHz 53.3136 20.8827 821.000000 MHz 41.4234 19.2090 821.000000 MHz 53.3306 20.9002 822.000000 MHz 41.4319 19.2065 822.000000 MHz 53.2824 20.8909 823.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2913 20.9168 824.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2427 20.8744 825.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2530 20.8734 827.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2445 20.8500 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2416 20.8426 830.00000 MHz 41.3446 19.2030 831.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1861 20.863 | 818.000000 MHz | 41.5087 | 19.2501
 818.000000 MHz | 53.3588 | 20.8975 | | 821.000000 MHz 41.4234 19.2090 821.000000 MHz 53.2306 20.9002 822.000000 MHz 41.4319 19.2065 822.000000 MHz 53.2824 20.8909 823.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2913 20.9168 824.000000 MHz 41.4121 19.2275 824.000000 MHz 53.2427 20.8744 825.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2910 20.8862 826.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2530 20.8734 827.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.269 20.8632 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2465 20.8500 832.000000 MHz 41.3569 19.2049 830.000000 MHz 53.2416 20.8426 830.000000 MHz 41.3569 19.2049 830.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2409 20.8718 832.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1861 20.8683 834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.8415 835.000000 MHz 41.2885 19.2074 836.000000 MHz 53.1413 20.8383 | 819.000000 MHz | 41.4819 | 19.2359 | 819.000000 MHz | 53.3343 | 20.9242 | | 822.000000 MHz 41.4319 19.2065 822.000000 MHz 53.2824 20.8909 823.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2913 20.9168 824.000000 MHz 41.4148 19.2322 824.000000 MHz 53.2427 20.8744 825.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2910 20.8862 826.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2530 20.8734 827.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2269 20.8632 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2416 20.8426 830.00000 MHz 41.3569 19.2049 830.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2032 20.8590 832.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1816 20.8295 833.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.841 | 820.000000 MHz | 41.4768 | 19.2425 | 820.000000 MHz | 53.3136 | 20.8827 | | 823.000000 MHz 41.4121 19.2172 823.000000 MHz 53.2913 20.9168 824.000000 MHz 41.4148 19.2322 824.000000 MHz 53.2427 20.8744 825.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2910 20.8862 826.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2530 20.8734 827.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2269 20.8632 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2416 20.8426 830.000000 MHz 41.3569 19.2049 830.000000 MHz 53.2416 20.8426 831.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3446 19.2030 831.000000 MHz 53.232 20.8590 832.000000 MHz 41.3243 19.1767 832.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1861 20.8683 834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.8415 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712 836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 821.000000 MHz | 41.4234 | 19.2090 | 821.000000 MHz | 53.3306 | 20.9002 | | 824.000000 MHz 41.4148 19.2322 824.000000 MHz 53.2427 20.8744 825.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2910 20.8862 826.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2530 20.8734 827.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2269 20.8632 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2416 20.8426 830.00000 MHz 41.3569 19.2049 830.000000 MHz 53.2409 20.8718 831.00000 MHz 41.3446 19.2030 831.000000 MHz 53.2032 20.8590 832.00000 MHz 41.3127 19.2064 832.000000 MHz 53.1816 20.8295 833.00000 MHz 41.3243 19.1767 833.000000 MHz 53.1861 20.8683 835.00000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712 836.00000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 <td>822.000000 MHz</td> <td>41.4319</td> <td>19.2065</td> <td>822.000000 MHz</td> <td>53.2824</td> <td>20.8909</td> | 822.000000 MHz | 41.4319 | 19.2065 | 822.000000 MHz | 53.2824 | 20.8909 | | 825.000000 MHz 41.4121 19.2275 825.000000 MHz 53.2910 20.8862 826.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2530 20.8734 827.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2269 20.8632 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2416 20.8426 830.00000 MHz 41.3569 19.2049 830.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2032 20.8590 832.000000 MHz 41.3127 19.2064 832.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1861 20.8683 834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1530 20.8712 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1413 20.8383 | 823.000000 MHz | 41.4121 | 19.2172 | 823.000000 MHz | 53.2913 | 20.9168 | | 826.000000 MHz 41.3924 19.2381 826.000000 MHz 53.2530 20.8734 827.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2269 20.8632 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2416 20.8426 830.00000 MHz 41.3569 19.2049 830.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2032 20.8590 832.000000 MHz 41.3127 19.2064 832.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1846 20.8683 834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1530 20.8712 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1413 20.8383 | 824.000000 MHz | 41.4148 | 19.2322 | 824.000000 MHz | 53.2427 | 20.8744 | | 827.000000 MHz 41.3691 19.1967 827.000000 MHz 53.2445 20.8500 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2269 20.8632 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2416 20.8426 830.00000 MHz 41.3569 19.2049 830.000000 MHz 53.2409 20.8718 831.00000 MHz 41.3446 19.2030 831.000000 MHz 53.2032 20.8590 832.000000 MHz 41.3127 19.2064 832.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1846 20.8683 834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.8415 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712 836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 825.000000 MHz | 41.4121 | 19.2275 | 825.000000 MHz | 53.2910 | 20.8862 | | 828.000000 MHz 41.3719 19.2116 828.000000 MHz 53.2269 20.8632 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2416 20.8426 830.00000 MHz 41.3569 19.2049 830.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2032 20.8590 832.000000 MHz 41.3127 19.2064 832.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1846 20.8683 834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.8415 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712 836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 826.000000 MHz | 41.3924 | 19.2381 | 826.000000 MHz | 53.2530 | 20.8734 | | 829.000000 MHz 41.3497 19.2124 829.000000 MHz 53.2416 20.8426 830.000000 MHz 41.3569 19.2049 830.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2032 20.8590 832.000000 MHz 41.3127 19.2064 832.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1846 20.8683 834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.8415 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712 836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 827.000000 MHz | 41.3691 | 19.1967 | 827.000000 MHz | 53.2445 | 20.8500 | | 830.000000 MHz 41.3569 19.2049 830.000000 MHz 53.2409 20.8718 831.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2032 20.8590 832.000000 MHz 41.3127 19.2064 832.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1846 20.8683 834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.8415 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712 836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 828.000000 MHz | 41.3719 | 19.2116 | 828.000000 MHz | 53.2269 | 20.8632 | | 831.000000 MHz 41.3446 19.2030 831.000000 MHz 53.2032 20.8590 832.000000 MHz 41.3127 19.2064 832.000000 MHz 53.1816 20.8295 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1846 20.8683 834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.8415 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712 836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 829.000000 MHz | 41.3497 | 19.2124 | 829.000000 MHz | 53.2416 | 20.8426 | | 832.000000 MHz 41.3127 19.2064 832.000000 MHz 53.1816 20.8295
833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1846 20.8683
834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.8415
835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712
836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 830.000000 MHz | 41.3569 | 19.2049 | 830.000000 MHz | 53.2409 | 20.8718 | | 833.000000 MHz 41.3243 19.1767 833.000000 MHz 53.1846 20.8683
834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.8415
835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712
836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 831.000000 MHz | 41.3446 | 19.2030 | 831.000000 MHz | 53.2032 | 20.8590 | | 834.000000 MHz 41.2953 19.1899 834.000000 MHz 53.1861 20.8415
835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712
836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 832.000000 MHz | 41.3127 | 19.2064 | 832.000000 MHz | 53.1816 | 20.8295 | | 835.000000 MHz 41.2885 19.2074 835.000000 MHz 53.1530 20.8712
836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 833.000000 MHz | 41.3243 | 19.1767 | 833.000000 MHz | 53.1846 | 20.8683 | | 836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 834.000000 MHz | 41.2953 | 19.1899 | 834.000000 MHz | 53.1861 | 20.8415 | | 836.000000 MHz 41.2780 19.1735 836.000000 MHz 53.1413 20.8383 | 835.000000 MHz | 41.2885 | 19.2074 | 835.000000 MHz | 53.1530 | | | | 836.000000 MHz | | | 836.000000 MHz | 53.1413 | 20.8383 | | | 837.000000 MHz | 41.2643 | 19.2034 | 837.000000 MHz | 53.1463 | 20.8213 | | 838.000000 MHz 41.2744 19.2057 838.000000 MHz 53.1390 20.8307 | | | | | | | | 839.000000 MHz 41.2515 19.1649 839.000000 MHz 53.0957 20.8313 | | | | | | | | 840.000000 MHz 41.2062 19.1931
840.000000 MHz 53.1228 20.7845 | | 41.2062 | | | | | Table 10. 835 MHz head and muscle tissue dielectric parameters 841.000000 MHz 53.0936 20.8236 19.1884 841.000000 MHz 41.2039 15(15) Author Data Daoud Attayi Sep. 23 - 30, 2003 RIM-0054-0309-07 L6AR6030GN | Title | | | Title | | | |-----------------------------|---------|--------------------|-----------------------------|---------|---------| | SubTitle | | | Title | | | | September 23, 2003 04:48 PM | | | SubTitle | | | | | | | September 25, 2003 11:04 AM | | | | Frequency | e' | e" | Frequency | e' | e" | | 1.700000000 GHz | 40.5599 | 13.3717 | 1.700000000 GHz | 51.6902 | 13.7469 | | 1.710000000 GHz | 40.5165 | 13.3904 | 1.710000000 GHz | 51.6461 | 13.7782 | | 1.720000000 GHz | 40.4784 | 13.3999 | 1.720000000 GHz | 51.6090 | 13.8112 | | 1.730000000 GHz | 40.4477 | 13.4144 | 1.730000000 GHz | 51.5666 | 13.8486 | | 1.740000000 GHz | 40.4283 | 13.4409 | 1.740000000 GHz | 51.5374 | 13.8684 | | 1.750000000 GHz | 40.3797 | 13.4631 | 1.750000000 GHz | 51.5229 | 13.9087 | | 1.760000000 GHz | 40.3458 | 13.4765 | 1.760000000 GHz | 51.4715 | 13.9361 | | 1.770000000 GHz | 40.2974 | 13.4895 | 1.770000000 GHz | 51.4466 | 13.9848 | | 1.780000000 GHz | 40.2577 | 13.5097 | 1.780000000 GHz | 51.4267 | 14.0153 | | 1.790000000 GHz | 40,2272 | 13.5429 | 1.790000000 GHz | | | | 1.800000000 GHz | 40.2113 | 13.5578 | | 51.3966 | 14.0613 | | 1.810000000 GHz | 40.1879 | 13.5835 | 1.800000000 GHz | 51.3655 | 14.0906 | | 1.820000000 GHz | 40.1645 | 13.6121 | 1.810000000 GHz | 51.3477 | 14.1337 | | 1.830000000 GHz | 40.1417 | 13.6495 | 1.820000000 GHz | 51.3298 | 14.1698 | | 1.840000000 GHz | 40.1061 | 13.6643 | 1.830000000 GHz | 51.2974 | 14.2076 | | 1.850000000 GHz | 40.0780 | 13.6988 | 1.840000000 GHz | 51.2513 | 14.2393 | | 1.860000000 GHz | 40.0453 | 13.7241 | 1.850000000 GHz | 51.2282 | 14.2874 | | 1.870000000 GHz | 40.0259 | 13.7682 | 1.860000000 GHz | 51.1902 | 14.3199 | | 1.880000000 GHz | 40.0055 | 13.7947 | 1.870000000 GHz | 51.1410 | 14.3659 | | 1.890000000 GHz | 39.9621 | 13.8209 | 1.880000000 GHz | 51.1078 | 14.3913 | | 1.900000000 GHz | 39.9230 | 13.8564 | 1.890000000 GHz | 51.0703 | 14.4137 | | 1.910000000 GHz | 39.8973 | 13.9014 | 1.900000000 GHz | 51.0203 | 14.4439 | | 1.920000000 GHz | 39.8670 | 13.9373 | 1.910000000 GHz | 51.0158 | 14.4556 | | 1.930000000 GHz | 39.8196 | 13.9726 | 1.920000000 GHz | 50.9692 | 14.4659 | | 1.940000000 GHz | | | 1.930000000 GHz | 50.9223 | 14.5015 | | | 39.7788 | 13.9976
14.0381 | 1.940000000 GHz | 50.9066 | 14.5307 | | 1.950000000 GHz | 39.7375 | | 1.950000000 GHz | 50.8701 | 14.5542 | | 1.960000000 GHz | 39.7144 | 14.0637 | 1.960000000 GHz | 50.8414 | 14.5885 | | 1.970000000 GHz | 39.6955 | 14.0984 | 1.970000000 GHz | 50.8230 | 14.6244 | | 1.980000000 GHz | 39.6527 | 14.1223 | 1.980000000 GHz | 50.7985 | 14.6554 | | 1.990000000 GHz | 39.6219 | 14.1532 | 1.990000000 GHz | 50.7584 | 14.6905 | | 2.000000000 GHz | 39.5911 | 14.1783 | 2.000000000 GHz | 50.7359 | 14.7273 | Table 11. 1900 MHz head and muscle tissue dielectric parameters ### 7.0 SAR SAFETY LIMITS | Standards/Guideline | Localized SAR Limit
(W/kg) General public
(uncontrolled) | Localized SAR Limits
(W/kg) Workers
(controlled) | |----------------------------|--|--| | ICNIRP (1998) Standard | 2.0 (10g) | 10.0 (10g) | | IEEE C95.1 (1999) Standard | 1.6 (1g) | 8.0 (1g) | Table 12. SAR safety limits for Controlled / Uncontrolled environment | | Localized SAR Limits (W/kg) 10g, ICNIRP | Localized SAR Limits
(W/kg) 1g, IEEE C95.1 | |--|---|---| | Human Exposure | (1998) Standard | (1999) Standard | | Spatial Average (averaged over the whole | | | | body) | 0.08 | 0.08 | | Spatial Peak (averaged over any X g of | | | | tissue) | 2.00 | 1.60 | | Spatial Peak (hands/wrists/feet/ankles | | | | averaged over 10 g) | 4.00 | 4.00 (10g) | Table 13. SAR safety limits **Uncontrolled Environments** are defined as locations where there is exposure of individuals who have no knowledge or control of their exposure. **Controlled Environments** are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). **Daoud Attayi** Author Data # SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN Dates of Test Sep. 23 - 30, 2003 RIM-0054-0309-07 L6AR6030GN 17(17) #### 8.0 **DEVICE POSITIONING** #### 8.1 **Device holder for SAM Twin Phantom** The Handheld was positioned for all test configurations using the DASY4 holder. The device holder facilitates the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can be easily, accurately and with repeatability positioned according to FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom). Figure 6 **Device Holder** - 1. Put the phone in the clamp mechanism (1) and hold it straight while tightening. (Curved phones or phones with asymmetrical ear pieces should be positioned so that the ear piece is in the symmetry plane of the clamp). - 2. Adjust the sliding carriage (2) to 90°. Then adjust the phone holder angle (3) until the reference line of the phone is horizontal (parallel to the flat phantom bottom). The phone reference line is defined as the front tangential line between the ear piece and the center of the device bottom (or the center of the flip hinge). For devices with parallel front and back sides, the phone holder angle (3) is 0° . - 3. Place the device holder at the desired phantom section and move it securely against the positioning pins (4). The screw in front of the turning plate can be applied for correct positioning (5). (Do not tighten it too strongly). - 4. Shift the phone clamp (6) so that the ear piece is exactly below the ear marking of the phantom. The phone is now correctly positioned in the holder for all standard phantom measurements, even after changing the phantom or phantom section. - 5. Adjust the device position angles to the desired measurement position. - 6. After fixing the device angles, move the phone fixture up until the phone touches the ear marking. (The point of contact depends on the design of the device and the positioning angle). ### 8.2 Description of the test positioning ### 8.2.1 Test Positions of Device Relative to Head The handset was tested in two test positions against the head phantom, the "cheek" position and the "tilted" position, on both left and right sides of the phantom. The handset was tested in the above positions according to IEEE P1528/D1.2, April 21, 2003: "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". Figure 7a – Handset vertical and horizontal reference lines – fixed case Figure 7b – Handset vertical and horizontal reference lines – "clam-shell" RESEARCH IN MOTION Author Data ## SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN 19(19) **Daoud Attavi** Sep. 23 - 30, 2003 Dates of Test RIM-0054-0309-07 L6AR6030GN ### 8.2.1.1 Definition of the "cheek" position - 1) Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece, open the cover. - 2) Define two imaginary lines on the handset: the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset: the midpoint of the width wt of the handset at the level of the acoustic output (point A on Figures 7a and 7b), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 7a). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 7b), especially for clamshell handsets, handsets with flip pieces, and other irregularly shaped handsets. - 3) Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7), such that the plane defined by the vertical center line and the horizontal center line is in a plane approximately parallel to the sagittal plane of the phantom. - 4) Translate the handset towards the phantom along the line passing through RE and LE until the handset touches the ear. - 5) While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is the plane normal to MB ("mouth-back") - NF ("neck-front") including the line MB (reference plane). - 6) Rotate the phone around the vertical centerline until the phone (horizontal line) is symmetrical with respect to the line NF. - 7) While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, rotate the handset about the line NF until any point on the handset is in contact with a phantom point below the ear (cheek). Figure 8 – Phone position 1, "cheek" or "touch" position. The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only. | RESEARCH IN MOTION | SA | SAR Compliance Test Report for BlackBerry Wireless Handheld
Model No. R6030GN | | | | | | |---|----|---|------------------|------------|--|--|--| | Author Data Dates of Test Test Report No FCC ID | | | | | | | | | Daoud Attavi | | Sep. 23 - 30, 2003 | RIM-0054-0309-07 | L6AR6030GN | | | | ### 8.2.1.2 Definition of the "Tilted" Position - 1) Repeat steps 1 to 7 of 5.4.1 (in this report 8.2.1.1) to replace the device in the "cheek position." - 2) While maintaining the device in the reference plane (described above) and pivoting against the ear, move the device outward away from the mouth by an angle of 15 degrees, or until the antenna touches the phantom. Figure 9 – Phone position 2, "tilted position." The reference points for the right ear (RE), left ear (LE) and mouth (M), which define the reference plane for phone positioning, are indicated. The shoulders are shown for illustration purposes only. ### 8.2.2 Body Holster Configuration A body worn holster, as shown on Figure 2, was tested with the Wireless Handheld for FCC RF exposure compliance. The EUT was positioned in the holster case and the belt clip was placed against the flat section of the phantom. A headset was then connected to the handheld to simulate hands-free operation in a body worn holster configuration. # SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN 21(21) Author Data Dates of Test Test Report No. FCC ID Daoud Attayi Sep. 23 - 30, 2003 RIM-0054-0309-07 L6AR6030GN ### 9.0 High Level Evaluation ### 9.1 Maximum search The maximum search is automatically performed after each coarse scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the coarse scan measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. ### 9.2 Extrapolation The extrapolation can be used in z-axis scans with automatic surface detection. The SAR values can be extrapolated to the inner phantom surface. The extrapolation distance is the sum of the probe sensor offset, the surface detection distance and the grid offset. The extrapolation is based on fourth order polynomial functions. The extrapolation is only available for SAR values. ### 9.3 Boundary correction The correction of the probe boundary effect in the vicinity of the phantom surface is done in the standard (worst case) evaluation; the boundary effect is reduced by different weights for the lowest measured points in the extrapolation routine. The result is a slight overestimation of the extrapolated SAR values (2% to 8%) depending on the SAR distribution and gradient. The advanced evaluation makes a full compensation of the boundary effect before doing the extrapolation. This is only possible for probes with specifications on the boundary effect. ## 9.4 Peak search for 1g and 10g cube averaged SAR The 1g and 10g peak evaluations are only available for the predefined cube 5x5x7 scan. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measure volume of 32x32x35mm mm contains about 35g of tissue. The first procedure is an extrapolation (incl. Boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1mm grid (35000 points). In the last step, a 1g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is then moved around until the highest averaged SAR is found. This last procedure is repeated for a 10 g cube. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center. ## 10.0 MEASUREMENT UNCERTAINTIES | DASY4 Uncertainty Budget According to IEEE P1528 [1] | | | | | | | | | | |--|-------------|-------|------------|---------|---------|-----------|--------------|-----------|--| | | Uncertainty | Prob. | Div. | (c_i) | (c_i) | Std. Unc. | Std. Unc. | (v_i) | | | Error Description | value | Dist. | | 1g | 10g | (1g) | (10g) | v_{eff} | | | Measurement System | | | | | | | | | | | Probe Calibration | ±4.8% | N | 1 | 1 | 1 | ±4.8% | $\pm 4.8 \%$ | ∞ | | | Axial Isotropy | ±4.7% | R | $\sqrt{3}$ | 0.7 | 0.7 | ±1.9% | ±1.9% | ∞ | | | Hemispherical Isotropy | ±9.6% | R | $\sqrt{3}$ | 0.7 | 0.7 | ±3.9% | ±3.9 % | ∞ | | | Boundary Effects | ±1.0% | R | $\sqrt{3}$ | 1 | 1 | ±0.6% | ±0.6% | ∞ | | | Linearity | ±4.7% | R | $\sqrt{3}$ | 1 | 1 | ±2.7% | ±2.7 % | ∞ | | | System Detection Limits | ±1.0% | R | $\sqrt{3}$ | 1 | 1 | ±0.6% | ±0.6% | ∞ | | | Readout Electronics | ±1.0% | N | 1 | 1 | 1 | ±1.0% | ±1.0 % | 8 | | | Response Time | ±0.8% | R | $\sqrt{3}$ | 1 | 1 | ±0.5% | ±0.5% | 00 | | | Integration Time | ±2.6% | R | $\sqrt{3}$ | 1 | 1 | ±1.5% | ±1.5% | ∞ | | | RF Ambient Conditions | ±3.0% | R | $\sqrt{3}$ | 1 | 1 | ±1.7% | ±1.7% | ∞ | | | Probe Positioner | ±0.4% | R | $\sqrt{3}$ | 1 | 1 | ±0.2 % | ±0.2 % | ∞ | | | Probe Positioning | ±2.9 % | R | $\sqrt{3}$ | 1 | 1 | ±1.7% | ±1.7% | ∞ | | | Max. SAR Eval. | ±1.0% | R | $\sqrt{3}$ | 1 | 1 | ±0.6% | ±0.6% | ∞ | | | Test Sample Related | | | | | | | | | | | Device Positioning | ±2.9% | N | 1 | 1 | 1 | ±2.9% | ±2.9 % | 145 | | | Device Holder | ±3.6 % | N | 1 | 1 | 1 | ±3.6% | ±3.6 % | 5 | | | Power Drift | ±5.0% | R | $\sqrt{3}$ | 1 | 1 | ±2.9% | ±2.9 % | ∞ | | | Phantom and Setup | | | | | | | | | | | Phantom Uncertainty | ±4.0% | R | $\sqrt{3}$ | 1 | 1 | ±2.3 % | ±2.3 % | ∞ | | | Liquid Conductivity (target) | ±5.0% | R | $\sqrt{3}$ | 0.64 | 0.43 | ±1.8% | ±1.2 % | ∞ | | | Liquid Conductivity (meas.) | ±2.5% | N | 1 | 0.64 | 0.43 | ±1.6% | ±1.1% | ∞ | | | Liquid Permittivity (target) ±5.0% | | R | $\sqrt{3}$ | 0.6 | 0.49 | ±1.7% | ±1.4% | ∞ | | | Liquid Permittivity (meas.) ±2.5% | | N | 1 | 0.6 | 0.49 | ±1.5% | ±1.2 % | ∞ | | | Combined Std. Uncertainty | | | | | | ±10.3 % | ±10.0% | 330 | | | Expanded STD Uncertain | | | Τ' - | | ±20.6 % | ±20.1 % | | | | Table 14. Measurement uncertainty ### 11.0 TEST RESULTS ### 11.1 SAR Measurement results at highest power measured against the head | | | | SAR, avera | aged over 1 | g (W/Kg) | SAR, averaged over 1 g (W/Kg) | | | | |-------------|------------|--------------------------|------------------------|-------------|----------|-------------------------------|-------|--------|--| | | | Conducted | | Left-hand | | Right-hand | | | | | Mode | f
(MHz) | Output
Power
(dBm) | Liquid
Temp
(°C) | Cheek | Tilted | Liquid
Temp
(°C) | Cheek | Tilted | | | | 824.20 | - | - | - | - | - | - | - | | | GSM | *836.80 | 32.1 | 22.2 | 0.53 | 0.29 | 22.1 | 0.38 | 0.27 | | | 850 | 848.80 | - | - | - | - | - | - | - | | | | 1850.20 | 31.3 | 23.3 | 1.07 | - | 22.9 | 0.71 | - | | | PCS
1900 | *1880.00 | 31.1 | 23.4 | 1.25 | 0.34 | 22.8 | 0.78 | 0.54 | | | | 1909.80 | 31.1 | 23.4 | 1.44 | 1 | 22.8 | 0.76 | - | | Table 15. SAR results for head configuration # 11.2 SAR measurement results at highest power measured against the body using Holster and Leather Swivel Holster | Mode | f
(MHz) | Conducted
Output
Power
(dBm) | Liquid
Temp
(°C) | SAR,
averaged
over 1 g
(W/kg)
Holster | SAR,
averaged
over 1 g
with
headset
(W/kg)
Holster | SAR,
averaged
over 1 g
(W/kg)
Leather
Swivel
Holster | SAR,
averaged
over 1 g with
headset
(W/kg)
Leather
Swivel
Holster | |-------------|------------|---------------------------------------|------------------------|---|--|--|--| | | 824.20 | - | - | - | - | - | - | | GSM | *836.80 | 32.1 | 22.1 | 0.35 | 0.22 | 0.32 | 0.20 | | 850 | 848.80 | - | - | - | - | - | - | | | 1850.20 | - | - | - | - | - | - | | PCS
1900 | *1880.00 | 31.1 | 22.0 | 0.27 | 0.23 | 0.21 | 0.21 | | | 1909.80 | - | - | - | - | - | - | Table 16. SAR results with Holster and Leather Swivel Holster for body worn configuration # 11.3 SAR measurement results at highest power measured against the body using Folding Leather Case for inside a shirt pocket configuration | Mode | f
(MHz) | Conducted Output
Power (dBm) | Liquid Temp
(°C) | Side touching flat phantom | SAR,
averaged
over 1 g
(W/kg) | |----------|------------|---------------------------------|---------------------|----------------------------|--| | | 824.20 | - | 1 | Front | - | | | *836.80 | 32.1 | 21.9 | Front | 0.46 | | GSM | 848.80 | - | - | Front | - | | 850 | 824.20 | - | - | Back | - | | | *836.80 | 32.1 | 22.0 | Back | 0.66 | | | 848.80 | - | - | Back | - | | | 1850.20 | - | - | Front | - | | | *1880.00 | 31.1 | 23.2 | Front | 0.63 | | DCC 1000 | 1908.80 | - | - | Front | - | | PCS 1900 | 1850.20 | 31.3 | 23.1 | Back | 1.06 | | | 1880.00 | 31.1 | 23.2 | Back | 1.49 | | | 1908.80 | 31.1 | 23.0 | Back | 1.51 | Table 16. SAR results with Folding Leather Case for inside a shirt pocket configuration ^{*} Supplement C: Middle channel testing is sufficient only if SAR < 3dB below limit see PN 02-1438 ## SAR Compliance Test Report for BlackBerry Wireless Handheld Model No. R6030GN 25(25) Author Data Daoud Attayi Sep. 23 - 30, 2003 RIM-0054-0309-07 L6AR6030GN ### 12.0 **REFERENCES** - [1] EN 50360: 2001, Product
standard to demonstrate the compliance of mobile phones with the basic restrictions related to human exposure to electromagnetic fields (300 MHz - 3 GHz) - [2] EN 50361: 2001, Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz – 3 GHz) - [3] ICNIRP, International Commission on Non-Ionizing Radiation Protection (1998), Guidelines for limiting exposure in time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). - [4] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz) - [5] IEEE C95.3-1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave. - [6] IEEE C95.1-1999, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. - [7] OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields. - [8] FCC 96-326, Guidelines for Evaluating the Environmental Effects of Radio-Frequency Radiation. - [9] DASY 4 DOSIMETRIC ASSESSMENT SYSTEM SOFTWARE MANUAL V4.1 Schmid & Partner Engineering AG, April 2003. - [10] IEEE P1528/D1.2, April 21, 2003: Recommended Practice for Determining the Peak Spatial-Average Specific Aborption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.