

5L0114RUS3

Nemko Test Report:

Applicant: Equipment Under Test: (E.U.T.)	Motion Computing Corporation 8601 RR 2222 Bldg. 2 Austin, TX 78730 LS800 TS01 w/ Atheros card
In Accordance With:	FCC Part 15, Subpart C, 15.247 Digital Transmission System Transmitter
Tested By:	Nemko Dallas Inc. 802 N. Kealy Lewisville, Texas 75057-3136
Authorized By:	Jon- Till
Date:	Tom Tidwell, Frontline Group Manager 25 June, 2005

TEST REPORT NO.: 5L0114RUS3

Table of Contents

Section 1.	Summary of Test Results	3
Section 2.	Equipment Under Test (E.U.T.)	5
Section 3.	Powerline Conducted Emissions	7
Section 4.	Occupied Bandwidth	10
Section 5.	Maximum Peak Output Power	20
Section 6.	Radiated Emissions	21
Section 7.	Peak Power Spectral Density	24
Section 8	Spurious Emissions at Antenna Terminals	34
Section 9	Test Equipment	48
ANNEX A	- TEST DETAILS	49
ANNEX B	- TEST DIAGRAMS	60

FCC PART 15, SUBPART C

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Section 1. Summary of Test Results

Manufacturer: Motion Computing

Model No.: TS01 w/ Atheros card

Name: LS800

Serial No.: Proto 11

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Direct Sequence Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

\boxtimes	New Submission	Production Unit
	Class II Permissive Change	Pre-Production Unit

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE.

See "Summary of Test Data".

nvlap

NVLAP LAB CODE: 100426-0

Nemko Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Page 3 of 62

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a)	Complies
Minimum 6 dB Bandwidth	15.247(a)(2)	Complies
Maximum Peak Power Output	15.247(b)(1)	Complies
Spurious Emissions (Antenna Conducted)	15.247(c)	Complies
Spurious Emissions (Restricted Bands)	15.247(c)	Complies
Peak Power Spectral Density	15.247(d)	Complies

Footnotes:

Page 4 of 62

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

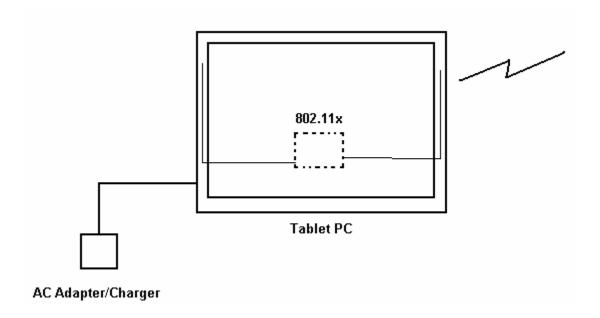
Section 2. Equipment Under Test (E.U.T.)

General Equipment Information

Frequency Band: 2412 to 2462 MHz (802.11 b/g)

5725 to 5850 MHz (802.11a)

Channel Spacing: 5 MHz


User Frequency Adjustment: Software controlled

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Description of EUT

Tablet PC with Atheros Gemtek 802.11 a/b/g radio.

System Diagram

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

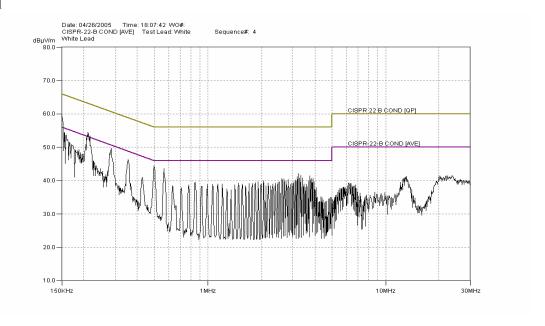
TESTED BY: Brian Boyea DATE: 4/26/05

Test Results: Complies.

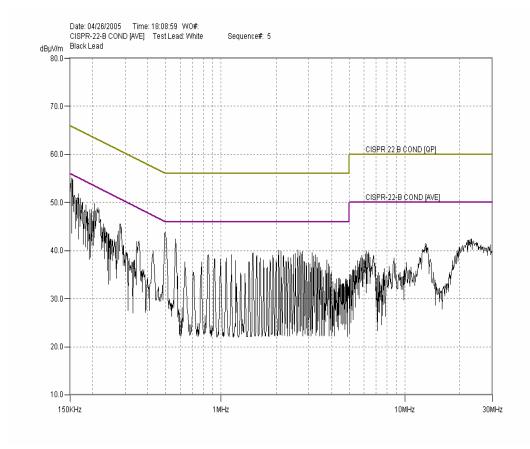
Measurement Data: See attached plots.

Measurement Uncertainty: +/- 1.7 dB

The worst case PEAK emission was 51 dB μ V at 150 kHz on the neutral line. This is 5 dB below the AVERAGE spec limit of 56 dB μ V.

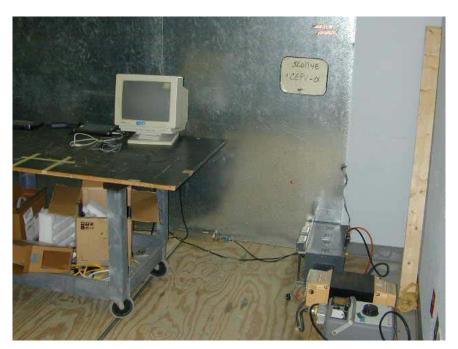

Asset Number	Description	Manufacturer	Model Number	Serial Number	Last Cal	Cal Due
969	lisn	Schwarzbeck	8120	8120281	09/17/04	09/17/05
1547	CABLE .6m	KTL	RG223	N/A	06/09/04	06/09/05
1115	CABLE, 4.5m	KTL	RG223	N/A	03/08/05	03/08/06
	HP Spectrum					
718	Analyzer	HP	8591EM	3639A00980	04/06/05	04/06/06
966	Receiver	R&S	ESH2	880370/029	09/20/04	09/20/05
1193	LIMITER	FISCHER	FCC-450B-1.25N	956	CBU	CBU
1555	Filter high pass 5KHz	Solar Electronics	7930-5.0	933125	04/20/04	04/20/05

CBU: Calibrate Before Use


TEST REPORT NO.: 5L0114RUS3

Test Data – Powerline Conducted Emissions

Neutral


Hot

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Photos – Powerline Conducted Emissions

Front

Side

Nemko Dallas FCC PART 15, SUBPART C

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Section 4. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

TESTED BY: David Light DATE: 4/26/05

Test Results: Complies.

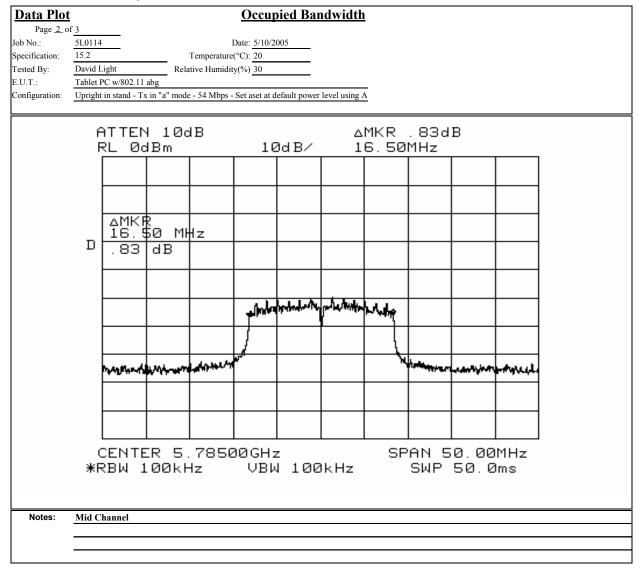
Measurement Data: See 6 dB BW plot

Measured 6 dB bandwidth: 16.5 MHz 802.11 a/g

9.5 MHz 802.11b

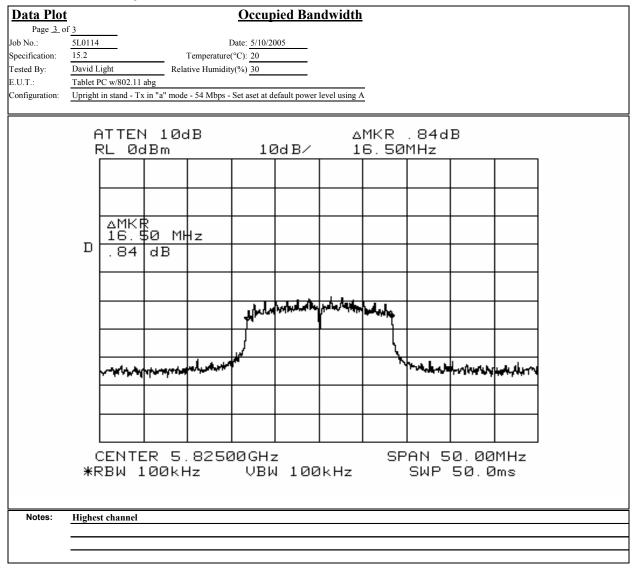
Channel Separation: 5 MHz

Asset				Serial		
Number	Description	Manufacturer	Model Number	Number	Last Cal	Cal Due
1484	Cable	Storm	PR90-010-072	N/A	08/26/04	08/26/05
1485	Cable	Storm	PR90-010-216	N/A	08/02/04	08/02/05
1482	Band Pass Filter	K & L	11SH10-4000/T12000-0/0	2	CBU	N/A
1036	Spectrum analyzer	R&S	FSEK30	830844/006	03/22/04	03/23/06
1304	Horn antenna	Electro Metrics	RGA-60	6151	09/22/03	09/22/05


EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Test Data – Occupied Bandwidth

Data Plot					Occi	ipied Bai	idwidth					
Page <u>1</u> of	f <u>3</u>								(Complete	X	
Job No.:	5L0114			Ε	ate:	5/10/2005			Prelii	Complete minary:		
Specification:	15.247			Temperature	(°C):	20						
Tested By:	David I	ight	Rela	tive Humidit	y(%)	30						
E.U.T.:		PC w/802.11										
Configuration:	Upright	in stand - Tx	in "a" mode	e - 54 Mbps -	Set aset a	t default power	level using A	- Atheros test u	tility			
Sample Number:	1							_				
Location:	AC	3				RBW: 10	0 kHz					
Detector Type:	Pea	k				VBW: 10	0 kHz	_				
								_				
Test Equipme	ent Use	<u>d</u>										
Antenna:	130	4			Direction	nal Coupler:		_				
Pre-Amp:						Cable #1:		_				
Filter:						Cable #2:		_				
Receiver:	146	4				Cable #3:		_				
Attenuator #1						Cable #4:		_				
Attenuator #2:						Mixer:		_				
Additional equip	ment used	d:						_				
Measurement Un	certainty	+/-1.7	/ dB									
		ATTEN RL —1			1	.ØdB/		MKR 6.58	-6.6 MHz 	7dB		
		ΔMKF	₹									
	_			lz								
	D	-6.6	\$7 d]	₿								
					6.4	يعالم البوالم إس	بالماليواليو	L.A.J.				
					WILLIAM I	1 11 1		10.00				
					lſ			†				
					 	+		\ \			-	
				Ι.	lh.			\	L			
			1 . 14.4	DAIL-WAY	<u> </u>	+			Total Section 1		<u> </u>	
		HI-PANAPIA	Apple Com	PANAL PARAL					יאורי	******	Mark States	
						+						
					_		 					
								<u> </u>				
		CENTE RBW 1		.7450 Hz		łz W 100)kHz	SF		60.00 50.0		
Notes:	Lowes	t Channel										
				<u> </u>			· <u> </u>				·	·
												

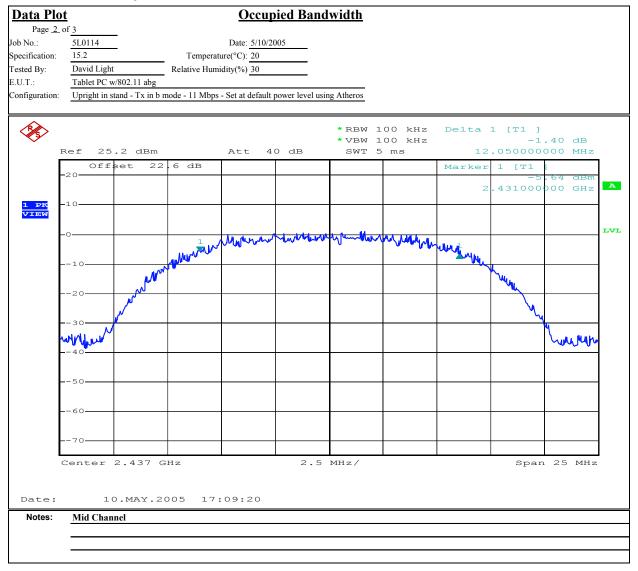

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Test Data - Occupied Bandwidth

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Test Data - Occupied Bandwidth

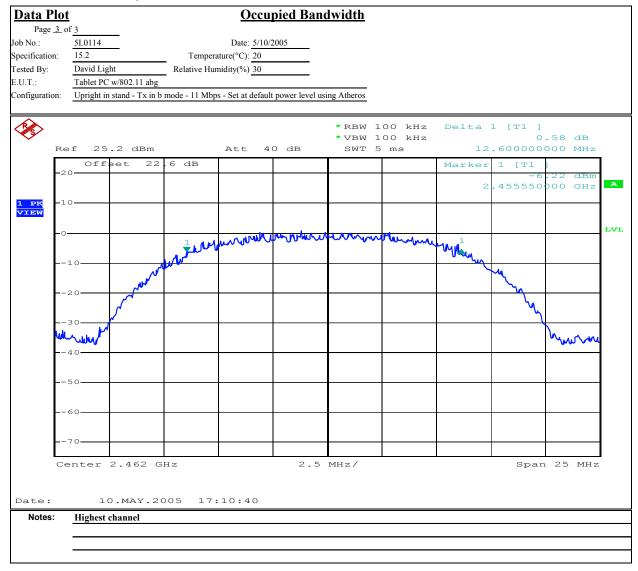
EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3


Test Data – Occupied Bandwidth

Data Plo	<u>ot</u>			Occ	upied Bai	<u>ıdwidth</u>					
Page 1	of <u>3</u>			<u></u>				Complete reliminary:	X		
Job No.:	5L0114			Date:	5/10/2005		P	reliminary:			
Specification:	15.247		Temperat	ure(°C):	20						
Tested By:	David Ligh	nt	Relative Humi	dity(%)	30						
E.U.T.:	Tablet PC	w/802.11 abg		'							
Configuration	: Upright in	stand - Tx in b r	node - 11 Mbps	- Set at defa	ult power level	using Atheros					
Sample Numb	per:1										
Location:	AC 3	_			RBW: 10						
Detector Type	e: Peak	_			VBW: 10	0 kHz					
Test Equip	ment Used										
Antenna:		_		Directio	onal Coupler:						
Pre-Amp:		_			Cable #1:	1973					
Filter:		_			Cable #2:						
Receiver:	1659	_			Cable #3:						
Attenuator #1	1472	_			Cable #4:						
Attenuator #2					Mixer:						
Additional equ	-										
Measurement	Uncertainty:	+/-1.7 dB	•								
\$ \$	Ref 25	.2 dBm		Att	40 dB	* VBW	100 kHz 100 kHz 5 ms		1 [T1] 0. .450000	.03 dB	
Ī	Off		6 dB				1	Marker		1	1
	-20-	sec 22	О СВ					Marker	1 [T1	.45 dBm	
								2	.406550		A
1 PK	-10										
VIEW											
	-0			_							LVL
			. 1	WWW.	Mary Mr.	www.	-devolution	1			
			MAMA	•			· ·	Mary			
	10	wN	A STATE OF THE STA					W	\u.		
		Mark							M .		
	20	1							Ψ,		
	30	ممر							hy		
	was shall									mynne	
	40									00000	
	50										
	60										
	70										
	Center	2.412 G	Нz		2.	5 MHz/	-	ı	Span	25 MHz	
									=		
Date:	10	0.MAY.20	005 17:	07:59							
Notes:	Lowest C	hannel									
		.,									

EQUIPMENT: LS800 TS01 w/ Atheros card

TEST REPORT NO.: 5L0114RUS3

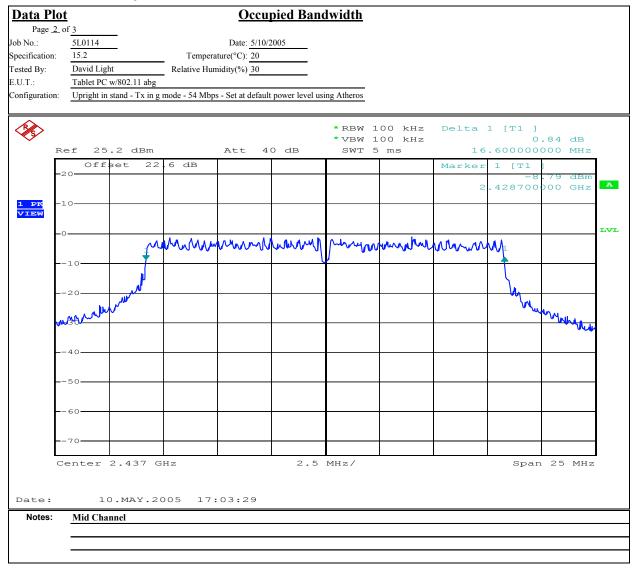

Test Data - Occupied Bandwidth

EQUIPMENT: LS800 TS01 w/ Atheros card

TEST REPORT NO.: 5L0114RUS3

Test Data - Occupied Bandwidth

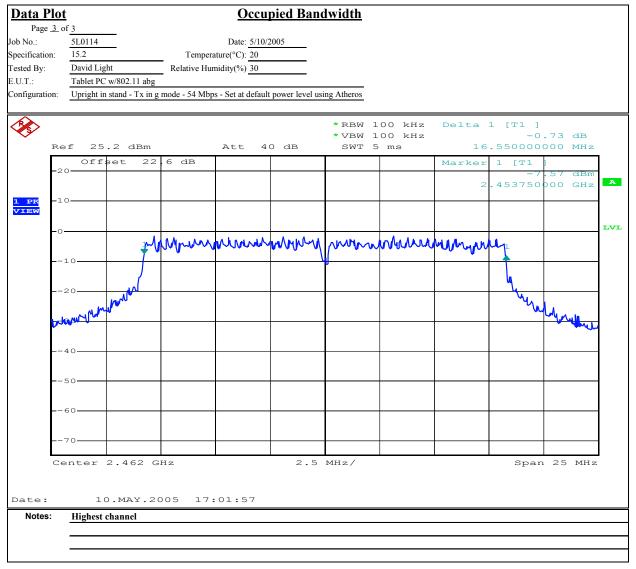
EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3


Test Data – Occupied Bandwidth

Data Plo	t			Occ	upied Ban	dwidth					
Page 1	_							Complete	X		
Job No.:	5L0114			Date:	5/10/2005		Pı	Complete reliminary:			
Specification:	15.247		Temperat		20						
Tested By:	David Light		Relative Humi		30						
E.U.T.:	Tablet PC w										
Configuration:	Upright in st	and - Tx in g r	node - 54 Mbps	- Set at defa	ult power level u	sing Atheros tes	st tility				
Sample Numbe	er: 1					,					
Location:	AC 3	_			RBW: 100	kHz					
Detector Type:	Peak	-			VBW: 100	kHz					
Test Equip	ment Used										
Antenna:		_		Directio	onal Coupler:						
Pre-Amp:		_			Cable #1:	1973					
Filter:		_			Cable #2:						
Receiver:	1659	_			Cable #3:						
Attenuator #1	1472	_			Cable #4:						
Attenuator #2:					Mixer:						
Additional equ	-										
Measurement I	Uncertainty:	+/-1.7 dB									
\$							100 kHz	Delta	1 [T1]		
1	Ref 25.	.2 dBm		Att	40 dB		100 kHz 5 ms	16	.550000	.24 dB 000 MHz	
Г	Off	set 22	.6 dB					Marker	1 [T1		1
	-20						+		-6	.89 dBm	ł
								2	.403750	000 GHz	A
1 PK	-10										
VIEW											
	-0										LVL
		≇\ /\ \	more	Whyn	Mormon	MANNE	Muran	Mhynn	unt-	ļ	
	-10	7	• •			W			*	ļ	
	10-	J				,					
		کیں							١ ٧.		
	-20 W/44/	.A.L.							<u>"M</u>	~wyww.	
		100							VI.	MANUE.	
	M38 m									- Allerton	
-	40						_				
	50										
	60										
	70										1
	Center 2	2.412 G	Hz		2.5	MHz/		l .	Span	25 MHz	1
									_		
Date:			005 17:	05:12							
Notes:	Lowest Ch	annel									
	-										

EQUIPMENT: LS800 TS01 w/ Atheros card TEST

TEST REPORT NO.: 5L0114RUS3


Test Data - Occupied Bandwidth

EQUIPMENT: LS800 TS01 w/ Atheros card T

TEST REPORT NO.: 5L0114RUS3

Test Data - Occupied Bandwidth

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Section 5. Maximum Peak Output Power

NAME OF TEST: Maximum Peak Output Power PARA. NO.: 15.247(b)(1)

TESTED BY: David Light DATE: 4/26/05

Test Results: Complies.

Measurement Data:

Mode	Frequency (MHz)	Peak Power (dBm)	Peak Power (mW)
802.11b	2412	18.3	68
802.11b	2437	18.8	76
802.11b	2462	18.5	71
802.11g	2412	18.1	65
802.11g	2437	18.6	72
802.11g	2462	18.5	71
802.11a	5745	16.6	46
802.11a	5785	16.5	45
802.11a	5825	15.8	38

The measurement was repeated at +/- 15% of nominal supply voltage with no variation noted in rf power output.

FCC PART 15, SUBPART C

Nemko Dallas

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Section 6. Radiated Emissions

NAME OF TEST: Radiated Emissions PARA. NO.: 15.247 (c)

TESTED BY: David Light DATE: 6/12/05

Test Results: Complies.

Measurement Data: See attached table.

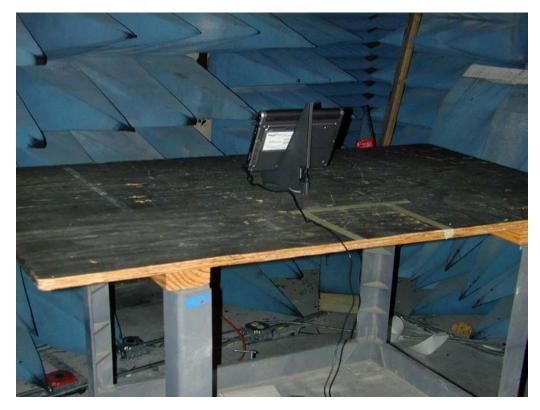
Asset Numbe				Serial		
r	Description	Manufacturer	Model Number	Number	Last Cal	Cal Due
1484	Cable	Storm	PR90-010-072	N/A	08/26/04	08/26/05
1485	Cable	Storm	PR90-010-216	N/A	08/02/04	08/02/05
1016	Pre-Amp	HP	8449A	2749A00159	11/12/04	11/12/05
1482	Band Pass Filter	K & L	11SH10-4000/T12000-0/0	2	CBU	N/A
1036	Spectrum analyzer	R&S	FSEK30	830844/006	03/22/04	03/23/06
1304	Horn antenna	Electro Metrics	RGA-60	6151	09/22/03	09/22/05
760	Antenna biconical	Electro Metrics	MFC-25	477	06/22/04	06/22/05
759	Antenna, LP	A.H. SYSTEMS	SAS-200/510	556	07/23/04	07/23/05
791	PREAMP, 25dB	ICC	LNA25	398	11/12/04	11/12/05
991	Horn antenna	EMCO	3160-10	9704-1049	CNR	N/A
992	Horn antenna	EMCO	3160-09	9705-1079	CNR	N/A

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Radiated Emissions

		Radiated Emissions	
Page <u>1</u> o:	f <u>3</u>		
Job No.:	5L0114	Date: 6/12/2005	
Specification:	15.247/15.205	Temperature(°C): 20	
Tested By:	David Light	Relative Humidity(%) 30	
E.U.T.:	Tablet PC with	802.11 abg card	
Configuration:	Upright in stand	d - 802.11b mode - 11 Mbps - Set at 19 using test	utility
Sample Number:	1		
Location:	AC 3	RBW:	1 MHz
Detector Type:	Peak	Peak VBW:	1 MHz
		Average VBW: 1	0 MHz
		Test Equipment Used	
Antenna:	1304	Directional Coupler:	#N/A
Pre-Amp:	1016	Cable #1:	1484
Filter:	1482	Cable #2:	1485
Receiver:	1036	Cable #3:	#N/A
Attenuator #1	#N/A	Cable #4:	#N/A
Attenuator #2:	#N/A	Mixer:	#N/A
Measurement Ur	ncertainty: +/- 3.6	dB	

Frequency (GHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)		Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Detector / Polarity	
								Tx @ 2462 MHz	
2.4385	43.7	28.2	3.1	22.8	52.2	74		P/V a Mode	
2.4385	33.0	28.2	3.1	22.8	41.5		54	A/V a Mode	
2.4385	43.7	28.2	3.1	22.8	52.2	74		P/H a Mode	
2.4385	33.0	28.2	3.1	22.8	41.5		54	A/H a Mode	
					0.0			o o	
2.4385	43.7	28.2	3.1	22.8	52.2	74		P/V b Mode	
2.4385	33.0	28.2	3.1	22.8	41.5		54	A/V b Mode	
2.4385	43.7	28.2	3.1	22.8	52.2	74		P/H b Mode	
2.4385	33.0	28.2	3.1	22.8	41.5		54	A/H b Mode	


The spectrum was searched from $30~\mathrm{MHz}$ to $25~\mathrm{GHz}$ in 802.11b/g modes and to $40~\mathrm{GHz}$ for $802.11a~\mathrm{mode}$.

No emissions were detected. Data shown to verify upper band edge compliance to restricted band limits in 2400 MHz band

All emissions are reported.

Radiated Photographs

Nemko Dallas FCC PART 15, SUBPART C

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Section 7. Peak Power Spectral Density

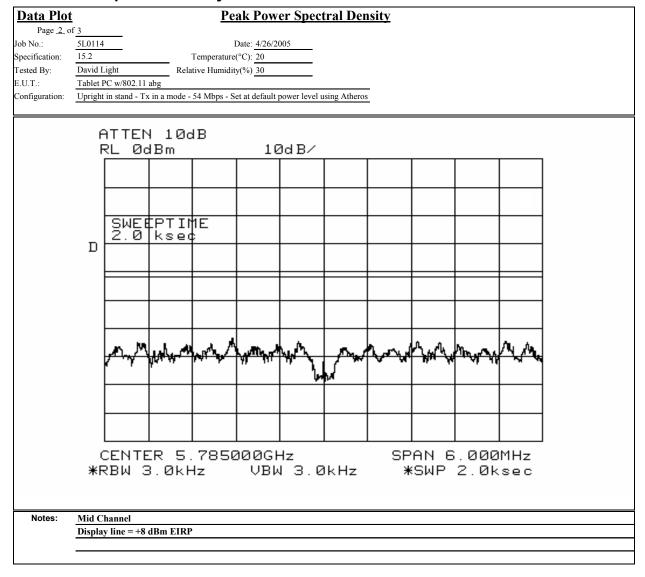
NAME OF TEST: Peak Power Spectral Density PARA. NO.: 15.247(d)

TESTED BY: David Light DATE: 5/11/05

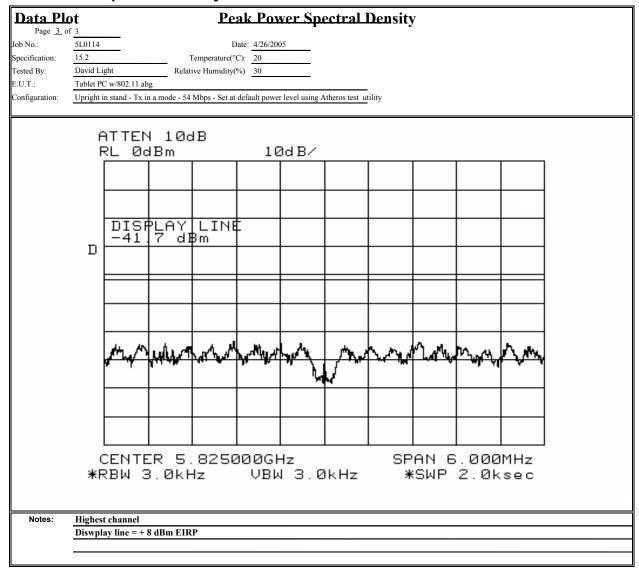
Test Results: Complies.

Measurement Data: See attached data..

Note: The measurements for the "a" mode were done radiated. At the time of test, there were no means to make conducted measurements.

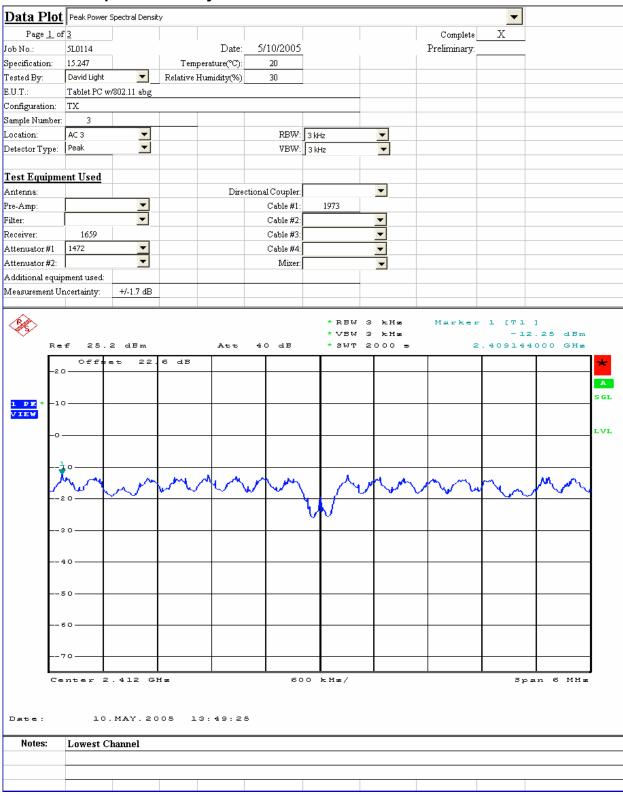

Page 24 of 62

EQUIPMENT: LS800 TS01 w/ Atheros card TE

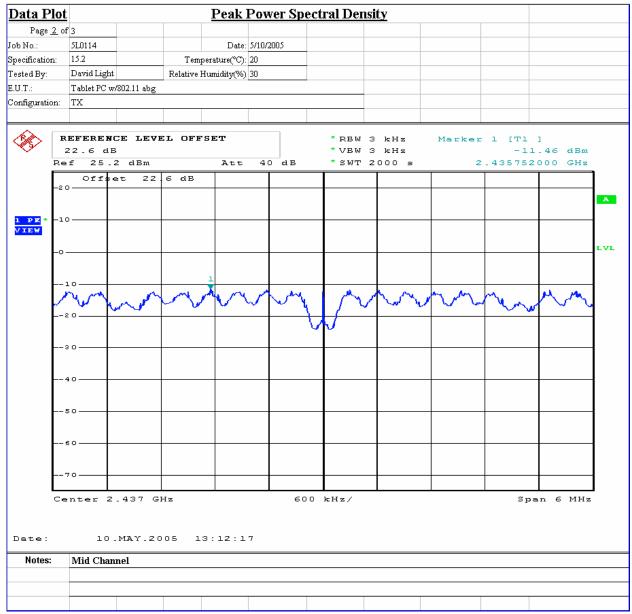

TEST REPORT NO.: 5L0114RUS3

<u>Data Plot</u>			<u>Pe</u>	Peak Power Spectral Density								
Page 1 o Job No.: Specification: Tested By: E.U.T.:	5L0114 15.247 David Li	_	Rela	D Temperature(' tive Humidity	°C):	26/2005 20 30			Preli	Complete minary:	X	
E.U.1.: Configuration:		C w/802.11 at in stand - Tx i		Mbps - Set a	t default pow	er level usin	Atheros test u	_ utility				
Sample Number:	1				p		,					
Location: Detector Type:	AC 3					RBW: <u>3</u> VBW: <u>3</u>		-				
Test Equipn	ient Use	ed										
Antenna: Pre-Amp: Filter:	1304					Coupler: Cable #1: Cable #2:		- -				
Receiver:	1464	1				Cable #3:	1463	-				
Attenuator #1						Cable #4:		- -				
Attenuator #2:						Mixer:		_				
Additional equipr Measurement Un		+/-1.7	dB					_				
ivicasurement one	criamity.	17-1.7	<u>ub</u>									
	F	ATTEN SL Ød	l 10d IBm	βB	10	3d B∕						
		SHEE	PTTI	15		 	1					
		ž~ō"	PTIN	<u>'</u> '_								
	D											
		» M	.h. A	المالما			M .	<u> </u>	Λ	. .	Λ	
		Y WY	hund	Mr. Mar.	የሆ ማና	ነ የ	/ ₩	Jake Ha	NN.	.44.44	\ \ \ \	
						 ``						
							1					
	*F	≀вы з	IR 5. 3. Økt	. 7450 Iz	100GH VBI	Hz N 3.1	ðkHz	SP *		.000 2.0k		
Notes:		t Channel y line = +8 c	IDm FIDD									
	Display	y nne = +8 (JOM EIKP									·

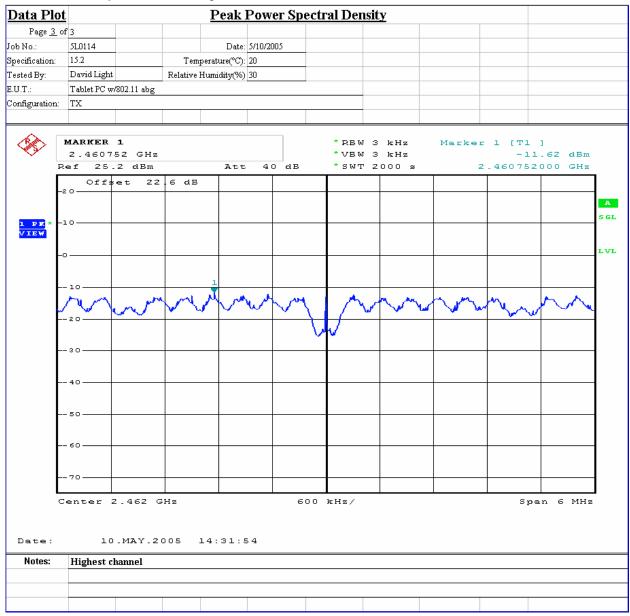
EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3



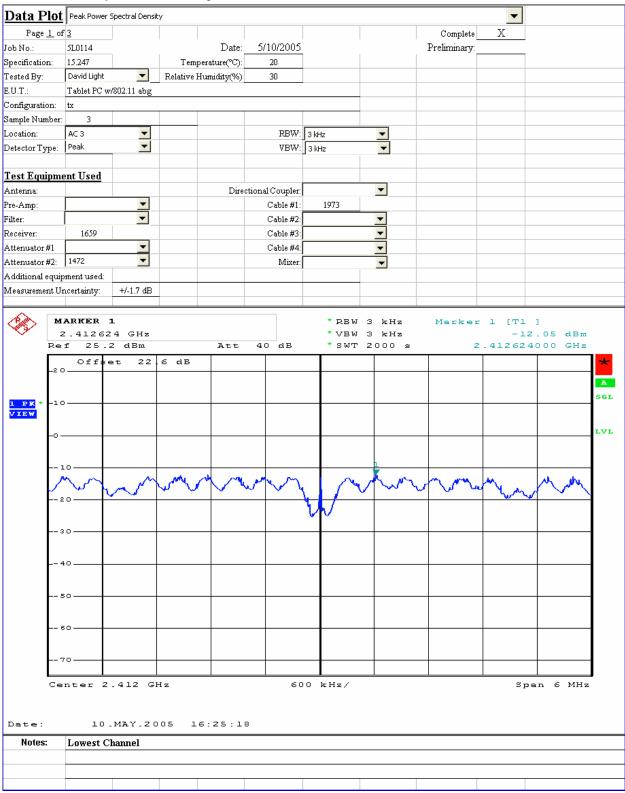
EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3


EQUIPMENT: LS800 TS01 w/ Atheros card

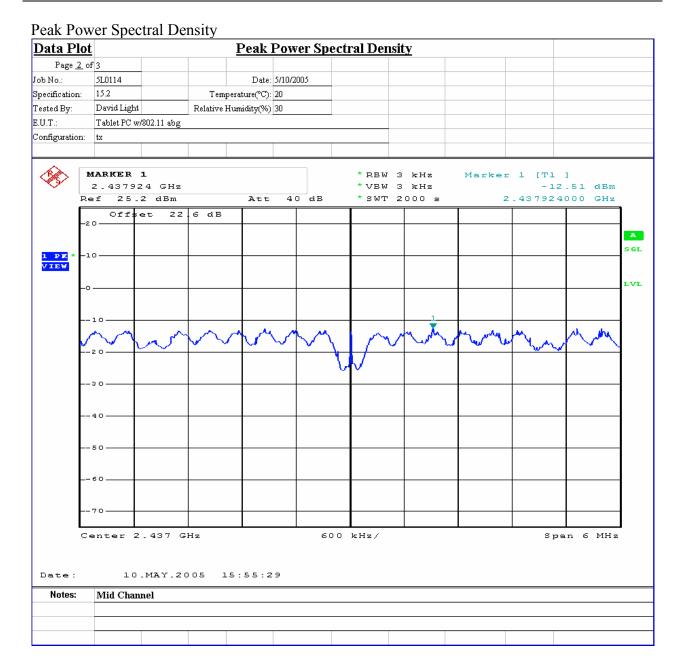
TEST REPORT NO.: 5L0114RUS3


EQUIPMENT: LS800 TS01 w/ Atheros card

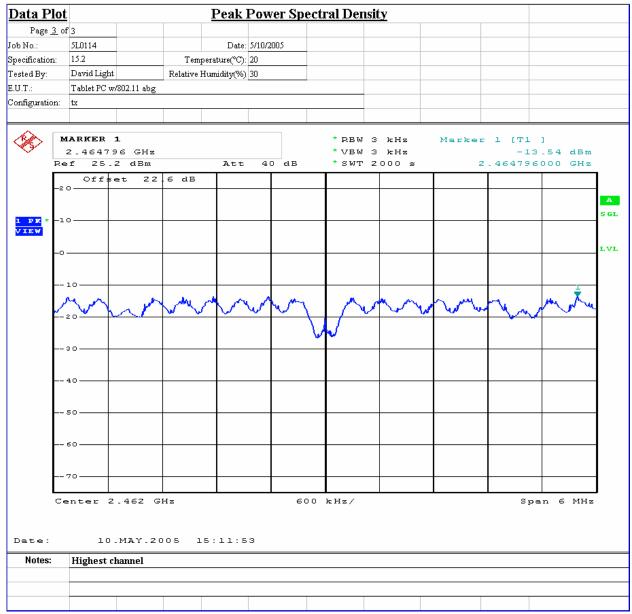
TEST REPORT NO.: 5L0114RUS3



EQUIPMENT: LS800 TS01 w/ Atheros card TES


TEST REPORT NO.: 5L0114RUS3

TEST REPORT NO.: 5L0114RUS3



EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

EQUIPMENT: LS800 TS01 w/ Atheros card

TEST REPORT NO.: 5L0114RUS3

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

Section 8 Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247(d)

TESTED BY: David Light DATE: 5/11/05

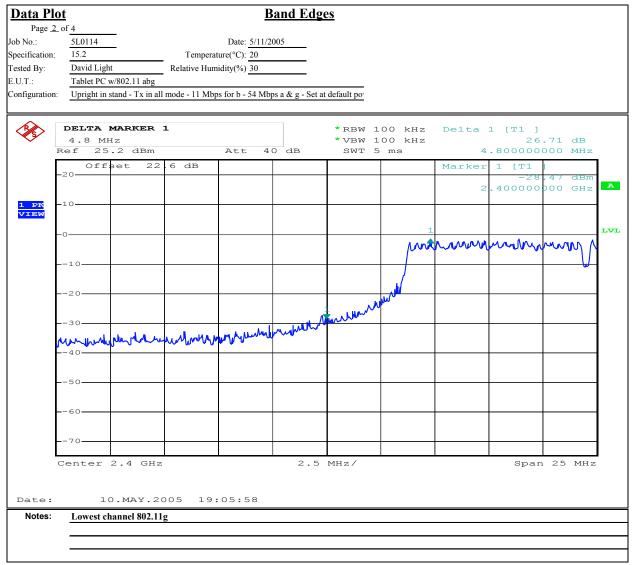
Test Results: Complies.

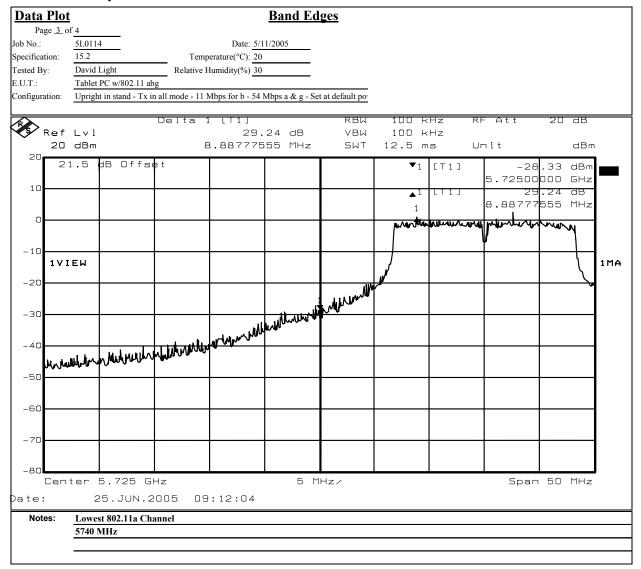
Measurement Data: See attached data..

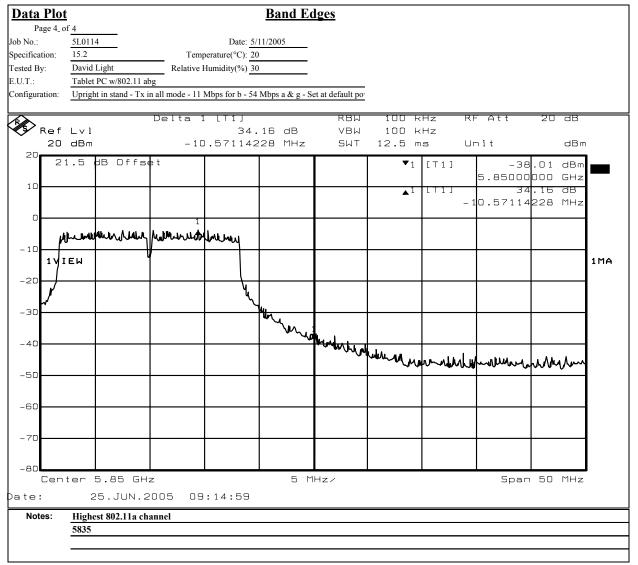
Asset Numbe r	Description	Manufacturer	Model Number	Serial Number	Last Cal	Cal Due
1036	Spectrum analyzer	R & S	FSEK30	830844/006	03/22/04	03/23/06
1472	20db Attenuator	Omni Spectra	20600-20db	NONE	CBU	N/A
1973	CABLE, 1m	KTL	0	N/A	08/02/04	08/02/05

EQUIPMENT: LS800 TS01 w/ Atheros card

TEST REPORT NO.: 5L0114RUS3

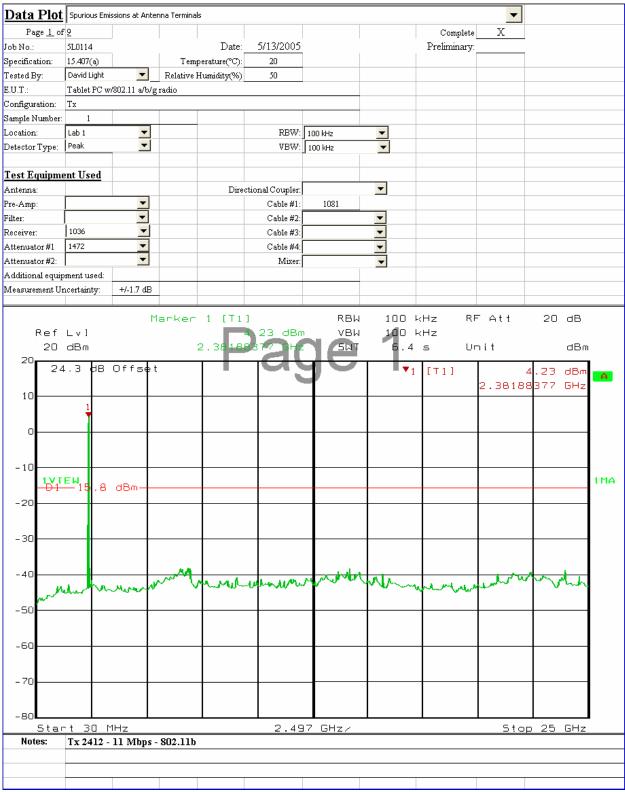

Test Data – Spurious Emissions at Antenna Terminals

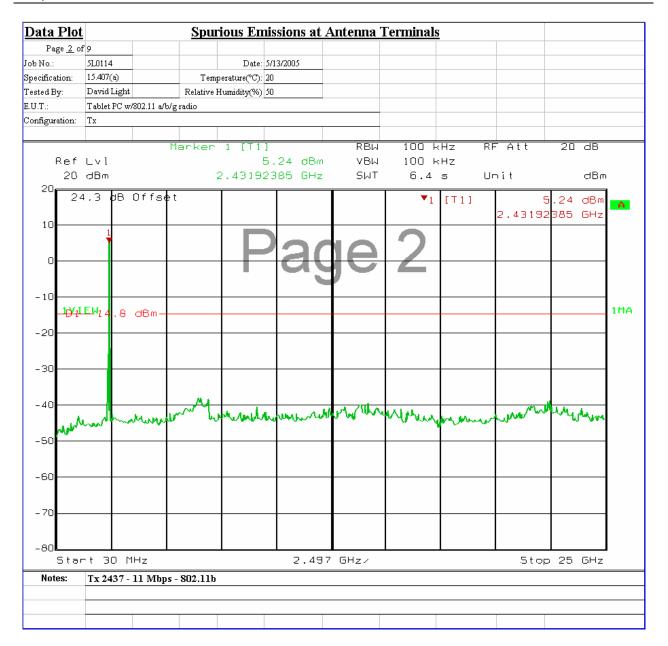

Data Plo	<u>ot</u>				Band Ed	ges					
Page 1								Complete	X		
Job No.:	5L0114			Date:	5/11/2005		P	reliminary:			
Specification:			Temperat		20			<u>-</u>	-		
Tested By:	David Lig	ht	Relative Humi		30						
E.U.T.:		w/802.11 abg									
Configuration			l mode - 11 Mbp	s for b - 54 N	Mbps a & g - Set	at default powe	er level using Athe	eros test utility			
Sample Numb		Stand 17t III a	······································	0 101 0 0 1 1	nopo a ca g	at deladit power	or rever asing rain	ros test dinity			
Location:	AC 3				RBW: 10) kHz					
Detector Type		_			VBW: 10						
		_			<u></u>						
Test Equip	ment Used										
Antenna:				Directio	onal Coupler:						
Pre-Amp:					Cable #1:	1081					
Filter:					Cable #2:	1485					
Receiver:	1036				Cable #3:						
Attenuator #1	1472				Cable #4:						
Attenuator #2	:				Mixer:						
Additional equ	uipment used:										
Measurement	Uncertainty:	+/-1.7 dB	_								
^ -											
%	SELECT	TRACE					100 kHz	Delta	1 [T1]		
>	1						100 kHz	1.0		.96 dB	
1	Ref 25	,		Att	40 dB	SWT	5 ms		.5500000	JOU MHZ	
	Off:	set 22	.6 dB					Marker	1 [T1]	
								2	.408600	.55 dBm	A
1 PK VIEW	-10								1		
									Mother	discourse.	LVL
-	-0							1 July 1	•••		LVL
							سم م	N°			
-	-10-										
							July 1				
	-20										
							/				
	-30			1		/					
	30			Lutrul	V-WWW	years of					
	Mymmy !!	month	www.ww			•					
	40										
-	-50-										
-	-60										
	70										
	Center	2.4 GHz			2.5	MHz/			Span	25 MHz	
Date:	1 ().MAY 2	005 19:	03:55							
Notes:	Lowest C	hannel									
	802.11b										
1											


EQUIPMENT: LS800 TS01 w/ Atheros card

TEST REPORT NO.: 5L0114RUS3

Test Data - Spurious Emissions at Antenna Terminals





EQUIPMENT: LS800 TS01 w/ Atheros card

TEST REPORT NO.: 5L0114RUS3

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT

TEST REPORT NO.: 5L0114RUS3

Section 9 Test Equipment

Nemko ID	. Description	Manufacturer	Serial Number	Calibration Date	Calibration Due
969	lisn	Schwarzbeck 8120	8120281	09/17/04	09/17/05
1547	CABLE .6m	KTL RG223	N/A	06/09/04	06/09/05
1115	CABLE, 4.5m	KTL RG223	N/A	04/27/05	04/27/06
718	HP SPECTRUM ANALYZER	HEWLETT PACKARD 8591EM	3639A00980	04/06/05	04/06/06
966	Receiver	Rohde & Schwartz ESH2	880370/029	09/20/04	09/20/05
1193	LIMITER	FISCHER FCC-450B-1.25N	956	02/24/05	02/24/06
1555	Filter high pass 5KHz	Solar Electronics 7930-5.0	933125	04/20/05	04/20/06
1484	Cable 2.0-18.0 Ghz	Storm PR90-010-072	N/A	08/26/04	08/26/05
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	01/14/05	01/15/07
1485	Cable 2.0-18.0 Ghz	Storm PR90-010-216	N/A	08/02/04	08/02/05
1304	HORN ANTENNA	ELECTRO METRICS RGA-60	6151	09/22/03	09/22/05
1029	PEAK POWER METER	HP 8900D	3303U0012	12/23/04	12/23/05
1030	PEAK POWER SENSOR	HP 84811A	2539A03573	12/23/04	12/23/05
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	11/12/04	11/12/05
759	ANTENNA, LOG PERIODIC	A.H. SYSTEMS SAS-200/510	556	07/23/04	07/23/05
790	Unidapt/30	RF Industries NONE	NONE	CNR	N/A
791	PREAMP, 25dB	ICC LNA25	398	11/12/04	11/12/05
1482	Band Pass Filter	K & L 11SH10-4000/T12000-0/0	2	Cal B4 Use	N/A
1036	SPECTRUM ANALYZER	ROHDE & SCHWARZ FSEK30	830844/006	03/22/04	03/23/06
1472	20db Attenuator DC 18 Ghz	Omni Spectra 20600-20db	NONE	CBU	N/A
1973	CABLE, 1m	KTL 0	N/A	08/02/04	08/02/05

Page 48 of 62

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

ANNEX A - TEST DETAILS

Page 49 of 62

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

Minimum Standard: §15.207 Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 mH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Conducted	Limit (dBmV)
Emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

- (b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:
- (1) For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.
- (2) For all other carrier current systems: 1000 mV within the frequency band 535-1705 kHz, as measured using a 50 mH/50 ohms LISN.
- (3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as provided in §15.205 and §§15.209, 15.221, 15.223, 15.225 or 15.227, as appropriate.
- (c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

Page 50 of 62

FCC PART 15, SUBPART C

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

Minimum Standard: The minimum 6 dB bandwidth shall be at least 500 kHz

Page 51 of 62

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

NAME OF TEST: Maximum Peak Output Power PARA. NO.: 15.247(b)(1)

Minimum Standard: The maximum peak output power shall not exceed 1 watt.

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Substitution Antenna Method for Integral Antennas:

The peak field strength of the carrier is measured in a worst-case configuration with a RBW > 5 times the occupied bandwidth of the transmitted waveform. For cases where the RBW of the test instrument is not sufficient, the power is measured using a peak power meter instead of the spectrum analyzer.

The RBW of the spectrum analyzer shall be set to a value greater than the measured 6 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

NAME OF TEST: Channel Separation PARA. NO.: 15.247(a)(1)

Frequency hopping systems shall have hopping Minimum Standard:

> channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping

channel, whichever is greater.

NAME OF TEST: Pseudorandom Hopping Algorithm PARA. NO.: 15.247(a)(1)

Minimum Standard: The system shall hop to channel frequencies that are selected from

a pseudo-randomly ordered list of hopping frequencies. Each frequency must be used equally on average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their transmitters and shall shift

frequencies in synchronization with the transmitted signals.

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

NAME OF TEST: Time of Occupancy PARA. NO.: 15.247(a)(1)(ii)

Minimum Standard:

Frequency	20 dB	No. of	Average Time of
Band	Bandwidth	Hopping	Occupancy
(MHz)		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20
			sec.
902 – 928	=>250	25	=<0.4 sec. in 10
	kHz		sec.
2400 –		75	=<0.4 sec. in 30
2483.5			sec.
5725 – 5850		75	=<0.4 sec. in 30
			sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz

LOG dB/div.: 10 dB

Sweep: Sufficient to see one hop time sequence.

Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table (10, 20, or 30 seconds).

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

NAME OF TEST: Occupied Bandwidth PARA. NO.: 15.247(a)(2)

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 – 2483.5	1 MHz
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div.

VBW: >RBW

Span: Sufficient to display 20 dB bandwidth

LOG dB/div.: 10 dB

Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

Nemko Dallas FCC PART 15, SUBPART C

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

NAME OF TEST: RF Exposure PARA. NO.: 15.247(b)(4)

Minimum Standard: Systems operating under the provisions of this section shall

be operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines stipulated in 1.1307(b)(1) of CFR

47.

Page 56 of 62

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

NAME OF TEST: Spurious Emissions(conducted) PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the

restricted bands of 15.205 shall not exceed the following field

strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM IS SEARCHED TO THE 10th HARMONIC OF THE HIGHEST FREQUENCY GENERATED IN THE EUT.

Method Of Measurement:

30 MHz - 10th harmonic plot

RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level below center frequency.

Upper Band Edge

RBW: At least 1% of span/div.

VBW: >RBW

Span: As necessary to display any spurious at band edge.

Sweep: Auto

Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz

Marker: Peak of fundamental emission

Marker Δ : Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the

transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the

following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

15.205 Restricted Bands

MHz	MHz	MHz	GHz
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41	1718		

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

NAME OF TEST: Transmitter Power Density PARA. NO.: 15.247(d)

Minimum Standard: The transmitted power density averaged over any 1 second

interval shall not be greater than +8 dBm in any 3 kHz

bandwidth.

Method Of Measurement: The spectrum analyzer is set as follows:

RBW: 3 kHz VBW: >3 kHz

Span: => measured 6 dB bandwidth

Sweep: Span(kHz)/3 (i.e. for a span of 1.5 MHz the sweep

rate is 1500/3 = 500 sec. LOG dB/div.: 2 dB

Note: For devices with spectrum line spacing =< 3 kHz, the RBW of the

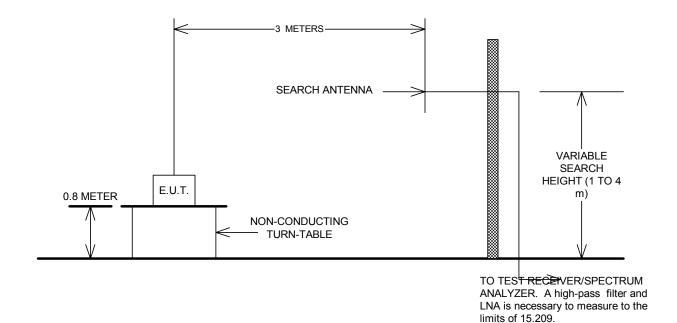
analyzer is reduced until the spectral lines are resolved. The measurement data is normalized to 3 kHz by summing the power of all the individual spectral lines within a 3 kHz band in linear

power units.

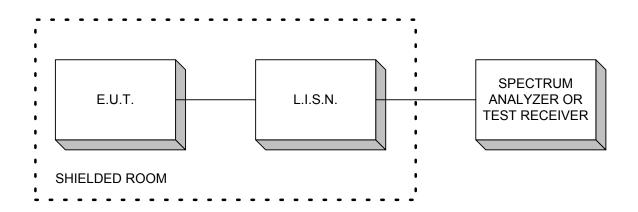
For Devices With Integral Antenna:

For devices with non-detachable antennas, the received field strength is peaked and the spectrum analyzer is set as above. The peak emission level is then measured and converted to a field strength by adding the appropriate antenna factor and cable loss. This field strength is then converted to an equivalent isotropic radiated power using the same method as described for Peak Power output.

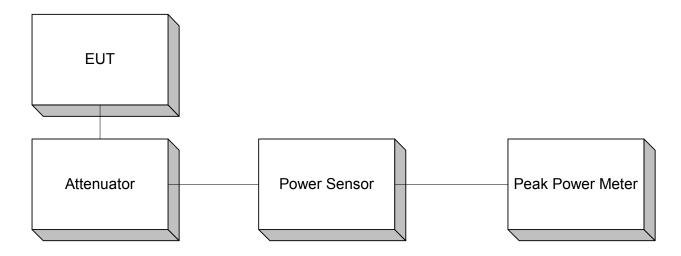
Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom

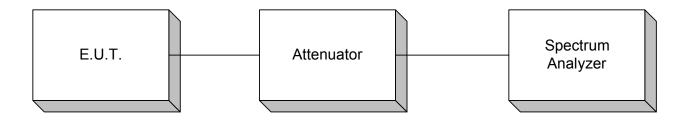

FCC PART 15, SUBPART C

Nemko Dallas


EQUIPMENT: LS800 TS01 w/ Atheros card TEST REPORT NO.: 5L0114RUS3

ANNEX B - TEST DIAGRAMS


Test Site For Radiated Emissions


Conducted Emissions

Peak Power At Antenna Terminals

Minimum 6 dB Bandwidth
Peak Power Spectral Density
Spurious Emissions (conducted)

