

FCC Test Report

Equipment	:	Wi-Fi enabled Video Doorbell
Brand Name	:	RING
Model No.	:	Video Doorbell Pro
FCC ID	:	2AEUPBHALP011
Standard	:	47 CFR FCC Part 15.407
Operating Band	:	5150 MHz – 5250 MHz 5725 MHz – 5850 MHz
FCC Classification	:	NII
FCC Classification Applicant	-	NII Bot Home Automation, Inc. 1523 26th St, Santa Monica, CA 90404, USA
	:	Bot Home Automation, Inc.

The product sample received on Dec. 09, 2015 and completely tested on Jan. 08, 2016. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Kevin Liang / Assistant Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	7
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	The Worst Case Power Setting Parameter	9
2.3	The Worst Case Measurement Configuration	10
2.4	Test Setup Diagram	11
3	TRANSMITTER TEST RESULT	12
3.1	AC Power-line Conducted Emissions	12
3.2	Emission Bandwidth	15
3.3	RF Output Power	18
3.4	Peak Power Spectral Density	22
3.5	Transmitter Bandedge Emissions	26
3.6	Transmitter Unwanted Emissions	30
3.7	Frequency Stability	67
4	TEST EQUIPMENT AND CALIBRATION DATA	69

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

Conformance Test Specifications				
ReportRef. Std.ClauseClause		Description	Result	
1.1.2	15.203	Antenna Requirement	Complied	
3.1	15.207	AC Power-line Conducted Emissions	Complied	
3.2	15.407(a)	Emission Bandwidth	Complied	
3.3	15.407(a)	RF Output Power (Maximum Conducted Output Power)	Complied	
3.4	15.407(a)	Peak Power Spectral Density	Complied	
3.5	15.407(b)	Transmitter Bandedge Emissions	Complied	
3.6	15.407(b)	Transmitter Unwanted Emissions	Complied	
3.7	15.407(g)	Frequency Stability	Complied	

Revision History

Report No.	Version	Description	Issued Date
FR5N2432AN	Rev. 01	Initial issue of report	Mar. 10, 2016
FR5N2432AN	Rev. 02	 Original report to become invalid. Change equipment name from (Ring Video Doorbell Wired) to (Wi-Fi enabled Video Doorbell) Change model name from (Video Doorbell Wired) to (Video Doorbell Pro). 	Mar. 17, 2016

1 General Description

1.1 Information

1.1.1 Product Details

The equipment is Ring Video Doorbell Wired. There are two sample of EUT. The only difference is the appearance. For more detailed features description, please refer to the specifications or user's manual.

1.1.2 RF General Information

RF General Information (5150-5250MHz band)					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊺x})	RF Output Power (dBm)
5150-5250	а	5180-5240	36-48 [4]	1	15.96
5150-5250	n (HT20)	5180-5240	36-48 [4]	1	15.02
5150-5250	n (HT40)	5190-5230	38-46 [2]	1	14.89

Note 1: RF output power specifies that Maximum Conducted Output Power. Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

RF General Information (5725-5850MHz band)					
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊺x})	RF Output Power (dBm)
5725-5850	а	5745-5825	149-165 [5]	1	15.09
5725-5850	n (HT20)	5745-5825	149-165 [5]	1	14.17
5725-5850	n (HT40)	5755-5795	151-159 [2]	1	14.52

Note 1: RF output power specifies that Maximum Conducted Output Power. Note 2: 802.11a/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

1.1.3 Antenna Information

	Antenna Category				
\square	Integral antenna (antenna permanently attached)				
	Temporary RF connector provided				
	No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.				
	External antenna (dedicated antennas)				
	Single power level with corresponding antenna(s).				
	Multiple power level and corresponding antenna(s).				

	Antenna General Information					
No.	No. Ant. Cat. Ant. Type Gain (dBi)					
1	1 Integral PIFA 3.39					

1.1.4 Type of EUT

	Identify EUT			
EUT	Serial Number	N/A		
Pres	sentation of Equipment	Production ; D Pre-Production ; Prototype		
		Type of EUT		
\boxtimes	Stand-alone			
	Combined (EUT where the radio part is fully integrated within another device)			
	Combined Equipment – Brand Name / Model No.:			
	Plug-in radio (EUT intended for a variety of host systems)			
	Host System – Brand Name / Model No.:			
	Other:			

1.1.5 Test Signal Duty Cycle

Operated Mode for Worst Duty Cycle				
Operated normally mode for worst duty cycle				
Operated test mode for worst duty cycle				
Test Signal Duty Cycle (x)Power Duty Factor [dB] – (10 log 1/x)				
⊠ 96.66% - IEEE 802.11a 0.15				
☑ 96.43% - IEEE 802.11n (HT20) 0.16				

1.1.6 EUT Operational Condition

Supply Voltage	AC mains	DC	
Type of DC Source	Transformer	From system	External DC adapter

1.2 Accessories and Support Equipment

Accessories Information				
Li-ion Battery	Brand Name	Fuji	Model Name	334038
LI-IOIT Ballery	Power Rating	3.7Vdc, 240mAh		

Note: Regarding to more detail and other information, please refer to user manual.

		Support Equipment -	RF Conducted	
No.	Equipment	Brand Name	Model Name	FCC ID
1	Notebook	DELL	E5540	DoC
2	Adapter for Notebook	DELL	HA65NM130	DoC

	Support I	Equipment - AC Conduct	tion and Radiated Emiss	ion
No.	Equipment	Brand Name	Model Name	FCC ID
1	Transformer	TRIAD	VPL16-1600	DoC
2	Test Fixture	-	-	-

1.3 Testing Applied Standards

- According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:
- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 789033 D02 v01r01
- FCC-14-30A1-UNII
- FCC KDB 662911 D01 v02r01

1.4 Testing Location Information

				Testing	Location	
\bowtie	HWA YA	ADD	:	No. 52, Hwa Ya 1st Rd., H Tao Yuan City, Taiwan, R.(lwa Ya Technology Park, K ጋ.C.	wei-Shan District,
		TEL	:	886-3-327-3456 FA	X : 886-3-327-0973	
				Test Site Registrati	on Number: 636805	
	Test Cond	lition		Test Site No.	Test Engineer	Test Environment
	AC Condu	ction		CO04-HY	Anthony	24°C / 57%
	RF Condu	cted		TH01-HY	Howard	22.5°C / 65%
F	Radiated En	nission		03CH09-HY	Terry	24.2°C / 57%

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Ν	leasurement Uncertainty	
Test Item		Uncertainty
AC power-line conducted emissions		±2.3 dB
Emission bandwidth, 26dB bandwidth		±0.5%
RF output power, conducted		±0.1 dB
Power density, conducted		±0.5 dB
Unwanted emissions, conducted	9 – 150 kHz	±0.4 dB
	0.15 – 30 MHz	±0.4 dB
	30 – 1000 MHz	±0.6 dB
	1 – 18 GHz	±0.5 dB
	18 – 40 GHz	±0.5 dB
	40 – 200 GHz	N/A
All emissions, radiated	9 – 150 kHz	±2.5 dB
	0.15 – 30 MHz	±2.3 dB
	30 – 1000 MHz	±2.6 dB
	1 – 18 GHz	±3.6 dB
	18 – 40 GHz	±3.8 dB
	40 – 200 GHz	N/A
Temperature		±0.8 °C
Humidity		±5 %
DC and low frequency voltages		±0.9%
Time		±1.4 %
Duty Cycle		±0.5 %

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

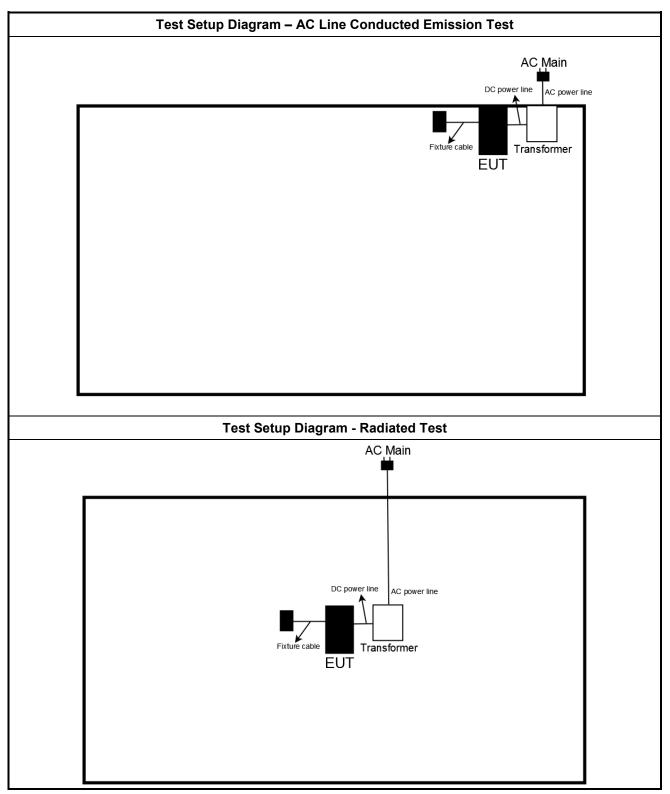
	Worst Modulation Used f	or Conformance Testing	
Modulation Mode	Transmit Chains (N _{TX})	Data Rate / MCS	Worst Data Rate / MCS
11a	1	6-54Mbps	6 Mbps
HT20	1	MCS 0-7	MO
HT40	1	MCS 0-7	MO

2.2 The Worst Case Power Setting Parameter

The V	Vorst (Case Power	[·] Setting Pa	rameter (51	50-5250MHz band)	
Test Software				PuT	TY	
				Test Fred	luency (MHz)	
Modulation Mode	\mathbf{N}_{TX}	I	NCB: 20MH	z	NCB: 4	40MHz
		5180	5200	5240	5190	5230
11a	1	14	Default	Default	-	-
HT20	1	Default	Default	Default	-	-
HT40	1	-	-	-	12	Default

The V	Norst (Case Powe	r Setting Pa	arameter (57	25-5850MHz band)		
Test Software				PuT	TY		
				Test Fred	luency (MHz)		
Modulation Mode	Ντχ	NCB: 20MHz			NCB: 40MHz		
		5745	5785	5825	5755	5795	
11a	1	Default	Default	Default	-	-	
HT20	1	Default	Default	Default	-	-	
HT40	1	-	-	-	Default	Default	

2.3 The Worst Case Measurement Configuration


Th	e Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz
Operating Mode	Operating Mode Description
1	Transmit Mode

TI	ne Worst Case Mode for Following Conformance Tests
Tests Item	RF Output Power, Peak Power Spectral Density, Emission Bandwidth, Peak Excursion, Transmitter Conducted Unwanted Emissions Transmitter Conducted Bandedge Emissions
Test Condition	Conducted measurement at transmit chains
Modulation Mode	11a, HT20, HT40

Th	e Worst Case Mode for Fo	ollowing Conformance Te	sts
Tests Item	Transmitter Radiated Unwa Transmitter Radiated Band		
Test Condition	regardless of spatial multi		e antenna are used in EUT i), the radiated test should ina type.
	EUT will be placed in	fixed position.	
User Position	· ·	mobile position and operati ree orthogonal planes.	ng multiple positions. EUT
	EUT will be a hand-he operating multiple pos	eld or body-worn battery-po sitions.	wered devices and
Operating Mode	Operating Mode Description	n	
1	Transmit Mode		
Modulation Mode	11a, HT20, HT40		
	X Plane	Y Plane	Z Plane
Orthogonal Planes of EUT			
Worst Planes of EUT	V		

2.4 Test Setup Diagram

Transmitter Test Result 3

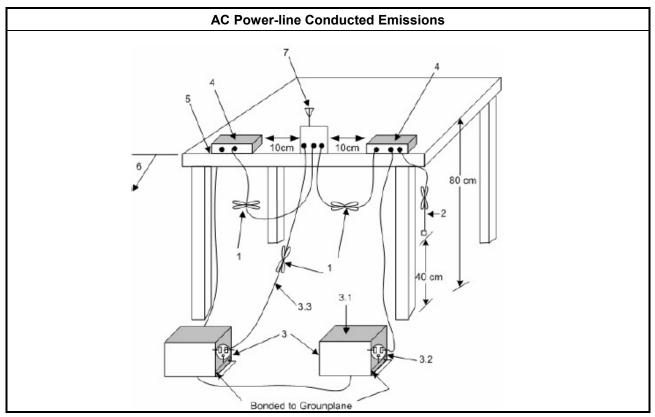
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

AC Powe	er-line Conducted Emissions L	_imit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarithm c	of the frequency	

ecreases with the logarithm of the frequency

3.1.2 Measuring Instruments

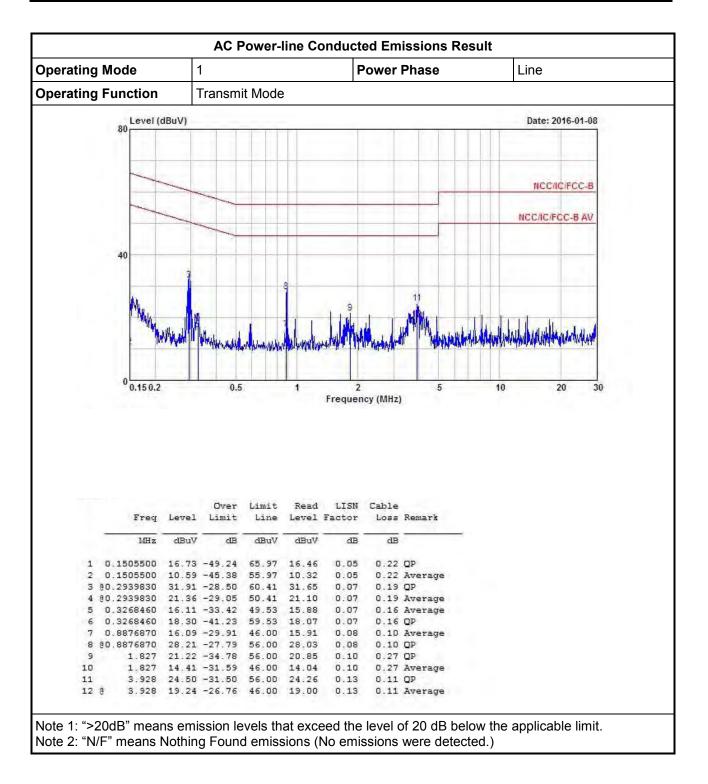

Refer a test equipment and calibration data table in this test report.

3.1.3 **Test Procedures**

Test Method

Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup



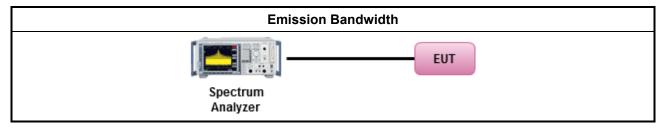
erating Mode	1			P	ower	Phas	е		Ne	utral	
erating Function	Trans	smit Mode	Э								
Level (dB	BuV)					-	-		D	ate: 201	6-01-0
80											
a second second					_					_	
-										NCC/IC/	ECC B
					-		1		-	HEC/IG/	FLL-B
	_								NC	C/IC/FCC	C-B AV
		-									
40											
40	1										
and the second second			8								_
			1		-	11					
W7 Hu				1 1.4	12	WIE	1		h. d	1	-1
Thu. H	her White	end al		1.1.1.144	Mark	Mar and	ا ماله بياله	WAR W	11 Martin	han hall	الاردار
1 M	All and I HIMA AL	hawill should be	M MAY WAY	A.AMMAN	" MINT		Man Mar	eache i kuidh i	A Made and A	all at the	Audini, 1
0 0.15 0.2		0.5	1	2			5	Ш,	10	20	6
0 0.15 0.2	ļ	0.5	1	2 Frequen	cy (MHz))	5		10	20	6
0 0.15 0.2		0.5	1		cy (MHz))	5	,	10	20	
000000		0.5	1		cy (MHz))	5		10	20	
0 0.15 0.2		0.5	1		cy (MHz))	5		10	20	
0 0.15 0.2		0.5	1		cy (MHz))	5		10	20	-
0 0.15 0.2		0.5	1		cy (MHz))	5	4	10	20	
0 0.15 0.2				Frequen			5		10	20	6
	Ov Level Lim	er Limit	1 Read Level	Frequen	Cable				10	20	
Freq 1	Level Lim	er Limit it Line	Read Level	Frequen LISN Factor	Cable Loss	Remar			0	20	
	Level Lim	er Limit	Read	Frequen LISN Factor	Cable	Remar			0	20	
Freq 1 MHz 1 80.3016930 3	Level Lim dBuV 34.04 -26.	er Limit it Line dB dBuV 16 60.20	Read Level dBuV 33.79	LISN Factor dB 0.07	Cable Loss dB 0.18	Remar	'k		10	20	
Freq) MHz 1 @0.3016930 3 2 0.3016930 3	Level Lim dBuV 34.04 -26. 14.10 -36.	er Limit it Line dB dBuV 16 60.20 10 50.20	Read Level dBuV 33.79 13.85	LISN Factor dB 0.07 0.07	Cable Loss dB 0.18 0.18	Remar OP Avera	'k		10	20	
Freq 1 MHz 1 80.3016930 3	Level Lim dBuV 34.04 -26. 14.10 -36. 21.60 -37.	er Limit it Line dB dBuV 16 60.20 10 50.20 97 59.57	Read Level dBuV 33.79 13.85 21.37	LISN Factor dB 0.07 0.07	Cable Loss dB 0.18 0.18 0.16	Remar OP Avera	'k .ge		10	20	.
Freq 1 MHz 1 @0.3016930 3 2 0.3016930 3 3 0.3251190 3	Level Lim dBuV 34.04 -26. 14.10 -36. 21.60 -37. 21.30 -28.	er Limit it Line dB dBuV 16 60.20 10 50.20 97 59.57 27 49.57	Read Level dBuV 33.79 13.85 21.37 21.07	LISN Factor dB 0.07 0.07 0.07	Cable Loss dB 0.18 0.18 0.16 0.16	Remar OP Avera QP	ż .ge		10	20	.
Freq 1 MHz 1 @0.3016930 3 2 0.3016930 3 3 0.3251190 3 4 @0.3251190 3 5 0.5916410 3 6 0.5916410 3	Level Lim dBuV 34.04 -26. 14.10 -36. 21.60 -37. 21.30 -28. 13.60 -32. 19.94 -36.	er Limit it Line dB dBuV 16 60.20 10 50.20 97 59.57 27 49.57 40 46.00 06 56.00	Read Level dBuV 33.79 13.85 21.37 21.07 13.42 19.76	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.08 0.08	Cable Loss dB 0.18 0.18 0.16 0.16 0.10 0.10	Remar OP Avera OP Avera Avera OP	rk uge uge		10	20	.
Freq 1 MHz 1 @0.3016930 3 2 0.3016930 3 3 0.3251190 3 4 @0.3251190 3 5 0.5916410 3 6 0.5916410 3 7 @0.8849860 3	Level Lim dBuV 34.04 -26. 14.10 -36. 21.60 -37. 21.30 -28. 13.60 -32. 19.94 -36. 17.47 -28.	er Limit it Line dB dBuV 16 60.20 10 50.20 97 59.57 27 49.57 27 49.57 40 46.00 06 56.00 53 46.00	Read Level dBuV 33.79 13.85 21.37 21.07 13.42 19.76 17.28	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08	Cable Loss dB 0.18 0.16 0.10 0.10 0.10	Remar OP Avera OP Avera Avera OP	rk uge uge		10	20	t
Freq 1 MHz 1 @0.3016930 3 2 0.3016930 3 3 0.3251190 3 4 @0.3251190 3 5 0.5916410 3 6 0.5916410 3 7 @0.8849860 3	Level Lim dBuV 34.04 -26. 14.10 -36. 21.60 -37. 21.30 -28. 13.60 -32. 19.94 -36. 17.47 -28. 28.14 -27.	er Limit it Line dB dBuV 16 60.20 10 50.20 97 59.57 27 49.57 40 46.00 06 56.00 53 46.00 86 56.00	Read Level dBuV 33.79 13.85 21.37 21.07 13.42 19.76 17.28 27.95	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.18 0.18 0.16 0.10 0.10 0.10 0.10	Remar OP Avera OP Avera OP Avera OP	rk uge uge		10	20	b
Freq MHz 1 00.3016930 1 2 0.3016930 1 3 0.3251190 1 4 0.3251190 1 5 0.5916410 1 6 0.5916410 1 7 00.8849860 1 8 00.8849860 1 9 2.287 1	Level Lim dBuV 34.04 -26. 14.10 -36. 21.60 -37. 21.30 -28. 13.60 -32. 13.60 -32. 19.94 -36. 17.47 -28. 28.14 -27. 21.36 -34.	er Limit it Line dB dBuV 16 60.20 10 50.20 97 59.57 27 49.57 40 46.00 06 56.00 53 46.00 86 56.00 64 56.00	Read Level dBuV 33.79 13.85 21.37 21.07 13.42 19.76 17.28 27.95 20.99	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.18 0.16 0.10 0.10 0.10 0.10 0.10 0.26	Remar OP Avera OP Avera OP Avera OP OP	ige age age		10	20	b
Freq MHz 1 @0.3016930 3 2 0.3016930 3 3 0.3251190 3 4 @0.3251190 3 5 0.5916410 3 6 0.5916410 3 7 @0.8849860 3 8 @0.8849860 3 9 2.287 3	Level Lim dBuV 34.04 -26. 14.10 -36. 21.60 -37. 21.30 -28. 13.60 -32. 19.94 -36. 17.47 -28. 28.14 -27. 21.36 -34. 20.36 -25.	er Limit it Line dB dBuV 16 60.20 10 50.20 97 59.57 27 49.57 40 46.00 06 56.00 53 46.00 53 46.00 64 56.00 64 56.00	Read Level dBuV 33.79 13.85 21.37 21.07 13.42 19.76 17.28 27.95 20.99 19.99	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.18 0.16 0.16 0.10 0.10 0.10 0.10 0.26	Remar OP Avera OP Avera OP Avera OP OP Avera	ige age age		10	20	b
Freq / MHz 1 @0.3016930 2 2 0.3016930 2 3 0.3251190 2 4 @0.3251190 2 5 0.5916410 2 6 0.5916410 2 6 0.5916410 2 8 @0.8849860 2 9 2.287 2 10 @ 2.287 2 11 4.245 2	Level Lim dBuV 34.04 -26. 14.10 -36. 21.60 -37. 21.30 -28. 13.60 -32. 13.60 -32. 19.94 -36. 17.47 -28. 28.14 -27. 21.36 -34.	er Limit it Line dB dBuV 16 60.20 10 50.20 97 59.57 27 49.57 40 46.00 06 56.00 53 46.00 86 56.00 64 56.00 64 56.00	Read Level dBuV 33.79 13.85 21.37 21.07 13.42 19.76 17.28 27.95 20.99 19.99 22.21	LISN Factor dB 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	Cable Loss dB 0.18 0.16 0.10 0.10 0.10 0.10 0.26 0.26	Remar OP Avera OP Avera OP Avera OP OP Avera	ige ige ige		10	20	

3.1.5 Test Result of AC Power-line Conducted Emissions

3.2 Emission Bandwidth

3.2.1 Emission Bandwidth Limit

Emission Bandwidth Limit						
UNII Devices						
For the 5.15-5.25 GHz band, N/A						
For the 5.25-5.35 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.						
For the 5.47-5.725 GHz band, the maximum conducted output power shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz.						
For the 5.725-5.85 GHz band, 6 dB emission bandwidth \geq 500kHz.						
3.2.2 Moscuring Instruments						

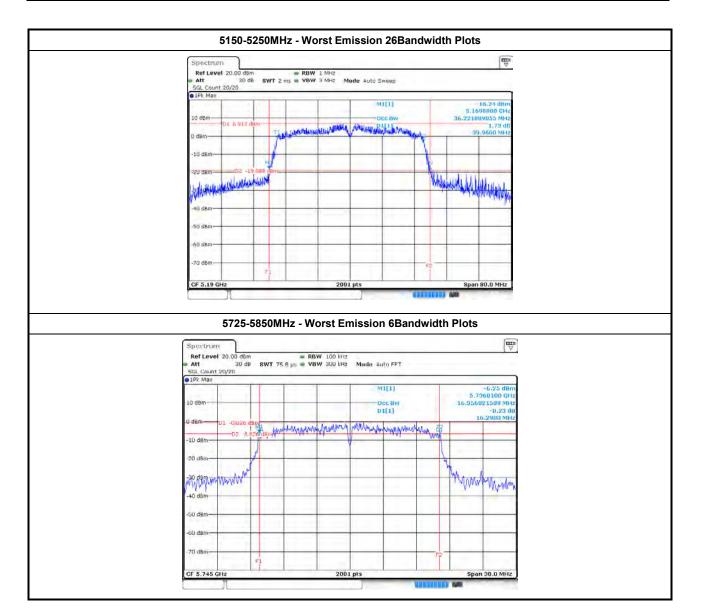

3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method									
\boxtimes	For	he emission bandwidth shall be measured using one of the options below:								
	\boxtimes	Refer as FCC KDB 789033, clause C for EBW and clause D for OBW measurement.								
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.								
		Refer as IC RSS-Gen, clause 4.6 for bandwidth testing.								
\boxtimes	For	conducted measurement.								
	The EUT supports single transmit chain and measurements performed on this transm port 1.									
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.								
		The EUT supports multiple transmit chains using options given below:								
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.								
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.								

3.2.4 Test Setup


3.2.5 Test Result of Emission Bandwidth

UNII Emission Bandwidth Result (5150-5250MHz band)							
Condit	ion		Emission Ba	ndwidth (MHz)			
Madulatian Mada		Freq.	99% Bandwidth	26dB Bandwidth			
Modulation Mode	Ντχ	(MHz)	Chain- Port 1	Chain- Port 1			
11a	1	5180	16.61	18.85			
11a	1	5200	16.66	18.87			
11a	1	5240	16.46	18.95			
HT20	1	5180	17.61	19.22			
HT20	1	5200	17.64	18.92			
HT20	1	5240	17.56	18.87			
HT40	HT40 1 5190		36.22	39.96			
HT40 1		5230	36.22	39.96			
Resu	lt		Corr	plied			

	UNII Emission Bandwidth Result (5725-5850MHz band)							
Condit	ion		Emission Bandwidth (MHz)					
Modulation Mode	Ντχ	Freq.	99% Bandwidth	6dB Bandwidth				
modulation mode		(MHz)	Chain- Port 1	Chain- Port 1				
11a	1	5745	16.35	16.29				
11a	1	5785	16.35	16.30				
11a	1	5825	16.38	16.33				
HT20	1	5745	17.55	17.59				
HT20	1	5785	17.52	16.95				
HT20	1	5825	17.54	17.59				
HT40	1	5755	36.02	32.32				
HT40	1	5795	36.02	30.12				
Limit			-	≥ 500 kHz				
Resu	lt		Com	plied				

3.3 **RF Output Power**

3.3.1 RF Output Power Limit

	Maximum Conducted Output Power Limit								
UNI	UNII Devices								
\boxtimes	For the 5.15-5.25 GHz band:								
	Outdoor AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If G_{TX} > 6 dBi, then P_{Out} = 30 – (G_{TX} – 6). e.i.r.p. at any elevation angle above 30 degrees ≤ 125mW [21dBm]								
	Indoor AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$								
	Point-to-point AP: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W If G_{TX} > 23 dBi, then P_{Out} = 30 – (G_{TX} – 23).								
	Mobile or Portable Client: the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW. If $G_{TX} > 6$ dBi, then $P_{Out} = 24 - (G_{TX} - 6)$.								
	For the 5.25-5.35 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 – (G_{TX} – 6).								
	For the 5.47-5.725 GHz band, the maximum conducted output power (P_{Out}) shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in MHz. If G_{TX} > 6 dBi, then P_{Out} = 24 - (G_{TX} - 6).								
\boxtimes	For the 5.725-5.85 GHz band:								
	Point-to-multipoint systems (P2M): the maximum conducted output power (P_{Out}) shall not exceed the lesser of 1 W. If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$.								
	Point-to-point systems (P2P): the maximum conducted output power (P _{Out}) shall not exceed the lesser of 1 W.								
	t = maximum conducted output power in dBm, = the maximum transmitting antenna directional gain in dBi.								

3.3.2 Measuring Instruments

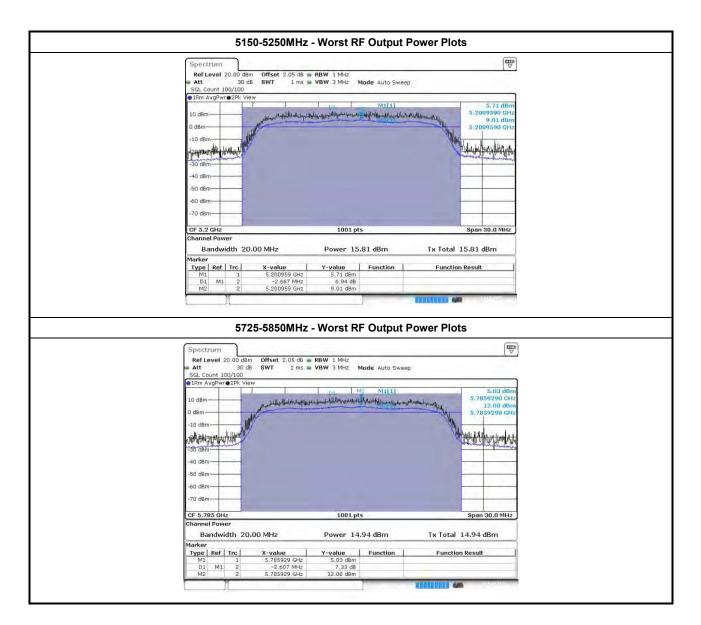
Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method					
\boxtimes	Мах	imum Conducted Output Power					
	[dut	y cycle ≥ 98% or external video / power trigger]					
	\square	Refer as FCC KDB 789033, clause E Method SA-1 (spectral trace averaging).					
		Refer as FCC KDB 789033, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)					
	duty	cycle < 98% and average over on/off periods with duty factor					
		Refer as FCC KDB 789033, clause E Method SA-2 (spectral trace averaging).					
		Refer as FCC KDB 789033, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)					
	Wideband RF power meter and average over on/off periods with duty factor						
		Refer as FCC KDB 789033, clause E Method PM (using an RF average power meter).					
\square	For	conducted measurement.					
	\square	The EUT supports single transmit chain and measurements performed on this transmit chain 1.					
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.					
		The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.					
		If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG					

3.3.4 Test Setup

RF Output Power (Spectrum Analyzer)						
EUT						
Spectrum Analyzer						



Maximum Conducted Output Power (5150-5250MHz band)							
		Freq.	Output Po	Output Power (dBm)		EIRP	Power
Modulation Mode	Ντχ	(MHz)	Chain Port 1	Sum Chain	Gain (dBi)	power	Limit
11a	1	5180	15.68	15.68	3.39	19.07	24.00
11a	1	5200	15.96	15.96	3.39	19.35	24.00
11a	1	5240	15.76	15.76	3.39	19.15	24.00
HT20	1	5180	15.02	15.02	3.39	18.41	24.00
HT20	1	5200	14.98	14.98	3.39	18.37	24.00
HT20	1	5240	14.82	14.82	3.39	18.21	24.00
HT40	1	5190	14.89	14.89	3.39	18.28	24.00
HT40	1	5230	14.73	14.73	3.39	18.12	24.00
Resu	ılt			Complied	-		

3.3.5 Test Result of Maximum Conducted Output Power

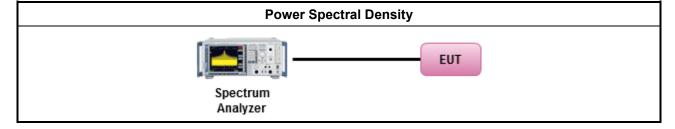
Maximum Conducted Output Power (5725-5850MHz band)							
		Freq.	Output Po	ower (dBm)	Antenna Gain	Power Limit	
Modulation Mode	Ντχ	(MHz)	Chain Port 1	Sum Chain	(dBi)		
11a	1	5745	15.07	15.07	3.39	30.00	
11a	1	5785	15.09	15.09	3.39	30.00	
11a	1	5825	15.09	15.09	3.39	30.00	
HT20	1	5745	14.08	14.08	3.39	30.00	
HT20	1	5785	14.17	14.17	3.39	30.00	
HT20	1	5825	14.11	14.11	3.39	30.00	
HT40	1	5755	14.48	14.48	3.39	30.00	
HT40	1	5795	14.52	14.52	3.39	30.00	
Resu	ult	•		Complied	•		

3.4 Peak Power Spectral Density

3.4.1 Peak Power Spectral Density Limit

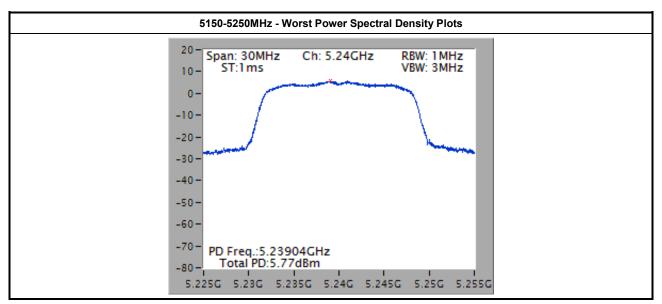
	Peak Power Spectral Density Limit							
UN	UNII Devices							
\boxtimes	For the 5.15-5.25 GHz band:							
		Outdoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.						
		Indoor AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 6$ dBi, then $P_{Out} = 17 - (G_{TX} - 6)$.						
		Point-to-point AP: the peak power spectral density (PPSD) shall not exceed the lesser of 17dBm/MHz. If $G_{TX} > 23$ dBi, then $P_{Out} = 17 - (G_{TX} - 23)$.						
	\boxtimes	Mobile or Portable Client: the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, then PPSD= 11 – (G _{TX} – 6)						
		the 5.25-5.35 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, n PPSD= 11 - (G _{TX} - 6).						
		the 5.47-5.725 GHz band, the peak power spectral density (PPSD) \leq 11 dBm/MHz. If G _{TX} > 6 dBi, n PPSD= 11 - (G _{TX} - 6).						
\square	For	the 5.725-5.85 GHz band:						
		Point-to-multipoint systems (P2M): the peak power spectral density (PPSD) \leq 30 dBm/500kHz. If $G_{TX} > 6$ dBi, then PPSD= 30 – ($G_{TX} - 6$).						
		Point-to-point systems (P2P): the peak power spectral density (PPSD) \leq 30 dBm/500kHz.						
pov	PPSD = peak power spectral density that he same method as used to determine the conducted output power shall be used to determine the power spectral density. And power spectral density in dBm/MHz G_{TX} = the maximum transmitting antenna directional gain in dBi.							

3.4.2 Measuring Instruments

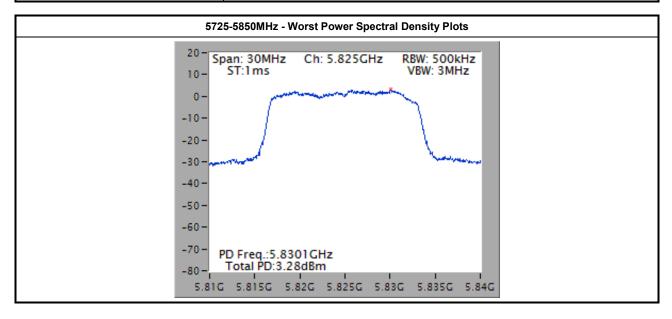

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

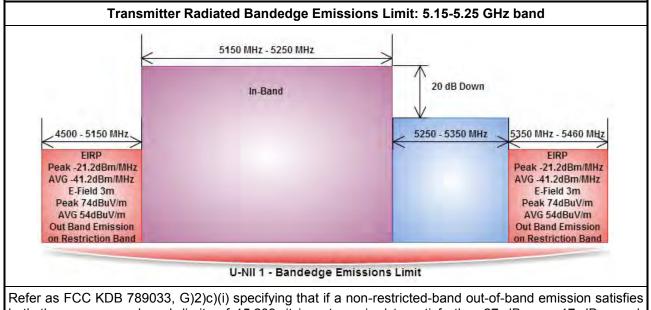
	Test Method									
	outp func	Peak power spectral density procedures that the same method as used to determine the conducted output power shall be used to determine the peak power spectral density and use the peak search function on the spectrum analyzer to find the peak of the spectrum. For the peak power spectral density shall be measured using below options:								
	\boxtimes	Refer as FCC KDB 789033, F)5) power spectral density can be measured using resolution bandwidths < 1 MHz provided that the results are integrated over 1 MHz bandwidth								
	[duty	y cycle ≥ 98% or external video / power trigger]								
	\boxtimes	Refer as FCC KDB 789033, clause E Method SA-1 (spectral trace averaging).								
		Refer as FCC KDB 789033, clause E Method SA-1 Alt. (RMS detection with slow sweep speed)								
	duty	cycle < 98% and average over on/off periods with duty factor								
		Refer as FCC KDB 789033, clause E Method SA-2 (spectral trace averaging).								
		Refer as FCC KDB 789033, clause E Method SA-2 Alt. (RMS detection with slow sweep speed)								
\square	For	conducted measurement.								
	\boxtimes	The EUT supports single transmit chain and measurements performed on this transmit chain port 1.								
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.								
	\boxtimes	The EUT supports multiple transmit chains using options given below:								
		Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.								
		Option 2: Measure and add 10 log(N) dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 log(N). Or each transmit chains shall be add 10 log(N) to compared with the limit.								
		If multiple transmit chains, EIRP PPSD calculation could be following as methods: PPSD _{total} = PPSD ₁ + PPSD ₂ + + PPSD _n (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = PPSD _{total} + DG								
		Each individually PPSD plots refer as test report clause 3.3.5 with each individually PPSD plots.								

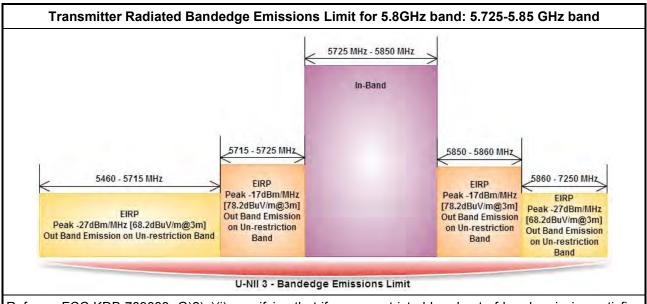

3.4.4 Test Setup

3.4.5 Test Result of Peak Power Spectral Density


Peak Power Spectral Density Result (5150-5250MHz band)								
Modulation Mode	N _{TX}	Freq. (MHz)	Sum Chain w/o Duty Factor	Peak Power Spectral Density	PSD-DG (dBi)	EIRP PSD	PSD Limit	
11a	1	5180	5.61	5.76	3.39	9.15	11.00	
11a	1	5200	5.71	5.86	3.39	9.25	11.00	
11a	1	5240	5.77	5.92	3.39	9.31	11.00	
HT20	1	5180	4.69	4.85	3.39	8.24	11.00	
HT20	1	5200	4.63	4.79	3.39	8.18	11.00	
HT20	1	5240	4.73	4.89	3.39	8.28	11.00	
HT40	1	5190	0.78	2.13	3.39	5.52	11.00	
HT40	1	5230	0.59	1.94	3.39	5.33	11.00	
Resu	ilt				Complied			

Report No. : FR5N2432AN


		Peak	Power Spectral De	nsity Result (572	25-5850MHz band)		
Modulation Mode	Ντχ	Freq. (MHz)	Sum Chain w/o Duty Factor	Peak Power Spectral Density	PSD-DG (dBi)	EIRP PSD	PSD Limit
11a	1	5745	2.73	2.88	3.39	6.27	30.00
11a	1	5785	2.28	2.43	3.39	5.82	30.00
11a	1	5825	3.28	3.43	3.39	6.82	30.00
HT20	1	5745	0.77	0.93	3.39	4.32	30.00
HT20	1	5785	1.81	1.97	3.39	5.36	30.00
HT20	1	5825	1.79	1.95	3.39	5.34	30.00
HT40	1	5755	-2.07	-0.72	3.39	2.67	30.00
HT40	1	5795	-2.50	-1.15	3.39	2.24	30.00
Resu	ult				Complied		•



3.5 Transmitter Bandedge Emissions

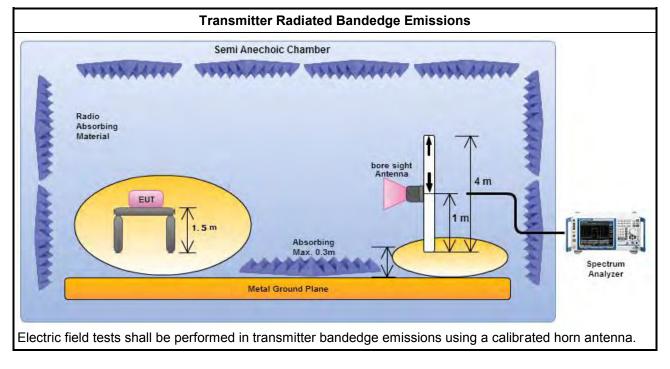
3.5.1 Transmitter Radiated Bandedge Emissions Limit

Refer as FCC KDB 789033, G)2)c)(I) specifying that if a non-restricted-band out-of-band emission satisfies both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.

Refer as FCC KDB 789033, G)2)c)(i) specifying that if a non-restricted-band out-of-band emission satisfies both the average and peak limits of 15.209, it is not required to satisfy the -27 dBm or -17 dBm peak emission limit. Reason for change: to ensure that emission requirements in the non-restricted bands are not more stringent than those in the restricted bands.

3.5.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.



3.5.3 Test Procedures

	Test Method
\boxtimes	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\boxtimes	Refer as ANSI C63.10, clause 6.10 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.
	If EUT operate in adjacent contiguous bands, bandedge testing performed at the lowest frequency channel at lower-band and highest frequency channel at higher-band. Transmitter in-band emissions will consist of adjacent contiguous bands (e.g., IEEE 802.11ac VHT160 The lowest frequency channel at lower-band and highest frequency channel at higher-band in-band emissions will consist of two adjacent contiguous bands.)
	Operating in 5.15-5.25 GHz band (lower-band) and 5.25-5.35 GHz band (higher-band).
	Operating in 5.47-5.725 GHz band (lower-band) and 5.725-5.85 GHz band (higher-band).
	If EUT operate in individual non-contiguous bands, bandedge testing performed at the lowest frequency channel and highest frequency channel within lower-band and higher-band. (e.g., (e.g., IEEE 802.11ac VHT160)
	Operating in 5.25-5.35 GHz band (lower-band) and 5.47-5.725 GHz band (higher-band).
	Operating in 5.15-5.25 GHz band (lower-band) and 5.725-5.85 GHz band (higher-band).
\boxtimes	For the transmitter unwanted emissions shall be measured using following options below:
	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
	Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
	Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
	Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
	Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
	Refer as FCC KDB 789033, clause H)5) measurement procedure peak limit.
	Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
\boxtimes	For the transmitter bandedge emissions shall be measured using following options below:
	Refer as FCC KDB 789033, clause G)3)d) for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).
	Refer as ANSI C63.10, clause 6.10 for band-edge testing.
	Refer as ANSI C63.10, clause 6.10.6.2 for marker-delta method for band-edge measurements.
\square	For radiated measurement, refer as ANSI C63.10, clause 6.6. Test distance is 3m.
	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements). Measurements in the bandedge are typically made at a closer distance 3m, because the instrumentation noise floor is typically close to the radiated emission limit.

3.5.4 Test Setup

3.5.5 Transmitter Radiated Bandedge Emissions (with Antenna)

Modulation Mode	N _{TX}	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
11a	1	5180	3	5147.80	66.06	74	5149.80	52.75	54	Н
11a	1	5240	3	5106.60	59.57	74	5131.20	48.23	54	Н
HT20	1	5180	3	5149.20	67.20	74	5150.00	52.90	54	Н
HT20	1	5240	3	5138.40	60.55	74	5142.60	48.43	54	Н
HT40	1	5190	3	5149.94	67.43	74	5149.94	52.52	54	Н
HT40	1	5230	3	5138.40	60.52	74	5146.80	49.04	54	Н

Modulation Mode	Ντχ	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Pol.
11a	1	5745	3	5715.00	65.22	68.20	Н
11a	1	5825	3	5864.98	61.83	68.20	Н
HT20	1	5745	3	5714.47	65.34	68.20	Н
HT20	1	5825	3	5860.15	60.83	68.20	Н
HT40	1	5755	3	5714.22	65.15	68.20	Н
HT40	1	5795	3	5868.10	61.00	68.20	Н

3.6 Transmitter Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

Unwanted emiss	sions below 1 GHz and re	stricted band emissions a	bove 1GHz limit
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300
0.490~1.705	24000/F(kHz)	33.8 - 23	30
1.705~30.0	30	29	30
30~88	100	40	3
88~216	150	43.5	3
216~960	200	46	3
Above 960	500	54	3

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

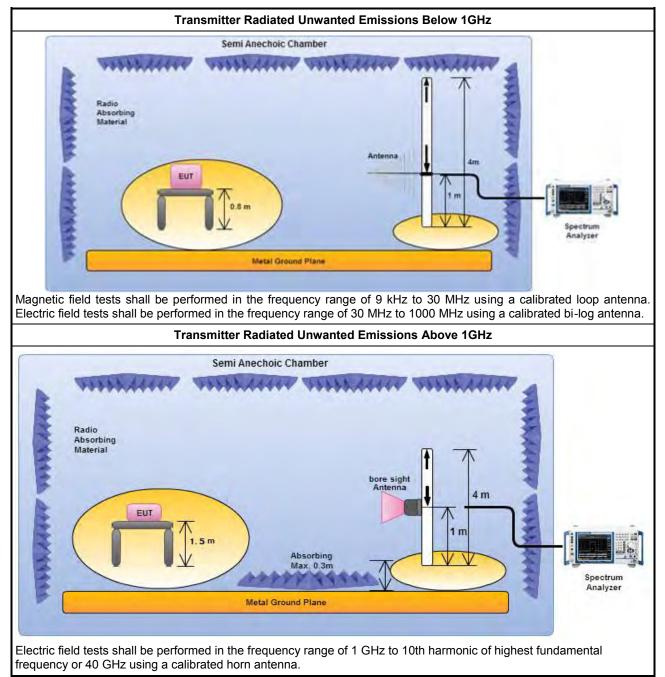
	Un-restricted band emissions above 1GHz Limit
Operating Band	Limit
5.15 - 5.25 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.25 - 5.35 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.47 - 5.725 GHz	e.i.r.p27 dBm [68.2 dBuV/m@3m]
5.725 - 5.85 GHz	5.715 5.725 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] 5.85 5.86 GHz: e.i.r.p17 dBm [78.2 dBuV/m@3m] Other un-restricted band: e.i.r.p27 dBm [68.2 dBuV/m@3m]
performed in the need in the needed	y be performed at a distance other than the limit distance provided they are not ear field and the emissions to be measured can be detected by the measuremen performing measurements at a distance other than that specified, the results sha the specified distance using an extrapolation factor of 20 dB/decade (inverse of

linear distance for field-strength measurements, inverse of linear distance-squared for power-density

3.6.2 Measuring Instruments

measurements).

Refer a test equipment and calibration data table in this test report.



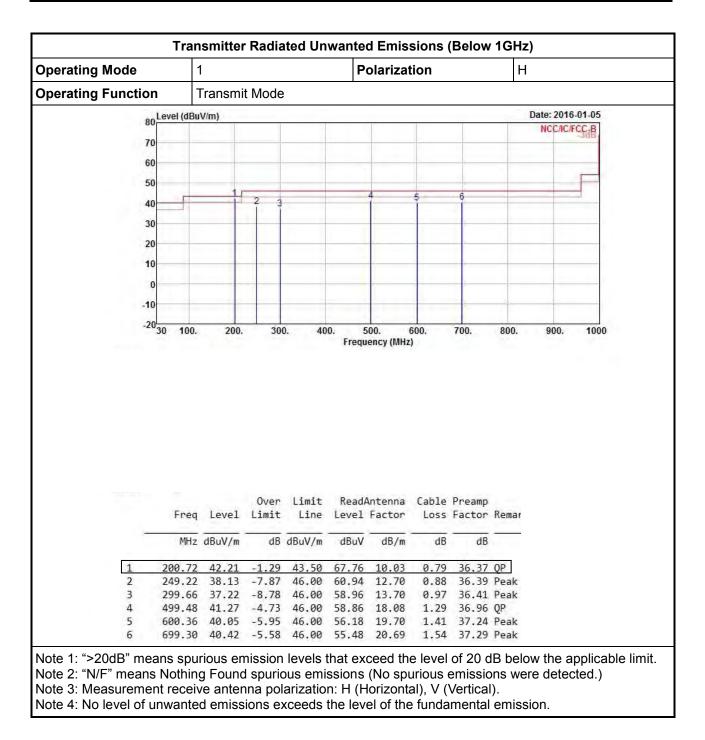
3.6.3 Test Procedures

		Test Method
	perfe equi abov are i be e dista	surements may be performed at a distance other than the limit distance provided they are not ormed in the near field and the emissions to be measured can be detected by the measurement pment. Measurements shall not be performed at a distance greater than 30 m for frequencies we 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less impractical. When performing measurements at a distance other than that specified, the results shall extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear ance for field-strength measurements, inverse of linear distance-squared for power-density isurements).
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].
\square	For	the transmitter unwanted emissions shall be measured using following options below:
	\boxtimes	Refer as FCC KDB 789033, clause G)2) for unwanted emissions into non-restricted bands.
	\boxtimes	Refer as FCC KDB 789033, clause G)1) for unwanted emissions into restricted bands.
		Refer as FCC KDB 789033, G)6) Method AD (Trace Averaging).
		Refer as FCC KDB 789033, G)6) Method VB (Reduced VBW).
		Refer as ANSI C63.10, clause 4.1.4.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.
		Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions.
		Refer as FCC KDB 789033, clause G)5) measurement procedure peak limit.
		Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
\bowtie	For	radiated measurement.
	\square	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.
		Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz. For 1 GHz to 5 GHz, test distance is 3m; For 5 GHz to 40 GHz, test distance is 3m.
\square	The	any unwanted emissions level shall not exceed the fundamental emission level.
\boxtimes		mplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value no need to be reported.

3.6.4 Test Setup

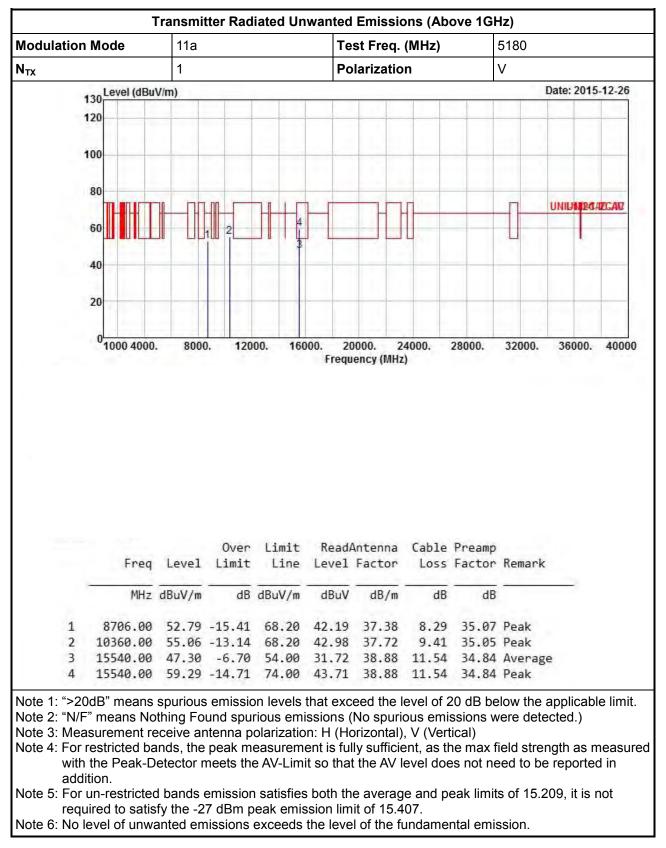
3.6.5 Transmitter Radiated Unwanted Emissions-with Antenna (Below 30MHz)

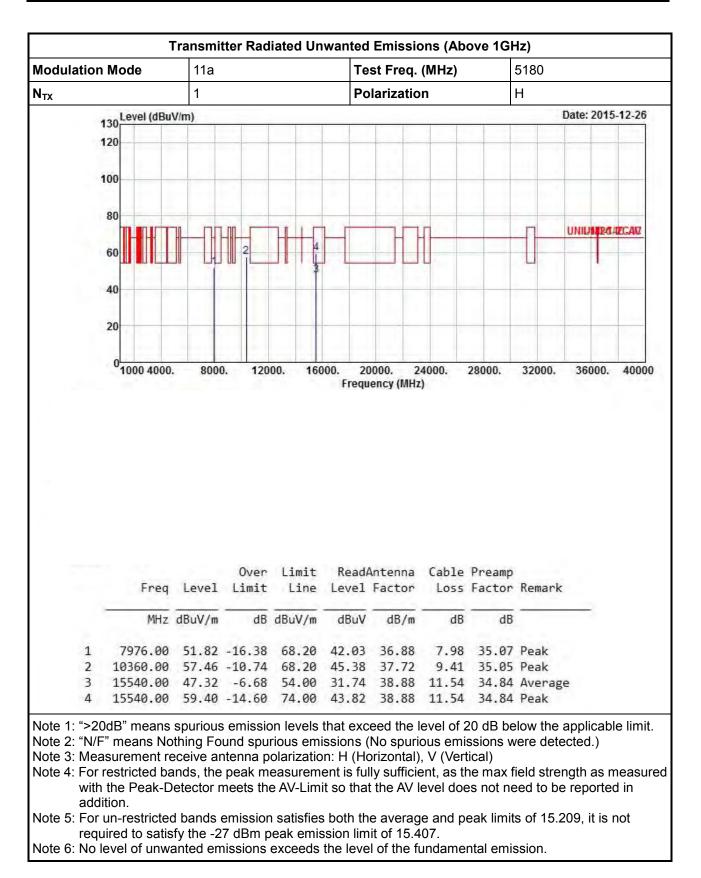
All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

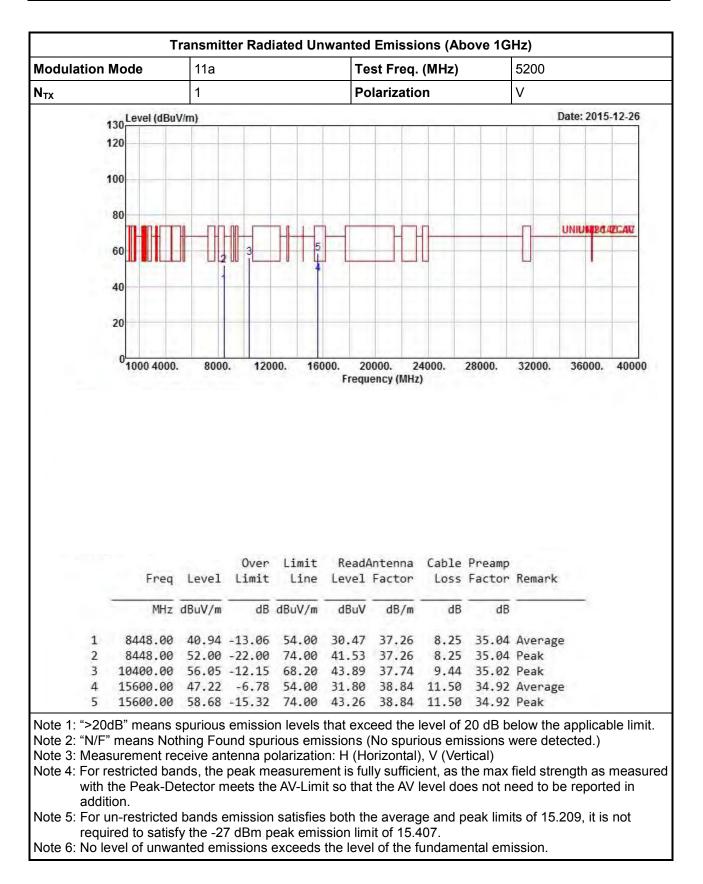


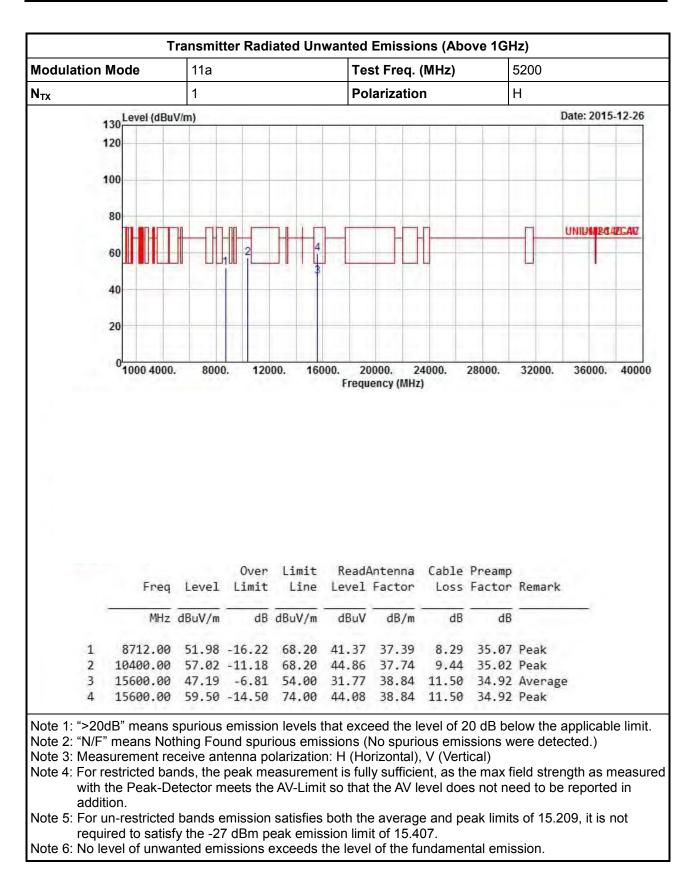
Operating Mod	е	1			P	olarizat	ion		V		
Operating Fund	ction	Transm	nit Mode	Э					1		
	80 Level (dBu	V/m)							E	ate: 201	16-01-05
	00									NCC/IC	FCC-B
	70					-					
	60					-			_		_
	50										
	50					-		1		_	_
	40	Í	3			5	6	Ť.			
	301						1	_		_	
	20										
	10						-				
	0		_				-			_	
	10									_	
	-10										
	-20 ³⁰ 100.	200.	30	0. 40		ioo. iency (MHz	1 600.)	700.	800.	900.	100
	-20 <mark>30 100.</mark>	200.	30	0. 40				700.	800.	900.	100
			Over	Limit	Frequ Read/	ency (MHz Antenna) Cable	Preamp		900.	100
		 200.	Over	Limit	Frequ Read/	iency (MHz) Cable	Preamp		900.	100
	Freq		Over Limit	Limit	Frequ Read/	Antenna Factor) Cable	Preamp		900.	100
1	Freq MHz	Level dBuV/m	Over Limit dB	Limit Line	Read/ Level dBuV	Antenna Factor dB/m) Cable Loss dB	Preamp Factor	Remark	900.	100
1 2	Freq MHz 33.88 200.72	Level dBuV/m 28.09 39.51	Over Limit dB -11.91 -3.99	Limit Line dBuV/m 40.00 43.50	Read/ Level dBuV 47.49 65.06	Antenna Factor dB/m 17.54 10.03	Cable Loss dB 0.34 0.79	Preamp Factor dB 37.28 36.37	Remark Peak Peak	900.	100
1 2 3	Freq MHz 33.88 200.72 249.22	Level dBuV/m 28.09 39.51 36.02	Over Limit 	Limit Line dBuV/m 40.00 43.50 46.00	Frequ Read/ Level dBuV 47.49 65.06 58.83	Antenna Factor dB/m 17.54 10.03 12.70) Cable Loss dB 0.34 0.79 0.88	Preamp Factor dB 37.28 36.37 36.39	Remark Peak Peak Peak Peak	900.	100
1 2 3 4	Freq MHz 33.88 200.72 249.22 499.48	Level dBuV/m 28.09 39.51 36.02 39.67	Over Limit 	Limit Line dBuV/m 40.00 43.50 46.00 46.00	Frequ Read/ Level dBuV 47.49 65.06 58.83 57.26	Antenna Factor 17.54 10.03 12.70 18.08) Cable Loss dB 0.34 0.79 0.88 1.29	Preamp Factor dB 37.28 36.37 36.39 36.96	Remark Peak Peak Peak Peak Peak	900.	100
1 2 3	Freq MHz 33.88 200.72 249.22 499.48 549.92	Level dBuV/m 28.09 39.51 36.02 39.67 34.50	Over Limit dB -11.91 -3.99 -9.98 -6.33 -11.50	Limit Line dBuV/m 40.00 43.50 46.00	Read/ Level dBuV 47.49 65.06 58.83 57.26 51.45	Antenna Factor dB/m 17.54 10.03 12.70 18.08 18.80) Cable Loss dB 0.34 0.79 0.88 1.29 1.35	Preamp Factor dB 37.28 36.37 36.39	Remark Peak Peak Peak Peak Peak Peak	900.	100

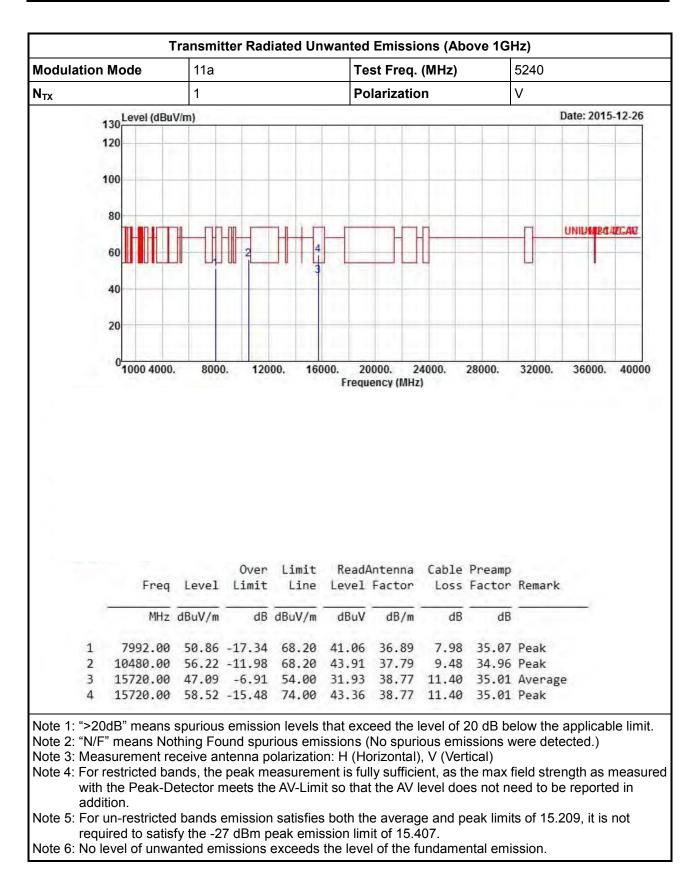
3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

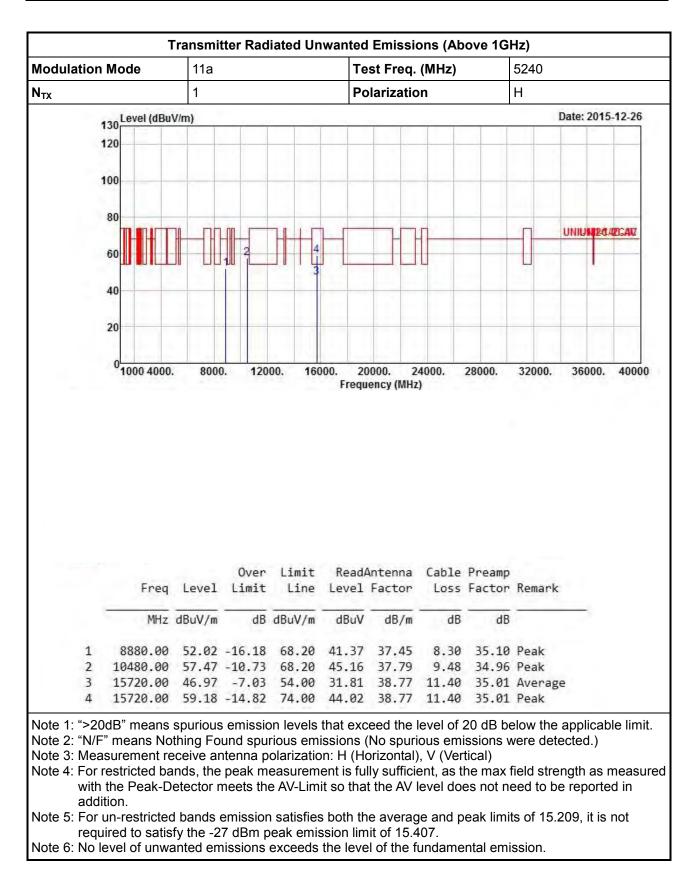


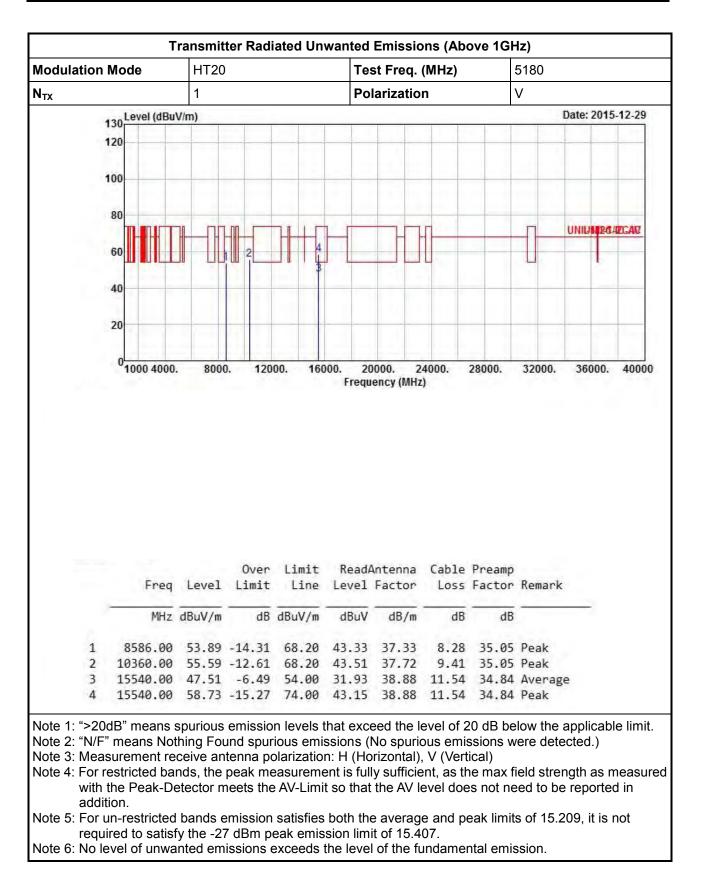


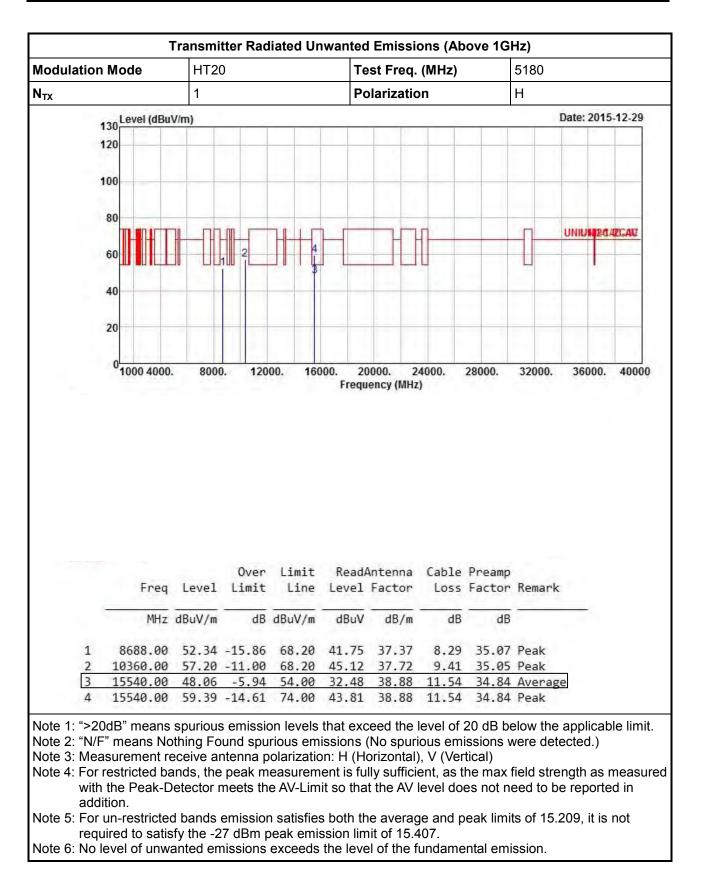

3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 5150-5250MHz

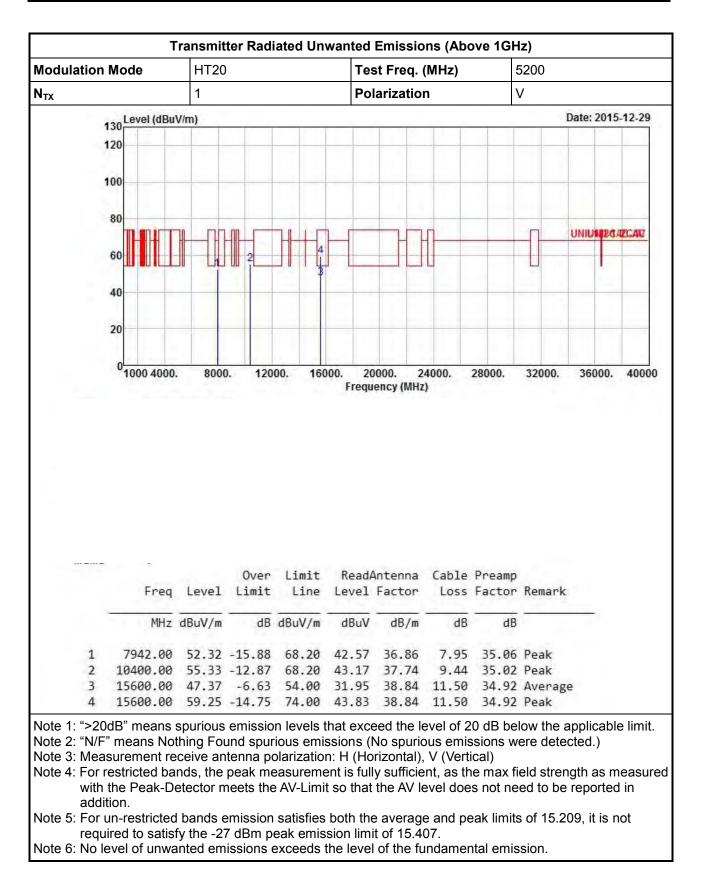


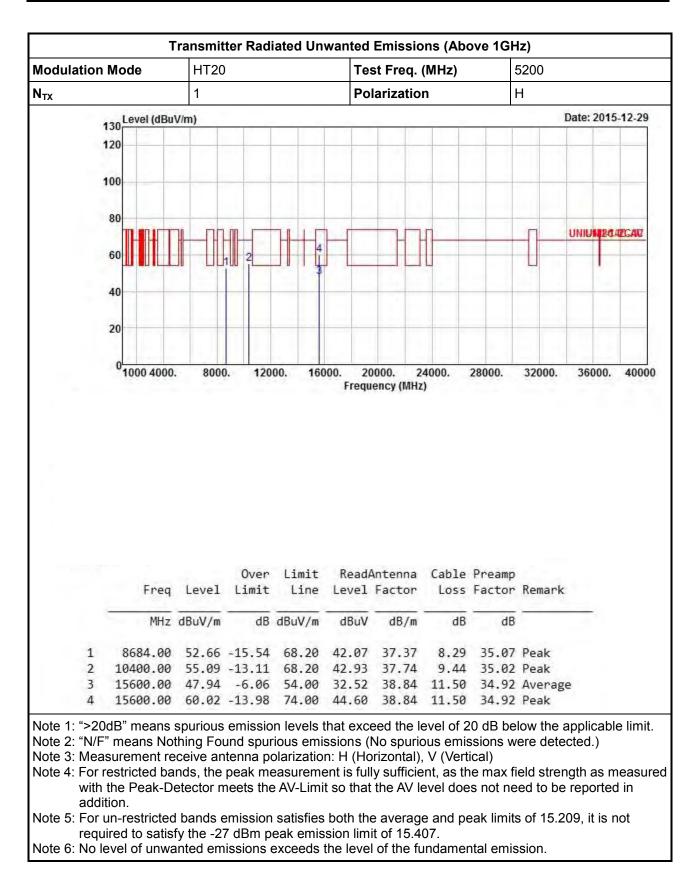


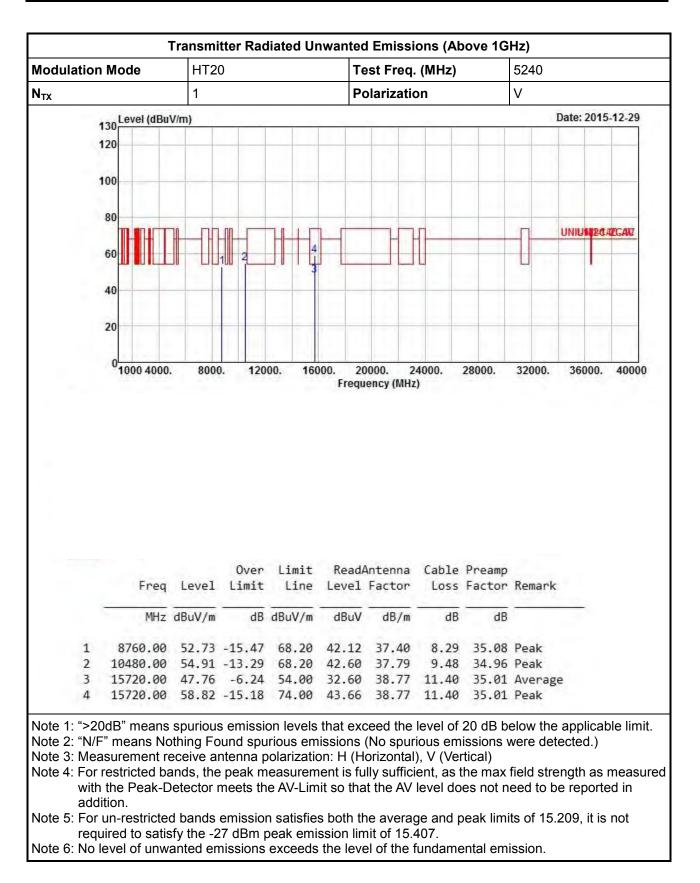


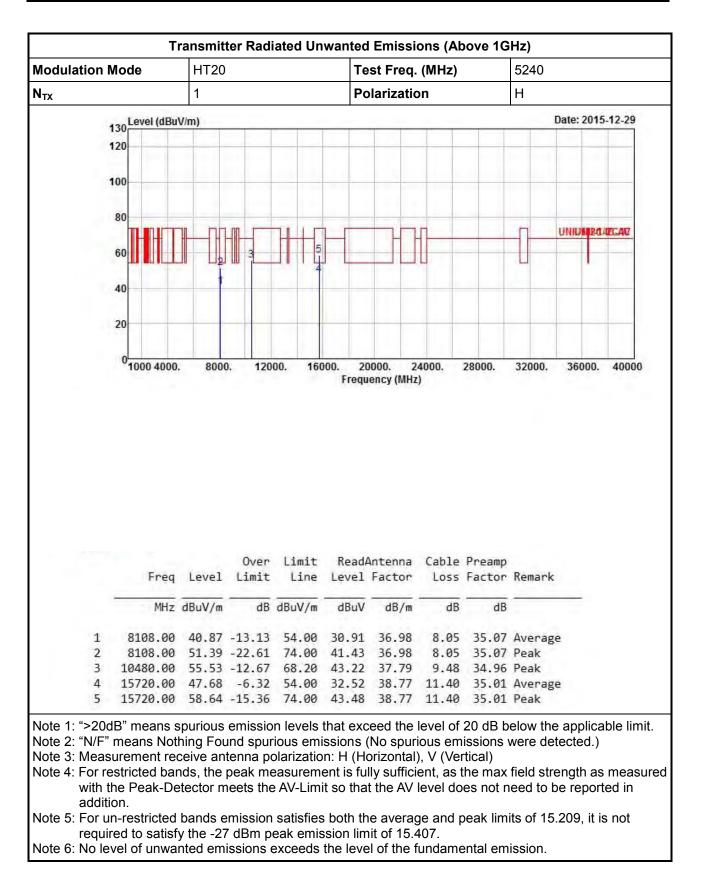


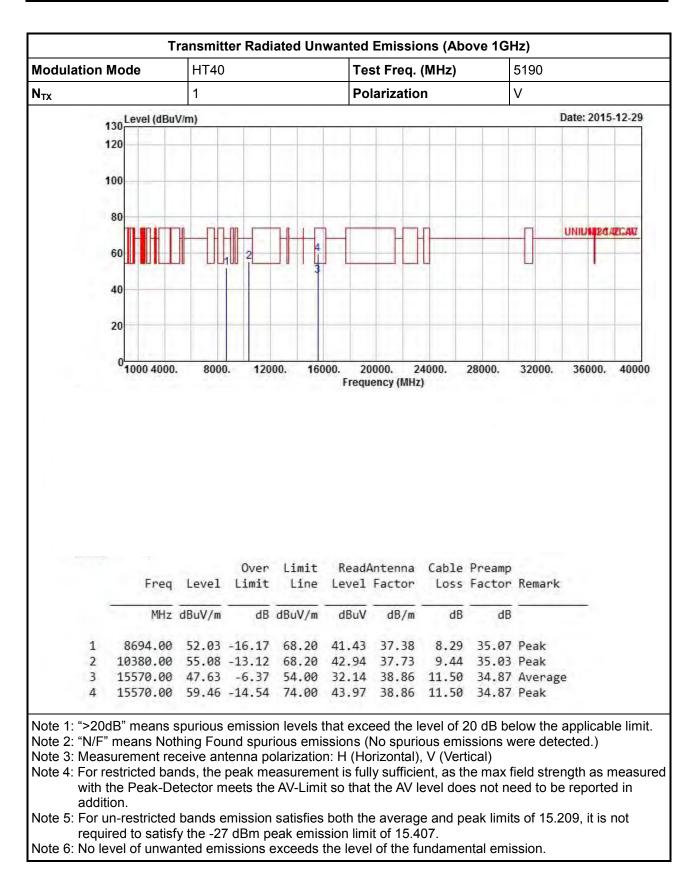


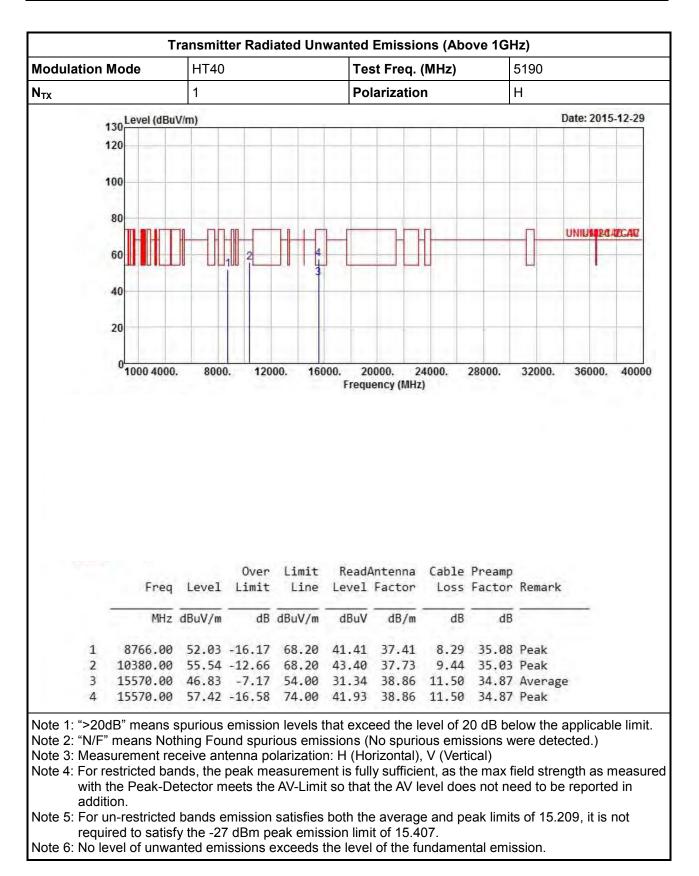


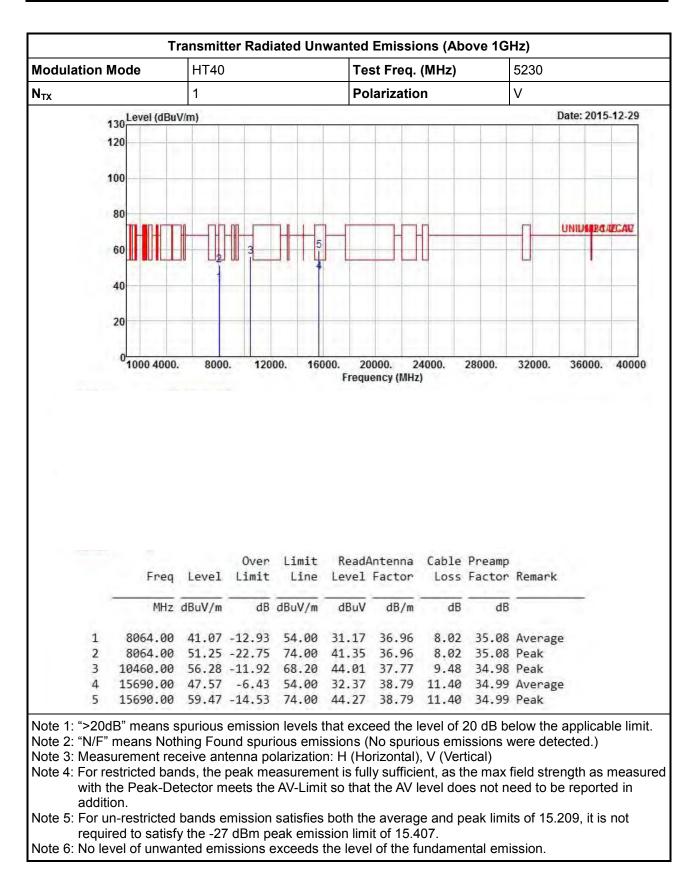


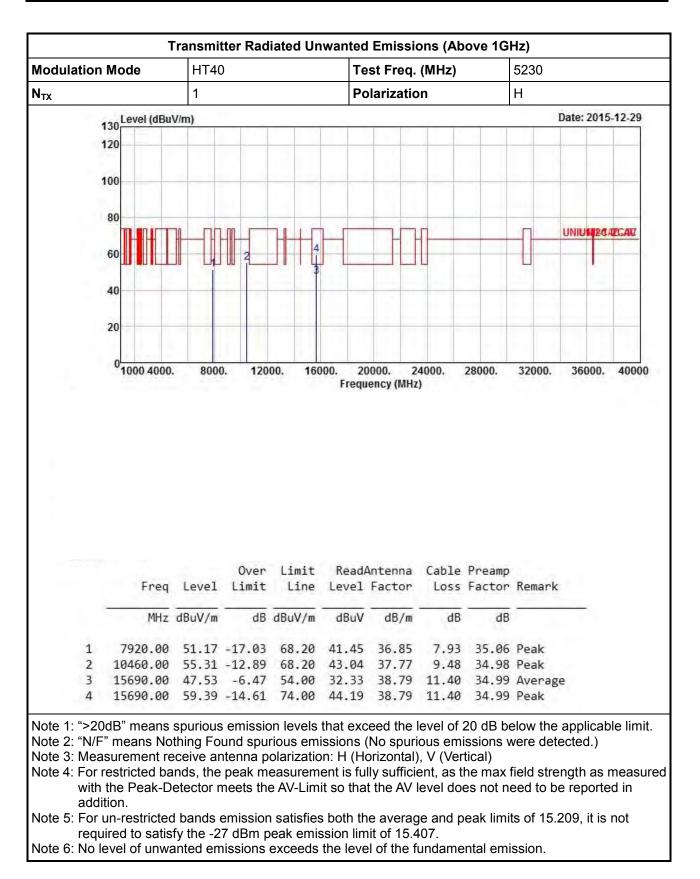


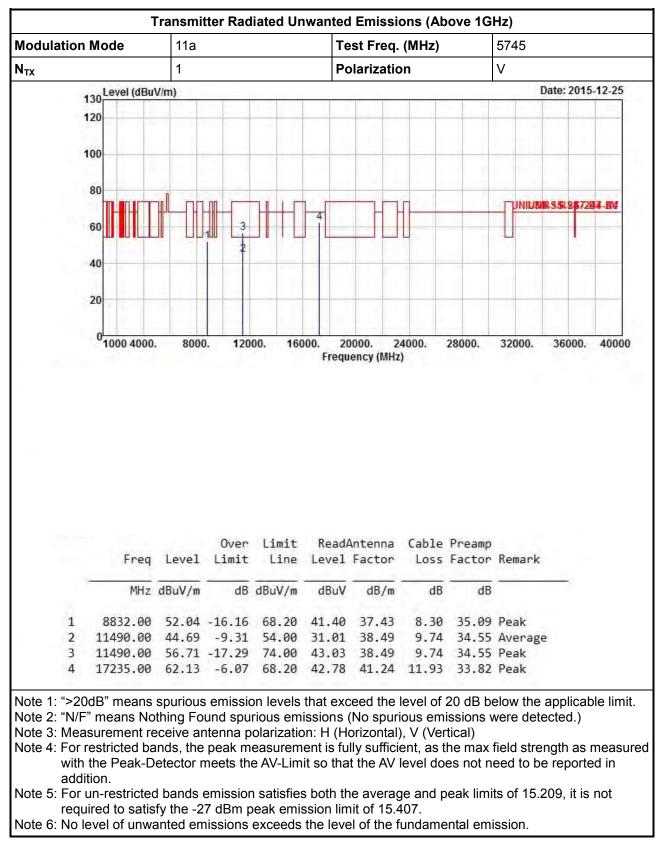


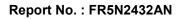


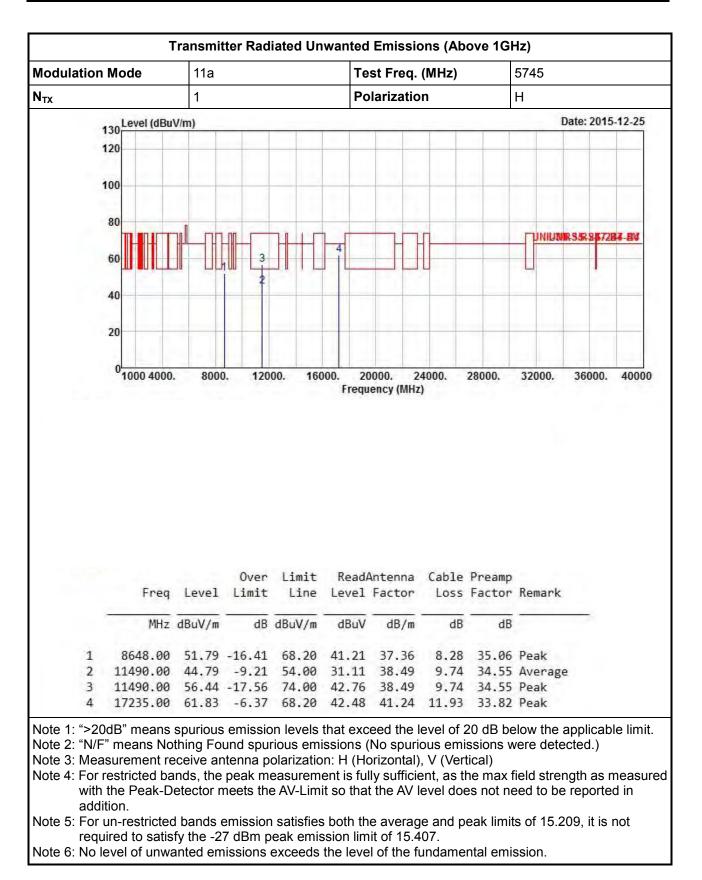




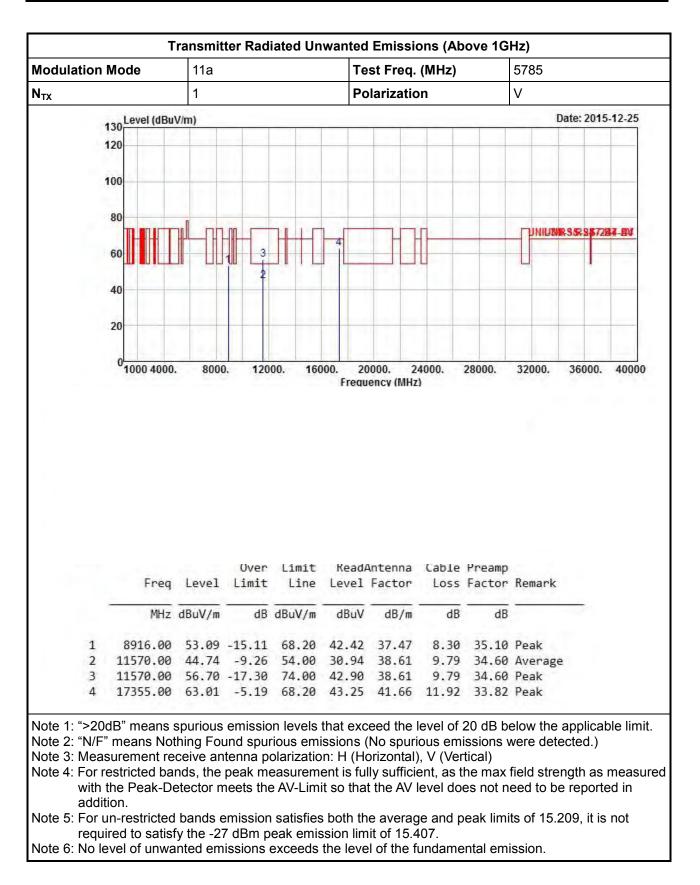


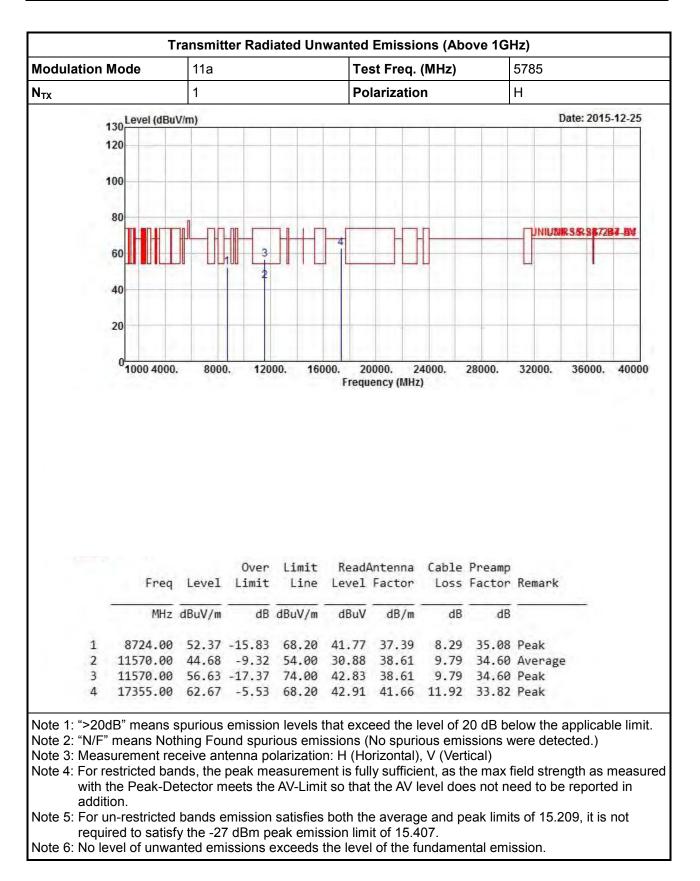


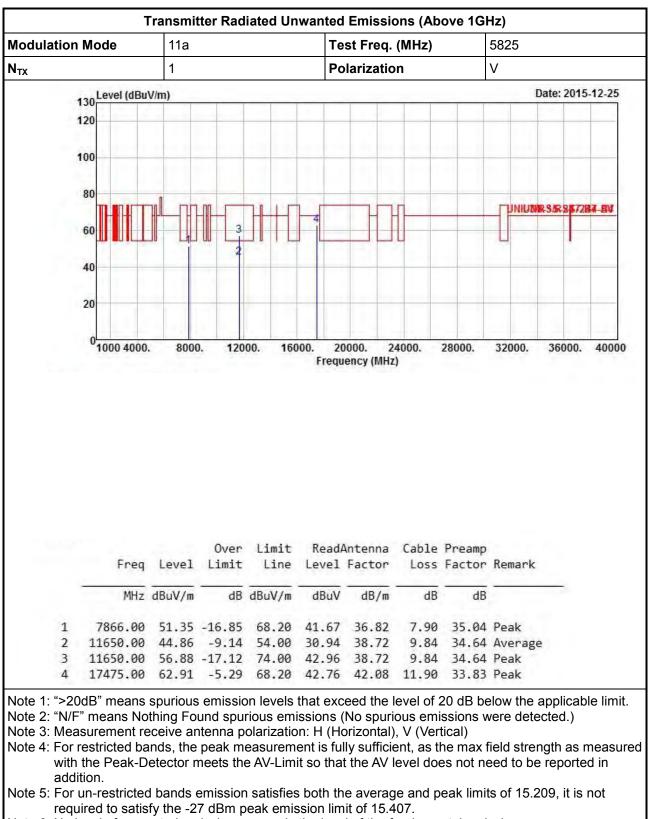


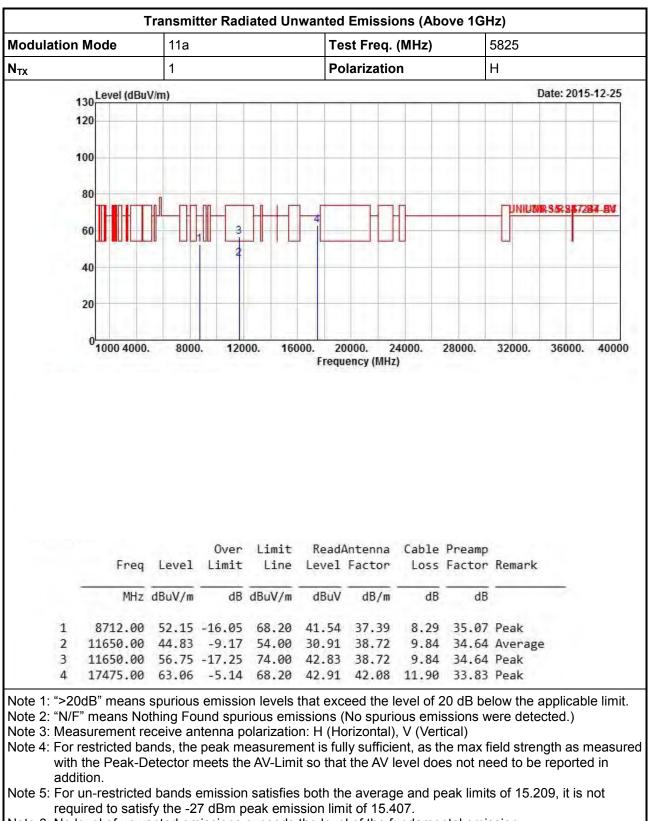


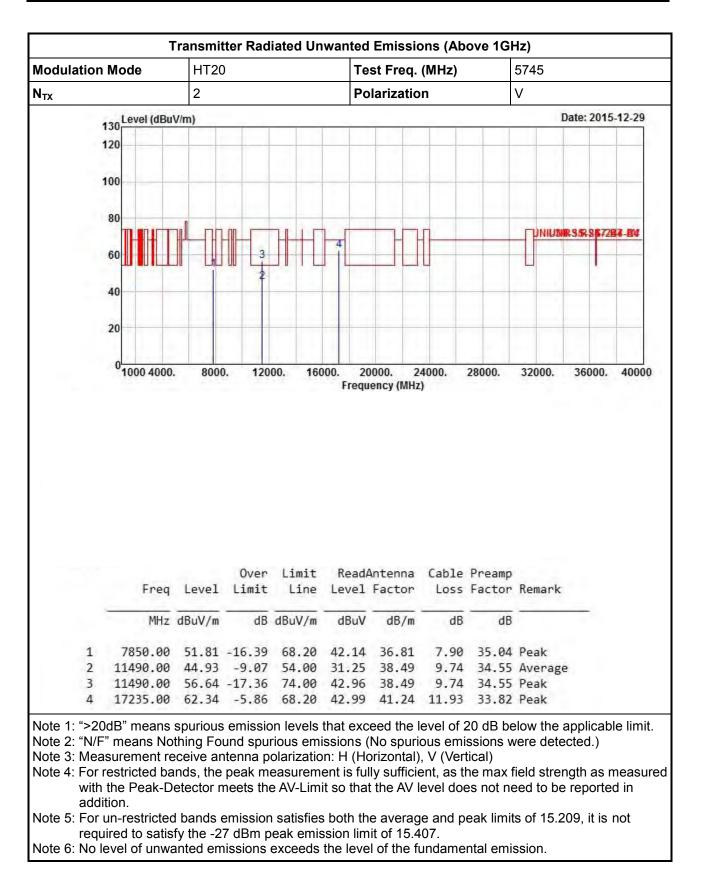
3.6.8 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 5725-5850MHz

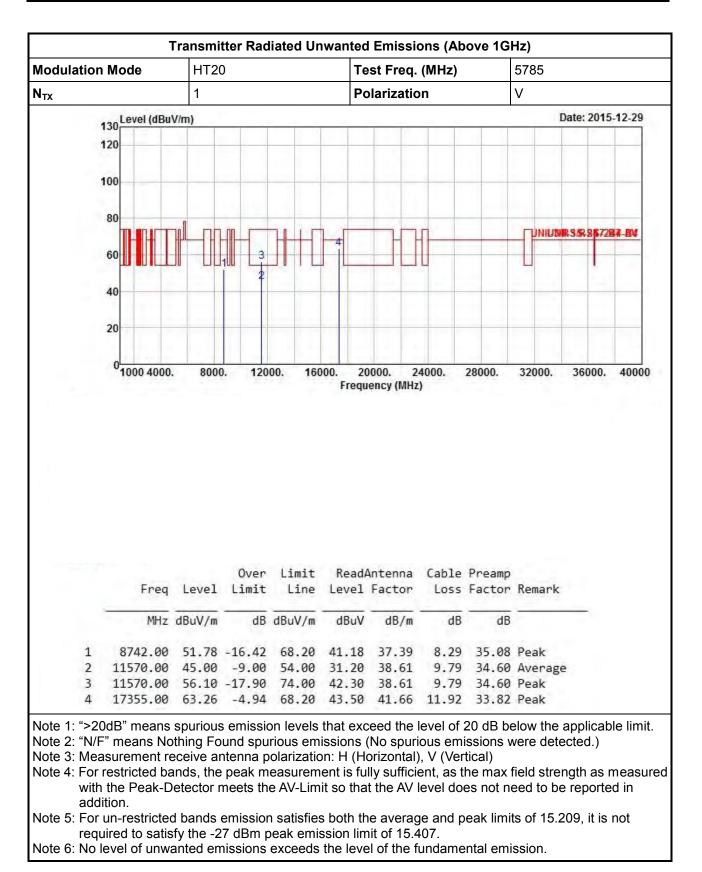


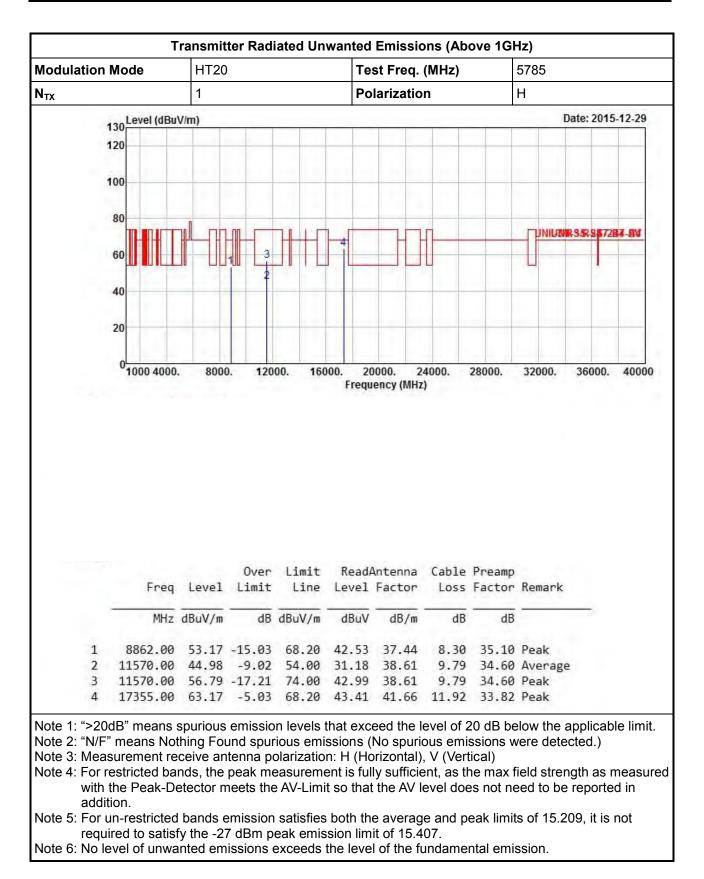


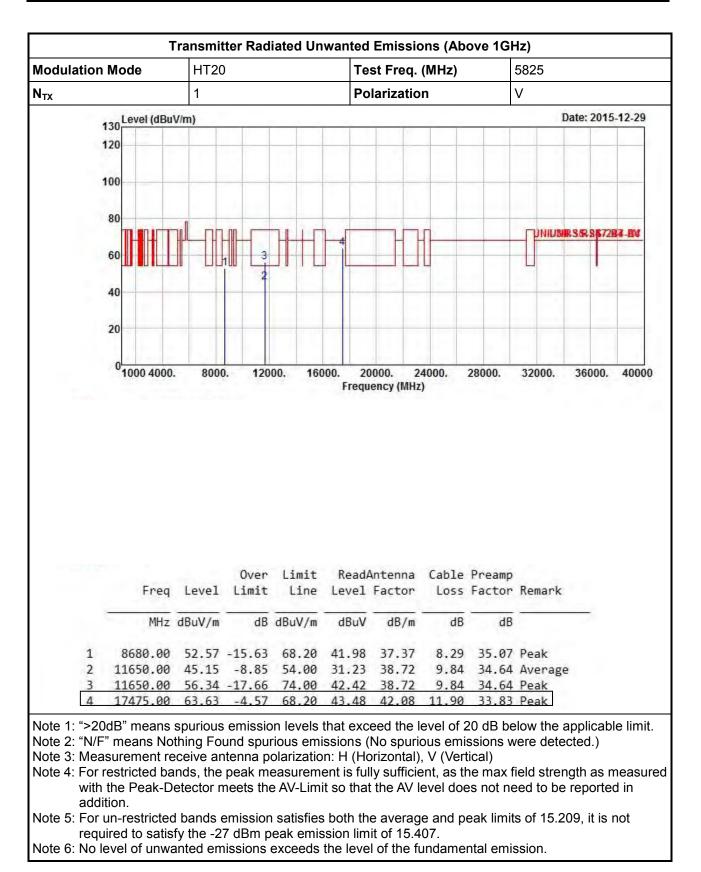


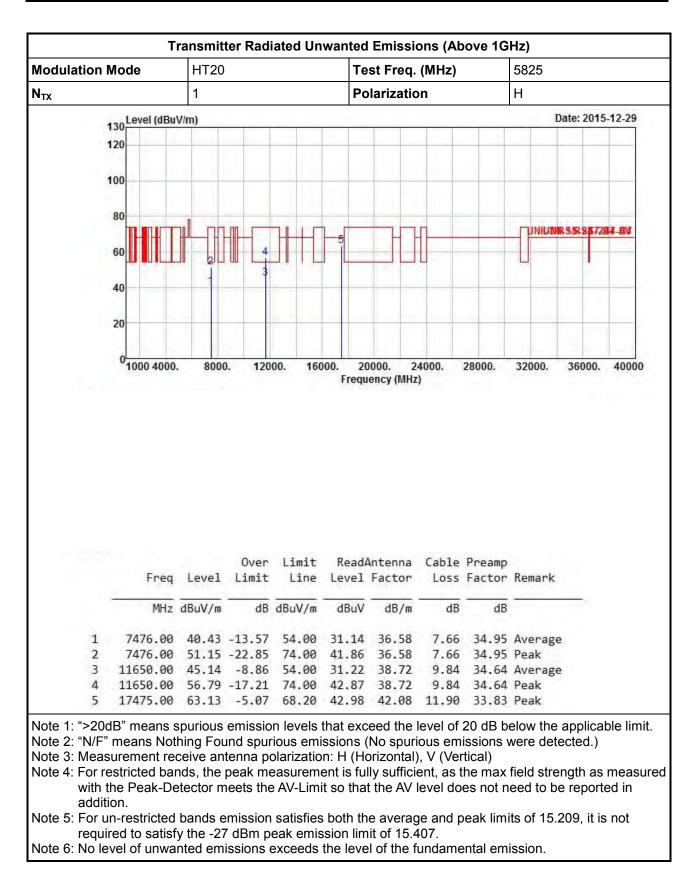


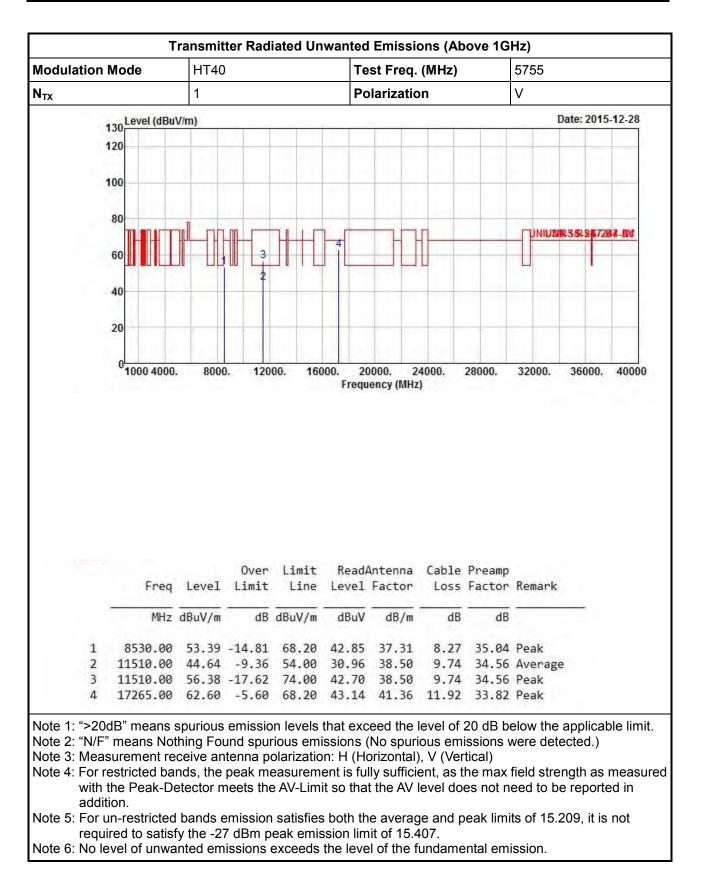


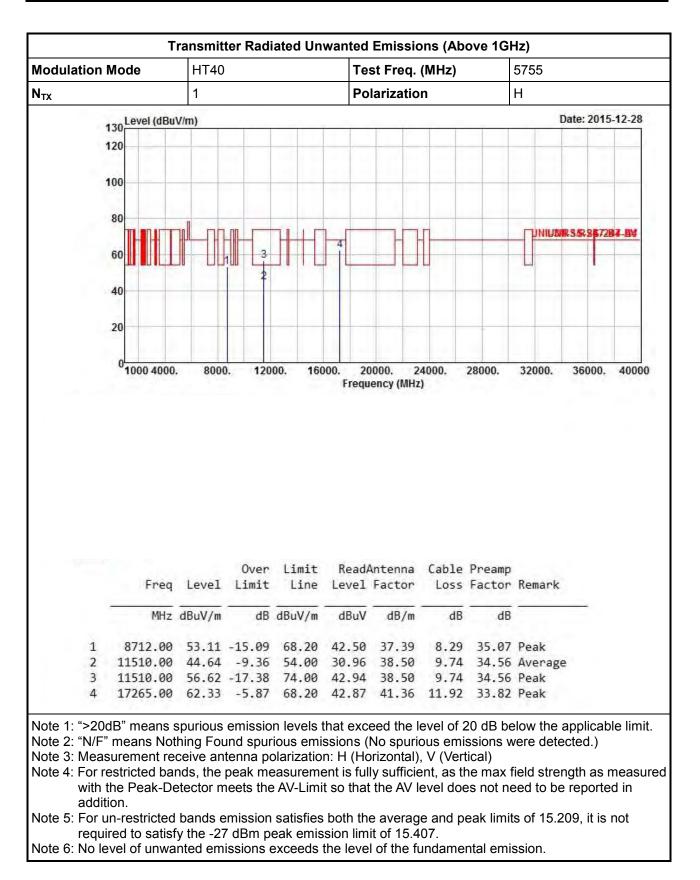


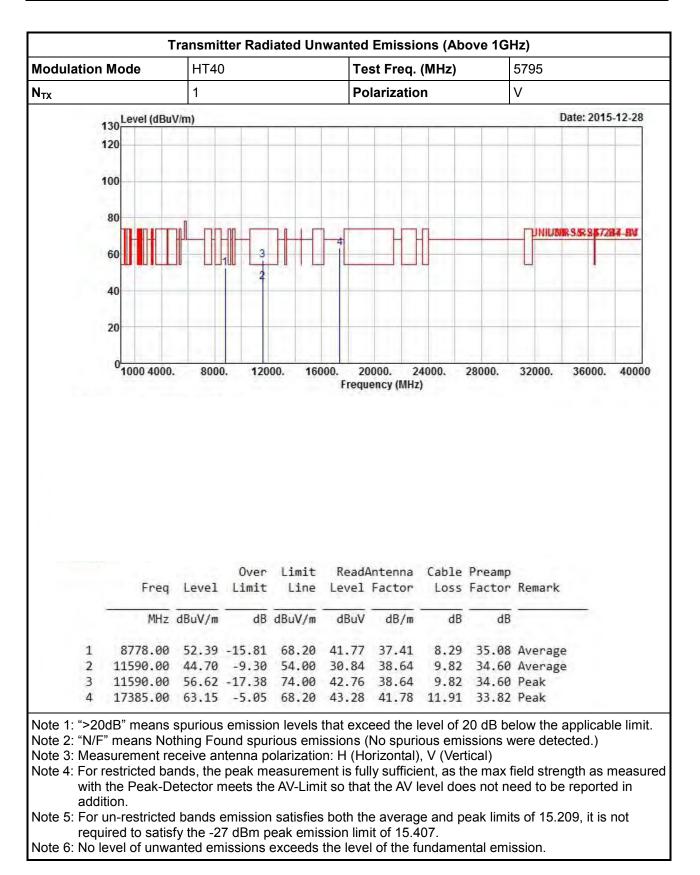


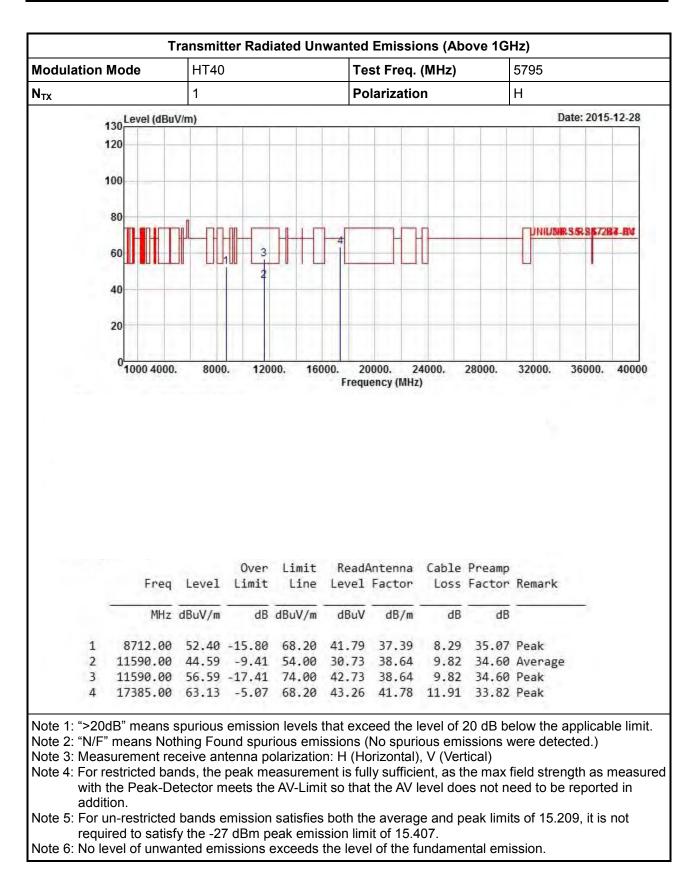








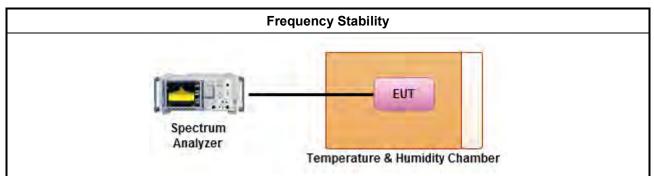




3.7 Frequency Stability

3.7.1 Frequency Stability Limit

Frequency Stability Limit						
UNII	I Devices					
	In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.					
IEEE Std. 802.11n-2009						
\boxtimes	The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band.					


3.7.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.7.3 Test Procedures

	Test Method							
\boxtimes	Refer as ANSI C63.10, clause 6.8 for frequency stability tests							
	\square	Frequency stability with respect to ambient temperature						
	\boxtimes	Frequency stability when varying supply voltage						
\square	For	conducted measurement.						
	\boxtimes	For conducted measurements on devices with multiple transmit chains: Measurements need only to be performed on one of the active transmit chains (antenna outputs)						
		radiated measurement. The equipment to be measured and the test antenna shall be oriented to in the maximum emitted power level.						

3.7.4 Test Setup

Мо	de	Frequency Stability (ppm)					
Condition	Freq. (MHz)	0 min	2 min	5 min	10 min		
T _{20°C} Vmax	5180	-7.6808	-7.7654	-7.8481	-7.9308		
T _{20°C} Vmin	5180	-7.8481	-7.9308	-8.0154	-8.1827		
T _{50°C} Vnom	5180	-5.6769	-5.5096	-5.0096	-4.2577		
T _{40°C} Vnom	5180	-7.6808	-7.5981	-7.3481	-6.5962		
T _{30°C} Vnom	5180	-8.2423	-8.0981	-8.0154	-7.9308		
T _{20°C} Vnom	5180	-7.7654	-7.8481	-7.9308	-2.8231		
T _{10°C} Vnom	5180	-4.9269	-5.2596	-5.6769	-6.0115		
$T_{0^{\circ}C}$ Vnom	5180	-3.7577	-4.0077	-4.1750	-4.2577		
T _{-10°C} Vnom	5180	-1.5019	-1.6692	-1.9212	-2.0865		
T _{-20°C} Vnom	5180	-1.7538	-1.6692	-1.4192	-1.0019		
Limit (ppm)	±20					
Res	ult	Complied					

3.7.5 Test Result of Frequency Stability

4 Test Equipment and Calibration Data

< AC Conduction >								
Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date		
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Apr. 15, 2015	Apr. 14, 2016		
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 22, 2015	Jan. 21, 2016		
RF Cable-CON	HUBER+SUHNER	RG213/U	07611832020001	9kHz ~ 30MHz	Oct. 30, 2015	Oct. 29, 2016		
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	N/A		

< RF Conducted >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Spectrum Analyzer	R&S	FSV 40	101500	9KHz~40GHz	May 06, 2015	May 05, 2016
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 28, 2015	Jul. 27, 2016
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Feb. 17, 2015	Feb. 16, 2016
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Feb. 17, 2015	Feb. 16, 2016

< Radiated Emission >

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
3m Semi Anechoic Chamber	ТDК	SAC-3M	03CH09-HY	30MHz ~ 1GHz 3m	Jul. 01, 2015	Jun. 30, 2016
3m Semi Anechoic Chamber	ТDК	SAC-3M	03CH09-HY	1GHz ~ 18GHz 3m	Jul. 01, 2015	Jun. 30, 2016
Amplifier	EMC	EMC9135	980232	9kHz ~ 1.0GHz	Jan. 27, 2015	Jan. 26, 2016
Amplifier	Agilent	8449B	3008A02096	1GHz ~ 26.5GHz	Apr. 09, 2015	Apr. 08, 2016
Spectrum	KEYSIGHT	N9010A	MY54200885	10Hz ~ 44GHz	Jul. 15, 2015	Jul. 14, 2016
Bilog Antenna	TESEQ	CBL 6112D	35418	30MHz ~ 1GHz	Mar. 30, 2015	Mar. 29, 2016
Horn Antenna	AARONIA AG	POWERLOG 70180	05192	1GHz ~ 18GHz	Jan. 05, 2015	Jan. 04, 2016
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	18GHz ~ 40GHz	Jan. 27, 2015	Jan. 26, 2016
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Jul. 23, 2015	Jul. 22, 2016
RF Cable-high	Jye Bao	RG142	03CH09-HY	1GHz ~ 40GHz	Jul. 23, 2015	Jul. 22, 2016

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Last Cal.	Calibration Due Date
Amplifier	MITEQ	JS44-18004000-33-8P	1840917	18GHz ~ 40GHz	Jun. 02, 2015	Jun. 01, 2017
Loop Antenna	ROHDE&SCHWARZ	HFH2-Z2	100330	9 kHz~30 MHz	Nov. 10, 2014	Nov. 09, 2016