

RF Test Report

For

Hankyul Marketing Co, LTD

Test Standards:	Part 15C Subpart C §15.247
Product Name:	Wireless Keyboard
Tested Model:	<u>ENK100A</u>
FCC ID:	2BA8D-ENK100A
Classification	(DTS) Digital Transmission System
Report No.:	EC2305033RF04
Tested Date:	2023-05-17 to 2023-06-13
Issued Date:	<u>2023-06-13</u>
Prepared By:	Jack Liu / Engineer
Approved By:	Timy Young
	Tiny Yang / RF Manager
Hu	inan Ecloud Testing Technology Co., Ltd.
• •	na E Center, No. 18 Xiangtai Avenue, Liuyang Economic and
Tech	nological Development Zone, Hunan, P.R.C
Tel.:	: +86-731-89634887 Fax.: +86-731-89634887

Hunan Ecloud Testing Technology Co., Ltd., the test report shall not be reproduced except in full.

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	2023.06.13	Valid	Original Report

TABLE OF CONTENTS

1.	TEST		5
	1.1	Test facility	5
2.	GEN	ERAL DESCRIPTION	6
	0.4	Applicant	c
	2.1	Applicant	
	2.2	Manufacturer	
	2.3	General Description Of EUT	
	2.4	Modification of EUT	
	2.5		
3.	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	8
	3.1	Descriptions of Test Mode	8
	3.2	Test Mode	8
	3.3	Support Equipment	9
	3.4	Test Setup	9
	3.5	Measurement Results Explanation Example	.12
4.	TEST	RESULT	.13
	4.1	6dB and 99% Bandwidth Measurement	.13
	4.2	Peak Output Power Measurement	.14
	4.3	Power Spectral Density Measurement	15
	4.4	Conducted Band Edges and Spurious Emission Measurement	16
	4.5	Radiated Band Edges and Spurious Emission Measurement	.17
	4.6	AC Conducted Emission Measurement	.41
	4.7	Antenna Requirements	43
5.	LIST	OF MEASURING EQUIPMENT	.44
6.	UNC	ERTAINTY OF EVALUATION	.46
۸D		IX A: DTS BANDWIDTH	47
AP	PEND	IX B: OCCUPIED CHANNEL BANDWIDTH	.50
AP	PEND	IX C: MAXIMUM CONDUCTED OUTPUT POWER & E.I.R.P.	53
AP	PEND	IX D: MAXIMUM POWER SPECTRAL DENSITY	56
AP	PEND	IX E: BAND EDGE MEASUREMENTS	59
AP	PEND	IX F: CONDUCTED SPURIOUS EMISSION	61
AP	PEND	IX G: SETUP PHOTOGRAPHS	67

Summary of Test RESULT

FCC Rule	Description	Limit	Result	Remark
15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	Test Engineer: Luo Xiang
-	99% Bandwidth	-	Pass	Test Engineer: Luo Xiang
15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	Test Engineer: Luo Xiang
15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	Test Engineer: Luo Xiang
15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	Test Engineer: Luo Xiang
15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.59 dB at 7440 MHz
15.207	AC Conducted Emission	Not Required	-	-
15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-

1. Test Laboratory

1.1 Test facility

CNAS (accreditation number:L11138)

Hunan Ecloud Testing Technology Co., Ltd. has obtained the accreditation of China National Accreditation

Service for Conformity Assessment (CNAS).

FCC (Designation number:CN1244, Test Firm Registration

Number:793308)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

ISED(CAB identifier: CN0012, ISED# :24347)

Hunan Ecloud Testing Technology Co., Ltd. has been listed on the Wireless Device Testing Laboratories list of

innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements.

A2LA (Certificate Number:4895.01)

Hunan Ecloud Testing Technology Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

2. General Description

2.1 Applicant

Hankyul Marketing Co, LTD

9-5 bamgogaero27gil, gangnamgu, seoul, south korea

2.2 Manufacturer

Dongguan Lingjie Electronics & Technology Co., Ltd

Building 3, No.23 Zhenxing North Road, Xiegang Town, Dongguan City, Guangdong Province, China

- - -

2.3	General Description Of EUI	

Product	Wireless Keyboard
Model No.	ENK100A
Additional No.	N/A
Difference Description	N/A
FCC ID	2BA8D-ENK100A
Power Supply	3.0Vdc (dry battery)
Modulation Technology	BLE
Modulation Type	GFSK
Operating Frequency	2402MHz~2480MHz
Number Of Channel	40
Max. Output Power	-1.8 dBm (0.0007 W)
Antenna Type	PCB Antenna type with 2.34dBi gain
HW Version	V1.0
SW Version	V1.0
Sample no.	2305033R-1/2~2/2
Sample Received Date	2023/05/17
I/O Ports	Refer to user's manual

NOTE:

- 1. The above EUT information is declared by manufacturer. The laboratory is not responsible for the information provided by the manufacturer.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in

2.4 Modification of EUT

No modifications are made to the EUT during all test items.

2.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013
- KDB 558074 D01 15.247 Meas Guidance v05r02

Remark:

1. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

3. Test Configuration of Equipment Under Test

3.1 Descriptions of Test Mode

The transmitter has a maximum peak conducted output power as follows:

Channel	Frequency	Mode	Bluetooth RF Output Power(dBm)
Ch00	2402MHz	GFSK	-1.8 dBm
Ch19	2440MHz	GFSK	-2.0 dBm
Ch39	2480MHz	GFSK	-1.97 dBm

a. Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

3.2 Test Mode

3.2.1 Antenna Port Conducted Measurement

	Summary table of Test Cases		
Test Item	Data Rate / Modulation		
Test item	Bluetooth 5.0 – LE GFSK		
Conducted	Mode 1: CH00_2402 MHz		
Test Cases	Mode 2: CH19_2440 MHz		
Test Cases	Mode 3: CH39_2480 MHz		

3.2.2 Radiated Emission Test (Below 1GHz)

Radiated	Bluetooth 5.0 – LE GFSK
Test Cases	Mode 1: CH39_2480 MHz

Note : 1. Pre-Scan has been conducted to determine the worst-case mode from all possible

combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna

diversity architecture) and packet type. Z orientation was worst-case orientation; therefore, all

final radiated testing was performed with the EUT in Z orientation.

2. Following channel(s) was (were) selected for the final test as listed above

3.2.3 Radiated Emission Test (Above 1GHz)

Radiated	Bluetooth 5.0 – LE GFSK
Test Cases	Mode 1: CH00_2402 MHz
Test Cases	Mode 2: CH19_2440 MHz

Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2BA8D-ENK100A www.hn-ecloud.com Tel.:+86-731-89634887 Fax.: +86-731-89634887

Mode 3: CH39_2480 MHz

Note : 1. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

- 2. Following channel(s) was (were) selected for the final test as listed above
- 3. For frequency above 18GHz, the measured value is much lower than the limit, therefore, it is not reflected in the report.

3.2.4 Power Line Conducted Emission Test:

Not Required

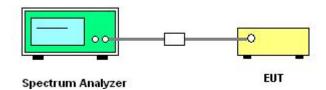
3.3 Support Equipment

Manufacturer	Description	Model	Serial Number	Certificate
Lenovo	Notebook	E470C	N/A	FCC sDoC

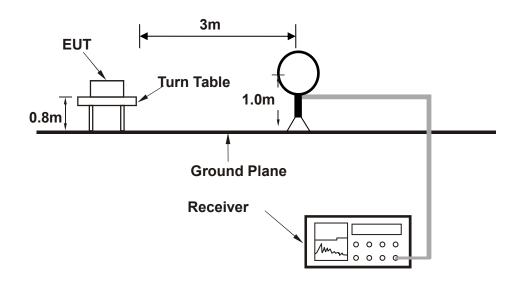
3.4 Test Setup

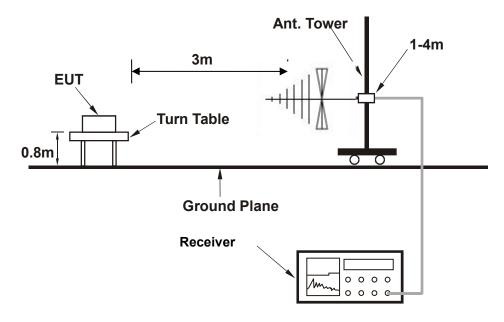
The EUT is continuously communicating to the Bluetooth tester during the tests.

EUT was set in the Hidden menu mode to enable BT communications.

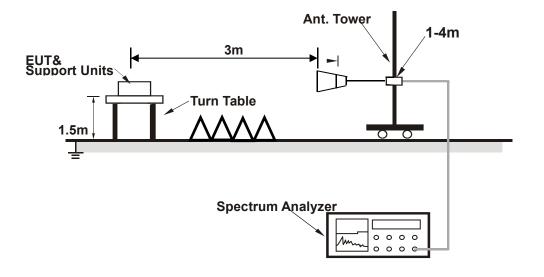

The following picture is a screenshot of the test software

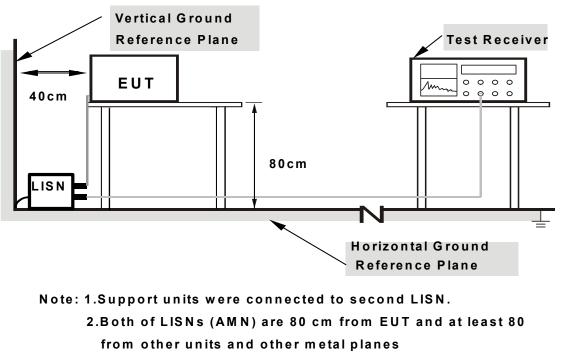
IC类型: /	SW TEST Freq 2 TX Power 0 C AFH 0 S Hopping Bl	COMM COM1 RX C DateType PacketType DateRate PacketLen Z JPN (TE	SINNAV - Enter NUL - Con 1Mbps -	Test mode fig	
				*	


Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2BA8D-ENK100A www.hn-ecloud.com Tel.:+86-731-89634887 Fax.: +86-731-89634887


Setup diagram for Conducted Test

Setup diagram for Radiation(9KHz~30MHz) Test


Setup diagram for Radiation(Below 1G) Test


Building A1, Changsha E Center, No. 18 Xiangtai Avenue, Liuyang Economic and Technological Development Zone, Hunan, P.R.C FCC ID : 2BA8D-ENK100A www.hn-ecloud.com Tel.:+86-731-89634887 Fax.: +86-731-89634887

Setup diagram for Radiation (Above1G) Test

Setup diagram for AC Conducted Emission Test

3.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 5 + 10 = 15 (dB)

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Over Limit (dB μ V/m) = Level(dB μ V/m) - Limit Level (dB μ V/m)

4. Test Result

4.1 6dB and 99% Bandwidth Measurement

4.1.1 Limit of 6dB and 99% Bandwidth

FCC §15.247 (a) (2)

The minimum 6 dB bandwidth shall be at least 500 kHz.

4.1.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Set to the maximum power setting and enable the EUT transmit continuously
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 43kHz and set the Video bandwidth (VBW) = 130kHz.

4.1.3 Test Result of 6dB Bandwidth

Refer to Appendix A of this test report.

4.1.4 Test Result of 99% Bandwidth

Refer to Appendix B of this test report.

4.2 Peak Output Power Measurement

4.2.1 Limit of Peak Output Power

FCC §15.247 (b)(3)

For systems using digital modulation in the 2400-2483.5 MHz bands: 30dBm.

4.2.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to spectrum analyzer.
- 3. Set to the maximum power setting and enable the EUT transmit continuously
- Set the RBW≥DTS Bandwidth,VBW≥3*RBW,Span≥1.5*DTS Bandwidth,Detector=Peak,Sweep time=auto couple,Trace mode=max holde.
- 5. Allow trace to fully stabilize, Use peak marker function to determine the peak amplitude level.
- 6. Measure the conducted output power

4.2.3 Test Result of Peak Output Power

Refer to Appendix C of this test report.

4.3 Power Spectral Density Measurement

4.3.1 Limits of Power Spectral Density

FCC§15.247(e)

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

4.3.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 4. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 5. Measure and record the results in the test report.
- 6. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

4.3.3 Test Result of Power Spectral Density

Refer to Appendix D of this test report.

4.4 Conducted Band Edges and Spurious Emission Measurement

4.4.1 Limit of Conducted Band Edges and Spurious Emission

FCC §15.247 (d)

Maximum conducted (average) output power was used to determine compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e., 20 dBc).

4.4.2 Test Procedures

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Turn on the EUT and connect it to measurement instrument.
- 3. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 4. Measure and record the results in the test report.
- 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

4.4.3 Test Result of Conducted Band Edges

Refer to Appendix E of this test report.

4.4.4 Test Result of Conducted Spurious Emission

Refer to Appendix F of this test report.

4.5 Radiated Band Edges and Spurious Emission Measurement

4.5.1 Limit of Radiated Band Edges and Spurious Emission

FCC §15.247 (d)

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

4.5.2 Test Procedures

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The measurement distance is 3 meter.
- 3. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW RBW; Sweep = auto;
 Detector function = peak; Trace = max hold for peak
 - (3) For average measurement:
 VBW = 10 Hz, when duty cycle is no less than 98 percent.
 VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Settir
Bluetooth 5.0 - LE	78.15	2.79	0.36	1KHz
Center Freq	2.40200000 GHz PRO: Fast → Trig DV IFGainLow → Trig: Vi #Atten: f Offset 7 87 dB f 15.00 dBm 0.00000 GHz tz #VBW 8.0 MH 1.000000 GHz 2.790 ms (0.012) 2.790 ms (0.0	20 dB 20 dB 20 dB ΔMkr 20 dB 20 dB ΔMkr 3Δ1 3Δ1 4 vg Type: RMS 20 dB ΔMkr 3Δ1 4 vg Type: RMS 20 dB ΔMkr 4 vg Type: RMS 20 dB 20	Control wave Control wave Co	
MSG	III-	STATUS		

level for the tested mode of operation.

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

4.5.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

t Mode :	BLE CH	00 (2402 1	MHz)		Tempe	rature :	21~:	23 ℃
t Engineer :	Jack Liu				Relativ	e Humidi	ty: 63~	65%
quencey Rang	e 2.3GHz	~2.405GH	Z		Polariz	ation :	Hori	zontal
Data: 99							0002	00.00
110 Level	(dBuV/m)						Date: 2023	-00-00
100								
								Â
80						FCC F	PART15C F	-BOR
60								11
40	1		10 a		2 A	A	Law Burger	
			Warney Construction			and and a short of the second		
20				5	- 6			
02300 2	310.	2330.		2350. quency (MI	2370 Hz)	L.	2390.	2405
Freq	level	Antenna factor	Cable loss	Preamp factor	level	Limit level	limit	Remark
MHz	dBuV	dB/m	dB	dB	dBuV/m		dB	
2310.000 2361.530	48.85	27.22	4.35	35.85	44.57	74.00	-29.43	Peak
2390.000 2401.850	40.67 94.10	27.28 27.30	4.46	35.93 35.97	36.48 89.94	74.00 74.00	-37.52 15.94	

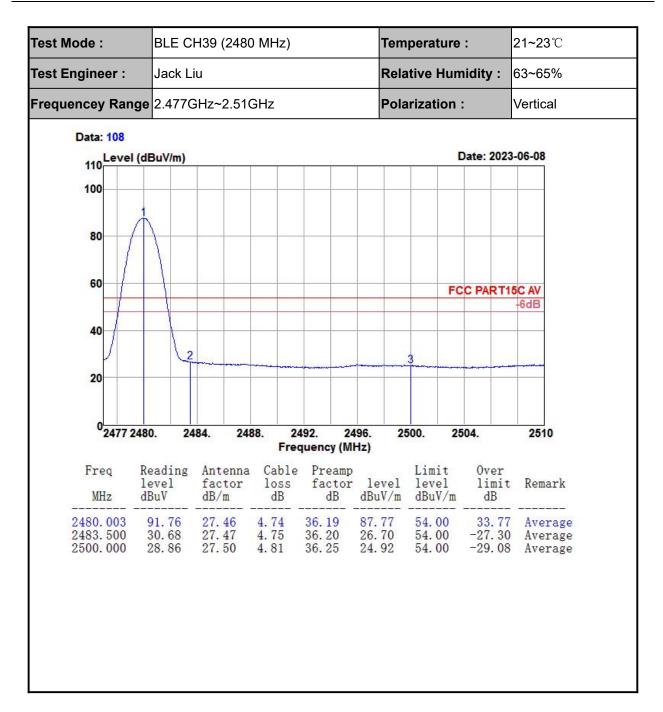
4.5.4 Test Result of Radiated Spurious at Band Edges

st Mode :	BLE CH	00 (2402	MHz)		Tempe	erature :	21~	23 ℃
st Engineer :	Jack Liu	I			Relativ	ve Humidi	i ty : 63~	65%
equencey Rang	je 2.3GHz	~2.405GH	Z		Polariz	zation :	Hor	izontal
Data: 100 110	(dBuV/m)					E	Date: 2023	-06-08
100		0		61				
80								3
60						FC	C PART15	IC AV
40								
20	1	<u></u>					-2	
⁰ 2300 2	310.	2330.		2350. quency (MI	2370 Hz)	D.	2390.	2405
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB		level	Limit level dBuV/m	Over limit dB	Remark
2310.000 2390.000 2402.060	28.25 28.24 84.21	27.12 27.28 27.30	4.46	35.93	23.82 24.05 80.05	54.00 54.00 54.00	-30.18 -29.95 26.05	Average Average Average

fest Mode :	BLE CHO	00 (2402 M	Hz)		Tempera	ture :	21~23	°C
fest Engineer :	Jack Liu				Relative	Humidity	: 63~65	%
Frequencey Rang	e 2.3GHz~	2.405GHz			Polarizat	ion :	Vertica	I
Data: 96								
Level	(dBuV/m)					D	ate: 2023-	-06-08
110								
100								
								4
80				_		FCC P	ART15C P	EAK
								-6dB
60								+
40	1 minut	مروا وروا والمروانية والمروانية والمروانية	e stores descense des	and water date	America	2	- Bren when	/
5								
20	_							
633								
0								
02300 2	2310.	2330.		2350. Juency (M	2370 Hz)		2390.	2405
Freq		Antenna		Preamp		Limit	0ver	
MHz	level dBuV	factor dB/m	loss dB	factor dB	level dBuV/m		limit dB	Remark
2310 000	41 84	27 12	4 15	35 70	37 41	74 00	-36 59	Peak
2310.000 2384.000	46.39	27.12	4.44	35.70 35.91	37.41 42.19	74.00	-36.59 -31.81	Peak
	46.39 41.42	27.27 27.28	4.44	35.91 35.93	42.19 37.23	74.00 74.00	-31.81 -36.77	Peak Peak

Mode :	BLE C	H00 (2402	2 MHz)		Temp	erature :	2	2 1~23 ℃
Engineer :	Jack L	iu			Relat	ive Humic	dity: 6	3~65%
uencey Ra	nge 2.3GH	z~2.405G	Hz		Polar	ization :	\ \	/ertical
Data: 97	l (dBuV/m)				•	r	Date: 202	23-06-08
110								
80								3
								\wedge
60						FC	CPART	15C AV -6dB
40		- 2						
20							_2	
0 2300	2310.	2330.		2350.	2370).	2390.	2405
				quency (MI				Sala Agentia
Freq MHz	Reading level dBuV	Antenna factor dB/m		Preamp factor dB	level	Limit level dBuV/m	Over limi dB	
2310.000	28.30 28.12 82.71	27.12 27.28 27.30	4.46	35.70 35.93 35.97	23.93	54.00 54.00 54.00	-30.1 -30.0 24.5	3 Average 7 Average 5 Average

st Mode :	BLE CH	139 (2480 I	MHz)		Temper	ature :	21~2	3 ℃
st Engineer :	Jack Liu	ı			Relativ	e Humidity	y : 63~6	5%
equencey Ran	ge 2.477G	Hz~2.51GI	Ηz		Polariza	ation :	Horiz	ontal
Data: 104	(dBuV/m)					C)ate: 2023	-06-08
100	1		2					
80						FCC P	ART15C F	EAK
60	2	3						Jub
40		March March	the work the second as	when the second		4 gudanticessian	A	and had a stand as a st
20								
024772	2480. 24	184. 248		192. 24 quency (MI		500. 25	04.	2510
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limit dB	Remark
2479.475 2483.500	95.68 54.67 54.44 41.42	27.46 27.47 27.47 27.50	4.74 4.75 4.76 4.81	36. 19 36. 20 36. 20 36. 25	91.69 50.69 50.47 37.48	74.00	17.69 -23.31 -23.53 -36.52	Peak Peak



Mode :	BLE CH3	89 (2480 N	1Hz)		Tempe	rature :	21~2	23 ℃
Engineer :	Jack Liu				Relativ	e Humidi	ty: 63~6	65%
quencey Range	2.477GH	z~2.51GH	z		Polariz	ation :	Hori	zontal
Data: 105								
110 Level (dBuV/m)			1		1	Date: 2023	-06-08
100								
80								
80								
60						FC	C PARTI	
					15 6			-6dB
40								
	2							
20		manne						
20								
⁰ 2477 24	80. 24	84. 248		492. 24 quency (MI		500. 2	504.	2510
Freq	Reading	Antenna	Cable	Preamp		Limit	0ver	
	level dBuV	factor dB/m	loss dB	factor dB		level dBuV/m		Remark
2480.003	95.15		4.74	36.19	91.16		37.16	Average
2483.500 2500.000	32.31 28.82	27.47 27.50	4.75 4.81	36.20 36.25	28.33 24.88	54.00 54.00	-25.67 -29.12	Average Average

BLE CH	39 (2480 N	/Hz)		Tempe	rature :	21~:	23 ℃
Jack Liu				Relativ	e Humidit	a y : 63∼0	65%
e 2.477GH	lz~2.51Gŀ	Ηz		Polariz	ation :	Vert	ical
							00.00
(dBuv/m)						Jale. 2023	-00-08
		1.5				1.54	
					F 200 F		TAK.
			-		FCC F	ARTISC H	-6dB
							Cab
12							
	Mars-unnan	ALBAN MILLING PARAMETER	where a second	an and an	4 mondeman	- Anna	witherserver
		and the second					
			0				· []
480. 24	84. 24				500. 25	604.	2510
Reading level dBuV	Antenna factor dB/m	Cable loss dB		level	Limit level dBuV/m	Over limit dB	Remark
92.28 52.37 52.76	27.47	4.74 4.75 4.75 4.81	36.20	88. 29 48. 39 48. 78 38. 27	74.00 74.00	14. 29 -25. 61 -25. 22 -35. 73	Peak Peak
	dBuV/m) (dBu	Jack Liu e 2.477GHz~2.51GH (dBuV/m) 1 2 2 480. 2480. 2480. 2480. 2484. Reading level dBuV dBuV g2.28 27.46	e 2.477GHz~2.51GHz (dBuV/m) 1 2 480. 2484. 2488. 24 Free Reading Antenna Cable level factor loss dBuV dB/m dB 92. 28 27. 46 4. 74	dBuV/m) (dBuV/m	Jack Liu Relativ e 2.477GHz~2.51GHz Polariz (dBuV/m)	Jack Liu e 2.477GHz~2.51GHz (dBuV/m) (dBuV/m) (dBuV/m) FCC F CC F Polarization : FCC F FCC F A A A A A A A A A A A A A A A A A A A	Jack Liu Relative Humidity : 63~d e 2.477GHz~2.51GHz Polarization : Vert (dBuV/m) Date: 2023 1 0 FCC PART15C F 2 0 FCC PART15C F 2 0 0 FCC PART15C F 2 0 0 0 0 2 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 2 0 <th0< th=""> 0 <th0< th=""> <th0< th=""> <th0< td=""></th0<></th0<></th0<></th0<>

4.5.5 Test Result of Radiated Spurious Emission (1GHz ~ 10th Harmonic)

Engineer : Ja quencey Range 1 Data: 101 110	ack Liu GHz~3GHz			Relativ Polariz	e Humidi ation :	-	5% zontal
Data: 101	GHz~3GHz			Polariz	ation :	Horiz	zontal
110	//m)	74		20	ſ	Date: 2023-	06- <mark>0</mark> 8
100							
80				0	1		
					FCC F	PART15C P	EAK -6dB
60					FC	C PART15	C AV
40							
20	dystelletenhalserenetenseren 100. 1500. 1	700. 19	00. 2100. Juency (MH	. 2300.	2500.	2700.	3000
	ing Antenna l factor dB/m		Preamp factor	level	Limit level dBuV/m	Over limit dB	Remark
2402.000 93.	76 27.30	4.51	35.97	89.60	74.00	15.60	Peak

est Mode :	BLE	CH00 (24	02 MHz)		Tem	perature		21~23 ℃
est Engineer :	Jack	Liu			Rela	tive Hum	idity :	63~65%
requencey Ra	i nge 3GHz	z~18GHz			Pola	rization :		Horizontal
Data: 118 110 Level	(dBuV/m)		1	T	Γ	I	Date: 20	23-06- <mark>0</mark> 8
100			_					
80						FCC F	PART150	-6dB
60	10 ¹	4		6		FC	C PART	-6dB
40	2	3		5				
20								
0 <mark>3000</mark>	60	00. 8		10000. quency (M	12000. Hz)	14000.	16000.	18000
Freq MHz	Reading level dBuV	Antenn factor dB/m		Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limi dB	
4804.000 4804.000 7206.000 7206.000 9608.000 9608.000	26. 39 41. 18 24. 58 38. 40 27. 52 40. 37	30. 93 30. 93 35. 39 35. 39 38. 39 38. 39 38. 39	6. 44 6. 44 8. 61 8. 61 11. 69 11. 69	34. 12 34. 12 34. 39 34. 39 34. 14 34. 14	29. 64 44. 43 34. 19 48. 01 43. 46 56. 31	54.0074.0054.0074.0054.0074.0074.00	-29.5 -19.8 -25.9 -10.5	9 Peak

st Mode :	BLE C	H00 (2402	MHz)		Tempe	rature :	21~2	3 °C
st Engineer :	Jack L	iu			Relativ	e Humidit	y : 63~6	5%
equencey Ran	je 1GHz~	·3GHz			Polariz	ation :	Vertic	al
Data: 98 110	dBuV/m)					c	Date: 2023-	06-08
100							20	
80						FCCF	ART15C P	FAK
								-6dB
60						FC	C PART15	
			0			0.2		-6dB
40 million	ndennedense-hane	un an	napendermanna	ifenetistredistred	biden nation of a poli	d him in the	(durch dessays) dessays on the	
0 <mark>-</mark> 1000	1300.	1500. 1		900. 210 quency (M		2500.	2700.	3000
64 (1574) 1	Reading level dBuV	Antenna factor dB/m	loss		level	Limit level dBuV/m		Remark
MHz								

est Mode :		BLE CH	100 (2402	2 MHz)		Tempe	erature :		21~23℃ 63~65% Vertical		
est Enginee	er:	Jack Li	u			Relativ	/e Humidi	ty :			
equencey	Range	3GHz~	18GHz			Polariz	zation :				
Data: 1 110		BuV/m)					E	Date: 2	2023-06-08		
100						5 -					
80							FCC F	PART1	5C PEAK -6dB		
60			4		6		FC		RT15C AV		
40		2	3		5						
20											
030	000	600	0. 80		0000. quency (Mi	2000. Hz)	14000.	1600	0. 1800	0	
Freq MHz	1	eading evel BuV	Antenna factor dB/m		Preamp factor dB	level dBuV/m		Ove lin dE	nit Rem	ark	
4804. 0 4804. 0 7206. 0 7206. 0 9608. 0 9608. 0	00 00 00 00	26. 34 40. 22 24. 63 38. 52 28. 63 39. 57	30. 93 35. 39 35. 39 38. 39	6.44 8.61	34. 12 34. 12 34. 39 34. 39 34. 14 34. 14 34. 14	29. 59 43. 47 34. 24 48. 13 44. 57 55. 51	74.00 54.00	-30. -19. -25. -9.	41 Ave 53 Pea 76 Ave 87 Pea 43 Ave 49 Pea	k rage k rage	

st Mode :	BLE C	CH19 (244)	0 MHz)		Temp	erature :		21~23 ℃	
st Engineer :	Jack L	.iu			Relat	ive Humi	dity :	63~65%	
equencey Ra	nge 1GHz	~3GHz			Polar	ization :		Horizontal	
Data: 103 110 100 80	(dBuV/m)					1	Date: 20	23-06-08	
60								-6dB	
40	ng-Maniputanhadahaan	Withought Martine	manakalampa	harmentannal	alevezhian mentanda	. Mundan	hangeline	-6dB	
20									
0 <mark>-1000</mark>	1300.	1500. 1		00. 2100 quency (Mi		2500.	2700.	3000	
Freq MHz	Reading level dBuV	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level	Limit level dBuV/m	Over limi dB		
				36.08				13 Peak	

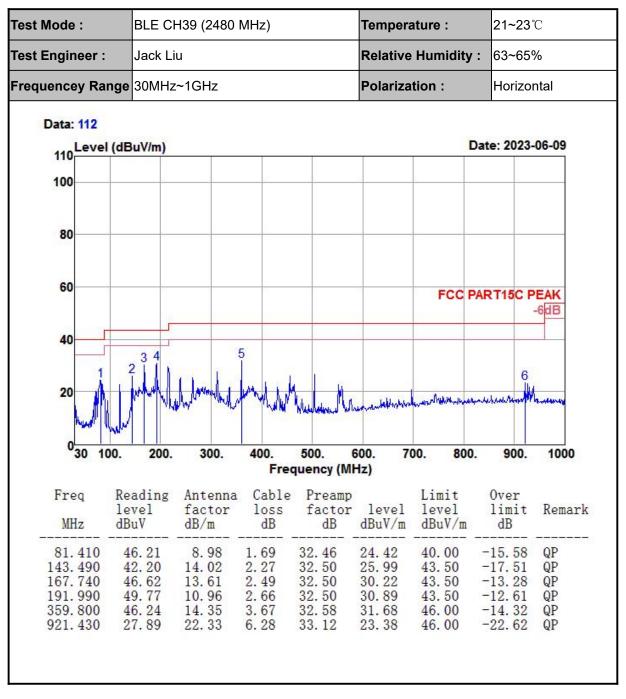
t Mode :	BLE C	H19 (244	0 MHz)		Temp	perature :		21~23℃ 63~65% Horizontal	
t Engineer :	Jack L	.iu			Relat	tive Humi	dity :		
quencey Range	3GHz	~18GHz			Pola	rization :			
Data: 117 110	BuV/m)					r	Date: 20	23-06-08	
110 100				12					
80						FCC F	ART150		
60		4		6		FC		-6dB	
40	2	3		5			_	-000	
20	- K								
	600	0. 80		0000. 1 quency (Mi	2000. 1z)	14000.	16000.	18000	
03000	000				1. S				
3000 Freq Re le		Antenna factor dB/m		Preamp factor dB	level dBuV/m	Limit level dBuV/m	Over limi dB		

st Mode :	BLE C	H19 (2440) MHz)		Tempe	erature :	21~2	21~23℃		
st Engineer :	Jack L	iu			Relativ	ve Humidi	ty : 63~6	63~65%		
equencey Range	1GHz~	~3GHz		Polariz	zation :	Vert	ical			
Data: 102	BuV/m)						Date: 2023	-06-08		
110										
80								-		
00						FCC	PART15C	the second se		
			22				-5	-6dB		
60						FC	C PARTI	SC AV		
-								-6dB		
40 Minthe holes and	uhununteuhuhu	moundancearthing	taxing	Administration	anter an anti-	an MU la water souther	manufation	persona		
20			1.54							
01000	1300.	1500. 1		900. 2100 quency (M		2500.	2700.	3000		
le	adi <mark>n</mark> g evel BuV		loss	factor	level	Limit level dBuV/m		Remark		
							16.68	12111		

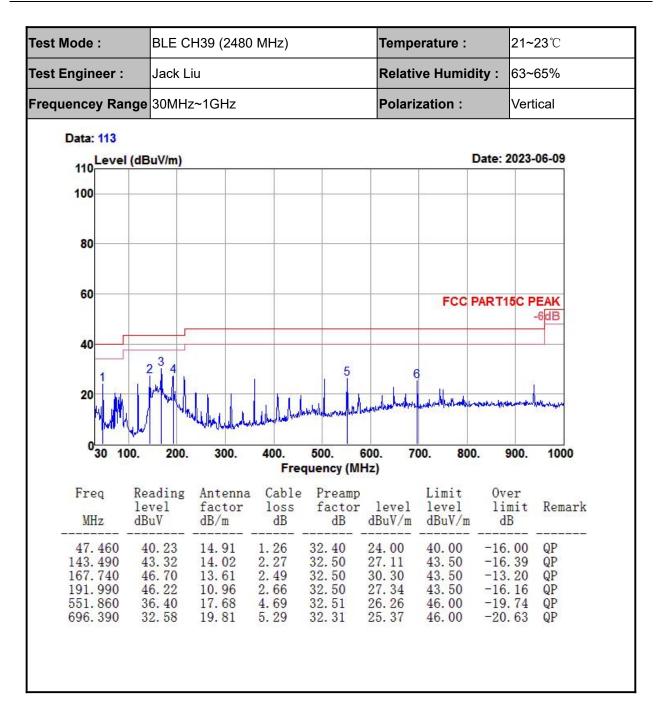
est Mode :	BLE C	CH19 (244	40 MHz)		Temp	perature :		21~23 ℃	
est Engineer :	Jack I	_iu			Relat	ive Humi	dity :	63~65%	
requencey Rang	je 3GHz	~18GHz			Polar	rization :		Vertical	
Data: 116									
110 Level (d	BuV/m)						Date: 20	23-06-08	
100									
80						5001		DEAK	
						FCCF	PART150	-6dB	
60				6		FC			
40	2	4		5				-6dB	
40	1	3							
20					-	0.25			
03000	600	00. 8		0000. quency (N	12000. IHz)	14000.	16000.	. 18000	
1	eading evel BuV	Antenn factor dB/m			level dBuV/m	Limit level dBuV/m	Over limi dB		
	24.38 41.85	31.03 31.03	7.01 7.01	34. 03 34. 03	28.39 45.86	54.00 74.00		51 Average 4 Peak	
7320.000 7320.000	25. 43 38. 87	35.67 35.67	8.97 8.97	34. 49 34. 49	35.58 49.02	54.00 74.00	-18.4 -24.9	12 Average 98 Peak	
	27.68 39.37	38.51 38.51	11.16 11.16	34. 20 34. 20	43. 15 54. 84	54.00 74.00	-10.8 -19.1		

st Mode :	BLE C	CH39 (248	0 MHz)		Tem	perature	:	21~23 ℃	
st Engineer :	Jack I	_iu			Rela	ative Hun	nidity :	63~65%	
equencey Range	3 1GHz	~3GHz			Pola	arization	:	Horizontal	
Data: 106 110 Level (dE	3uV/m)						Date: 2023	3-06-08	
100						1			
80						FCC I	PART15C	PEAK -6dB	
60	-					FC	C PARTI		
40	undhanamut	an and a standard and	above the commentations	monthickness		million when and	hattereneral		
20									
0 <mark></mark>	1300.	1500. 1		900. 2100 quency (Mi		2500.	2700.	3000	
le	ading vel uV	Antenna factor dB/m	loss	factor	level	Limit level dBuV/m		Remark	
							17.60		

est Mode :	BLE C	H39 (2	BLE CH39 (2480 MHz)						Temperature :				
est Engine	er :											63~65% Horizontal	
requencey	Range												
Data: 1	111												
110	evel (d	3uV/m)							D	ate: 202	23-06-08		
100								-					
80							_	F	CC P	ART15C	-6dB		
60				1		6			FC	C PART	15C AV		
		2		3		5	_				-6dB		
40		1											
20						_							
03	000	600	00.	8000		10000. quency (M	12000. Hz)	14000	D.	16000.	1800	0	
Freq		eading			Cable	Preamp	10	Limi		0ver			
MHz		evel BuV	facto dB/m		loss dB	factor dB	level dBuV/m	leve dBu		limi dB	t Rem	ark	
4960. 0 4960. 0		30. 86 42. 98	31.4 31.4		. 56 . 56	35.50 35.50	34.35 46.47	54. (74. (-19.6 -27.5	5 Ave 3 Pea		
7440.0	000	38.22 44.39	36. 0' 36. 0'	7 8	. 97	32.85 32.85	50. 41 56. 58	54. (74. (00	-3.5	9 Ave	rage	
9920.0 9920.0		27.90 39.98	38. 5 38. 5	7 11	. 98	34.16 34.16	44.29 56.37	54. (74. (00	-9.7 -17.6	1 Ave 3 Pea	rage k	


	BLE C	BLE CH39 (2480 MHz)			Temp	erature :	2	21~23 ℃	
est Engineer :	Jack L	iu			Relati	ive Humic	dity: 63	63~65%	
equencey Rang	ge 1GHz~	-3GHz			Polar	ization :	Ve	ertical	
Data: 109 110	dBuV/m)					ļ	Date: 202	3-06-08	
100						1			
80						FCCI	PART15C	-6dB	
60						FC			
40	e and the states of the states	engeleg, menerichertroes	when work of the same	whenryworkseen	p.N.M. annortheast	unterna plurations			
20									
10	1300.		700. 19	900. 2100	2300.		2700.	3000	
20 0 1000 Freq	Reading level	1500. 1 Antenna	700. 19 Free Cable loss	000. 2100 quency (MH Preamp factor	2300. z) level	2500 . Limit	Over limit		

fest Mode :	BLE CH	LE CH39 (2480 MHz)				rature :	21~2	21~23 ℃	
est Engineer :	Jack Liu Relative Humidi			e Humidit	y : 63~6	5%			
Frequencey Ran	ge 3GHz~	GHz~18GHz F				ation :	Vertio	Vertical	
Data: 110 110 ^{Level}	(dBuV/m)					ſ	Date: 2023-	06-08	
100							- 53		
80						FCC F	PART15C F	EAK	
60		4		6		FC	C PART15	CAV	
40	2			5				-000	
20									
0 <mark></mark>	600	0. 80		0000. 1 quency (MH	2000. 1z)	14000.	16000.	18000	
Freq MHz	Reading level dBuV	Antenna factor dB/m		Preamp		Limit level dBuV/m	Over limit dB	Remark	
4960.000 4960.000 7440.000 7440.000 9920.000 9920.000	37.15 42.79 28.55	31.43 36.07 36.07	7.56 8.97 8.97 11.98	35.50 32.85 32.85	49.34 54.98 44.94	74.00 54.00 74.00 54.00	-29.78 -4.66 -19.02 -9.06	Average Peak Average	



4.5.6 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

4.6 AC Conducted Emission Measurement

4.6.1 Limit of AC Conducted Emission

FCC §15.207

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

4.6.2 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

4.6.3 Test Result of AC Conducted Emission

Not Required

4.7 Antenna Requirements

4.7.1 Standard Applicable

According to antenna requirement of §15.203.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be re-placed by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded..

And according to §15.247(4)(1), system operating in the 2400-2483.5MHz bands that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

4.7.2 Antenna Connected Construction

An PCB antenna design is used.

4.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

5. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	Keysight	N9010A	MY56070788	2022-12-26	2023-12-25	Conducted
Power Sensor	Keysight	U2021XA	MY56510025	2022-12-27	2023-12-26	Conducted
Power Sensor	Keysight	U2021XA	MY57030005	2022-12-27	2023-12-26	Conducted
Power Sensor	Keysight	U2021XA	MY56510018	2022-12-27	2023-12-26	Conducted
Power Sensor	Keysight	U2021XA	MY56480002	2022-12-27	2023-12-26	Conducted
Thermal Chamber	Howkin	UHL-34	19111801	2022-12-23	2023-12-22	Conducted
Base Station	R&S	CMW 270	101231	2022-12-26	2023-12-25	Conducted
Signal Generator (Interferer)	Keysight	N5182B	MY56200384	2022-12-26	2023-12-25	Conducted
Signal Generator (Blocker)	Keysight	N5171B	MY56200661	2022-12-26	2023-12-25	Conducted

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV 40	101433	2022-12-26	2023-12-25	Radiation
Amplifier	Sonoma	310	363917	2022-12-26	2023-12-25	Radiation
Amplifier	Schwarzbeck	BBV 9718	327	2022-12-27	2023-12-26	Radiation
Amplifier	Narda	TTA1840-35-HG	2034380	2023-01-04	2024-01-03	Radiation
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-051	2023-02-12	2026-02-11	Radiation
Broadband Antenna	Schwarzbeck	VULB 9168	9168-757	2020-09-27	2023-09-26	Radiation
Horn Antenna	Schwarzbeck	BBHA 9120 D	1677	2023-02-12	2026-02-11	Radiation
Horn Antenna	COM-POWER	AH-1840	101117	2021-06-05	2024-06-04	Radiation
Test Software	Audix	E3	6.111221a	N/A	N/A	Radiation
Filter	Micro-Tronics	BRM 50702	G266	N/A	N/A	Radiation

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Due Date	Remark
LISN	R&S	ENV216	102125	2022-12-19	2023-12-20	Conducted
LISN	R&S	ENV432	101327	2022-12-19	2023-12-20	Conducted
EMI Test	R&S	ESR3	102143	2022-12-19	2023-12-20	Conducted
Receiver	nao	Long	102140	2022-12-13	2020-12-20	Conducted
EMI Test	Audix	Γ2	N1/A	N1/A	N1/A	Conducted
Software	Audix	E3	N/A	N/A	N/A	Conducted

N/A: No Calibration Required

6. Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.00 dB
	30MHz ~ 1GMHz	5.28 dB
Radiated emission	1GHz ~ 18GHz	5.12 dB
	18GHz ~ 40GHz	5.27 dB

MEASUREMENT	UNCERTAINTY
Occupied Channel Bandwidth	±71.333Hz
RF output power, conducted	±0.78 dB
Power density, conducted	±2.02dB
Emissions, conducted	±2.00dB

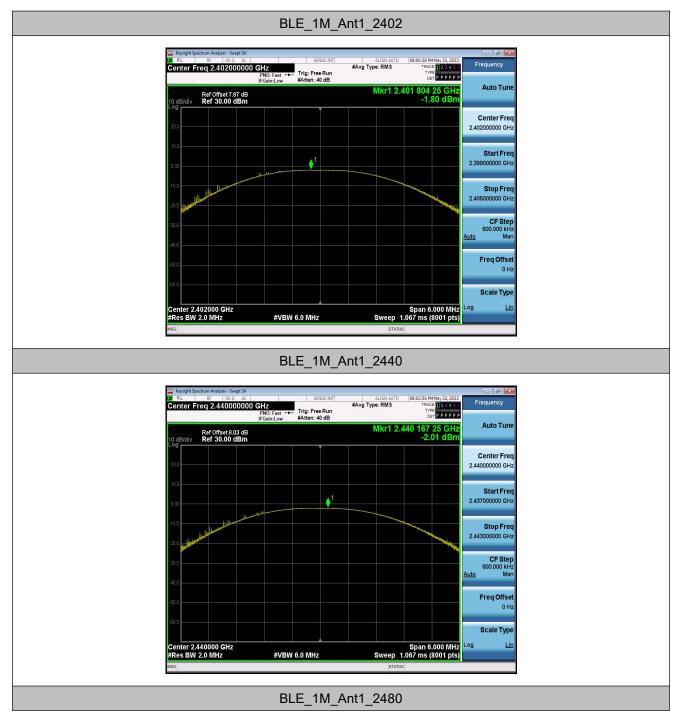
This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Appendix A: DTS Bandwidth

TestMode	Antenna	Channel	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	0.716	2401.648	2402.364	0.5	PASS
BLE_1M	Ant1	2440	0.668	2439.672	2440.340	0.5	PASS
		2480	0.688	2479.664	2480.352	0.5	PASS

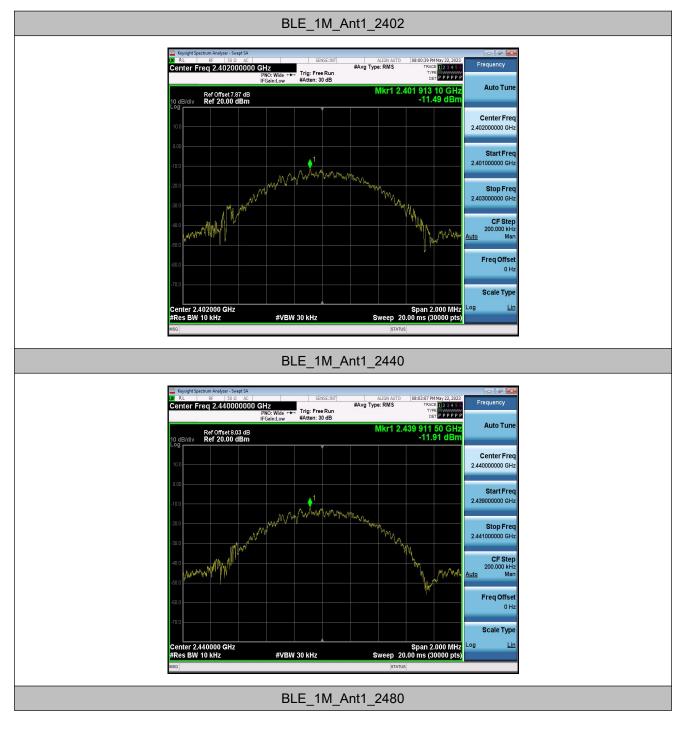
Appendix B: Occupied Channel Bandwidth

TestMode	Antenna	Channel	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.0487	2401.4873	2402.5360		PASS
BLE_1M	Ant1	2440	1.0745	2439.4583	2440.5328		PASS
		2480	1.0464	2479.4894	2480.5358		PASS



Appendix C: Maximum conducted output power

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	2402	-1.8	≤30	PASS	
BLE_1M	Ant1	2440	-2.01	≤30	PASS
		2480	-1.97	≤30	PASS


Report No.: EC2305033RF04

Appendix D: Maximum power spectral density

TestMode	Antenna	Channel	Result [dBm/10kHz]	Result [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-11.49	-16.72	≤8.00	PASS
BLE_1M	Ant1	2440	-11.91	-17.14	≤8.00	PASS
		2480	-11.61	-16.84	≤8.00	PASS

Tel.:+86-731-89634887 Fax.: +86-731-89634887

Report No.: EC2305033RF04

Appendix E: Band edge measurements

TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE_1M	Ant1	Low	2402	-2.95	-46.06	≤-22.95	PASS
		High	2480	-2.96	-47.42	≤-22.96	PASS

Appendix F: Conducted Spurious Emission

TestMode	Antenna	Channel	FreqRange	RefLevel	Result[dBm]	Limit[dBm]	Verdict
			[MHz]	[dBm]			
BLE_1M	Ant1	2402	Reference	-3.22	-3.22		PASS
			30~1000	-3.22	-59.78	≤-23.22	PASS
			1000~26500	-3.22	-39.23	≤-23.22	PASS
		2440	Reference	-3.94	-3.94		PASS
			30~1000	-3.94	-59.19	≤-23.94	PASS
			1000~26500	-3.94	-38.71	≤-23.94	PASS
		2480	Reference	-4.22	-4.22		PASS
			30~1000	-4.22	-59.04	≤-24.22	PASS
			1000~26500	-4.22	-37.92	≤-24.22	PASS

