



# RADIO TEST REPORT FCC ID: 2AKCT-SPCM3

Product: Geek PC Trade Mark: STATIONPC Model No.: Station M3 Family Model: N/A Report No.: S24031800501001 Issue Date: Mar 27. 2024

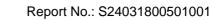
# **Prepared for**

T-CHIP INTELLIGENT TECHNOLOGY CO.,LTD. Room 2101,NO.1 Hongyu Building #57 Zhongshan 4Rd, East District, Zhongshan, Guangdong, China

# Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090 Website: http://www.ntek.org.cn






I

# TABLE OF CONTENTS

| 1 TE                                                                          | ST RESULT CERTIFICATION                                                                                                                                                                                                                                                                                                                                                   | 3                                                              |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 2 SU                                                                          | MMARY OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                     | 4                                                              |
| 3 FA                                                                          | CILITIES AND ACCREDITATIONS                                                                                                                                                                                                                                                                                                                                               | 5                                                              |
| 3.1<br>3.2<br>3.3                                                             | FACILITIES<br>LABORATORY ACCREDITATIONS AND LISTINGS<br>MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                           | 5                                                              |
| 4 GE                                                                          | NERAL DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                  | 6                                                              |
| 5 DE                                                                          | SCRIPTION OF TEST MODES                                                                                                                                                                                                                                                                                                                                                   | 8                                                              |
| 6 SE'                                                                         | FUP OF EQUIPMENT UNDER TEST                                                                                                                                                                                                                                                                                                                                               | 9                                                              |
| 6.1<br>6.2<br>6.3                                                             | BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM<br>SUPPORT EQUIPMENT<br>EQUIPMENTS LIST FOR ALL TEST ITEMS                                                                                                                                                                                                                                                                     | 9<br>10                                                        |
| 7 TE                                                                          | ST REQUIREMENTS                                                                                                                                                                                                                                                                                                                                                           | 13                                                             |
| 7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8<br>7.9<br>7.10<br>7.11 F | CONDUCTED EMISSIONS TEST<br>RADIATED SPURIOUS EMISSION<br>NUMBER OF HOPPING CHANNEL<br>HOPPING CHANNEL SEPARATION MEASUREMENT<br>AVERAGE TIME OF OCCUPANCY (DWELL TIME)<br>20DB BANDWIDTH TEST<br>PEAK OUTPUT POWER<br>CONDUCTED BAND EDGE MEASUREMENT.<br>SPURIOUS RF CONDUCTED EMISSION<br>ANTENNA APPLICATION<br>REQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS | 13<br>16<br>25<br>26<br>27<br>29<br>30<br>31<br>32<br>33<br>34 |
| 8 TE                                                                          | ST RESULTS                                                                                                                                                                                                                                                                                                                                                                |                                                                |
| 8.1<br>8.2<br>8.3<br>8.4<br>8.5<br>8.6<br>8.7<br>8.8<br>8.9                   | DWELL TIME<br>MAXIMUM CONDUCTED OUTPUT POWER<br>-20DB BANDWIDTH<br>OCCUPIED CHANNEL BANDWIDTH<br>CARRIER FREQUENCIES SEPARATION<br>NUMBER OF HOPPING CHANNEL<br>BAND EDGE<br>BAND EDGE<br>BAND EDGE(HOPPING)<br>CONDUCTED RF SPURIOUS EMISSION                                                                                                                            | 45<br>51<br>63<br>69<br>72<br>79                               |

# NTEK 北测<sup>®</sup>



## **1 TEST RESULT CERTIFICATION**

| · · · · · · · · · · · · · · · · · · · |                                                                                                 |
|---------------------------------------|-------------------------------------------------------------------------------------------------|
| Applicant's name:                     | T-CHIP INTELLIGENT TECHNOLOGY CO.,LTD.                                                          |
| Address:                              | Room 2101,NO.1 Hongyu Building #57 Zhongshan 4Rd,<br>East District, Zhongshan, Guangdong, China |
| Manufacturer's Name:                  | T-CHIP INTELLIGENT TECHNOLOGY CO.,LTD.                                                          |
| Address:                              | Room 2101,NO.1 Hongyu Building #57 Zhongshan 4Rd,<br>East District, Zhongshan, Guangdong, China |
| Product description                   |                                                                                                 |
| Product name:                         | Geek PC                                                                                         |
| Trade Mark:                           | STATIONPC                                                                                       |
| Model and/or type reference:          | Station M3                                                                                      |
| Family Model:                         | N/A                                                                                             |
| Test Sample Number                    | S221128022006                                                                                   |
| Date of Test                          | Nov 28. 2022 ~Jan 04. 2023                                                                      |
|                                       | Mar 18.2024~ Mar 24.2024                                                                        |

Certificate #4298.01

Measurement Procedure Used:

### APPLICABLE STANDARDS

| STANDARD/ TEST PROCEDURE                                                          | TEST RESULT             |
|-----------------------------------------------------------------------------------|-------------------------|
| FCC 47 CFR Part 2, Subpart J<br>FCC 47 CFR Part 15, Subpart C<br>ANSI C63.10-2013 | TEST RESULT<br>Complied |

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Note: All test data of this report are based on the original test report S22112802204001, dated by Jan 04. 2023, except for Radiated emission

Aavon Cheng Mukzi Lee Reviewed Prepared Approved By By By Aaron Cheng Mukzi Lee Alex Li (Project Engineer) (Supervisor) (Manager)



| FCC Part15 (15.247), Subpart C |                                |         |        |
|--------------------------------|--------------------------------|---------|--------|
| Standard Section               | Test Item                      | Verdict | Remark |
| 15.207                         | Conducted Emission             | PASS    |        |
| 15.209 (a)<br>15.205 (a)       | Radiated Spurious Emission     | PASS    |        |
| 15.247(a)(1)                   | Hopping Channel Separation     | PASS    |        |
| 15.247(b)(1)                   | Peak Output Power              | PASS    |        |
| 15.247(a)(iii)                 | Number of Hopping Frequency    | PASS    |        |
| 15.247(a)(iii)                 | Dwell Time                     | PASS    |        |
| 15.247(a)(1)                   | Bandwidth                      | PASS    |        |
| 15.247 (d)                     | Band Edge Emission             | PASS    |        |
| 15.247 (d)                     | Spurious RF Conducted Emission | PASS    |        |
| 15.203                         | Antenna Requirement            | PASS    |        |

Remark:

 "N/A" denotes test is not applicable in this Test Report.
 All test items were verified and recorded according to the standards and without any deviation during the test.





## **3 FACILITIES AND ACCREDITATIONS**

#### 3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

#### 3.2 LABORATORY ACCREDITATIONS AND LISTINGS

| Site Description |                                                                    |
|------------------|--------------------------------------------------------------------|
| CNAS-Lab.        | : The Certificate Registration Number is L5516.                    |
| IC-Registration  | The Certificate Registration Number is 9270A.                      |
|                  | CAB identifier:CN0074                                              |
| FCC- Accredited  | Test Firm Registration Number: 463705.                             |
|                  | Designation Number: CN1184                                         |
| A2LA-Lab.        | The Certificate Registration Number is 4298.01                     |
|                  | This laboratory is accredited in accordance with the recognized    |
|                  | International Standard ISO/IEC 17025:2005 General requirements for |
|                  | the competence of testing and calibration laboratories.            |
|                  | This accreditation demonstrates technical competence for a defined |
|                  | scope and the operation of a laboratory quality management system  |
|                  | (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).     |
| Name of Firm     | : Shenzhen NTEK Testing Technology Co., Ltd.                       |
| Site Location    | : 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang   |
|                  | Street, Bao'an District, Shenzhen 518126 P.R. China.               |

#### 3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y\pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| No. | Item                                | Uncertainty |
|-----|-------------------------------------|-------------|
| 1   | Conducted Emission Test             | ±2.80dB     |
| 2   | RF power, conducted                 | ±0.16dB     |
| 3   | Spurious emissions, conducted       | ±0.21dB     |
| 4   | All emissions, radiated(30MHz~1GHz) | ±2.64dB     |
| 5   | All emissions, radiated(1GHz~6GHz)  | ±2.40dB     |
| 6   | All emissions, radiated(>6GHz)      | ±2.52dB     |
| 7   | Temperature                         | ±0.5°C      |
| 8   | Humidity                            | ±2%         |
| 9   | All emissions, radiated(9KHz~30MHz) | ±6dB        |





# 4 GENERAL DESCRIPTION OF EUT

| Product Feature and Specification |                                                                                                                                                      |  |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                   |                                                                                                                                                      |  |
| Equipment                         | Geek PC                                                                                                                                              |  |
| Trade Mark                        | STATIONPC                                                                                                                                            |  |
| FCC ID                            | 2AKCT-SPCM3                                                                                                                                          |  |
| Model No.                         | Station M3                                                                                                                                           |  |
| Family Model                      | N/A                                                                                                                                                  |  |
| Model Difference                  | This model contains 4 different combinations for DDR and EMMC, which are 4GB+32GB, 8GB+64GB, 16GB+128GB, 16GB+256GB, and have the same running rate. |  |
| Operating Frequency               | 2402MHz~2480MHz                                                                                                                                      |  |
| Modulation                        | GFSK, π/4-DQPSK, 8-DPSK                                                                                                                              |  |
| Number of Channels                | 79 Channels                                                                                                                                          |  |
| Antenna Type                      | FPCB Antenna                                                                                                                                         |  |
| Antenna Gain                      | 1.92 dBi                                                                                                                                             |  |
| Power Rating                      | DC 12V from adapter                                                                                                                                  |  |
| Adapter                           | Model: SK03T1-1200200Z<br>Input: AC 100-240V~50/60Hz 0.6A<br>Output: DC 12V2A 24W                                                                    |  |
| HW Version                        | ROC-RK3588S-PC-V1.2                                                                                                                                  |  |
| SW Version                        | ROC-RK3588S-PC_Android12_MIPI_220718                                                                                                                 |  |

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

2: All configurations are tested, only showing the worst data 16GB+256GB.





| Revision History |         |                                                                                    |              |
|------------------|---------|------------------------------------------------------------------------------------|--------------|
| Report No.       | Version | Description                                                                        | Issued Date  |
| S22112802204001  | Rev.01  | Initial issue of report                                                            | Jan 04. 2023 |
| S24031800501001  | Rev.02  | Replace product antenna.<br>Update the test data of<br>radiated spurious emission. | Mar 27. 2024 |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |
|                  |         |                                                                                    |              |



# 5 DESCRIPTION OF TEST MODES

**NTEK** 北测

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for  $\pi$ /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

| Channel | Frequency(MHz) |
|---------|----------------|
| 0       | 2402           |
| 1       | 2403           |
|         |                |
| 39      | 2441           |
| 40      | 2442           |
|         |                |
| 77      | 2479           |
| 78      | 2480           |

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

| For AC Conducted Emission   |  |  |  |
|-----------------------------|--|--|--|
| Final Test Mode Description |  |  |  |
| Mode 1 normal link mode     |  |  |  |
|                             |  |  |  |

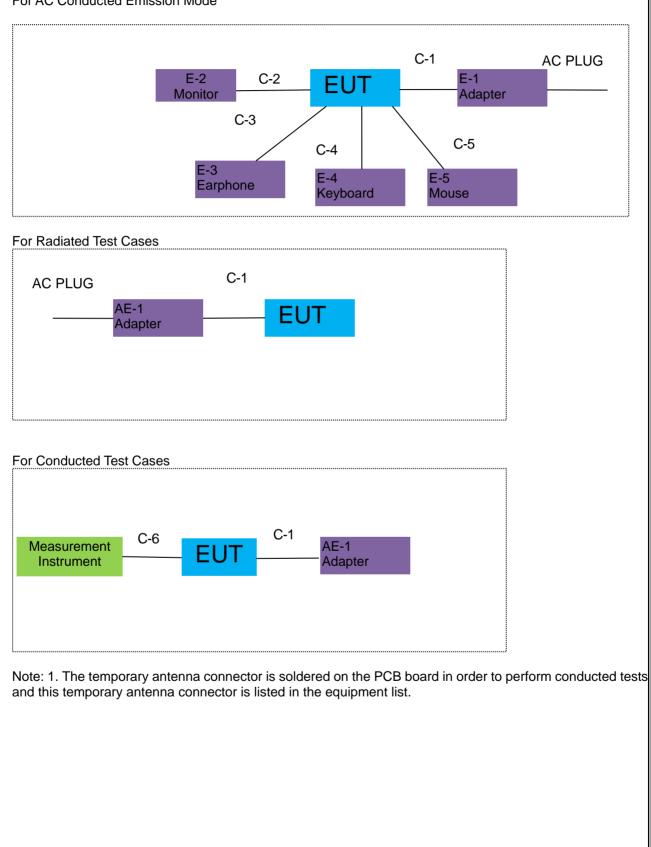
Note: AC power line Conducted Emission was tested under maximum output power.

| For Radiated Test Cases |                  |  |
|-------------------------|------------------|--|
| Final Test Mode         | Description      |  |
| Mode 1                  | normal link mode |  |
| Mode 2                  | CH00(2402MHz)    |  |
| Mode 3                  | CH39(2441MHz)    |  |
| Mode 4                  | CH78(2480MHz)    |  |

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

| For Conducted Test Cases |               |  |
|--------------------------|---------------|--|
| Final Test Mode          | Description   |  |
| Mode 2                   | CH00(2402MHz) |  |
| Mode 3                   | CH39(2441MHz) |  |
| Mode 4                   | CH78(2480MHz) |  |
| Mode 5                   | Hopping mode  |  |

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.






#### SETUP OF EQUIPMENT UNDER TEST 6

#### 6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

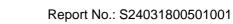
For AC Conducted Emission Mode





### 6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


Certificate #4298.01

| Item | Equipment | Model/Type No.  | Series No. | Note        |
|------|-----------|-----------------|------------|-------------|
| AE-1 | Adapter   | SK03T1-1200200Z | N/A        | Peripherals |
| AE-2 | Monitor   | N/A             | N/A        | Peripherals |
| AE-3 | Earphone  | N/A             | N/A        | Peripherals |
| AE-4 | Keyboard  | N/A             | N/A        | Peripherals |
| AE-5 | Mouse     | N/A             | N/A        | Peripherals |
|      |           |                 |            |             |

| Item | Cable Type     | Shielded Type | Ferrite Core | Length |
|------|----------------|---------------|--------------|--------|
| C-1  | Power Cable    | NO            | NO           | 1.0m   |
| C-2  | HDMI Cable     | YES           | YES          | 1.5m   |
| C-3  | Earphone Cable | NO            | NO           | 1.2m   |
| C-4  | Keyboard Cable | NO            | NO           | 1.2m   |
| C-5  | Mouse Cable    | NO            | NO           | 1.2m   |
| C-6  | RF Cable       | YES           | NO           | 0.1m   |
|      |                |               |              |        |

#### Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".



#### 6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

ilac-

ACCREDITED Certificate #4298.01

#### Radiation& Conducted Test equipment

|    | Sha Conducted                               | iest equipment  |                 |                   |                          |                          |                           |
|----|---------------------------------------------|-----------------|-----------------|-------------------|--------------------------|--------------------------|---------------------------|
|    | Kind of<br>Equipment                        | Manufacturer    | Type No.        | Serial No.        | Last calibration         | Calibrated<br>until      | Calibrati<br>on<br>period |
| 1  | Spectrum<br>Analyzer                        | Aglient         | E4407B          | MY45108040        | 2022.04.01<br>2023.03.27 | 2023.03.31<br>2024.03.26 | 1 year                    |
| 2  | Spectrum<br>Analyzer                        | Agilent         | N9020A          | MY49100060        | 2022.04.01<br>2023.05.29 | 2023.03.31<br>2024.05.28 | 1 year                    |
| 3  | Spectrum<br>Analyzer                        | R&S             | FSV40           | 101417            | 2022.06.16<br>2023.05.29 | 2023.06.15<br>2024.05.28 | 1 year                    |
| 4  | Test Receiver                               | R&S             | ESPI7           | 101318            | 2022.04.06<br>2023.03.27 | 2023.04.05<br>2024.03.26 | 1 year                    |
| 5  | Bilog Antenna                               | TESEQ           | CBL6111D        | 31216             | 2022.03.30<br>2024.03.11 | 2023.03.29<br>2025.03.10 | 1 year                    |
| 6  | 50Ω Coaxial<br>Switch                       | Anritsu         | MP59B           | 6200983705        | 2020.05.11<br>2023.05.06 | 2023.05.10<br>2026.05.05 | 3 year                    |
| 7  | Horn Antenna                                | EM              | EM-AH-1018<br>0 | 2011071402        | 2022.03.31<br>2023.01.12 | 2023.03.30<br>2026.01.11 | 1 year<br>3 year          |
| 8  | Broadband<br>Horn Antenna                   | SCHWARZBE<br>CK | BBHA 9170       | 803               | 2022.11.07               | 2025.11.06               | 3 year                    |
| 9  | Amplifier                                   | EMC             | EMC051835<br>SE | 980246            | 2022.06.17<br>2023.05.29 | 2023.06.16<br>2024.05.28 | 1 year                    |
| 10 | Active Loop<br>Antenna                      | SCHWARZBE<br>CK | FMZB 1519<br>B  | 055               | 2022.11.04<br>2023.11.03 | 2023.11.03<br>2026.11.02 | 1 year<br>3 year          |
| 11 | Power Meter                                 | DARE            | RPR3006W        | 15I00041SN<br>084 | 2022.06.16<br>2023.05.29 | 2023.06.15<br>2024.05.28 | 1 year                    |
| 12 | Test Cable<br>(9KHz-30MHz)                  | N/A             | R-01            | N/A               | 2022.06.17               | 2025.06.16               | 3 year                    |
| 13 | Test Cable<br>(30MHz-1GHz<br>)              | N/A             | R-02            | N/A               | 2022.06.17               | 2025.06.16               | 3 year                    |
| 14 | High Test<br>Cable(1G-40G<br>Hz)            | N/A             | R-03            | N/A               | 2022.06.17               | 2025.06.16               | 3 year                    |
| 15 | Filter                                      | TRILTHIC        | 2400MHz         | 29                | 2020.04.07<br>2023.03.26 | 2023.04.06<br>2026.03.25 | 3 year                    |
| 16 | temporary<br>antenna<br>connector<br>(Note) | NTS             | R001            | N/A               | N/A                      | N/A                      | N/A                       |

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list





| AC Co | AC Conduction Test equipment   |                 |           |            |                          |                          |                    |
|-------|--------------------------------|-----------------|-----------|------------|--------------------------|--------------------------|--------------------|
| Item  | Kind of<br>Equipment           | Manufacturer    | Type No.  | Serial No. | Last calibration         | Calibrated<br>until      | Calibration period |
| 1     | Test<br>Receiver               | R&S             | ESCI      | 101160     | 2022.04.06<br>2023.03.27 | 2023.04.05<br>2024.03.26 | 1 year             |
| 2     | LISN                           | R&S             | ENV216    | 101313     | 2022.04.06<br>2023.03.27 | 2023.04.05<br>2024.03.26 | 1 year             |
| 3     | LISN                           | SCHWARZBE<br>CK | NNLK 8129 | 8129245    | 2022.04.06<br>2023.03.27 | 2023.04.05<br>2024.03.26 | 1 year             |
| 4     | 50Ω Coaxial<br>Switch          | ANRITSU<br>CORP | MP59B     | 6200983704 | 2020.05.11<br>2023.05.06 | 2023.05.10<br>2026.05.05 | 3 year             |
| 5     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C01       | N/A        | 2020.05.11<br>2023.05.06 | 2023.05.10<br>2026.05.05 | 3 year             |
| 6     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C02       | N/A        | 2020.05.11<br>2023.05.06 | 2023.05.10<br>2026.05.05 | 3 year             |
| 7     | Test Cable<br>(9KHz-30MH<br>z) | N/A             | C03       | N/A        | 2020.05.11<br>2023.05.06 | 2023.05.10<br>2026.05.05 | 3 year             |

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

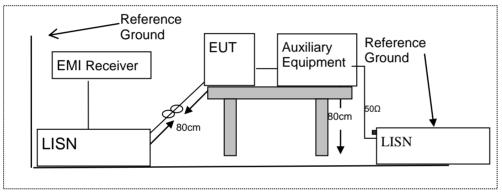


### 7 TEST REQUIREMENTS

#### 7.1 CONDUCTED EMISSIONS TEST

#### 7.1.1 Applicable Standard

According to FCC Part 15.207(a)


#### 7.1.2 Conformance Limit

|                | Conducted Emission Limit |         |  |
|----------------|--------------------------|---------|--|
| Frequency(MHz) | Quasi-peak               | Average |  |
| 0.15-0.5       | 66-56*                   | 56-46*  |  |
| 0.5-5.0        | 56                       | 46      |  |
| 5.0-30.0       | 60                       | 50      |  |

Note: 1. \*Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
  - 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

#### 7.1.3 Test Configuration



#### 7.1.4 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable
  may be terminated, if required, using the correct terminating impedance. The overall length shall not
  exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item -EUT Test Photos.

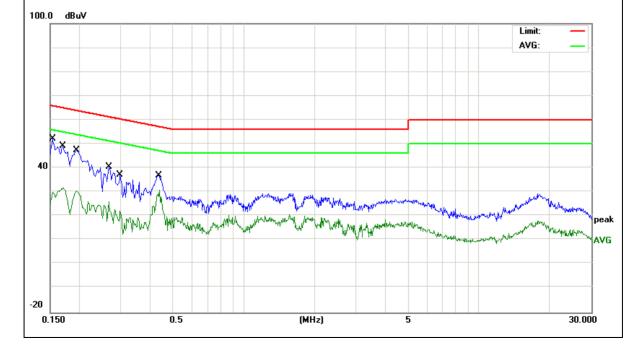
#### 7.1.5 Test Results

Pass





#### 7.1.6 Test Results


| EUT:           | Geek PC                          | Model Name :       | Station M3 |
|----------------|----------------------------------|--------------------|------------|
| Temperature:   | <b>22</b> ℃                      | Relative Humidity: | 57%        |
| Pressure:      | 1010hPa                          | Phase :            | L          |
| Test Voltage : | DC 12V from Adapter AC 120V/60Hz | Test Mode:         | Mode 1     |

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin | Demende  |
|-----------|---------------|----------------|--------------|--------|--------|----------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | - Remark |
| 0.1539    | 42.48         | 9.60           | 52.08        | 65.78  | -13.70 | QP       |
| 0.1539    | 20.40         | 9.60           | 30.00        | 55.78  | -25.78 | AVG      |
| 0.1700    | 39.58         | 9.61           | 49.19        | 64.96  | -15.77 | QP       |
| 0.1700    | 22.27         | 9.61           | 31.88        | 54.96  | -23.08 | AVG      |
| 0.1965    | 37.24         | 9.61           | 46.85        | 63.75  | -16.90 | QP       |
| 0.1965    | 20.38         | 9.61           | 29.99        | 53.75  | -23.76 | AVG      |
| 0.2660    | 30.82         | 9.63           | 40.45        | 61.24  | -20.79 | QP       |
| 0.2660    | 15.22         | 9.63           | 24.85        | 51.24  | -26.39 | AVG      |
| 0.2977    | 27.47         | 9.64           | 37.11        | 60.30  | -23.19 | QP       |
| 0.2977    | 12.38         | 9.64           | 22.02        | 50.30  | -28.28 | AVG      |
| 0.4339    | 27.24         | 9.66           | 36.90        | 57.18  | -20.28 | QP       |
| 0.4339    | 19.17         | 9.66           | 28.83        | 47.18  | -18.35 | AVG      |

Remark:

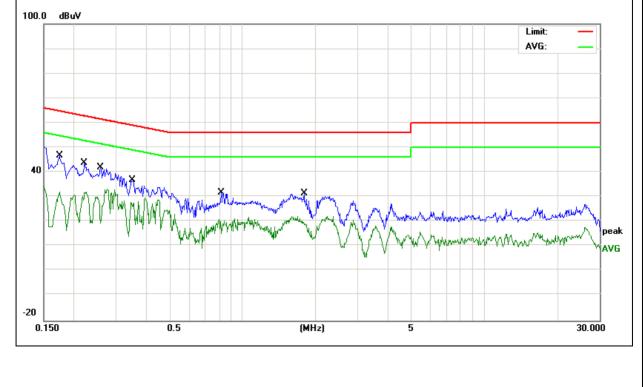
1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.








| EUT:           | Geek PC                          | Model Name :       | Station M3 |
|----------------|----------------------------------|--------------------|------------|
| Temperature:   | <b>25</b> ℃                      | Relative Humidity: | 62%        |
| Pressure:      | 1010hPa                          | Phase :            | Ν          |
| Test Voltage : | DC 12V from Adapter AC 120V/60Hz | Test Mode:         | Mode 1     |

| Frequency | Reading Level | Correct Factor | Measure-ment | Limits | Margin | Demerly |
|-----------|---------------|----------------|--------------|--------|--------|---------|
| (MHz)     | (dBµV)        | (dB)           | (dBµV)       | (dBµV) | (dB)   | Remark  |
| 0.1737    | 37.02         | 9.61           | 46.63        | 64.78  | -18.15 | QP      |
| 0.1737    | 21.53         | 9.61           | 31.14        | 54.78  | -23.64 | AVG     |
| 0.2220    | 34.24         | 9.62           | 43.86        | 62.74  | -18.88 | QP      |
| 0.2220    | 22.01         | 9.62           | 31.63        | 52.74  | -21.11 | AVG     |
| 0.2580    | 32.44         | 9.63           | 42.07        | 61.49  | -19.42 | QP      |
| 0.2580    | 9.79          | 9.63           | 19.42        | 51.49  | -32.07 | AVG     |
| 0.3497    | 27.22         | 9.64           | 36.86        | 58.97  | -22.11 | QP      |
| 0.3497    | 16.81         | 9.64           | 26.45        | 48.97  | -22.52 | AVG     |
| 0.8137    | 21.94         | 9.68           | 31.62        | 56.00  | -24.38 | QP      |
| 0.8137    | 5.57          | 9.68           | 15.25        | 46.00  | -30.75 | AVG     |
| 1.7940    | 21.87         | 9.68           | 31.55        | 56.00  | -24.45 | QP      |
| 1.7940    | 9.11          | 9.68           | 18.79        | 46.00  | -27.21 | AVG     |

#### Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.





#### 7.2 RADIATED SPURIOUS EMISSION

#### 7.2.1 Applicable Standard

#### According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

#### 7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

| According to 1 OC 1 art13.203, restricted bands |                     |               |             |  |
|-------------------------------------------------|---------------------|---------------|-------------|--|
| MHz                                             | MHz                 | MHz           | GHz         |  |
| 0.090-0.110                                     | 16.42-16.423        | 399.9-410     | 4.5-5.15    |  |
| 0.495-0.505                                     | 16.69475-16.69525   | 608-614       | 5.35-5.46   |  |
| 2.1735-2.1905                                   | 16.80425-16.80475   | 960-1240      | 7.25-7.75   |  |
| 4.125-4.128                                     | 25.5-25.67          | 1300-1427     | 8.025-8.5   |  |
| 4.17725-4.17775                                 | 37.5-38.25          | 1435-1626.5   | 9.0-9.2     |  |
| 4.20725-4.20775                                 | 73-74.6             | 1645.5-1646.5 | 9.3-9.5     |  |
| 6.215-6.218                                     | 74.8-75.2           | 1660-1710     | 10.6-12.7   |  |
| 6.26775-6.26825                                 | 123-138             | 2200-2300     | 14.47-14.5  |  |
| 8.291-8.294                                     | 149.9-150.05        | 2310-2390     | 15.35-16.2  |  |
| 8.362-8.366                                     | 156.52475-156.52525 | 2483.5-2500   | 17.7-21.4   |  |
| 8.37625-8.38675                                 | 156.7-156.9         | 2690-2900     | 22.01-23.12 |  |
| 8.41425-8.41475                                 | 162.0125-167.17     | 3260-3267     | 23.6-24.0   |  |
| 12.29-12.293                                    | 167.72-173.2        | 3332-3339     | 31.2-31.8   |  |
| 12.51975-12.52025                               | 240-285             | 3345.8-3358   | 36.43-36.5  |  |
| 12.57675-12.57725                               | 322-335.4           | 3600-4400     | (2)         |  |
| 13.36-13.41                                     |                     |               |             |  |

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

| Restricted<br>Frequency(MHz) | Field Strength (µV/m) | Field Strength (dBµV/m) | Measurement Distance |
|------------------------------|-----------------------|-------------------------|----------------------|
| 0.009~0.490                  | 2400/F(KHz)           | 20 log (uV/m)           | 300                  |
| 0.490~1.705                  | 24000/F(KHz)          | 20 log (uV/m)           | 30                   |
| 1.705~30.0                   | 30                    | 29.5                    | 30                   |
| 30-88                        | 100                   | 40                      | 3                    |
| 88-216                       | 150                   | 43.5                    | 3                    |
| 216-960                      | 200                   | 46                      | 3                    |
| Above 960                    | 500                   | 54                      | 3                    |

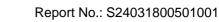
Limits of Radiated Emission Measurement(Above 1000MHz)

| Froguopov(MHz) | Class B (dBuV/m) (at 3M) |         |  |
|----------------|--------------------------|---------|--|
| Frequency(MHz) | PEAK                     | AVERAGE |  |
| Above 1000     | 74                       | 54      |  |

Remark :1. Emission level in dBuV/m=20 log (uV/m)

Measurement was performed at an antenna to the closed point of EUT distance of meters.
 For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);


Limit line=Specific limits(dBuV) + distance extrapolation factor.

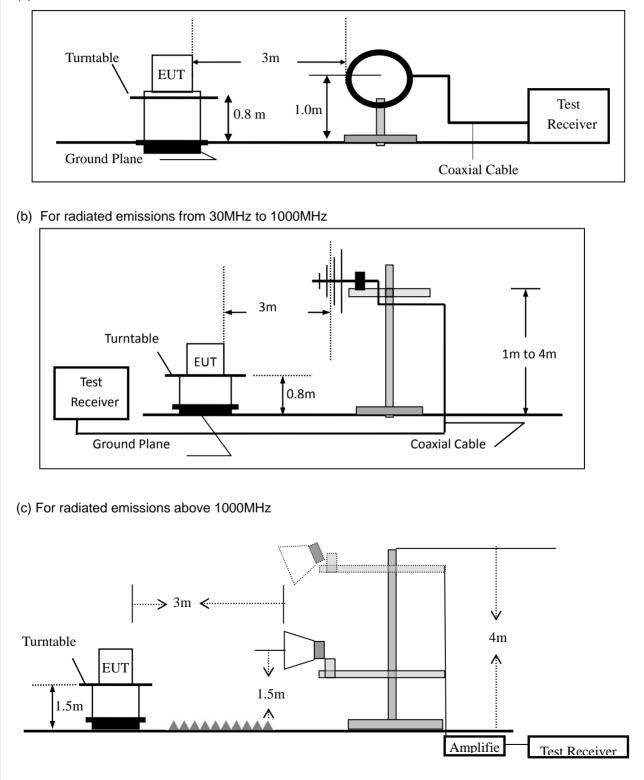
For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

# NTEK 北测<sup>®</sup>




#### 7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

Certificate #4298.01

#### 7.2.4 Test Configuration

#### (a) For radiated emissions below 30MHz





#### 7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Certificate #4298.01

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

| Spectrum Parameter                    | Setting                                           |
|---------------------------------------|---------------------------------------------------|
| Attenuation                           | Auto                                              |
| Start Frequency                       | 1000 MHz                                          |
| Stop Frequency                        | 10th carrier harmonic                             |
| RB / VB (emission in restricted band) | 1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average |

| Receiver Parameter     | Setting                          |
|------------------------|----------------------------------|
| Attenuation            | Auto                             |
| Start ~ Stop Frequency | 9kHz~150kHz / RB 200Hz for QP    |
| Start ~ Stop Frequency | 150kHz~30MHz / RB 9kHz for QP    |
| Start ~ Stop Frequency | 30MHz~1000MHz / RB 120kHz for QP |

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item –EUT Test Photos.
  - Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported





| During the radiated emission t | During the radiated emission test, the Spectrum Analyzer was set with the following configurations: |                      |                 |  |  |  |  |  |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|-----------------|--|--|--|--|--|--|--|
| Frequency Band (MHz)           | Function                                                                                            | Resolution bandwidth | Video Bandwidth |  |  |  |  |  |  |  |
| 30 to 1000                     | QP                                                                                                  | 120 kHz              | 300 kHz         |  |  |  |  |  |  |  |
| Ab aug 4000                    | Peak                                                                                                | 1 MHz                | 1 MHz           |  |  |  |  |  |  |  |
| Above 1000                     | Average                                                                                             | 1 MHz                | 1 MHz           |  |  |  |  |  |  |  |

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10\*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

#### 7.2.6 Test Results

■ Spurious Emission below 30MHz (9KHz to 30MHz)

| EUT:         | Geek PC           | Model No.:         | Station M3 |
|--------------|-------------------|--------------------|------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%        |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mukzi Lee  |

| Freq. | Ant.Pol. | Emission Level(dBuV/m) |    | Limit 3 | m(dBuV/m) | Over(dB)<br>PK AV |    |  |
|-------|----------|------------------------|----|---------|-----------|-------------------|----|--|
| (MHz) | H/V      | PK                     | AV | PK      | AV        | PK                | AV |  |
|       |          |                        |    |         |           |                   |    |  |

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.





Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below: EUT: Geek PC Model Name : Station M3 Temperature: **25°**℃ 55% **Relative Humidity:** Pressure: 1010hPa Test Mode: Mode 3 DC 12V Test Voltage : Emission Meter Frequency Factor Limits Margin Polar Reading Level Remark (H/V) (MHz) (dBuV) (dB) (dBuV/m) (dBuV/m) (dB) V 30.3172 3.76 26.16 29.92 40.00 -10.08 QP V 104.5361 7.51 17.93 25.44 43.50 -18.06 QP V 18.62 -18.58 QP 125.0066 6.30 24.92 43.50 V 145.3505 5.35 18.45 23.80 43.50 -19.70 QP QP V 459.1144 4.12 24.29 28.41 46.00 -17.59 V 758.0408 5.47 28.97 34.44 46.00 -11.56 QP **Remark:** Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit dBu¥/m 80.0 70 60 CC Part15 RE-Class B 30-1000MHz 50 40 6 X 30 2 3 4 Autor Manager munder with which the way which 20 10 0.0 30.000 60.00 (MHz) 300.00 1000.000





| Polar        | Frequ                                                              | iency             |               | /lete<br>eadi |                       | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | niss<br>.eve |       |       | Limi                   | its               | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | argiı  | n                                                                                                              | R        | ema              | ark      |
|--------------|--------------------------------------------------------------------|-------------------|---------------|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|-------|-------|------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------|----------|------------------|----------|
| (H/V)        | (MI                                                                | Hz)               | (0            | Bu\           | V)                    | (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (dE             | BuV          | /m)   | )     | (dBu\                  | //m)              | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (dB)   |                                                                                                                |          |                  |          |
| Н            | 34.6                                                               | 385               |               | 7.19          | )                     | 23.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3               | 30.9         | 5     |       | 40.0                   | )0                | -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.05   |                                                                                                                |          | QP               | )        |
| Н            | 37.2                                                               | 854               |               | 4.48          | 3                     | 22.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2               | 26.8         | 3     |       | 40.0                   | )0                | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -13.17 |                                                                                                                |          | QP               | <b>)</b> |
| Н            | 145.3                                                              |                   |               | 5.20          |                       | 18.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 23.6         |       |       | 43.5                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.85   |                                                                                                                |          | QP               |          |
| Н            | 375.9                                                              |                   |               | 5.88          |                       | 22.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 28.5         |       |       | 46.0                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.43   |                                                                                                                | <u> </u> | QP               |          |
| Н            | 742.2                                                              |                   |               | 6.93          |                       | 28.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | 35.6         |       |       | 46.0                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.35   |                                                                                                                |          | QP               |          |
| Н            | 958.                                                               | 7943              |               | 5.04          | -                     | 31.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3               | 36.3         | 3     |       | 46.0                   | )0                | -!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.67   |                                                                                                                | L        | QP               | )        |
|              | ssion Level= Meter Reading+ Factor, Margin= Emission Level - Limit |                   |               |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |       |       |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                |          |                  |          |
| 70 —         |                                                                    |                   |               |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |       |       |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                |          | _                |          |
| 60 —<br>50 — |                                                                    |                   |               |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |       |       | FCC Part15             |                   | ⊧ B_30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000   | (Hz                                                                                                            |          |                  |          |
| 40           |                                                                    |                   |               |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |       |       | <del>Margin -G-d</del> |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 5                                                                                                              |          | 6,               |          |
| 30 Maria     |                                                                    |                   |               |               |                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |              | _     |       | Marchart               | han an particular | where the state of | or and | yu aliyo | un an    | 1 <sup>,Ar</sup> |          |
| 20           | ×<br>wh. Augusta                                                   | W. Lowin Williams | for the south | Hallow        | and the second second | and the second s | Marthe approxim | A. Martin    | hende | HUMLI |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                |          |                  |          |
| 10 —<br>0.0  |                                                                    |                   |               |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |              |       |       |                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                |          |                  |          |
| 30.00        | 0                                                                  | 60                | .00           |               |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MHz)           | I            |       | . 3   | 300.00                 |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                                                                                                | 10       | 00.00            | )0       |





| Spurious<br>EUT: | Emission                                                                             |               | Hz)<br>lel No.:   |                  | Statior           | n M3  |        |        |        |            |  |
|------------------|--------------------------------------------------------------------------------------|---------------|-------------------|------------------|-------------------|-------|--------|--------|--------|------------|--|
|                  |                                                                                      | ek PC         |                   |                  |                   |       |        |        |        |            |  |
| Temperature      |                                                                                      |               |                   |                  | ative Humidity    |       | 48%    |        |        |            |  |
| Test Mode:       |                                                                                      |               | e3/Mode4          |                  | t By:             |       | Mukzi  |        |        |            |  |
| All the modula   | All the modulation modes have been tested, and the worst result was report as below: |               |                   |                  |                   |       |        |        |        |            |  |
| Frequency        | Read<br>Level                                                                        | Cable<br>loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level | Liı   | mits   | Margin | Remark | Comment    |  |
| (MHz)            | (dBµV)                                                                               | (dB)          | dB/m              | (dB)             | (dBµV/m)          | (dB   | µV/m)  | (dB)   |        |            |  |
|                  |                                                                                      |               | Low Chanr         | nel (2402        | MHz)(8-DPSK       | )Abc  | ove 1G |        |        |            |  |
| 4804             | 70.8                                                                                 | 5.21          | 35.59             | 44.30            | 67.30             | 74    | 4.00   | -6.70  | Pk     | Vertical   |  |
| 4804             | 46.13                                                                                | 5.21          | 35.59             | 44.30            | 42.63             | 54    | 4.00   | -11.37 | AV     | Vertical   |  |
| 7206             | 69.73                                                                                | 6.48          | 36.27             | 44.60            | 67.88             | 74    | 1.00   | -6.12  | Pk     | Vertical   |  |
| 7206             | 48.58                                                                                | 6.48          | 36.27             | 44.60            | 46.73             | 54    | 4.00   | -7.27  | AV     | Vertical   |  |
| 4804             | 68.4                                                                                 | 5.21          | 35.55             | 44.30            | 64.86             | 74    | 4.00   | -9.14  | Pk     | Horizontal |  |
| 4804             | 49.4                                                                                 | 5.21          | 35.55             | 44.30            | 45.86             | 54    | 4.00   | -8.14  | AV     | Horizontal |  |
| 7206             | 70.86                                                                                | 6.48          | 36.27             | 44.52            | 69.09             | 74.00 |        | -4.91  | Pk     | Horizontal |  |
| 7206             | 49.4                                                                                 | 6.48          | 36.27             | 44.52            | 47.63             | 54    | 4.00   | -6.37  | AV     | Horizontal |  |
|                  | Mid Channel (2441 MHz)( 8-DPSK)Above 1G                                              |               |                   |                  |                   |       |        |        |        |            |  |
| 4882             | 69.52                                                                                | 5.21          | 35.66             | 44.20            | 66.19             | 74    | 4.00   | -7.81  | Pk     | Vertical   |  |
| 4882             | 47.27                                                                                | 5.21          | 35.66             | 44.20            | 43.94             | 54    | 4.00   | -10.06 | AV     | Vertical   |  |
| 7323             | 68.41                                                                                | 7.10          | 36.50             | 44.43            | 67.58             | 74    | 4.00   | -6.42  | Pk     | Vertical   |  |
| 7323             | 46.68                                                                                | 7.10          | 36.50             | 44.43            | 45.85             | 54    | 4.00   | -8.15  | AV     | Vertical   |  |
| 4882             | 70.25                                                                                | 5.21          | 35.66             | 44.20            | 66.92             | 74    | 4.00   | -7.08  | Pk     | Horizontal |  |
| 4882             | 50.25                                                                                | 5.21          | 35.66             | 44.20            | 46.92             | 54    | 4.00   | -7.08  | AV     | Horizontal |  |
| 7323             | 70.5                                                                                 | 7.10          | 36.50             | 44.43            | 69.67             | 74    | 4.00   | -4.33  | Pk     | Horizontal |  |
| 7323             | 48.01                                                                                | 7.10          | 36.50             | 44.43            | 47.18             | 54    | 4.00   | -6.82  | AV     | Horizontal |  |
|                  |                                                                                      | -             | High Chann        | el (2480         | MHz)( 8-DPSK      | () Ab | ove 1G | ì      |        |            |  |
| 4960             | 70.02                                                                                | 5.21          | 35.52             | 44.21            | 66.54             | 74    | 4.00   | -7.46  | Pk     | Vertical   |  |
| 4960             | 47.4                                                                                 | 5.21          | 35.52             | 44.21            | 43.92             | 54    | 4.00   | -10.08 | AV     | Vertical   |  |
| 7440             | 70.4                                                                                 | 7.10          | 36.53             | 44.60            | 69.43             | 74    | 4.00   | -4.57  | Pk     | Vertical   |  |
| 7440             | 47.61                                                                                | 7.10          | 36.53             | 44.60            | 46.64             | 54    | 4.00   | -7.36  | AV     | Vertical   |  |
| 4960             | 68.91                                                                                | 5.21          | 35.52             | 44.21            | 65.43             | 74    | 4.00   | -8.57  | Pk     | Horizontal |  |
| 4960             | 45.72                                                                                | 5.21          | 35.52             | 44.21            | 42.24             | 54    | 4.00   | -11.76 | AV     | Horizontal |  |
| 7440             | 68.85                                                                                | 7.10          | 36.53             | 44.60            | 67.88             | 74    | 4.00   | -6.12  | Pk     | Horizontal |  |
| 7440             | 47.32                                                                                | 7.10          | 36.53             | 44.60            | 46.35             | 54    | 1.00   | -7.65  | AV     | Horizontal |  |

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2) All other emissions more than 20dB below the limit.





| Spurious     | Emission i                        | n Restri      | cted Band         | 2310-23          | 390MHz and        | 2483.   | 5-25  | 00MHz     |          |            |
|--------------|-----------------------------------|---------------|-------------------|------------------|-------------------|---------|-------|-----------|----------|------------|
| EUT:         | Geek PC                           |               |                   | Mo               | del No.:          |         | Stati | on M3     |          |            |
| Temperature: | erature: 20 °C Relative Humidity: |               |                   |                  |                   |         | 48%   |           |          |            |
| Test Mode:   | Mode2/ M                          | lode4         |                   | Tes              | t By:             |         | Muk   | zi Lee    |          |            |
| All the modu | ation mod                         | es have       | been test         | ed, and          | the worst res     | sult wa | s rep | ort as be | low:     |            |
| Frequency    | Meter<br>Reading                  | Cable<br>Loss | Antenna<br>Factor | Preamp<br>Factor | Emission<br>Level | Lim     | its   | Margin    | Detector | Comment    |
| (MHz)        | (dBµV)                            | (dB)          | dB/m              | (dB)             | (dBµV/m)          | (dBµ    | V/m)  | (dB)      | Туре     |            |
|              |                                   |               | 31                | /lbps(8-D        | PSK)-Non-ho       | pping   |       |           |          |            |
| 2310.00      | 69.2                              | 2.97          | 27.80             | 43.80            | 56.17             | 74      | 4     | -17.83    | Pk       | Horizontal |
| 2310.00      | 50.39                             | 2.97          | 27.80             | 43.80            | 37.36             | 54      | 4     | -16.64    | AV       | Horizontal |
| 2310.00      | 70.71                             | 2.97          | 27.80             | 43.80            | 57.68             | 74      | 4     | -16.32    | Pk       | Vertical   |
| 2310.00      | 50.3                              | 2.97          | 27.80             | 43.80            | 37.27             | 54      | 4     | -16.73    | AV       | Vertical   |
| 2390.00      | 68.63                             | 3.14          | 27.21             | 43.80            | 55.18             | 74      | 4     | -18.82    | Pk       | Vertical   |
| 2390.00      | 48.5                              | 3.14          | 27.21             | 43.80            | 35.05             | 54      | 4     | -18.95    | AV       | Vertical   |
| 2390.00      | 70.33                             | 3.14          | 27.21             | 43.80            | 56.88             | .88 74  |       | -17.12    | Pk       | Horizontal |
| 2390.00      | 47.28                             | 3.14          | 27.21             | 43.80            | 33.83             | 33 54   |       | -20.17    | AV       | Horizontal |
| 2483.50      | 70.34                             | 3.58          | 27.70             | 44.00            | 57.62             | 74      | 4     | -16.38    | Pk       | Vertical   |
| 2483.50      | 48.56                             | 3.58          | 27.70             | 44.00            | 35.84             | 54      | 4     | -18.16    | AV       | Vertical   |
| 2483.50      | 68.54                             | 3.58          | 27.70             | 44.00            | 55.82             | 74      | 4     | -18.18    | Pk       | Horizontal |
| 2483.50      | 47.89                             | 3.58          | 27.70             | 44.00            | 35.17             | 54      | 4     | -18.83    | AV       | Horizontal |
|              |                                   |               |                   | 3Mbps(8          | -DPSK)-hopp       | ing     |       |           |          |            |
| 2310.00      | 69.53                             | 2.97          | 27.80             | 43.80            | 56.50             | 74      | 4     | -17.50    | Pk       | Horizontal |
| 2310.00      | 49.23                             | 2.97          | 27.80             | 43.80            | 36.20             | 54      | 4     | -17.80    | AV       | Horizontal |
| 2310.00      | 68.82                             | 2.97          | 27.80             | 43.80            | 55.79             | 74      | 4     | -18.21    | Pk       | Vertical   |
| 2310.00      | 48.68                             | 2.97          | 27.80             | 43.80            | 35.65             | 54      | 4     | -18.35    | AV       | Vertical   |
| 2390.00      | 70.06                             | 3.14          | 27.21             | 43.80            | 56.61             | 74      | 4     | -17.39    | Pk       | Vertical   |
| 2390.00      | 45.98                             | 3.14          | 27.21             | 43.80            | 32.53             | 54      | 4     | -21.47    | AV       | Vertical   |
| 2390.00      | 70.74                             | 3.14          | 27.21             | 43.80            | 57.29             | 74      | 4     | -16.71    | Pk       | Horizontal |
| 2390.00      | 48.17                             | 3.14          | 27.21             | 43.80            | 34.72             | 54      | 4     | -19.28    | AV       | Horizontal |
| 2483.50      | 68.38                             | 3.58          | 27.70             | 44.00            | 55.66             | 74      | 4     | -18.34    | Pk       | Vertical   |
| 2483.50      | 50.02                             | 3.58          | 27.70             | 44.00            | 37.30             | 54      | 4     | -16.70    | AV       | Vertical   |
| 2483.50      | 68.07                             | 3.58          | 27.70             | 44.00            | 55.35             | 74      |       | -18.65    | Pk       | Horizontal |
| 2483.50      | 48.24                             | 3.58          | 27.70             | 44.00            | 35.52             | 54      | 4     | -18.48    | AV       | Horizontal |

Note: (1) All other emissions more than 20dB below the limit.





| EUT:           | Geek PC          |               |                   |       |               | Model No.:           |          |       | Station M3 |          |            |    |          |
|----------------|------------------|---------------|-------------------|-------|---------------|----------------------|----------|-------|------------|----------|------------|----|----------|
| Temperature:   | <b>20</b> °C     | <b>20</b> ℃   |                   |       |               | Relative Humidity: 4 |          |       |            |          |            |    |          |
| Test Mode:     | Mode             | le2/ Mode4    |                   |       | Test I        | Зу:                  |          | Mukz  | i Lee      |          |            |    |          |
| All the modula | ation mode       | es have       | been teste        | ed, a | and th        | e worst res          | ult wa   | s rep | ort as be  | low:     |            |    |          |
| Frequency      | Reading<br>Level | Cable<br>Loss | Antenna<br>Factor |       | eamp<br>actor | Emission<br>Level    | Lin      | nits  | Margin     | Detector | Comment    |    |          |
| (MHz)          | (dBµV)           | (dB)          | dB/m              | (     | dB)           | (dBµV/m)             | (dBµ     | V/m)  | (dB)       | Туре     |            |    |          |
| 3260           | 68.12            | 4.04          | 29.57             | 44    | 4.70          | 57.03                | 03 74    |       | 74         |          | -16.97     | Pk | Vertical |
| 3260           | 46.63            | 4.04          | 29.57             | 44    | 4.70          | 35.54                | 35.54 54 |       | -18.46     | AV       | Vertical   |    |          |
| 3260           | 70.35            | 4.04          | 29.57             | 44    | 4.70          | 59.26                | 74       |       | -14.74     | Pk       | Horizontal |    |          |
| 3260           | 46.44            | 4.04          | 29.57             | 44    | 4.70          | 35.35                | 54       |       | -18.65     | AV       | Horizontal |    |          |
| 3332           | 69.6             | 4.26          | 29.87             | 44    | 4.40          | 59.33                | 7        | 4     | -14.67     | Pk       | Vertical   |    |          |
| 3332           | 47.61            | 4.26          | 29.87             | 44    | 4.40          | 37.34                | 5        | 4     | -16.66     | AV       | Vertical   |    |          |
| 3332           | 68.81            | 4.26          | 29.87             | 44    | 4.40          | 58.54                | 7        | 4     | -15.46     | Pk       | Horizontal |    |          |
| 3332           | 48.39            | 4.26          | 29.87             | 44    | 4.40          | 38.12                | 5        | 4     | -15.88     | AV       | Horizontal |    |          |
| 17797          | 53.82            | 10.99         | 43.95             | 43    | 3.50          | 65.26                | 7        | 4     | -8.74      | Pk       | Vertical   |    |          |
| 17797          | 31.68            | 10.99         | 43.95             | 43    | 3.50          | 43.12                | 5        | 4     | -10.88     | AV       | Vertical   |    |          |
| 17788          | 57.83            | 11.81         | 43.69             | 44    | 4.60          | 68.73                | 7        | 4     | -5.27      | Pk       | Horizontal |    |          |
| 17788          | 37.72            | 11.81         | 43.69             | 44    | 4.60          | 48.62                | 5        | 4     | -5.38      | AV       | Horizontal |    |          |

Note: (1) All other emissions more than 20dB below the limit.



#### 7.3 NUMBER OF HOPPING CHANNEL

#### 7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

#### 7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

Certificate #4298.01

#### 7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

#### 7.3.6 Test Results

| EUT:         | Geek PC       | Model No.:         | Station M3 |
|--------------|---------------|--------------------|------------|
| Temperature: | <b>20</b> ℃   | Relative Humidity: | 48%        |
| Test Mode:   | Mode 5(1Mbps) | Test By:           | Mukzi Lee  |



#### 7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

#### 7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

#### 7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold

#### 7.4.6 Test Results

| EUT:         | Geek PC           | Model No.:         | Station M3 |
|--------------|-------------------|--------------------|------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%        |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mukzi Lee  |



#### 7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

#### 7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

#### 7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

Certificate #4298.01

#### 7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW  $\geq$  1MHz VBW  $\geq$  RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.



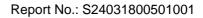
#### 7.5.6 **Test Results**

| EUT:         | Geek PC           | Model No.:         | Station M3                     |
|--------------|-------------------|--------------------|--------------------------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | Station M3<br>48%<br>Mukzi Lee |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mukzi Lee                      |

Certificate #4298.01

Test data reference attachment.

Note:


A Period Time = (channel number)\*0.4

DH1 Dwell time: Reading \* (1600/2)\*31.6/(channel number) DH3 Dwell time: Reading \* (1600/4)\*31.6/(channel number) DH5 Dwell time: Reading \* (1600/6)\*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s), Hops Over Occupancy Time comes to  $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$  hops.
- 2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to  $(800 / 6 / 20) \times (0.4 \times 20) = 53.33$  hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time





#### 7.6 20DB BANDWIDTH TEST

#### 7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

#### 7.6.2 Conformance Limit

No limit requirement.

#### 7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW  $\geq$  1% of the 20 dB bandwidth VBW  $\geq$  RBW Sweep = auto Detector function = peak Trace = max hold

Certificate #4298.01

#### 7.6.6 Test Results

| EUT:         | Geek PC           | Model No.:         | Station M3 |
|--------------|-------------------|--------------------|------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%        |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mukzi Lee  |





#### 7.7 PEAK OUTPUT POWER

#### 7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

#### 7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

#### 7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

 $RBW \ge the 20 dB$  bandwidth of the emission being measured

 $VBW \ge RBW$ 

Sweep = auto

Detector function = peak Trace = max hold

#### 7.7.6 Test Results

| EUT:         | Geek PC           | Model No.:         | Station M3 |
|--------------|-------------------|--------------------|------------|
| Temperature: | <b>20</b> ℃       | Relative Humidity: | 48%        |
| Test Mode:   | Mode2/Mode3/Mode4 | Test By:           | Mukzi Lee  |





#### 7.8 CONDUCTED BAND EDGE MEASUREMENT

#### 7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

#### 7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c)).

#### 7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

#### 7.8.6 Test Results

| EUT:         | Geek PC              | Model No.:         | Station M3 |
|--------------|----------------------|--------------------|------------|
| Temperature: | 20 °C                | Relative Humidity: |            |
| Test Mode:   | Mode2 /Mode4/ Mode 5 | Test By:           | Mukzi Lee  |





#### 7.9 SPURIOUS RF CONDUCTED EMISSION

#### 7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

#### 7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### 7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

#### 7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

#### 7.9.5 Test Procedure

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW  $\geq$  [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

#### 7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.





#### 7.10 ANTENNA APPLICATION

#### 7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### 7.10.2 Result

The EUT antenna is Permanently attached FPCB Antenna (Gain: 1.92 dBi). It comply with the standard requirement.



#### 7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

#### 7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

#### 7.11.3 EUT Pseudorandom Frequency Hopping Sequence

Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

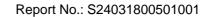
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

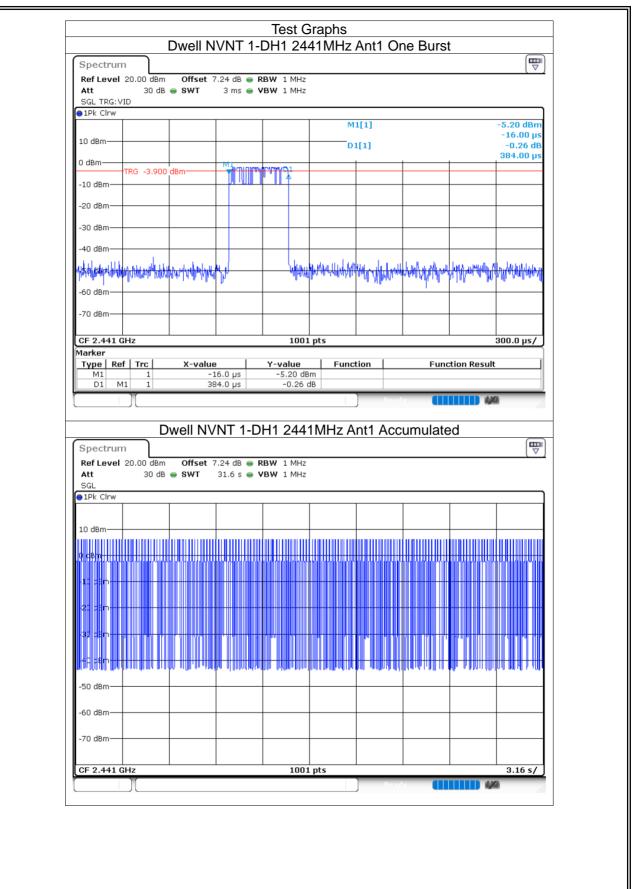




# 8 TEST RESULTS

# 8.1 **DWELL TIME**

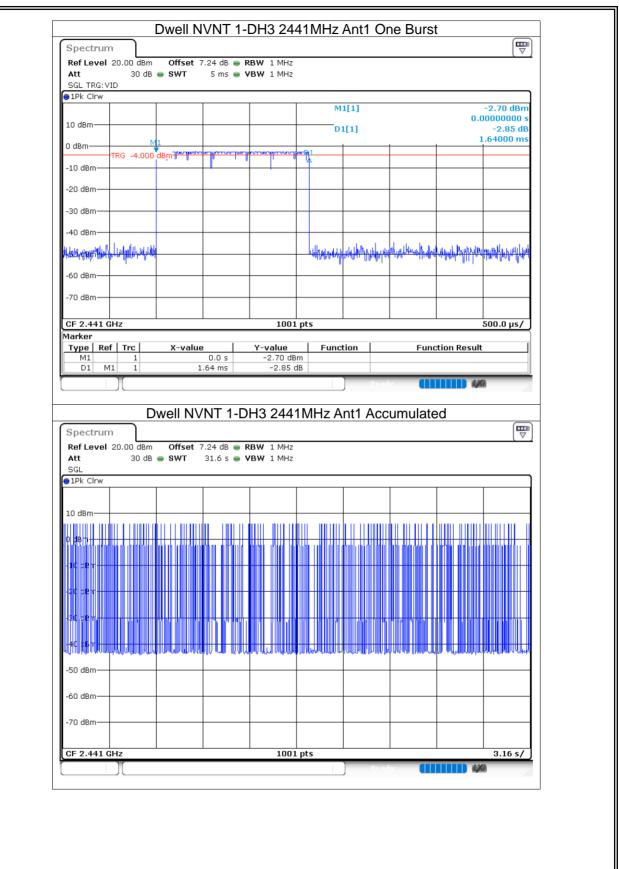

| Condition | Mode  | Frequency<br>(MHz) | Antenna | Pulse<br>Time<br>(ms) | Total<br>Dwell<br>Time<br>(ms) | Burst<br>Count | Period<br>Time<br>(ms) | Limit<br>(ms) | Verdict |
|-----------|-------|--------------------|---------|-----------------------|--------------------------------|----------------|------------------------|---------------|---------|
| NVNT      | 1-DH1 | 2441               | Ant1    | 0.384                 | 86.4                           | 225            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH3 | 2441               | Ant1    | 1.64                  | 242.72                         | 148            | 31600                  | 400           | Pass    |
| NVNT      | 1-DH5 | 2441               | Ant1    | 2.888                 | 277.248                        | 96             | 31600                  | 400           | Pass    |
| NVNT      | 2-DH1 | 2441               | Ant1    | 0.39                  | 95.16                          | 244            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH3 | 2441               | Ant1    | 1.645                 | 222.075                        | 135            | 31600                  | 400           | Pass    |
| NVNT      | 2-DH5 | 2441               | Ant1    | 2.896                 | 304.08                         | 105            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH1 | 2441               | Ant1    | 0.393                 | 83.316                         | 212            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH3 | 2441               | Ant1    | 1.645                 | 227.01                         | 138            | 31600                  | 400           | Pass    |
| NVNT      | 3-DH5 | 2441               | Ant1    | 2.896                 | 295.392                        | 102            | 31600                  | 400           | Pass    |



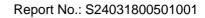

ilac-MR

ACCREDITED

Certificate #4298.01





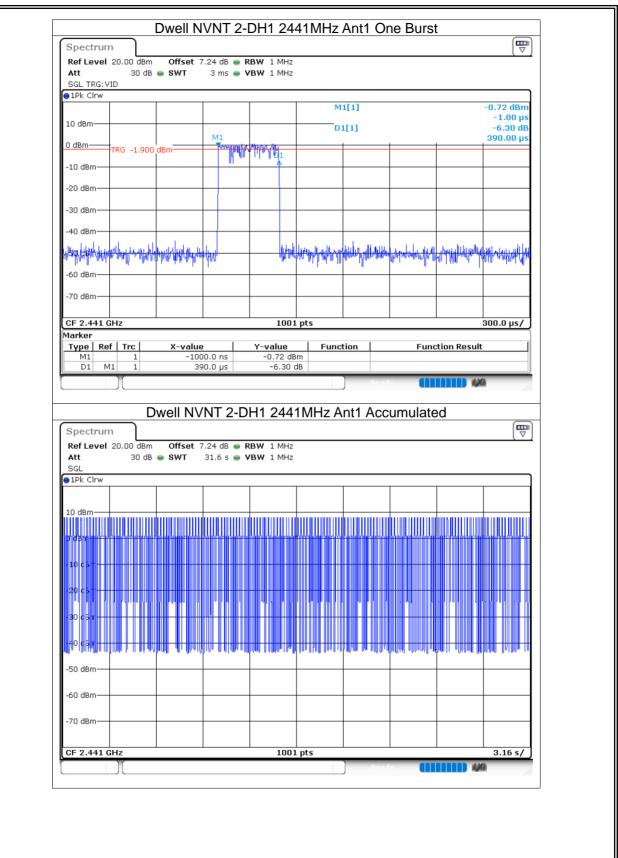

ACCREDITED







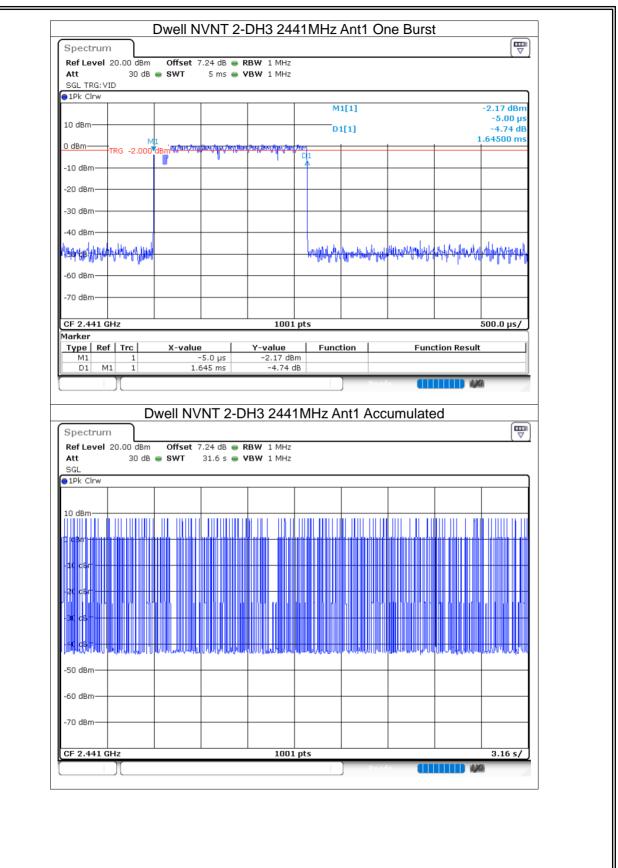



| SGL TRG: VID<br>1Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | dB 👄 SWT | 8 ms 👄 ٧            |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------|---------------------|-----------------|--------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                     |                     | M               | l[1]               |            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -2.78 dBm<br>)0000000 s |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                     |                     | Di              | [1]                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.04 dB                 |
| 0 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100 dBm  |                     | D1                  |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .88800 ms               |
| -10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| -20 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| -30 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| -40 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| Hally all the little                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                     | k                   | Marypertransfer | ey abyledige-later |            | her and the state of the state | Marthalth-talderte      |
| -60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                     |                     | · · ·           |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| -70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| yo dom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| CF 2.441 GHz<br>Marker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                     | 1001                | pts             |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 800.0 µs/               |
| Type Ref Trc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X-value  | 9<br>0.0 s          | Y-value<br>-2.78 dB | Funct           | ion                | Fund       | tion Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |
| D1 M1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.8      | 388 ms              | 0.04 0              |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                     |                     |                 | Read               | y <b>M</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dwell NV | NT 1-DI             | 15 244              | 1MHz A          | nt1 Acc            | umulate    | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | <u></u>             |                     | <u></u> ,       |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| Ref Level 20.00 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 7.24 dB 👄 RI        |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ( • )                   |
| SGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | dB 👄 SWT | 31.6 s 👄 <b>V</b> I | BW IMHZ             |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| ●1Pk Clrw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| 10 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| 0 d8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| 0 dBm<br>- UC 36 h<br>- 20 36 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| 0 d8m<br>- 00 26 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H 94 A 7                |
| 0 d8m<br>- 00 26 h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H 94 A 7                |
| 0 dBm<br>- LC 26 h<br>- 20 26 h<br>- 20 26 h<br>- 30 26 h<br>- 40 26 h<br>- 50 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H 94 A 7                |
| 0 d8m<br>- UC 26m<br>- 20 26m<br>- 20 26m<br>- 20 26m<br>- 20 26m<br>- 20 26m<br>- 20 26m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H 94 A 7                |
| 0 dBm<br>- UC 26 h<br>- 2C 26 h<br>- 2C 26 h<br>- 10 10 h<br>- 10 10 h<br>- 10 10 h<br>- 10 |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H 94 A 7                |
| 0 dBm<br>- UC 26 h<br>- 20 26 h<br>- 20 26 h<br>- 20 26 h<br>- 50 dBm<br>- 60 dBm<br>- 70 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| 0 dBm<br>- UC 56 h<br>- 20 56 h<br>- 34 56 h<br>- 4 26 h<br>- 50 dBm<br>- 60 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |                     |                     |                 |                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.16 s/                 |

ACCREDITED Certificate #4298.01



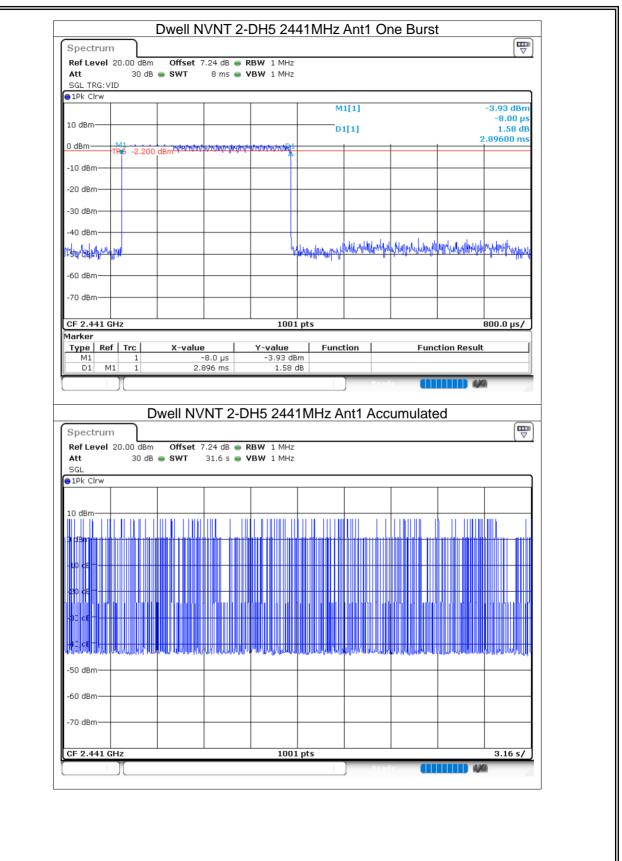
ACCREDITED







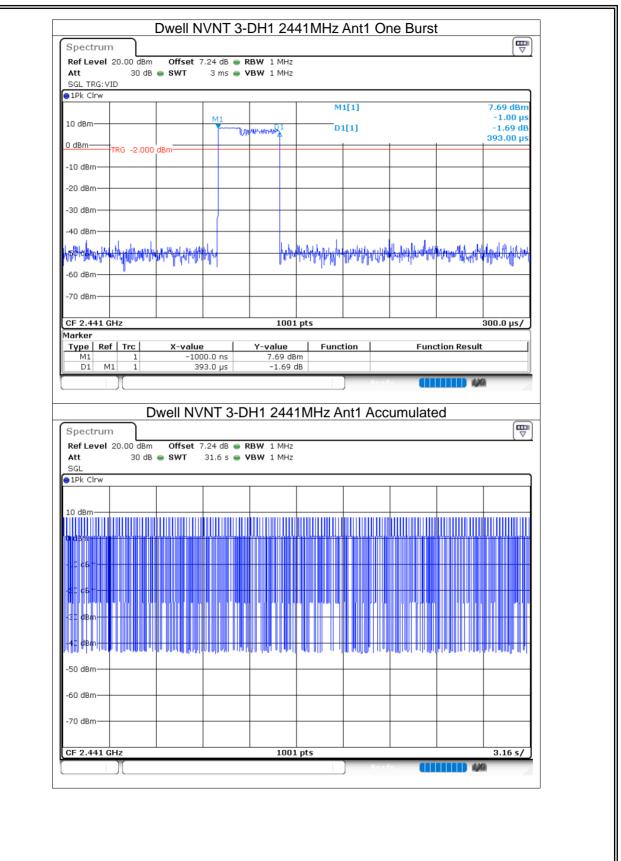

ACCREDITED







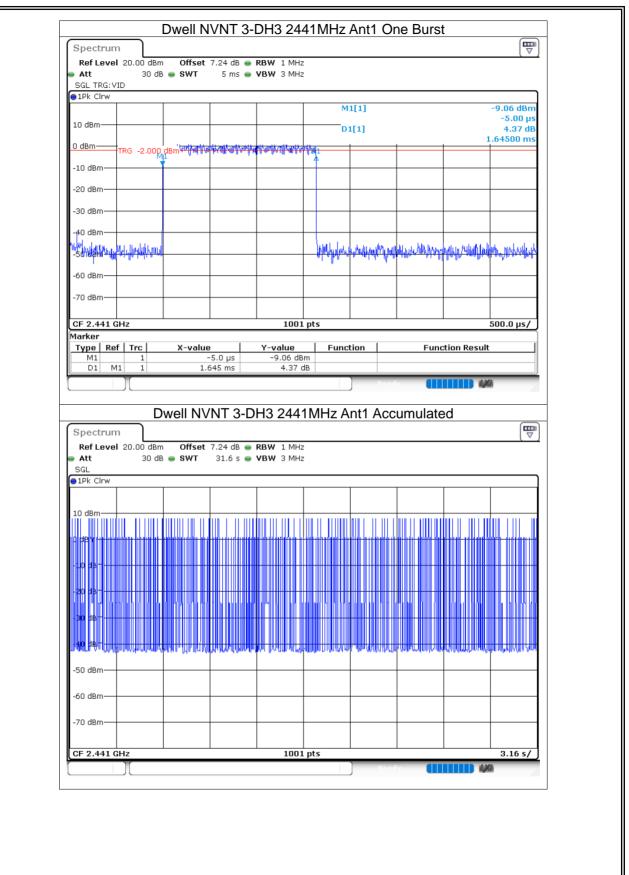

ACCREDITED



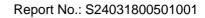





ACCREDITED






ACCREDITED









|                                                                                                                            |                         |                         |                                                                                                                  |                                       |                   | 1511                                 |                                              |                 | 0.07.40.00              |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|--------------------------------------|----------------------------------------------|-----------------|-------------------------|
| 10 dBm                                                                                                                     |                         |                         |                                                                                                                  |                                       |                   | 1[1]                                 |                                              | 0.0             | -0.87 dBm<br>00000000 s |
| TO OBIII                                                                                                                   | M1                      |                         |                                                                                                                  |                                       | D                 | 1[1]                                 |                                              | :               | -4.12 dB<br>2.89600 ms  |
| 0 dBm                                                                                                                      | TRG -2.100              | dBm <sup>24005424</sup> | palitic de la compactica de | and hall we had                       |                   |                                      |                                              |                 |                         |
| -10 dBm—                                                                                                                   |                         |                         |                                                                                                                  | T                                     |                   |                                      |                                              |                 |                         |
| -20 dBm                                                                                                                    |                         |                         |                                                                                                                  |                                       |                   |                                      |                                              |                 |                         |
| -30 dBm                                                                                                                    |                         |                         |                                                                                                                  |                                       |                   |                                      |                                              |                 |                         |
| -40 dBm                                                                                                                    |                         |                         |                                                                                                                  |                                       |                   |                                      |                                              |                 |                         |
| 15 deni                                                                                                                    | иl                      |                         |                                                                                                                  |                                       | ad washed at the  | da alfradaile, i e calif             | Pitantanah Mahara                            | الملبلة ومنالم  | with teact of the       |
| n-aolanut-ut                                                                                                               |                         |                         |                                                                                                                  |                                       | HIN. WILLIAM R.J. | <mark>⊢ (° , ∥•0 , (° , ∘ ,</mark> , | ll. a de | Miritor Carriel | <u>, որը պա կո</u>      |
| -60 dBm                                                                                                                    |                         |                         |                                                                                                                  |                                       |                   |                                      |                                              |                 |                         |
| -70 dBm                                                                                                                    |                         |                         |                                                                                                                  |                                       |                   |                                      |                                              |                 |                         |
| CF 2.441 (                                                                                                                 | Hz                      |                         |                                                                                                                  | 1001                                  | 1 pts             |                                      |                                              |                 | 800.0 µs/               |
| Marker                                                                                                                     |                         |                         |                                                                                                                  |                                       |                   |                                      |                                              |                 |                         |
| Type Re<br>M1                                                                                                              | f Trc 1                 | X-value                 | e 0.0 s                                                                                                          | <u>Y-value</u><br>-0.87 dB            | Funct<br>Bm       | tion                                 | Fund                                         | tion Result     | :                       |
| D1 M                                                                                                                       | 11 1                    | 2.5                     | 896 ms                                                                                                           | -4.12                                 | dB                |                                      |                                              |                 |                         |
|                                                                                                                            | 24                      |                         |                                                                                                                  |                                       |                   |                                      |                                              |                 | 24                      |
|                                                                                                                            | ][]                     |                         |                                                                                                                  |                                       |                   | Reard                                |                                              |                 |                         |
|                                                                                                                            |                         |                         | /NT 3-D                                                                                                          | H5 2 <i>11</i>                        | 1MH7 A            | nt1 Acc                              | umulate                                      | 2d              |                         |
|                                                                                                                            |                         | well NV                 | /NT 3-D                                                                                                          | H5 244                                | 1MHz A            | nt1 Acc                              | umulate                                      | ed              |                         |
| Spectrun                                                                                                                   | n                       |                         |                                                                                                                  |                                       |                   | nt1 Acc                              | umulate                                      | ed              |                         |
| Ref Level<br>Att                                                                                                           | n<br>20.00 dBm          |                         | /NT 3-D<br>7.24 dB • R<br>31.6 s • V                                                                             | BW 1 MHz                              |                   | nt1 Acc                              | umulate                                      | ed              |                         |
| Ref Level                                                                                                                  | n<br>20.00 dBm          | Offset 7                | 7.24 dB 👄 R                                                                                                      | BW 1 MHz                              |                   | nt1 Acc                              | umulate                                      | ed              |                         |
| Ref Level<br>Att<br>SGL                                                                                                    | n<br>20.00 dBm          | Offset 7                | 7.24 dB 👄 R                                                                                                      | BW 1 MHz                              |                   | nt1 Acc                              |                                              | ed              |                         |
| Ref Level<br>Att<br>SGL                                                                                                    | n<br>20.00 dBm          | Offset 7                | 7.24 dB 👄 R                                                                                                      | BW 1 MHz                              |                   | nt1 Acc                              |                                              | ed              |                         |
| Ref Level<br>Att<br>SGL<br>1Pk Clrw                                                                                        | n<br>20.00 dBm          | Offset 7                | 7.24 dB 👄 R                                                                                                      | BW 1 MHz                              |                   | nt1 Acc                              |                                              | ed              |                         |
| Ref Level<br>Att<br>SGL<br>1Pk Clrw                                                                                        | n<br>20.00 dBm          | Offset 7                | 7.24 dB 👄 R                                                                                                      | BW 1 MHz                              |                   | nt1 Acc                              |                                              | ed              |                         |
| Ref Level<br>Att<br>SGL<br>1Pk Clrw                                                                                        | n<br>20.00 dBm          | Offset 7                | 7.24 dB 👄 R                                                                                                      | BW 1 MHz                              |                   | nt1 Acc                              |                                              | ed              |                         |
| Ref Level<br>Att<br>SGL<br>1Pk Clrw                                                                                        | n<br>20.00 dBm          | Offset 7                | 7.24 dB 👄 R                                                                                                      | BW 1 MHz                              |                   | nt1 Acc                              |                                              |                 |                         |
| Ref Level<br>Att<br>SGL<br>● 1Pk Clrw<br>10 dBm<br>-10 dBm<br>-10 cEm<br>-20 cEm                                           | n<br>20.00 dBm<br>30 dB | Offset                  | 7.24 dB • R<br>31.6 s • V                                                                                        | RBW 1 MHz<br>/BW 1 MHz                |                   |                                      |                                              |                 |                         |
| Ref Level<br>Att<br>SGL<br>● 1Pk Clrw<br>10 dBm<br>-1C cBm<br>-2C cBm                                                      | n<br>20.00 dBm          | Offset                  | 7.24 dB • R<br>31.6 s • V                                                                                        | RBW 1 MHz<br>/BW 1 MHz                |                   |                                      |                                              |                 |                         |
| Ref Level<br>Att<br>SGL<br>● 1Pk Clrw<br>10 dBm<br>-10 dBm<br>-10 cEm<br>-20 cEm                                           | n<br>20.00 dBm<br>30 dB | Offset                  | 7.24 dB • R<br>31.6 s • V                                                                                        | RBW 1 MHz<br>BW 1 MHz                 |                   |                                      |                                              |                 |                         |
| Ref Level<br>Att<br>SGL<br>● 1Pk Clrw<br>10 dBm<br>-1C cBm<br>-2C cBm<br>-2C cBm<br>-2C cBm<br>-2C cBm                     | n<br>20.00 dBm<br>30 dB | Offset                  | 7.24 dB • R<br>31.6 s • V                                                                                        | RBW 1 MHz<br>BW 1 MHz                 |                   |                                      |                                              |                 |                         |
| Ref Level<br>Att<br>SGL<br>● 1Pk Clrw<br>10 dBm<br>-10 dBm<br>-10 cEm<br>-20 cEm                                           | n<br>20.00 dBm<br>30 dB | Offset                  | 7.24 dB • R<br>31.6 s • V                                                                                        | RBW 1 MHz<br>BW 1 MHz                 |                   |                                      |                                              |                 |                         |
| Ref Level<br>Att<br>SGL<br>● 1Pk Clrw<br>10 dBm<br>-1C cBm<br>-2C cBm<br>-2C cBm<br>-2C cBm<br>-2C cBm                     | n<br>20.00 dBm<br>30 dB | Offset                  | 7.24 dB • R<br>31.6 s • V                                                                                        | RBW 1 MHz<br>BW 1 MHz                 |                   |                                      |                                              |                 |                         |
| Ref Level<br>Att<br>SGL<br>● 1Pk Clrw<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-20 cBm<br>-30 cBm<br>-50 dBm<br>-60 dBm          | n<br>20.00 dBm<br>30 dB | Offset                  | 7.24 dB • R<br>31.6 s • V                                                                                        | RBW 1 MHz<br>BW 1 MHz                 |                   |                                      |                                              |                 |                         |
| Ref Level<br>Att<br>SGL<br>● 1Pk Clrw<br>10 dBm<br>-1C cBm<br>-2C cBm<br>-2C cBm<br>-2C cBm<br>-3C cB                      | n<br>20.00 dBm<br>30 dB | Offset                  | 7.24 dB • R<br>31.6 s • V                                                                                        | RBW 1 MHz<br>BW 1 MHz                 |                   |                                      |                                              |                 |                         |
| Ref Level<br>Att<br>SGL<br>● 1Pk Clrw<br>10 dBm<br>10 dBm<br>10 cBm<br>-2C cBm<br>-3C cBm<br>-3C cBm<br>-50 dBm<br>-60 dBm | n<br>20.00 dBm<br>30 dB | Offset                  | 7.24 dB • R<br>31.6 s • V                                                                                        | <b>RBW</b> 1 MHz<br>/ <b>BW</b> 1 MHz |                   |                                      |                                              |                 |                         |

ACCREDITED Certificate #4298.01



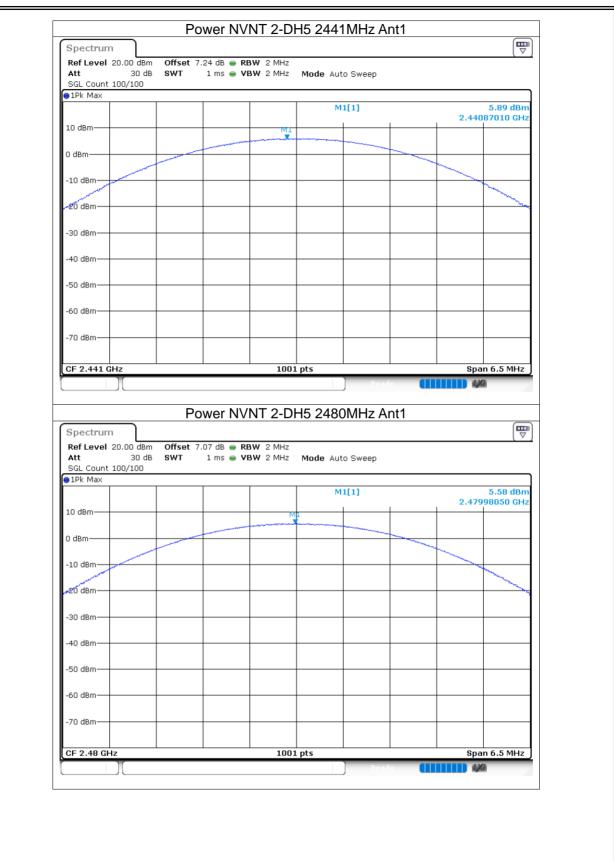
# 8.2 MAXIMUM CONDUCTED OUTPUT POWER

| Condition | Mode  | Frequency<br>(MHz) | Antenna | Conducted<br>Power<br>(dBm) | Limit<br>(dBm) | Verdict |
|-----------|-------|--------------------|---------|-----------------------------|----------------|---------|
| NVNT      | 1-DH5 | 2402               | Ant1    | 3.84                        | 21             | Pass    |
| NVNT      | 1-DH5 | 2441               | Ant1    | 3.86                        | 21             | Pass    |
| NVNT      | 1-DH5 | 2480               | Ant1    | 3.49                        | 21             | Pass    |
| NVNT      | 2-DH5 | 2402               | Ant1    | 5.86                        | 21             | Pass    |
| NVNT      | 2-DH5 | 2441               | Ant1    | 5.89                        | 21             | Pass    |
| NVNT      | 2-DH5 | 2480               | Ant1    | 5.58                        | 21             | Pass    |
| NVNT      | 3-DH5 | 2402               | Ant1    | 7.81                        | 21             | Pass    |
| NVNT      | 3-DH5 | 2441               | Ant1    | 8.04                        | 21             | Pass    |
| NVNT      | 3-DH5 | 2480               | Ant1    | 7.78                        | 21             | Pass    |





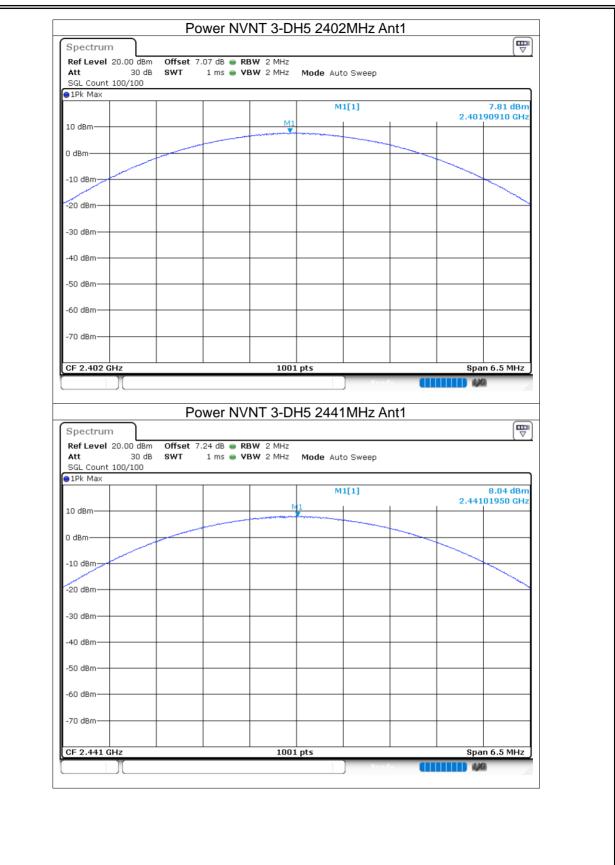
| Spectrum                                                                                                                                                                                                                                    | 04             |                                                                |              |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------|--------------|----------------|
| Ref Level         20.00 dBm           Att         30 dB           SGL Count         100/100                                                                                                                                                 |                | <ul> <li>RBW 2 MHz</li> <li>VBW 2 MHz</li> <li>Mode</li> </ul> | e Auto Sweep |                |
| ●1Pk Max                                                                                                                                                                                                                                    |                |                                                                | M1[1]        | 3.84 dBm       |
| 10 dBm                                                                                                                                                                                                                                      |                |                                                                |              | 2.40200000 GHz |
|                                                                                                                                                                                                                                             |                | M1                                                             |              |                |
| 0 dBm                                                                                                                                                                                                                                       |                |                                                                |              |                |
| -10 dBm                                                                                                                                                                                                                                     |                |                                                                |              |                |
| -20 dBm                                                                                                                                                                                                                                     |                |                                                                |              |                |
| 20 000                                                                                                                                                                                                                                      |                |                                                                |              |                |
| -30 dBm                                                                                                                                                                                                                                     |                |                                                                |              |                |
| -40 dBm                                                                                                                                                                                                                                     |                |                                                                |              |                |
| -50 dBm                                                                                                                                                                                                                                     |                |                                                                |              |                |
|                                                                                                                                                                                                                                             |                |                                                                |              |                |
| -60 dBm                                                                                                                                                                                                                                     |                |                                                                |              |                |
| -70 dBm                                                                                                                                                                                                                                     |                |                                                                |              |                |
|                                                                                                                                                                                                                                             |                |                                                                |              |                |
|                                                                                                                                                                                                                                             |                | 1001                                                           |              |                |
| CF 2.402 GHz                                                                                                                                                                                                                                | Offset 7.24 dB | 1001 pts                                                       |              | Span 5.0 MHz   |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100                                                                                                                                                                           | Offset 7.24 dB | NVNT 1-DH5 2                                                   |              |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB                                                                                                                                                                                                | Offset 7.24 dB | NVNT 1-DH5 2                                                   | a Auto Sweep |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100                                                                                                                                                                           | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                |              |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100<br>PIPk Max<br>10 dBm                                                                                                                                                     | Offset 7.24 dB | NVNT 1-DH5 2                                                   | a Auto Sweep |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100<br>PIPk Max                                                                                                                                                               | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100<br>PIPk Max<br>10 dBm                                                                                                                                                     | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100<br>PIPk Max<br>10 dBm<br>0 dBm                                                                                                                                            | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100<br>PIPk Max<br>10 dBm<br>-10 dBm<br>-20 dBm                                                                                                                               | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100<br>P1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm                                                                                                                                 | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |
| Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 100/100           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm                                                               | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100<br>1Pk Max<br>10 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm                                                                                                                     | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100<br>1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                                                                                      | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100<br>IPk Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm                                                                                                 | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |
| Spectrum<br>Ref Level 20.00 dBm<br>Att 30 dB<br>SGL Count 100/100<br>1Pk Max<br>10 dBm<br>0 dBm<br>-10 dBm<br>-20 dBm<br>-30 dBm<br>-40 dBm<br>-50 dBm                                                                                      | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |
| Spectrum           Ref Level 20.00 dBm           Att         30 dB           SGL Count 100/100           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm | Offset 7.24 dB | NVNT 1-DH5 2                                                   | a Auto Sweep |                |
| Spectrum           Ref Level 20.00 dBm           Att 30 dB           SGL Count 100/100           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -60 dBm         | Offset 7.24 dB | • RBW 2 MHz<br>• VBW 2 MHz Mode                                | a Auto Sweep |                |






| Ref Level         20.00 dl           Att         30           SGL Count         100/100                                                                                                                                                                                                                                                | dB SWT                              | 7.07 dB 👄 RE<br>1 ms 👄 VE |                            | Mode Auto | o Sweep |     |       |                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------|----------------------------|-----------|---------|-----|-------|-----------------------|
| ●1Pk Max                                                                                                                                                                                                                                                                                                                               |                                     | 1                         | 1                          |           |         |     |       | 0.40.40               |
|                                                                                                                                                                                                                                                                                                                                        |                                     |                           |                            |           | [1]     | 1   | 2.480 | 3.49 dBm<br>05490 GHz |
| 10 dBm                                                                                                                                                                                                                                                                                                                                 |                                     |                           |                            | M1        |         |     |       |                       |
| 0 dBm                                                                                                                                                                                                                                                                                                                                  |                                     |                           |                            |           |         |     |       |                       |
| -10.dBm                                                                                                                                                                                                                                                                                                                                |                                     |                           |                            |           |         |     |       |                       |
| -10-48011                                                                                                                                                                                                                                                                                                                              |                                     |                           |                            |           |         |     |       |                       |
| -20 dBm                                                                                                                                                                                                                                                                                                                                |                                     |                           |                            |           |         |     |       |                       |
| -30 dBm                                                                                                                                                                                                                                                                                                                                |                                     |                           |                            |           |         |     |       |                       |
|                                                                                                                                                                                                                                                                                                                                        |                                     |                           |                            |           |         |     |       |                       |
| -40 dBm                                                                                                                                                                                                                                                                                                                                |                                     |                           |                            |           |         |     |       |                       |
| -50 dBm                                                                                                                                                                                                                                                                                                                                |                                     |                           |                            |           |         |     |       |                       |
| 60 dBm                                                                                                                                                                                                                                                                                                                                 |                                     |                           |                            |           |         |     |       |                       |
| -60 dBm                                                                                                                                                                                                                                                                                                                                |                                     |                           |                            |           |         |     |       |                       |
| -70 dBm                                                                                                                                                                                                                                                                                                                                |                                     |                           |                            |           |         |     |       |                       |
|                                                                                                                                                                                                                                                                                                                                        |                                     |                           |                            |           |         |     |       |                       |
| CF 2.48 GHz                                                                                                                                                                                                                                                                                                                            |                                     |                           | 1001                       | 1 pts     |         |     | Spa   | n 5.0 MHz             |
| Ref Level 20.00 di<br>Att 30                                                                                                                                                                                                                                                                                                           | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 2.07 dB • RE<br>1 ms • VI | 3W 2 MHz                   | H5 2402   |         | nt1 |       |                       |
| Spectrum<br>Ref Level 20.00 dl<br>Att 30<br>SGL Count 100/100<br>JIPk Max                                                                                                                                                                                                                                                              | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | 3W 2 MHz                   | Mode Auto | o Sweep | nt1 |       |                       |
| Ref Level 20.00 d<br>Att 30<br>SGL Count 100/100<br>1Pk Max                                                                                                                                                                                                                                                                            | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto |         | nt1 | 2.401 | 5.86 dBm<br>85710 GHz |
| Ref Level         20.00 dl           Att         30           SGL Count         100/100                                                                                                                                                                                                                                                | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | 3W 2 MHz                   | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 d           Att         30           SGL Count         100/100           1Pk Max         10 dBm                                                                                                                                                                                                                | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 d           Att         30           SGL Count         100/100           IPk Max         10           10 dBm         0                                                                                                                                                                                         | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level 20.00 d<br>Att 30<br>SGL Count 100/100<br>1Pk Max                                                                                                                                                                                                                                                                            | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 di           Att         30           SGL Count         100/100           IPk Max         10           10 dBm         -0           -10 dBm         -10                                                                                                                                                         | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 d           Att         30           SGL         Count         100/100           IPk         Max           10 dBm         0           -10 dBm         -           -20 dBm         -                                                                                                                            | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 d           Att         30           SGL         Count         100/100           IPk         Max           10 dBm         0           -10 dBm         -           -20 dBm         -           -30 dBm         -                                                                                                | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 d           Att         30           SGL         Count         100/100           IPk         Max           10 dBm         0           -10 dBm         -           -20 dBm         -                                                                                                                            | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 d           Att         30           SGL         Count         100/100           IPk         Max           10 dBm         0         dBm           -10 dBm         -         -           -20 dBm         -         -           -30 dBm         -         -                                                      | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 d           Att         30           SGL         Count         100/100           IPk Max         10         dBm           10 dBm         0         dBm           -10 dBm         -         -           -20 dBm         -         -           -30 dBm         -         -           -50 dBm         -         - | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 did           Att         30           SGL         Count         100/100           ID         dBm         0           0         dBm                                                                                                                                                                            | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 di           Att         30           SGL         Count         100/100           10 dBm         0         0           10 dBm         0         0           -10 dBm         0         0           -20 dBm         0                                                                                            | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz       | Mode Auto | o Sweep | nt1 | 2.401 | 5.86 dBm              |
| Ref Level         20.00 di           Att         30           SGL Count         100/100           IPk Max         10           10 dBm         0           10 dBm         -0           -10 dBm         -0           -20 dBm                                                                                                             | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz<br>MI | Mode Auto | o Sweep | nt1 |       | 5.86 dBm<br>85710 GHz |
| Ref Level         20.00 di           Att         30           SGL Count         100/100           IPk Max         10           10 dBm         0           10 dBm         -0           -10 dBm         -0           -20 dBm                                                                                                             | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz<br>MI | Mode Auto | o Sweep | nt1 | Spa   | 5.86 dBm<br>85710 GHz |
| Ref Level         20.00 d           Att         30           SGL         Count         100/100           IPk         Max           10 dBm         0           -10 dBm         -           -20 dBm         -           -30 dBm         -                                                                                                | 3m <b>Offset</b> 7<br>dB <b>SWT</b> | 7.07 dB 👄 RE              | BW 2 MHz<br>BW 2 MHz<br>MI | Mode Auto | o Sweep |     | Spa   | 5.86 dBm<br>85710 GHz |










ACCREDITED









| Spectrum                                  |                  |                           |      |                 |  |                        | [₩] |
|-------------------------------------------|------------------|---------------------------|------|-----------------|--|------------------------|-----|
| Ref Level 20.00<br>Att<br>SGL Count 100/2 | 30 dB <b>SWT</b> | t 7.07 dB 👄 R<br>1 ms 👄 V |      | Mode Auto Sweep |  |                        |     |
| 1Pk Max                                   |                  |                           |      |                 |  |                        |     |
|                                           |                  |                           |      | M1[1]           |  | 7.78 d<br>2.48001950 ( |     |
| 10 dBm                                    |                  |                           | M    | L               |  | 2.40001930             | GHZ |
|                                           |                  |                           |      |                 |  |                        |     |
| 0 dBm                                     |                  | -                         |      |                 |  |                        |     |
|                                           | ~~~              |                           |      |                 |  |                        |     |
| -10 dBm                                   |                  |                           |      |                 |  |                        |     |
| -20 dBm                                   |                  |                           |      |                 |  |                        | ~   |
| -20 abiii                                 |                  |                           |      |                 |  |                        |     |
| -30 dBm                                   |                  |                           |      |                 |  |                        | _   |
|                                           |                  |                           |      |                 |  |                        |     |
| -40 dBm                                   |                  |                           |      |                 |  |                        |     |
|                                           |                  |                           |      |                 |  |                        |     |
| -50 dBm                                   |                  |                           |      |                 |  |                        |     |
| -60 dBm                                   |                  |                           |      |                 |  |                        |     |
|                                           |                  |                           |      |                 |  |                        |     |
| -70 dBm                                   |                  |                           |      |                 |  |                        |     |
|                                           |                  |                           |      |                 |  |                        |     |
| CF 2.48 GHz                               |                  |                           | 1001 | ntc             |  | Span 6.5 M             |     |



### 8.3 -20DB BANDWIDTH

| Condition | Mode  | Frequency<br>(MHz) | Antenna | -20 dB Bandwidth<br>(MHz) | Verdict |
|-----------|-------|--------------------|---------|---------------------------|---------|
| NVNT      | 1-DH5 | 2402               | Ant1    | 1.03                      | Pass    |
| NVNT      | 1-DH5 | 2441               | Ant1    | 1.028                     | Pass    |
| NVNT      | 1-DH5 | 2480               | Ant1    | 1.03                      | Pass    |
| NVNT      | 2-DH5 | 2402               | Ant1    | 1.326                     | Pass    |
| NVNT      | 2-DH5 | 2441               | Ant1    | 1.33                      | Pass    |
| NVNT      | 2-DH5 | 2480               | Ant1    | 1.33                      | Pass    |
| NVNT      | 3-DH5 | 2402               | Ant1    | 1.286                     | Pass    |
| NVNT      | 3-DH5 | 2441               | Ant1    | 1.288                     | Pass    |
| NVNT      | 3-DH5 | 2480               | Ant1    | 1.284                     | Pass    |

ACCRED

Certificate #4298.01

ED

ilac-MR





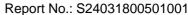








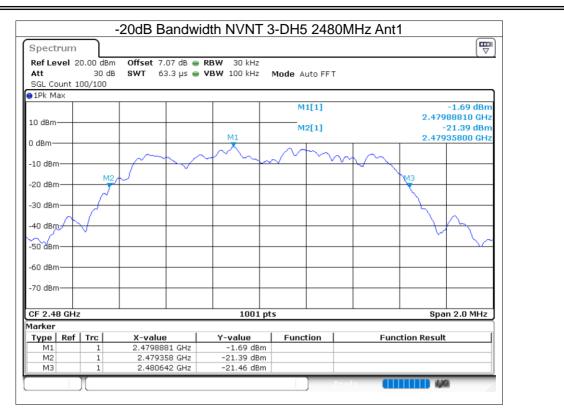
ACCREDITED








ACCREDITED







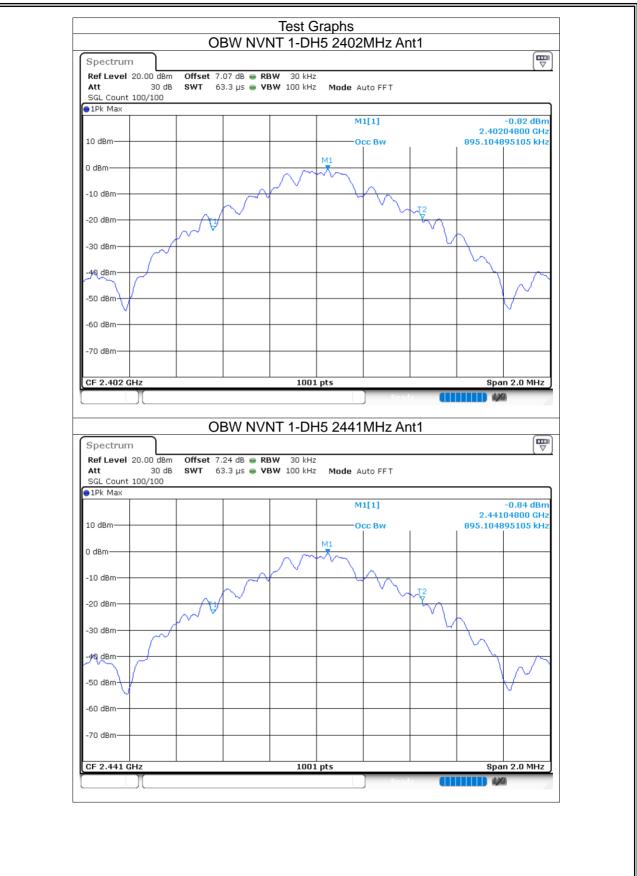







ACCREDITED

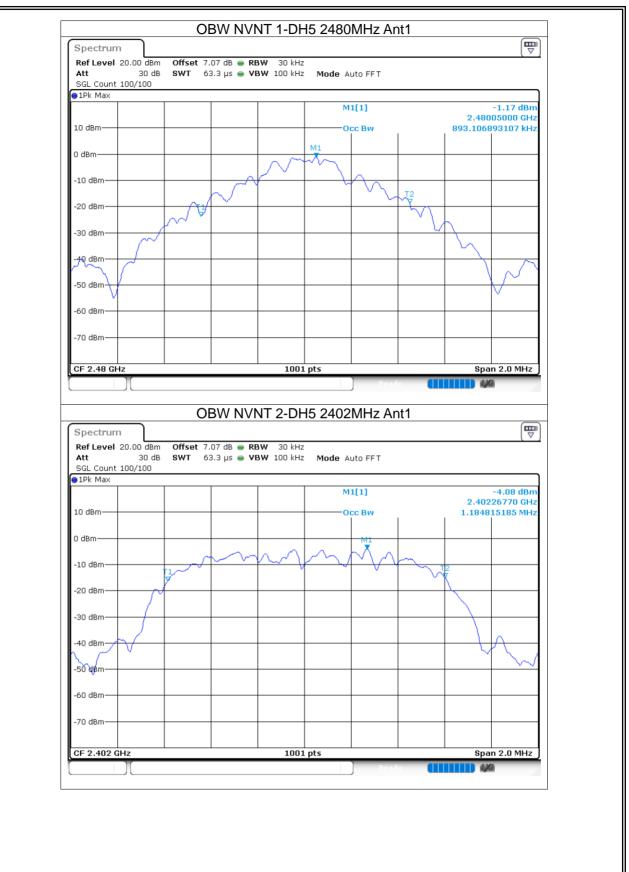





# 8.4 OCCUPIED CHANNEL BANDWIDTH

| Condition | Mode  | Frequency (MHz) | Antenna | 99% OBW (MHz) |
|-----------|-------|-----------------|---------|---------------|
| NVNT      | 1-DH5 | 2402            | Ant1    | 0.895         |
| NVNT      | 1-DH5 | 2441            | Ant1    | 0.895         |
| NVNT      | 1-DH5 | 2480            | Ant1    | 0.893         |
| NVNT      | 2-DH5 | 2402            | Ant1    | 1.185         |
| NVNT      | 2-DH5 | 2441            | Ant1    | 1.185         |
| NVNT      | 2-DH5 | 2480            | Ant1    | 1.183         |
| NVNT      | 3-DH5 | 2402            | Ant1    | 1.157         |
| NVNT      | 3-DH5 | 2441            | Ant1    | 1.157         |
| NVNT      | 3-DH5 | 2480            | Ant1    | 1.155         |

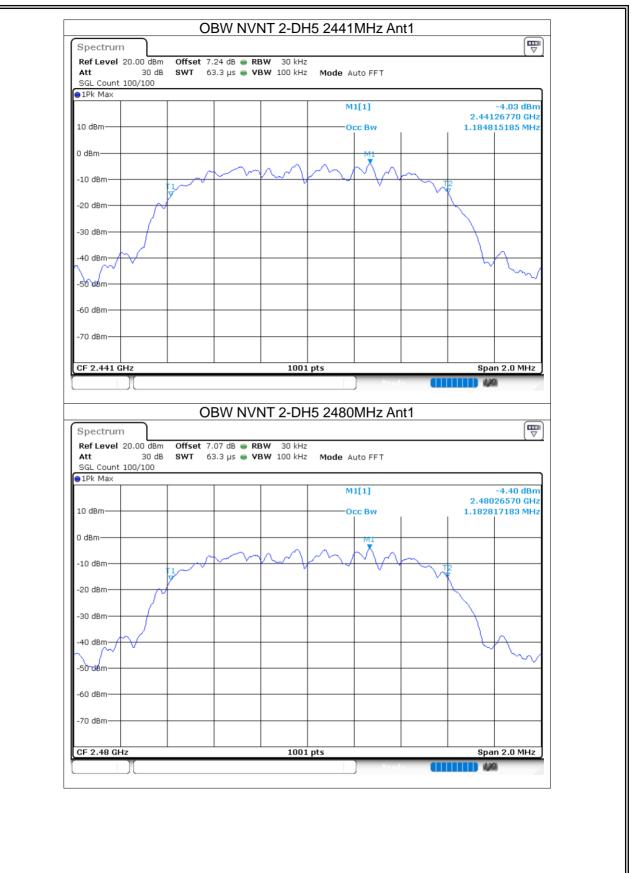






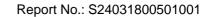


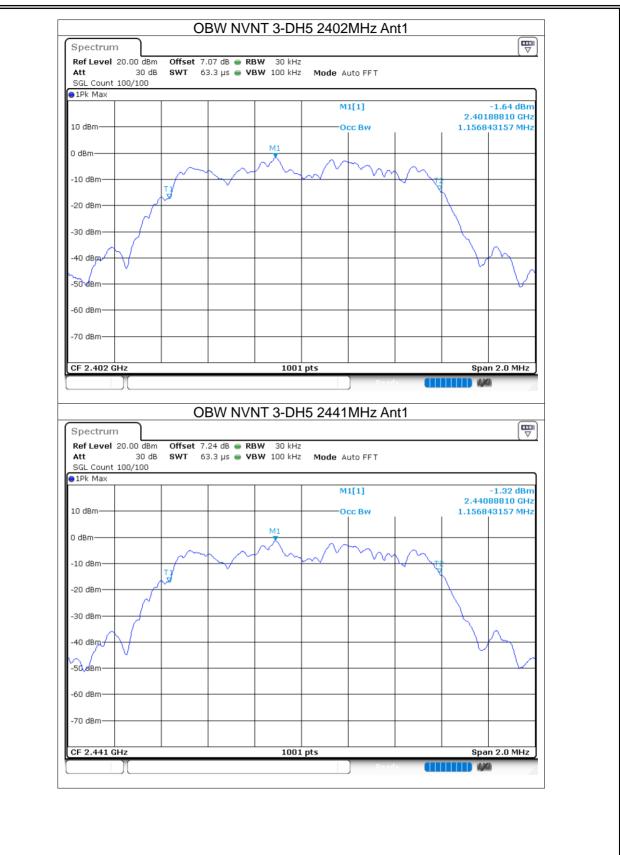

ACCREDITED





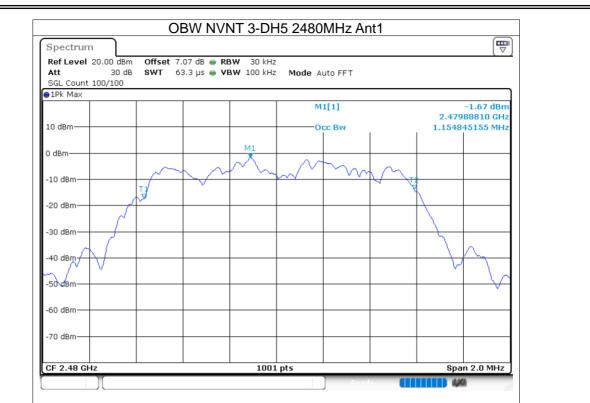




ACCREDITED









ACCREDITED

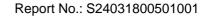













#### 8.5 **CARRIER FREQUENCIES SEPARATION**

| 0.0 |           |       |         |                        |                        |              |                |         |  |  |  |
|-----|-----------|-------|---------|------------------------|------------------------|--------------|----------------|---------|--|--|--|
|     | Condition | Mode  | Antenna | Hopping<br>Freq1 (MHz) | Hopping<br>Freq2 (MHz) | HFS<br>(MHz) | Limit<br>(MHz) | Verdict |  |  |  |
|     | NVNT      | 1-DH5 | Ant1    | 2401.842               | 2402.844               | 1.002        | 0.687          | Pass    |  |  |  |
|     | NVNT      | 1-DH5 | Ant1    | 2440.84                | 2441.842               | 1.002        | 0.685          | Pass    |  |  |  |
|     | NVNT      | 1-DH5 | Ant1    | 2478.844               | 2479.846               | 1.002        | 0.687          | Pass    |  |  |  |
|     | NVNT      | 2-DH5 | Ant1    | 2401.84                | 2402.842               | 1.002        | 0.884          | Pass    |  |  |  |
|     | NVNT      | 2-DH5 | Ant1    | 2440.994               | 2441.994               | 1            | 0.887          | Pass    |  |  |  |
|     | NVNT      | 2-DH5 | Ant1    | 2478.968               | 2479.962               | 0.994        | 0.887          | Pass    |  |  |  |
|     | NVNT      | 3-DH5 | Ant1    | 2402.006               | 2402.998               | 0.992        | 0.857          | Pass    |  |  |  |
|     | NVNT      | 3-DH5 | Ant1    | 2440.993               | 2442.002               | 1.009        | 0.859          | Pass    |  |  |  |
|     | NVNT      | 3-DH5 | Ant1    | 2478.96                | 2479.966               | 1.006        | 0.856          | Pass    |  |  |  |



ACCREDITED







ACCREDITED







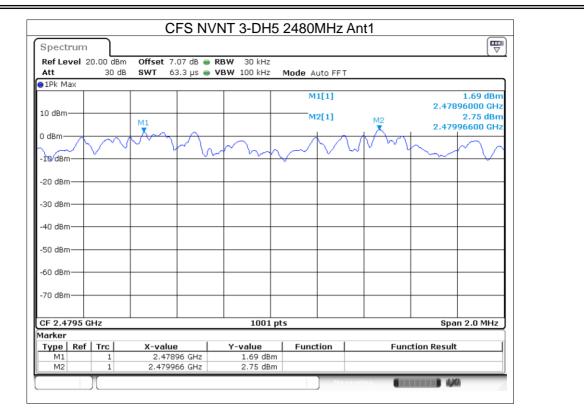
ACCREDITED











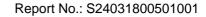

ACCREDITED

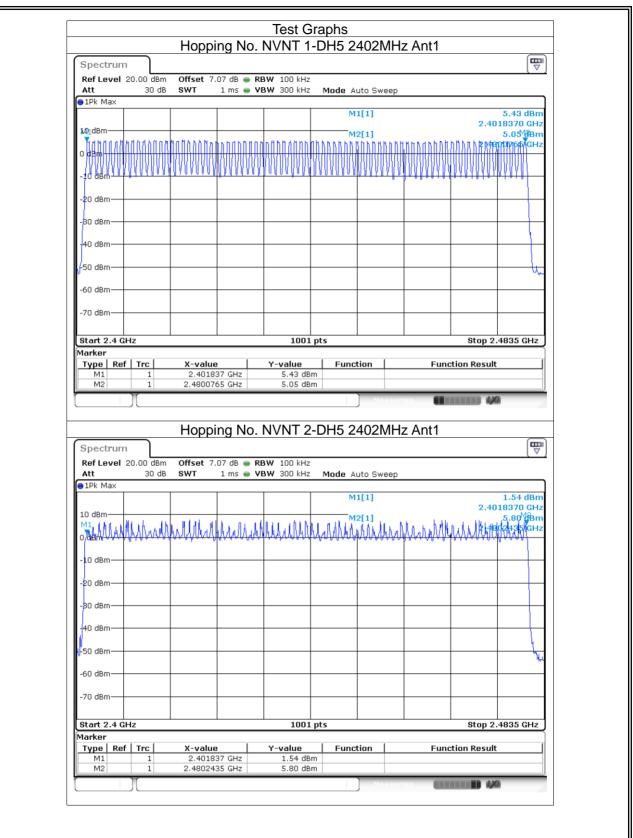


ACCREDITED








#### 8.6 NUMBER OF HOPPING CHANNEL Condition Mode Antenna **Hopping Number** Verdict Limit NVNT 1-DH5 Ant1 79 15 Pass NVNT 2-DH5 Ant1 79 15 Pass NVNT 3-DH5 Ant1 79 15 Pass



ACCREDITED



