

FCC PART 15.247 TEST REPORT

For

Guilin Zhishen Information Technology Co., Ltd.

Floor 6th, Building No.13, Creative Industrial Park, GuiMo Road, QiXing District, Guilin, Guangxi, P.R.China.

FCC ID: 2AIHFZYZWF

Product Name: Report Type:

Crane 2 Motion Sensor Remote Original Report

Control with Follow Focus

Report Number: RSC171120001-0B

Report Date: 2017-11-30

Sula Huang

Reviewed By: Director

Bay Area Compliance Laboratories Corp. (Chengdu)

fell the

No.5040, Huilongwan Plaza, No. 1, Shawan Road, **Test Laboratory:**

Jinniu District, Chengdu, Sichuan, China

Tel: +86-28-65525123 Fax: +86-28-65525125 www.baclcorp.com

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
MECHANICAL DESCRIPTION OF EUT	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
SUPPORT EQUIPMENT LIST AND DETAILS	
External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
TEST EQUIPMENTS LIST	
SUMMARY OF TEST RESULTS	10
FCC §15.247 (i) & §1.1310 & §2.1093 - RF EXPOSURE	1
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup	
Test Procedure	14
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	23
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	23
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	20
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	26
FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	29
APPLICABLE STANDARD	29
TEST PROCEDURE	29

Bay Area Compliance Laboratories Corp. (Chengdu)

TEST DATA	29
FCC §15.247(e) - POWER SPECTRAL DENSITY	31
APPLICABLE STANDARD	31
Test Procedure	31
Test Data	31

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The Guilin Zhishen Information Technology Co.,Ltd., model number: ZW-B03 (FCC ID: 2AIHFZYZWF) or the "EUT" as referred to in this report was the Crane 2 Motion Sensor Remote Control with Follow Focus.

Mechanical Description of EUT

The EUT was measured approximately 166mm(L)*66.5mm(W)*61.3mm(H). Rated input voltage: DC 7.4V from rechargeable Li-ion battery or DC 5V charging from adapter.

*All measurement and test data in this report was gathered from final production sample, serial number: 171120001/01 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2017-11-15, and EUT conformed to test requirement.

Objective

This report is prepared on behalf of *Guilin Zhishen Information Technology Co.,Ltd.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules.

The tests were performed in order to determine the compliance of the EUT with FCC Part 15 Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS submissions with FCC ID: 2AIHFZYYH2.

Report No.: RSC171120001-0B Page 4 of 33

Measurement Uncertainty

Item	Uncertainty		
AC power line conducte	ed emission		2.71 dB
	20M11- 200M11-	Η	4.57 dB
	30MHz-200MHz	V	4.81 dB
	200MHz-1GHz	Н	5.69 dB
Radiated Emission(Field Strength)	20010102-1602	V	6.07 dB
, , , , , , , , , , , , , , , , , , ,	1GHz-6GHz		5.49 dB
	6GHz-18GHz		5.57 dB
	18GHz-25GHz		5.48 dB
Conducted RF Power			±0.61dB
Power Spectrum Density			±0.61dB
Occupied Bandwidth			±5%
Humidity			±5%
Temperature			±1°C

Test Methodology

All measurements contained in this report were conducted with:

- 1. ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- 2. KDB558074 D01 DTS Meas Guidance v04.

Test Facility

The test site used by BACL to collect test data is located No. 5040, Huilongwan Plaza, No. 1, Shawan Road, Jinniu District, Chengdu, Sichuan, China

BACL(Chengdu) is accredited by A2LA in accordance with the recognized international standard ISO/IEC 17025, A2LA cert No.: 4324.01. The Federal communications commission has on file and is listed under FCC Test Firm Registration No.: 910975.

BACL(Chengdu) has been fully described in reports on file and registered with the Innovation, Science and Economic Development Canada under Registration Numbers: 3062C-1.

Report No.: RSC171120001-0B Page 5 of 33

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured in testing mode, which was provided by manufacturer.

For Bluetooth LE mode, 40 channels are provided for testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404		
•••	•••		
		38	2478
19	2440	39	2480

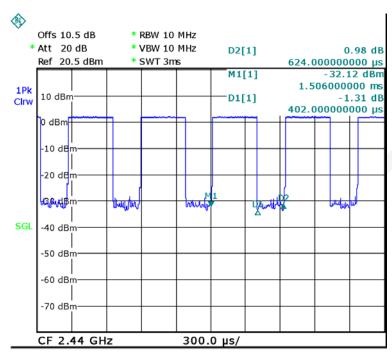
EUT was tested with channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

The condition was setting by the software as following table:


Test Software Version		SSCOM3.3	
Test Frequency	2402MHz	2440MHz	2480MHz
Power Level Setting	Default	Default	Default

Report No.: RSC171120001-0B Page 6 of 33

Duty Cycle information is below:

T _{on}	T _{on+off}	Duty Cycle
(ms)	(ms)	(%)
0.402	0.624	64.42

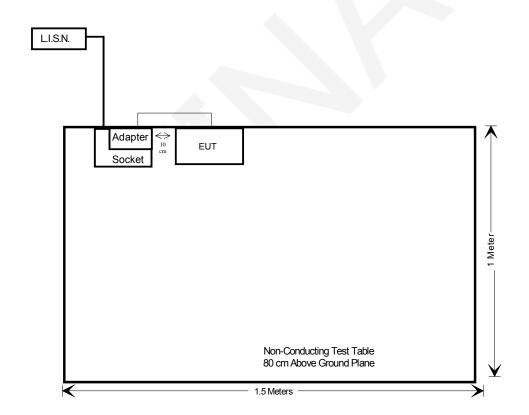
Duty Cycle

Date: 21.NOV.2017 10:54:01

Report No.: RSC171120001-0B

Page 7 of 33

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
East Sun Electronic	Adapter	ES005-U120200XYC	None

External I/O Cable

Cable Description	Length (m)	From	То
Unshielded USB Cable	0.5	Adapter	EUT

Block Diagram of Test Setup

Conducted Emissions

Report No.: RSC171120001-0B Page 8 of 33

Test Equipments List

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		ducted Emission	s Test		
Rohde & Schwarz	EMI Test Receiver	ESCS 30	836858/0016	2016-12-02	2017-12-01
Rohde & Schwarz	L.I.S.N.	ENV216	100018	2017-05-20	2018-05-19
EMCO	LISN	3810/2BR	9509/1102	2016-12-02	2017-12-01
Rohde & Schwarz	RF Limiter	ESH3Z2	DE14781	2017-11-10	2018-11-09
N/A	Conducted Cable	NO.5	N/A	2017-11-10	2018-11-09
Rohde & Schwarz	EMC32	N/A	V 8.52.0	N/A	N/A
	Ra	diated Emissions	Test	•	
Sonoma	Pre-Amplifier	310N	186684	2017-08-18	2018-08-17
Rohde & Schwarz	EMI Test Receiver	ESIB 40	100215	2017-09-12	2018-09-11
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2017-05-20	2018-05-19
Sunol Sciences	Broadband Antenna	JB3	A121808	2017-05-18	2020-05-17
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2017-05-18	2018-05-17
ETS	Horn Antenna	3115	003-6076	2017-05-19	2020-05-18
A.H.Systems,inc	Horn Antenna	SAS-574	505	2016-12-02	2017-12-01
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2017-5-20	2018-5-19
HP	Pre-Amplifier	8449B	3008A00277	2016-12-02	2017-12-01
INMET	Attenuator	18N-6dB	64671	2017-11-10	2018-11-09
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2017-11-10	2018-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2017-11-10	2018-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2017-11-10	2018-11-09
Rohde & Schwarz	EMC32	N/A	V 8.52.0	N/A	N/A
	RF Conducted Test				
Rohde & Schwarz	Spectrum Analyzer	FSL18	100180	2016-12-02	2017-12-01
WEINSCHEL ENGINEERING	Attenuator	1A10dB	AA4135	Each Time	1
N/A	RF Cable	N/A	N/A	Each Time	/

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RSC171120001-0B Page 9 of 33

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & §1.1310 & §2.1093	RF Exposure	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	Maximum conducted output power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

Report No.: RSC171120001-0B Page 10 of 33

FCC §15.247 (i) & §1.1310 & §2.1093 - RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06:

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is \leq 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The max tune-up conducted power is 2.6 dBm (1.82 mW). [(max. power of channel, mW)/(min. test separation distance, mm)][$\sqrt{f(GHz)}$] = 1.82/5*($\sqrt{2.48}$) = 0.6 < 7.5

So the stand-alone SAR evaluation is not necessary.

Report No.: RSC171120001-0B Page 11 of 33

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

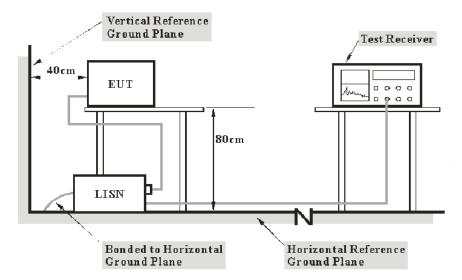
According to FCC §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has one PCB antenna arrangement, which was permanently attached and the antenna gain is 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.


Report No.: RSC171120001-0B Page 12 of 33

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to AC 120V/60Hz.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: RSC171120001-0B Page 13 of 33

Test Procedure

During the conducted emission test, the adapter was connected to the first L.I.S.N.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

 $C_f = A_C + VDF$

Herein,

V_C (cord. Reading): corrected voltage amplitude

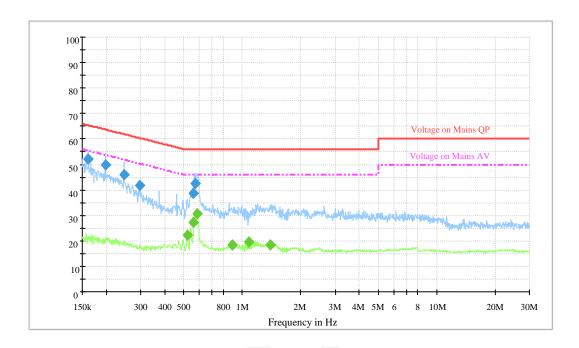
V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "**Margin**" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit - Corrected Amplitude

Test Data

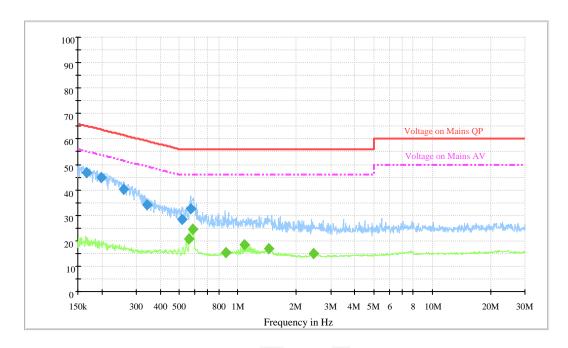

Environmental Conditions

Temperature:	19 °C
Relative Humidity:	60 %
ATM Pressure:	96.3 kPa

The testing was performed by Tom Tang on 2017-11-20.

Test Mode: Transmitting

AC120 V, 60 Hz, Line:



Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.161175	52.2	9.000	L1	19.6	13.2	65.4
0.196781	49.8	9.000	L1	19.6	13.9	63.7
0.245097	45.8	9.000	L1	19.7	16.1	61.9
0.298051	41.6	9.000	L1	19.7	18.7	60.3
0.562277	38.8	9.000	L1	19.8	17.2	56.0
0.569052	42.6	9.000	L1	19.8	13.4	56.0

Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)
0.519130	22.0	9.000	L1	19.8	24.0	46.0
0.562277	27.1	9.000	L1	19.8	18.9	46.0
0.585177	30.6	9.000	L1	19.8	15.4	46.0
0.889872	18.3	9.000	L1	19.8	27.7	46.0
1.082130	19.6	9.000	L1	19.7	26.4	46.0
1.397131	18.6	9.000	L1	19.8	27.4	46.0

Report No.: RSC171120001-0B Page 15 of 33

AC120 V, 60 Hz, Neutral:

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.165743	46.9	9.000	N	19.5	18.3	65.2
0.198359	44.9	9.000	N	19.5	18.8	63.7
0.257124	40.4	9.000	N	19.5	21.1	61.5
0.341379	34.2	9.000	N	19.5	25.0	59.2
0.512950	28.4	9.000	N	19.5	27.6	56.0
0.571328	32.4	9.000	N	19.5	23.6	56.0

Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)
0.562277	20.8	9.000	N	19.5	25.2	46.0
0.587518	24.5	9.000	N	19.5	21.5	46.0
0.865349	15.4	9.000	N	19.5	30.6	46.0
1.082130	18.4	9.000	N	19.5	27.6	46.0
1.442470	16.7	9.000	N	19.5	29.3	46.0
2.452960	15.1	9.000	N	19.6	30.9	46.0

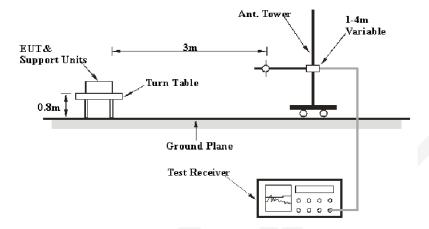
Note:

1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation The corrected factor has been input into the transducer of the test software.

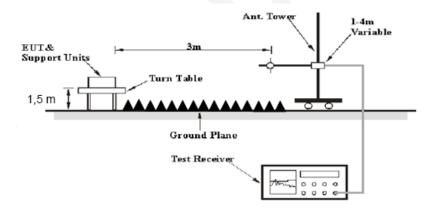
Page 16 of 33

- 2) Corrected Amplitude = Reading + Correction Factor
- 3) Margin = Limit Corrected Amplitude

Report No.: RSC171120001-0B


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

Report No.: RSC171120001-0B Page 17 of 33

EMI Test Receiver Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	1MHz	PK
Above 1 GHz	1MHz	3 MHz	1MHz	AV

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Scan with X-Axis, Y-Axis and Z-Axis position to explore the highest emission level and the worst case was recorded.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

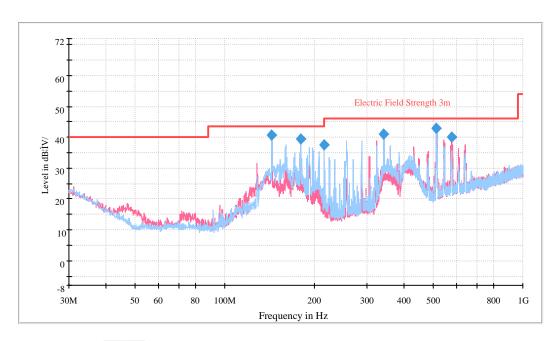
Corrected Amplitude = Receiver Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit -Corrected Amplitude

Report No.: RSC171120001-0B Page 18 of 33

Test Data


Environmental Conditions

Temperature:	20 °C
Relative Humidity:	64 %
ATM Pressure:	96.3 kPa

^{*} The testing was performed by Tom Tang on 2017-11-29.

Test Mode: Transmitting (Worst Case)

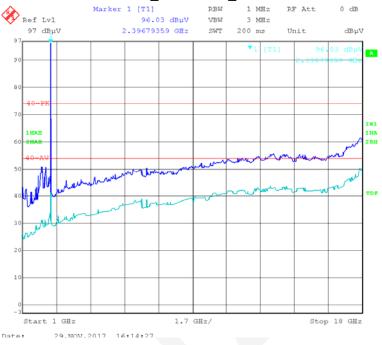
30 MHz to 1 GHz_Low channel

Frequency (MHz)	QuasicPeak (dBµV/m)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
143.975000	40.7	166.0	Н	207.0	-10.9	2.8	43.5
179.986250	39.5	155.0	Н	4.0	-13.1	4.0	43.5
215.997500	37.5	189.0	Н	355.0	-14.2	6.0	43.5
341.612500	41.0	122.0	Н	0.0	-9.7	5.0	46.0
512.575000	42.9	109.0	V	116.0	-6.5	3.1	46.0
576.110000	40.2	100.0	V	90.0	-4.8	5.8	46.0

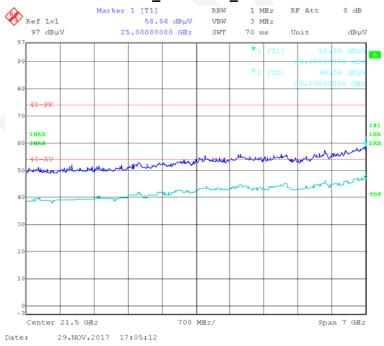
Report No.: RSC171120001-0B Page 19 of 33

2) Above 1 GHz

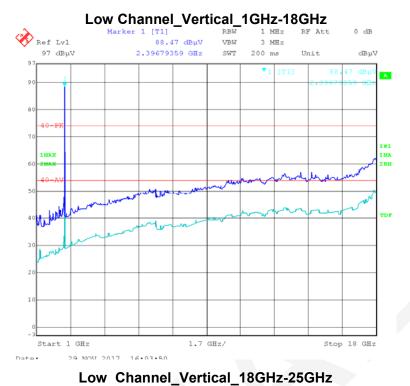
_	Red	ceiver	Rx Ar	ntenna	Cable	Amplifier	Corrected		
Frequency	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	Limit	Margin
MHz	dΒμV	PK/QP/AV	H/V	dB(1/m)	dB	dB	dBμV/m	dBμV/m	dB
			F	requency: 2	2402MHz				
2402	64.65	PK	Н	28.71	3.00	0.00	96.36	N/A	N/A
2402	59.68	AV	Н	28.71	3.00	0.00	91.39	N/A	N/A
2402	57.66	PK	V	28.71	3.00	0.00	89.37	N/A	N/A
2402	51.95	AV	V	28.71	3.00	0.00	83.66	N/A	N/A
2390	28.26	PK	Н	28.67	3.00	0.00	59.93	74.00	14.07
2390	15.41	AV	Н	28.67	3.00	0.00	47.08	54.00	6.92
4804	37.23	PK	Н	33.85	5.12	26.87	49.33	74.00	24.67
4804	26.04	AV	Н	33.85	5.12	26.87	38.14	54.00	15.86
7206	33.21	PK	Н	36.39	6.16	26.35	49.41	74.00	24.59
7206	19.51	AV	Н	36.39	6.16	26.35	35.71	54.00	18.29
			F	requency: 2	2440MHz				
2440	64.12	PK	Н	28.82	3.00	0.00	95.94	N/A	N/A
2440	59.11	AV	Н	28.82	3.00	0.00	90.93	N/A	N/A
2440	57.05	PK	V	28.82	3.00	0.00	88.87	N/A	N/A
2440	51.62	AV	V	28.82	3.00	0.00	83.44	N/A	N/A
4880	37.12	PK	Н	34.06	5.09	26.87	49.40	74.00	24.60
4880	25.39	AV	Н	34.06	5.09	26.87	37.67	54.00	16.33
7320	33.26	PK	Н	36.55	6.22	26.40	49.63	74.00	24.37
7320	20.28	AV	Н	36.55	6.22	26.40	36.65	54.00	17.35
			F	requency: 2	2480MHz				
2480	63.47	PK	Н	28.94	2.99	0.00	95.40	N/A	N/A
2480	58.39	AV	Н	28.94	2.99	0.00	90.32	N/A	N/A
2480	56.4	PK	V	28.94	2.99	0.00	88.33	N/A	N/A
2480	51.1	AV	V	28.94	2.99	0.00	83.03	N/A	N/A
2483.5	33.58	PK	Н	28.95	2.99	0.00	65.52	74.00	8.48
2483.5	13.48	AV	Н	28.95	2.99	0.00	45.42	54.00	8.58
4960	36.89	PK	Н	34.29	5.05	26.88	49.35	74.00	24.65
4960	24.36	AV	Н	34.29	5.05	26.88	36.82	54.00	17.18
7440	33.26	PK	Н	36.72	6.27	26.45	49.80	74.00	24.20
7440	20.98	AV	Н	36.72	6.27	26.45	37.52	54.00	16.48


Note:

Corrected Amplitude = Corrected Factor + Reading
Corrected Factor=Antenna factor (RX) + Cable Loss – Amplifier Factor
Margin = Limit- Corr. Amplitude
Spurious emissions more than 20 dB below the limit were not reported.


Report No.: RSC171120001-0B Page 20 of 33

Please refer to the below pre-scan plot of worst case:


Low Channel_Horizontal_1GHz-18GHz

Low Channel_Horizontal_18GHz-25GHz

Report No.: RSC171120001-0B Page 21 of 33

RBW 1 MHz Marker 2 [T2] RF Att 0 dB Ref Lvl 46.85 dBµV VBW 3 MHz 24.84569138 GHz 97 dBµV SWT 70 ms Unit dBuV 1MAX 1MA

29.NOV.2017 17:06:20

Span 7 GHz

FCC §15.247(a) (2) - 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

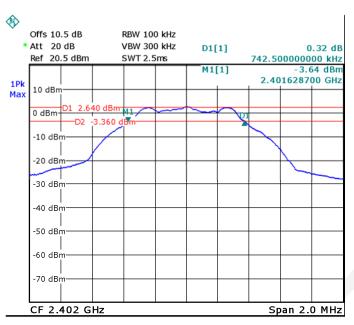
- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3×RBW
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Data

Environmental Conditions

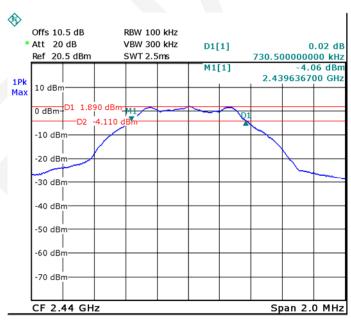
Temperature:	19 °C	
Relative Humidity:	52 %	
ATM Pressure:	96.5 kPa	

^{*} The testing was performed by Tom Tang on 2017-11-21.

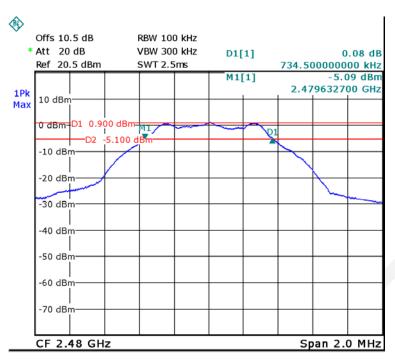

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plots.

Mode	Channel	Frequency (MHz)	6dB OBW (MHz)	Limit (MHz)
	Low	2402	0.74	≥0.50
BLE	Middle	2440	0.73	≥0.50
	High	2480	0.73	≥0.50


Report No.: RSC171120001-0B Page 23 of 33

Low Channel


Date: 21.NOV.2017 10:04:04

Middle Channel

Date: 21.NOV.2017 10:07:24

High Channel

Date: 21.NOV.2017 10:09:18

Report No.: RSC171120001-0B Page 25 of 33

FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

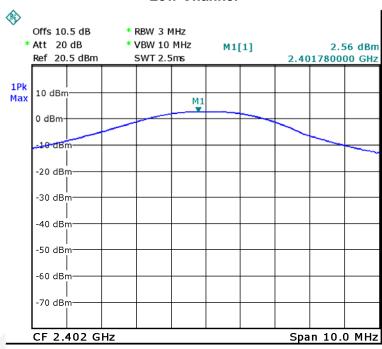
- a) Set the RBW ≥ DTS bandwidth.
- b) Set VBW \geq [3 · RBW].
- c) Set span \geq [3 · RBW].
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

Test Data

Environmental Conditions

Temperature:	19 °C	
Relative Humidity:	52 %	
ATM Pressure:	96.5 kPa	

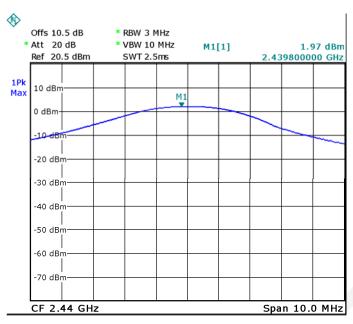
^{*} The testing was performed by Tom Tang on 2017-11-21.


Test Mode: Transmitting

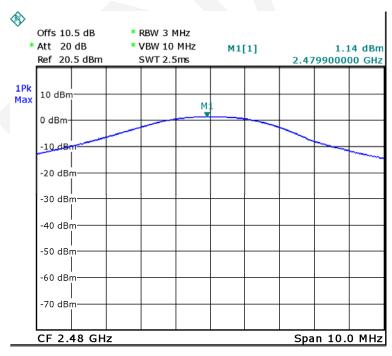
Test Result: Compliance. Please refer to the following table.

Report No.: RSC171120001-0B Page 26 of 33

Channel	Frequency (MHz)	Max Peak Conducted Output Power (dBm)	Limit (dBm)
Low	2402	2.56	30
Middle	2440	1.97	30
High	2480	1.14	30


Low Channel

Date: 21.NOV.2017 10:24:40


Report No.: RSC171120001-0B Page 27 of 33

Middle Channel

Date: 21.NOV.2017 10:25:55

High Channel

Date: 21.NOV.2017 10:26:46

FCC §15.247(d) - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

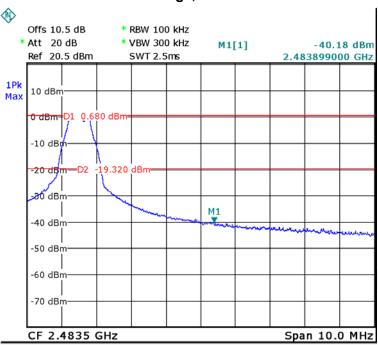
Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

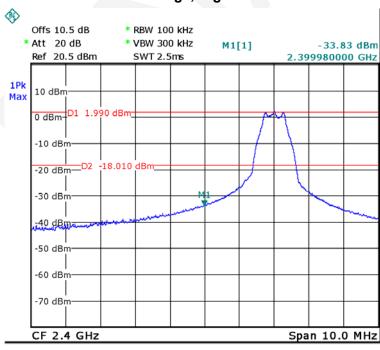
Environmental Conditions

Temperature: 19 °C		
Relative Humidity:	52 %	
ATM Pressure:	96.5 kPa	


^{*} The testing was performed by Tom Tang on 2017-11-21.

Test mode: Transmitting

Test Result: Compliance. Please refer to following plots.


Report No.: RSC171120001-0B Page 29 of 33

Band Edge, Left Side

Date: 21.NOV.2017 10:19:43

Band Edge, Right Side

Date: 21.Nov.2017 10:21:38

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

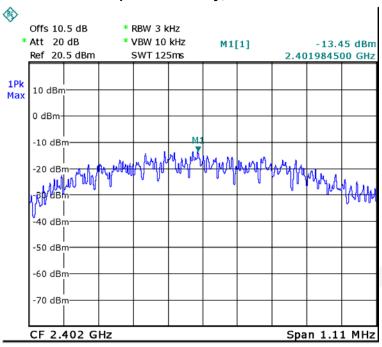
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3×RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

Environmental Conditions

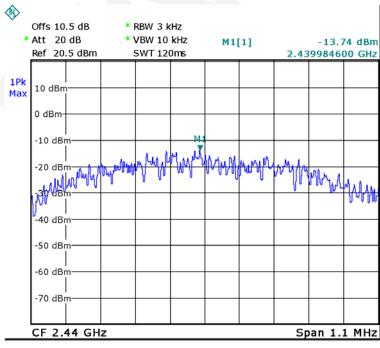
Temperature:	19 °C	
Relative Humidity:	52 %	
ATM Pressure:	96.5 kPa	

^{*} The testing was performed by Tom Tang on 2017-11-21.

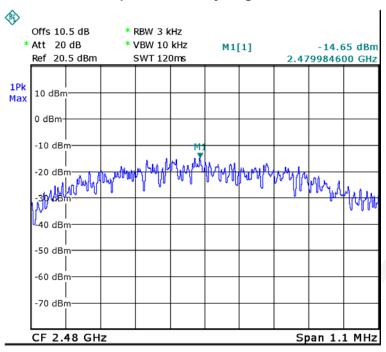

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plots

Channel	Frequency (MHz)	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
Low	2402	-13.45	8 ≥
Middle	2440	-13.74	≤ 8
High	2480	-14.65	≤ 8


Report No.: RSC171120001-0B Page 31 of 33

Power Spectral Density, Low Channel


Date: 21.NOV.2017 10:32:45

Power Spectral Density, Middle Channel

Date: 21.NOV.2017 10:30:23

Power Spectral Density, High Channel

Date: 21.NOV.2017 10:31:27

***** END OF REPORT *****

Report No.: RSC171120001-0B Page 33 of 33