

RF Exposure Evaluation Report

1. Product Information

FCC ID:	2A4FX-T7					
Number of tested samples	2					
Sample number	A031523096-1(Engineer sample), A031523096-2(Normal sample)					
Product Name	Wireless Car Charger					
Model Number	Т7					
Additional Model No.	T9, T10, T11, T12					
Model Declaration	PCB board, structure and internal of these model(s) are the same, So no additional models were tested					
Power Supply	Input: 9V ⁼⁼ 2A, 15W Output: 9V ⁼⁼ 1.67mA DC 3.7V by Rechargeable Li-ion Battery					
Modulation Type	Continuous Wave					
Frequency Range	110.3~205.0KHz					
Antenna Type	Coil Antenna					
Hardware version	SSJN-WP-144-V5.1					
Software version	SSJN-WP-144-V5.1					
Accessories	Phone					
Exposure category	General population/uncontrolled environment					
EUT Type	Production Unit					
Device Type	Mobile Device					

2. Evaluation Method

Per KDB 680106 D01 Section 3. RF Exposure Requirements;

1)Consumer wireless power transfer devices approved under Part 18 in some cases have to demonstrate compliance with RF exposure requirements. The potential for exposure must be assessed according to the operating configurations of the wireless system and the exposure conditions of users and bystanders. RF exposure must be evaluated with the client device(s) being charged by the primary at maximum output power. The RF exposure requirements must be determined in conjunction with the device operating characteristics, according to the mobile and portable exposure requirements in Section 2.1091 and Section 2.1093 of the rules. SAR and MPE limits do not cover the frequency range for wireless power transfer applications which operate below 100 kHz and 300 kHz respectively; therefore, RF exposure compliance needs to be determined with respect to 1.1307 (c) and (d) of the FCC rules.

2)Based on the design and implementation of the power transfer application, it must be clearly identified if mobile or portable RF exposure conditions apply. Devices that are installed to provide separation of at least 20 cm from users and bystanders may qualify for mobile exposure conditions. For some conditions where users and bystanders may be exposed at closer than 20 cm, section 2.1091(d) (4) of the rules may apply.

3)For devices designed for typical desktop applications, such a wireless charging pads, RF exposure evaluation should be conducted assuming a user separation distance of 15 cm. E and H field strength measurements or numerical modeling may be used to demonstrate compliance. Measurements should

Shenzhen LCS Compliance Testing Laboratory Ltd. Add:101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

be made from all sides and the top of the primary/client pair, with the 15 cm measured from the center of the probe(s) to the edge of the device. Emissions between 100 kHz to 300 kHz should be assessed versus the limits at 300 kHz in Table 1 of Section 1.1310: 614 V/m and 1.63 A/m. A KDB inquiry is required to determine the applicable exposure limits below 100 kHz.

4)Portable exposure conditions from 100 kHz to 6 GHz are determined with respect to SAR requirements. Existing SAR systems and test procedures are generally intended for measurements above 100 MHz. While numerical modeling can be an alternative, the constraints of substantial computational resources at low frequencies could introduce further limitations. Under these circumstances, including operations below 100 kHz, the Commission may consider a combination of analytical analysis, field strength, radiated and conducted power measurements, in conjunction with some limited numerical modeling to assess compliance.

5)Depending on the operating frequency, existing SAR and MPE measurement procedures may be adapted to evaluate wireless power transfer devices for compliance with respect to mobile or portable exposure conditions. If the grantee or its test lab have any questions regarding RF exposure evaluation they should contact the FCC Laboratory with sufficient system operating configuration details to determine if RF exposure evaluation is necessary and, if required, how to apply specific test procedures. Below 100 MHz, when SAR testing is required and the device is operating at close proximity to persons, information on device design, implementation, operating configurations, exposure conditions of users and bystanders are needed to determine the evaluation and testing requirements. In addition, the influence of nearby objects may also need consideration according to the wireless power transfer system implementation; for example, the effects of placing the device, its coils or radiating elements on or near metallic surfaces

3. Evaluation Limit

3.1 Refer evaluation method

ANSI C95.1–1999: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. FCC KDB publication 680106 D01 RF Exposure Wireless Charging Apps v03: RF Exposure Considerations for Low Power Consumer Wireless Power Transfer Applications FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits. FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices FCC CFR 47 part 18.107:Indusial, Scientific, and Medical Equipment

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

		()	•			
Frequency	Electric Field	Magnetic Field Power Density		Averaging Time		
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)		
Limits for Occupational/Controlled Exposure						
0.3-3.0	614	1.63	*100	6		
3.0-30	1842/f	4.89/f	*900/f ²	6		
30-300	61.4	0.163	1.0	6		
300-1,500	/	A THE A	f/300	6		
1,500-100,000	1	Lint restir	5	6		
N TCS		I LCO		PC-		

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time				
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)				
	Limits for General Population/Uncontrolled Exposure							
0.3-1.34	614	1.63	*100	30				
1.34-30	824/f	2.19/f	*180/f ²	30				
30-300	27.5	0.073	0.2	30				
300-1,500	A MARKEN	1	f/1500	30				
1,500-100,000	St Les Tostiny	I VS I	Testing 1.0	30 30				
-								

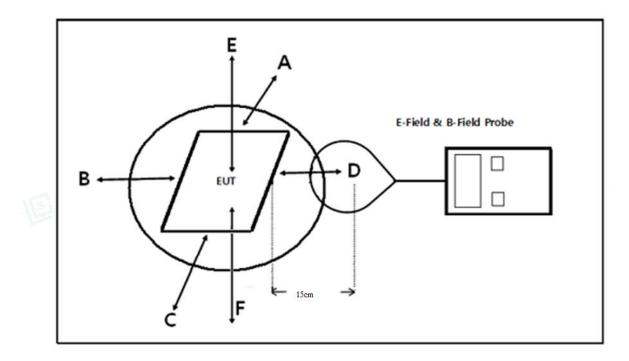
F=frequency in MHz

*=Plane-wave equivalent power density

According to FCC KDB 680106 D01 Section 3. RF Exposure Requirements clause 3 the Emission-Limits in the frequency range from 100 KHz to 300 KHz should be assessed versus the limits at 300 KHz in Table 1 of CFR 47 - Section 1.310 as following (measured distance shall be 15cm from the center of the probe to the edge of the device):

	E-Field	*/*	B-Field
Frequency	V/m	A/m	uT
0.3 MHz – 3.0 MHz	614	1.613	2.0
3.0 MHz – 30 MHz	824/f (=27.5 _{30MHz})	2.19/f (=0.073 _{30MHz})	SJ LOSTER

A KDB inquire was required to determine/confirm the applicable limits below 100 KHz.



Shenzhen LCS Compliance Testing Laboratory Ltd. Add:101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com

Scan code to check authenticity

4. Test Setup Diagram

5. Test Equipment

Equipment	Manufacturer	Model	Serial no.	Calibrated date	Calibrated Due	
Exposure Level Tester	Narda	ELT-400	N-0713	2022-10-29	2023-10-28	
B-Field Probe	Narda	ELT-400	M-1154	2022-10-29	2023-10-28	

6. Measurement Procedure

a) The RF exposure test was performed on 360 degree turn table in anechoic chamber.

b) The measurement probe was placed at test distance (15cm and 20cm) which is between the edges of the charger and the geometric center of probe.

c) The turn table was rotated 360d degree to search of highest strength.

d) The highest emission level was recorded and compared with limit as soon as measurement of each points (A, B, C, D, E) were completed.

e) The EUT were measured according to the dictates of KDB 680106D01v03.

7. Equipment Approval Considerations

The EUT does comply with item 5.2 of KDB 680106 D01v03 as follows table;

Requirements of KDB 680106 D01	Yes / No	Description
Power transfer frequency is less than 1 MHz	Yes	The device operate in the frequency range 110.3 KHz - 205 KHz
Output power from each primary coil is less than or equal to 15 watts	Yes	The maximum output power of the primary coil is 15W.
The system may consist of more than one source primary coils, charging one or more clients. If more than one primary coil is present, the coil pairs may be powered on at the same time.	Yes	The transfer system includes single coil that is able to detect receiver device.
Client device is placed directly in contact with the transmitter.	Yes	Client device is placed directly in contact with the transmitter.
Mobile exposure conditions only (portable exposure conditions are not covered by this exclusion).	Yes	Mobile exposure conditions only
The aggregate H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.	Yes	The EUT H-field strengths at 15 cm surrounding the device and 20 cm above the top surface from all simultaneous transmitting coils are demonstrated to be less than 50% of the MPE limit.

In all other cases, unless excluded above, an RF exposure evaluation report must be reviewed and accepted through a KDB or PBA inquiry to enable authorization of the equipment. When evaluation is required to show compliance; for example, using field strength, power density, SAR measurements or computational modeling etc., the specific authorization requirements will be determined based on the results of the RF exposure evaluation.

8. E and H field Strength

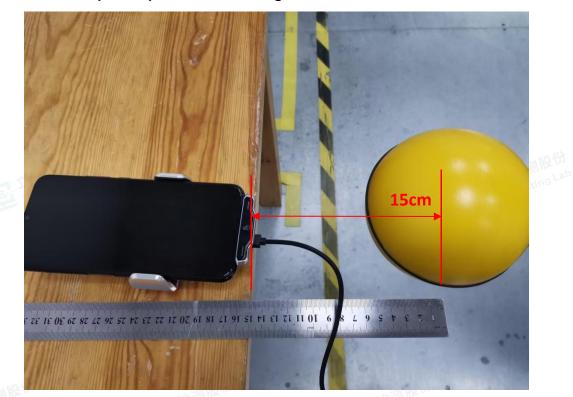
Test Mo	odes			
Mode 1	DC 9V/2A+EUT+ Phone (Batte	ry Status: <1%)		Record
Mode 2	DC 9V/2A+EUT+ Phone (Batte	ry Status: <50%)		Record
Mode 3	DC 9V/2A+EUT+ Phone (Batte	ry Status: <100%)		Record
Note: Al	l test modes were pre-tested, bu	It we only recorded the wors	t case in this report.	

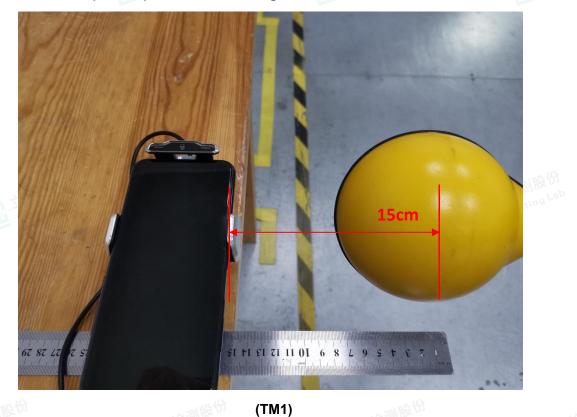
Field Strength at 15 cm from the edges surrounding the EUT and 20cm from the top surface of the EUT

		Measured E - Field Strength Values (V/m)					50%	
Load _ Frequency Field	Field	Measured H - Field Strength Values (A/m)						
Range		Test	Test	Test	Test	Test		Limits
(KHz)	Suengui	Position	Position	Position	Position	Position	LIIIIIIS	
		А	В	С	D	E		
110.3~205.0	uT	0.127	0.132	0.141	0.132	0.139		
110.3~205.0	A/m	0.101	0.106	0.113	0.105	0.111	0.815	1.63
110.3~205.0	V/m	38.040	39.757	42.400	39.600	41.879	307.0	614.0
110.3~205.0	uT	0.125	0.136	0.139	0.128	0.140	AT UR	8
110.3~205.0	A/m	0.100	0.109	0.112	0.102	0.112	0.815	1.63
110.3~205.0	V/m	37.717	40.821	41.912	38.338	42.053	307.0	614.0
110.3~205.0	uT	0.123	0.135	0.140	0.128	0.146		
110.3~205.0	A/m	0.098	0.108	0.112	0.102	0.117	0.815	1.63
110.3~205.0	V/m	36.936	40.569	42.064	38.486	43.836	307.0	614.0
	Range (KHz) 110.3~205.0 110.3~205.0 110.3~205.0 110.3~205.0 110.3~205.0 110.3~205.0 110.3~205.0	Range (KHz)Field Strength110.3~205.0uT110.3~205.0A/m110.3~205.0UT110.3~205.0A/m110.3~205.0V/m110.3~205.0UT110.3~205.0UT110.3~205.0UT110.3~205.0UT110.3~205.0UT	Frequency Range (KHz) Field Strength Meas 110.3~205.0 uT 0.127 110.3~205.0 A/m 0.101 110.3~205.0 V/m 38.040 110.3~205.0 uT 0.125 110.3~205.0 V/m 38.040 110.3~205.0 V/m 37.717 110.3~205.0 V/m 37.717 110.3~205.0 uT 0.123 110.3~205.0 A/m 0.098	Frequency Range (KHz) Field Strength Measured H - F Test Position A Test Position A Position B 110.3~205.0 uT 0.127 0.132 110.3~205.0 A/m 0.101 0.106 110.3~205.0 V/m 38.040 39.757 110.3~205.0 uT 0.125 0.136 110.3~205.0 A/m 0.100 0.109 110.3~205.0 V/m 37.717 40.821 110.3~205.0 uT 0.123 0.135 110.3~205.0 A/m 0.098 0.108	Frequency Range (KHz) Field Strength Measured H - Field Strength Test Test Test Position Position Position 110.3~205.0 uT 0.127 0.132 0.141 110.3~205.0 A/m 0.101 0.106 0.113 110.3~205.0 V/m 38.040 39.757 42.400 110.3~205.0 uT 0.125 0.136 0.139 110.3~205.0 V/m 37.717 40.821 41.912 110.3~205.0 uT 0.123 0.135 0.140 110.3~205.0 A/m 0.108 0.108 0.112	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

H-Field Strength at 20cm from the top surface of the EUT

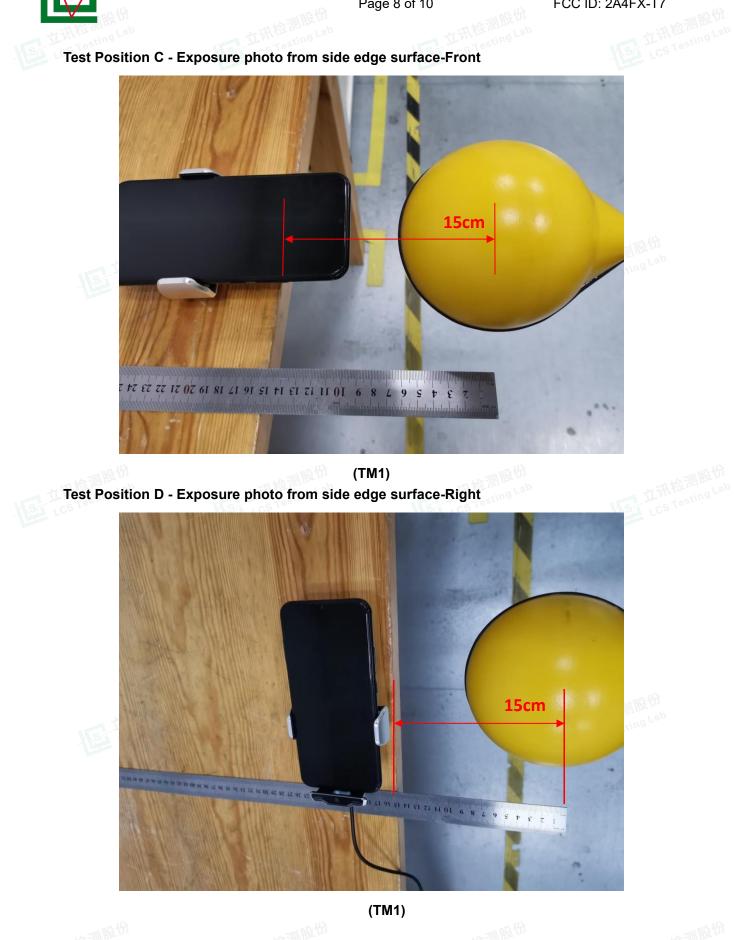
Charging		Measured H-Field Strength	FCC H-Field	FCC H-Field	
Battery	Unit	Unit Values (A/m) Strength 5		Strength Limits	
Level		Test Position E	Limits (A/m)	(A/m)	3.2
1%	uT UT	0.141	Testing	VST CSTestin	10 -
1%	A/m	0.113	0.815	1.63	
50%	uT	0.137			
50%	A/m	0.109	0.815	1.63	
99%	uT	0.136			
99%	A/m	0.109	0.815	1.63	


Note:V/m=10^{(((20lg(A/m*10^6)+51.5)-120)/20)} Note:A/m=uT/1.25



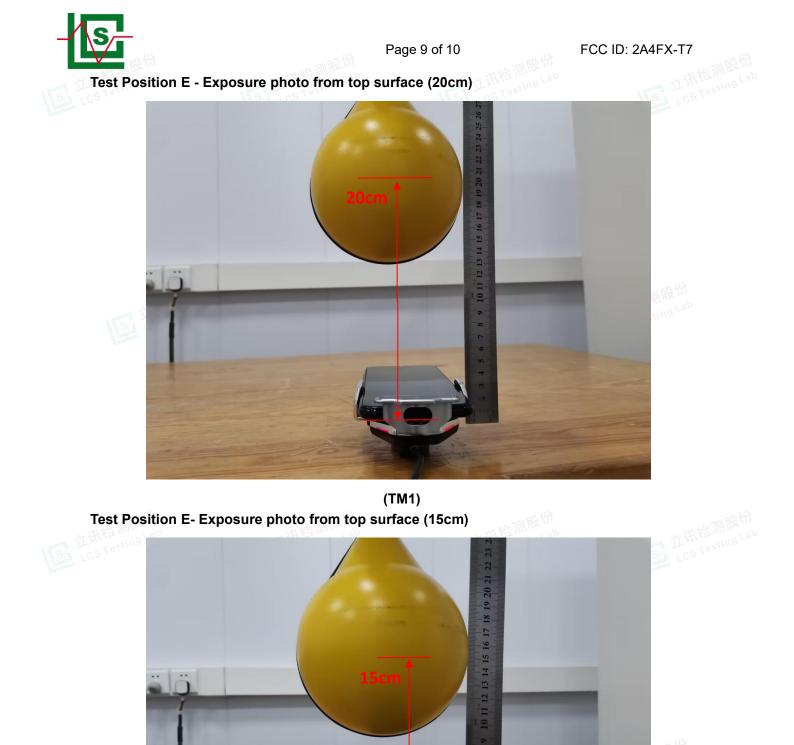
9. Test Setup Photos

Test Position A - Exposure photo from side edge surface-Rear


(TM1) Test Position B - Exposure photo from side edge surface-Left

Shenzhen LCS Compliance Testing Laboratory Ltd. Add:101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity



Shenzhen LCS Compliance Testing Laboratory Ltd. Add:101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Shenzhen LCS Compliance Testing Laboratory Ltd. Add:101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

立讯检测服份

10. Conclusion

A minimum safety distance of at 15 cm surrounding the device and 20 cm above the top surface of the device is required when the device is charging a smart phone. The detected emissions with a distance of 15 cm surrounding the device and 20 cm above the top surface of the device are below the limitations according to FCC KDB 680106 D01 Section 3. RF Exposure Requirement Clause 3.

Revision History

Report Version	Issue Date	Revision Content	Revised By
000	March 23, 2023	Initial Issue	at it he we had
LCS Testiny	IST LCS	Testine	LCS Testing

.....END OF REPORT.....

