report only apply to the tested sample

RF TEST REPORT For Shenzhen Seenda Technology Co., Ltd. **Product Name: Wireless trackball mouse** Model(s).: MOU-301 **Report Reference No.** POCE230926007RF001 FCC ID 2BDJR-MOU-301 **Applicant's Name** Shenzhen Seenda Technology Co., Ltd. 2nd Floor, Building C, Gelong Zhigu, Bulong Road, Bantian Street, Address Longgang District, Shenzhen City, Guangdong Province **Testing Laboratory** Shenzhen POCE Technology Co., Ltd. 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Address 🔍 Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Test Specification Standard 47 CFR Part 15.247 **Date of Receipt** : September 26, 2023 Date of Test October 13, 2023 to October 13, 2023 Data of Issue October 13, 2023 Result Pass Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the

Revision History Of Report

Version	Description	REPO	RT No.	ไรรเ	e Date
V1.0	Original	POCE23092	26007RF001	Octobe	r 13, 2023
					2
Ē	OCE	OCE	DOCE	20	CE
	40	40	1	X -	
1	-6	-		E	CE
DCF	poci	POUL	POU		POUL
0754					
UTE1:		products in series produ	ction are in conformity	with the product o	ampla datailad i
is report. If the	product in this report is	used in any configuration	n other than that detaile	ed in the report, th	e manufacturer
ust ensure the r	new system complies w	vith all relevant standards	5. (4 -	
Compi	led by:	Supervise	d by:	App	roved by:
Ber	-	E Toma		CE Maes	0
	administrators	Tom Chen / Techni			Mo / Manager
					ino / manager

CONTENTS

1 TEST SUMMARY	5
1.1 TEST STANDARDS 1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	6
2.1 CLIENT INFORMATION 2.2 DESCRIPTION OF DEVICE (EUT) 2.3 DESCRIPTION OF TEST MODES 2.4 DESCRIPTION OF SUPPORT UNITS 2.5 EQUIPMENTS USED DURING THE TEST 2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY 2.7 IDENTIFICATION OF TESTING LABORATORY 2.8 ANNOUNCEMENT.	
3 EVALUATION RESULTS (EVALUATION)	
3.1 ANTENNA REQUIREMENT	
3.1.1 Conclusion:	11
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4.1 CONDUCTED EMISSION AT AC POWER LINE	12
4.1.1 E.U.T. Operation: 4.1.2 Test Setup Diagram: 4.1.3 Test Data:	12 12
4.2 OCCUPIED BANDWIDTH	15
4.2.1 E.U.T. Operation: 4.2.2 Test Setup Diagram: 4.2.3 Test Data:	16
4.3 MAXIMUM CONDUCTED OUTPUT POWER	17
4.3.1 E.U.T. Operation: 4.3.2 Test Setup Diagram: 4.3.3 Test Data:	17
4.4 CHANNEL SEPARATION	
4.4.1 E.U.T. Operation: 4.4.2 Test Setup Diagram: 4.4.3 Test Data:	19 19 19
4.5 NUMBER OF HOPPING FREQUENCIES	
4.5.1 E.U.T. Operation: 4.5.2 Test Setup Diagram: 4.5.3 Test Data:	20
4.6 DWELL TIME	
4.6.1 E.U.T. Operation: 4.6.2 Test Setup Diagram: 4.6.3 Test Data:	21 21
4.7 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.7.1 E.U.T. Operation:	23
4.7.5 Test Data	
4.8.1 E.U.T. Operation:	
4.8.2 Test Setup Diagram:	24
4.8.3 Test Data:	
4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	29
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, Chin Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3	

4.9.1 E.U.T. Operation:				30
4.9.1 E.U.T. Operation: 4.9.2 Test Data:				31
4.10 EMISSIONS IN FREQUENCY BANDS (A	BOVE 1GHz)			33
4.10.1 E.U.T. Operation:				34
4.10.2 Test Data:				35
5 TEST SETUP PHOTOS	<u></u>		~~	38
6 PHOTOS OF THE EUT	2004	-000	000	38
APPENDIX	<u>N</u>			39
120DB BANDWIDTH		-CE	-CE	40
120dB Bandwidth 3. Peak Output Power	202	<u> </u>	20-	42
3. PEAK OUTPUT POWER 4. SPURIOUS EMISSIONS	<u>00</u> ~	20-	<u> </u>	42 44
3. PEAK OUTPUT POWER 4. SPURIOUS EMISSIONS 5. BANDEDGE	-00		-90 <u>-</u>	42 44 47
 PEAK OUTPUT POWER	Hopping)		20 ⁻	42 44 47 51
 PEAK OUTPUT POWER	Hopping)	2005	00°	42 44 47 51 53
 PEAK OUTPUT POWER	Hopping)	2005	00°	42 44 47 51 53

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247	OCE	47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

1.2 Summary of Test Result

 H1 Building 102, H Building 1/F, Hongfa
 Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 5 of 57

2 **GENERAL INFORMATION**

2.1 Client Information

Applicant's Name	 Shenzhen Seenda Technology Co., Ltd. 2nd Floor, Building C, Gelong Zhigu, Bulong Road, Bantian Street, Longgang
Address	District, Shenzhen City, Guangdong Province
Manufacturer Address	 Shenzhen Seenda Technology Co., Ltd. 2nd Floor, Building C, Gelong Zhigu, Bulong Road, Bantian Street, Longgang District, Shenzhen City, Guangdong Province

2.2 Description of Device (EUT)

Product Name:	Wireless track	ball mouse	6	-F
Model/Type reference:	MOU-301	000	PC PC	JUL F
Series Model:	MOU-301-A,M	10U-302,MOU-303	,MOU-304,EM03,EM	105,EM06,EM07,
6	EM08,M806T	6	-E	CF.
Model Difference:				is different, and the other
4-	parts such as	the circuit principle	, pcb and electrical s	structure are the same.
Trade Mark:	SEENDA			
Power Supply: 000	DC 5V/1A from	n adapter Battery:D	C3.7V 300mA	POUL
Operation Frequency:	2402MHz to 24	480MHz		
Number of Channels:	79	OCE	OCE	POCE
Modulation Type:	GFSK	PU	PO	40
Antenna Type:	PCB	-E	2E	CF.
Antenna Gain:	1.58dBi	POCL	POUL	POU.
Hardware Version:	V1.0			
Software Version:	V1.0	OCE	-00	E

Remark: The Antenna Gain is supplied by the customer. POCE

is not responsible for this data and the related calculations associated with it.

Operation	n Frequency ea	ch of chani	nel	POCE	00	CE	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	🖗 2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45 📉	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz 🍃	46	2447MHz	66	2467MHz
TOF	2408MHz	27	2428MHz	47	2448MHz	67 👩	2468MHz
8	2409MHz 📉	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz 🔘	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32 📈	2433MHz	52	2453MHz	6 72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36 🔍	2437MHz	56	2457MHz 📉	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz

 H1 Building 102, H Building 1/F, Hongfa
 Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 6 of 57

POCE	V1.0	Report No.: POCE230926007RF001
POCE Technology		

20 2421MHz 40 2441MHz	60	2461MHz		
-----------------------	----	---------	--	--

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
rest channer	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz
2001 200	900 P00 P0.

2.3 Description of Test Modes

No	Title	Description
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
TM2	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.

2.4 Description of Support Units

The EUT was tested as an independent device.

2.5 Equipments Used During The Test

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
loop antenna	EVERFINE	LLA-2	80900L-C	2023-02-27	2024-02-26		
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	DOCE	2023-02-28	2024-02-27		
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	1		
Cable	SCHWARZ BECK	PACE	POCE	2022-12-27	2023-12-27		
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-02-27	2024-02-26		
50ΩCoaxial Switch	Anritsu	MP59B	M20531	CE I	/		
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12		
L.I.S.N 💎	R&S 💡	ESH3-Z5	831.5518.52	2022-12-29	2023-12-28		

Occupied Bandwidth Maximum Conducted Channel Separation	Output Power	POCE	POCE	POCE	
Number of Hopping Fi Dwell Time Emissions in non-rest	POUL	ands			,E
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V2.0.0.0	/ 🖓	/
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	E 1	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
DC power	HP	66311B	38444359		/
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	POCE	/
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Vector signal generator	Keysight	N5181A	MY48180415	2022-12-10	2023-12-09
Signal generator	Keysight	N5182A	MY50143455	2022-12-29	2023-12-28
Spectrum Analyzer	Keysight	N9020A	MY53420323	2022-12-29	2023-12-28
POCE	DOCE	POCE	POC		POL

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)						
Equipment	Manufacturer	Model No Inventory		Cal Date	Cal Due Date	
EMI Test software	Farad	EZ -EMC	V1.1.42	/	/	
Positioning Controller	DOCE	MF-7802	pode	LOCE	- /	
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	/		
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04	
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04	
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04	
Cable(LF)#2	Schwarzbeck	190	/	2023-02-27	2024-02-26	
Cable(LF)#1	Schwarzbeck		/	2023-02-27	2024-02-26	
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023-02-28	2024-02-27	
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2023-02-27	2024-02-26	
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12	
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12	
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12	
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13	
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12	
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20	
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12	

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an expanded uncertainty confidence level using a coverage factor of k=2.	expressed at approximately the 95%

2.7 Identification of Testing Laboratory

2.7 Identification of Te	esting Laboratory
Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Respons	sible Testing Location
Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666 00CE 00CE 00CE
A2LA Certificate Number:	6270.01
2.8 Announcement	ACE ACE ACE

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

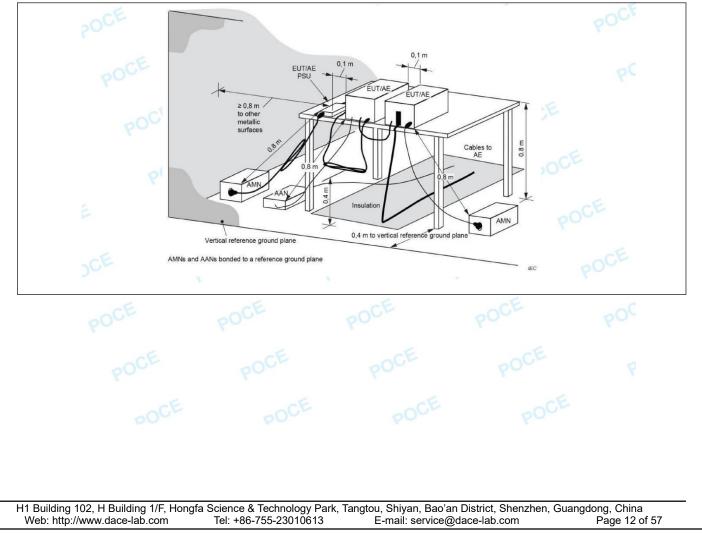
3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that
LL .	uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except a	as shown in paragraphs (b)and (c)of this				
E	section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).						
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)	pour				
	4.0	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
POCE	0.5-5	56	46 0				
40	5-30	60	50				
E	*Decreases with the logarithm of the frequency.						
Test Method:	ANSI C63.10-2013 section 6.2						
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line						
-C	conducted emissions from unlicense		CE				
411 EILT Operation:	PUS	pu- pu					

4.1.1 E.U.T. Operation:

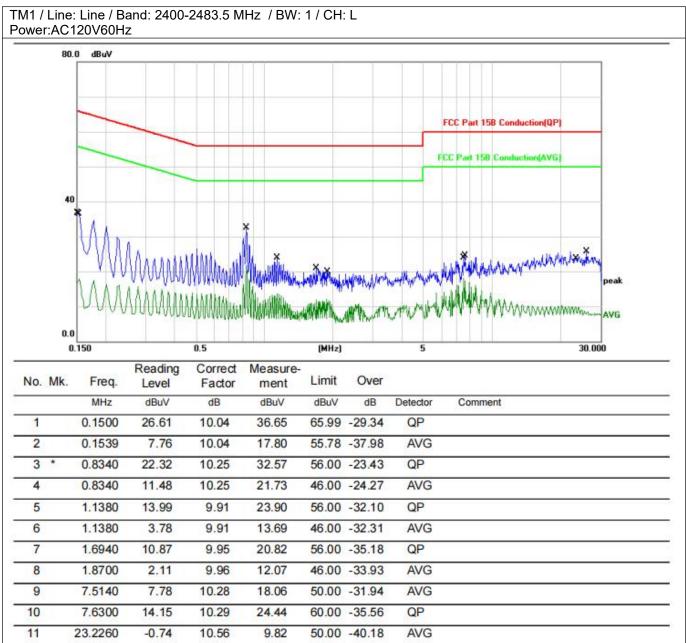
Operating Envir	onment:	CE.		SCE	CE	OCE
Temperature:	22.1 °C	202	Humidity:	48 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1				4
Final test mode:		TM1	;E	POCE	POCE	DOCE

4.1.2 Test Setup Diagram:

12

25.9740

15.09


10.60

25.69

V1.0

Report No.: POCE230926007RF001

4.1.3 Test Data:

60.00 -34.31

QP

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 13 of 57

0.0

V1.0

WWWWWWWW

Report No.: POCE230926007RF001

WWWWWWWWW

AVG

TM1 / Line: Neutral / Band: 2400-2483.5 MHz / BW: 1 / CH: L Power:AC120V60Hz

	0	.150		0.5		(MHz)		5		30.000
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1		0.1500	8.23	10.04	18.27	55.99	-37.72	AVG		
2		0.1539	26.68	10.04	36.72	65.78	-29.06	QP		
3	*	0.8340	20.04	10.25	30.29	56.00	-25.71	QP		
4		0.8340	8.23	10.25	18.48	46.00	-27.52	AVG		
5	9	1.1140	0.39	9.90	10.29	46.00	-35.71	AVG		
6		1.1380	11.16	9.91	21.07	56.00	-34.93	QP		
7		4.6740	9.46	10.13	19.59	56.00	-36.41	QP		
8		4.7819	-0.51	10.13	9.62	46.00	-36.38	AVG		
9		7.5140	6.75	10.28	17.03	50.00	-32.97	AVG		
10		8.5420	12.64	10.34	22.98	60.00	-37.02	QP		
11	8	19.6380	13.23	10.50	23.73	60.00	-36.27	QP		
12	- S	21.7260	-1.87	10.53	8.66	50.00	-41.34	AVG		

mederal of 14 th

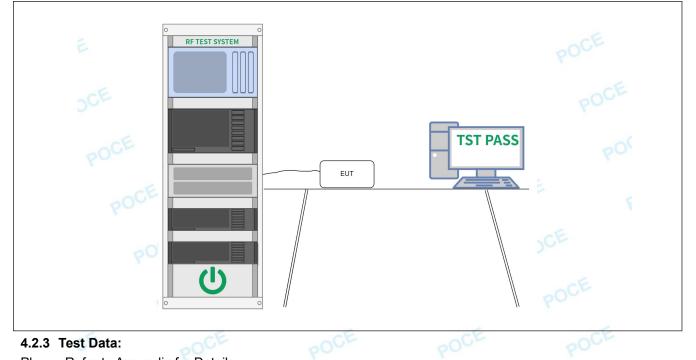
DCE POCE POCE POCE POCE POCE POCE POCE POCE POC POCE POCE POCE POCE POC POCE POCE POCE POCE P

4.2 Occupied Bandwidth

Test Requirement:	47 CFR 15.215(c)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
	 d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall
	 be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference
	 value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT
	 modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is
	below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the
	marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).
4.2.1 E.U.T. Operation:	

4.2.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.1 °C	Humidity:	48 %	Atmospheric Pressure:	102 kPa		


 H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 15 of 57

/		
	POCE-	
-	FUCE	
	POCE Technology	

Report No.: POCE230926007RF001

Pre test mode: TM1 Final test mode: TM1

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

4.3 Maximum Conducted Output Power

V1.0

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure: POCE POCE POCE	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables.
	e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the
OCE	unlicensed wireless device, rather than a spectrum analyzer.

4.3.1 E.U.T. Operation:

Operating Enviror	nment:	CE		SCE	-C.E		6
Temperature:	22.1 °C	Humidity:	48 %	Atmosphe	ric Pressure:	102 kPa	pr
Pre test mode:	Т	M1				1	
Final test mode:	DCE T	M1	CE	POCE	00	CE	
432 Tost Sotup	Diagram	4-		1	E.		

4.3.2 Test Setup Diagram:

	ACE	DCE DCE
		POCE
	EUT	TST PASS
POCE		
		JCE

4.3.3 Test Data:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 57

4.4 Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure: POCE POCE	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.
4.4.1 E.U.T. Operation:	POCE POCE POLE POLE

4.4.1 E.U.T. Operation:

Operating Environment:								
Temperature: 22.1 °C		Humidity:	48 %	OCE	Atmospheric Pre	ssure:	102 kPa	
Pre test mode:	TM2			40	40		X.	
Final test mode:	TM2	aF.		_	-E	CE		

4.4.2 Test Setup Diagram:

© RF TEST SYSTEM		;E
		OCE
		TST PASS POCE
)CE	EUT	POCE
POCE		POC
POCE		2
OCE	OCE DO	CE BOCE

4.4.3 Test Data:

4.5 Number of Hopping Frequencies

POCE

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure: POCE POCE POCE	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

4.5.1 E.U.T. Operation:

Operating Enviro	onment:	P	005	pou.	POU	PUS
Temperature:	22.1 °C		Humidity:	48 %	Atmospheric Pressure:	102 kPa
Pre test mode:	CE	TM2	POCE	20	CE DOCE	00
Final test mode:		TM2	40	4-		

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

4.6 Dwell Time

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a
	 second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test
	for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the
	total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time)
	The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.
	The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

4.6.1 E.U.T. Operation:

DOCE

4.6.1 E.U.T. Operation:								
Operating Enviro	onment:							
Temperature:	22.1 °C		Humidity:	48 %	Atmos	spheric Pressure:	102 kPa	200
Pre test mode:		TM2	PUT		pu	40		40
Final test mode:	-	TM2			-E		E.	
4.6.2 Test Setu	p Diagra	m:	POCL		POLL	POU		9

POCE

POCT

POCE

	POCE	V1.0		Report No	.: POCE2309260071
Please Refer to Appendix for Details.			EUT	TST PASS	POCE POCE POC F
	I.6.3 Test Data:	dix for Details.	PO PO	CE POC	e ce

4.7 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8
	KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.
4.7.1 E.U.T. Operation:	DOCE DOCE DOCE DOCE

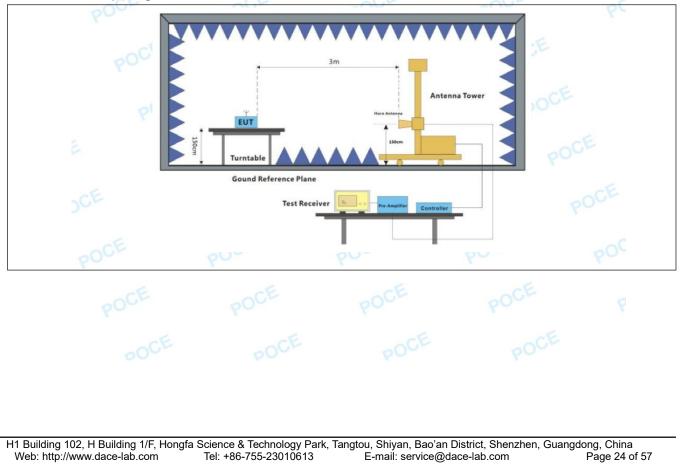
4.7.1 E.U.T. Operation:

Operating Environment:						
Temperature: 22.1 °C	Humidity: 48 % Atmospheric Pressure: 102 kPa					
Pre test mode:	TM1, TM2					
Final test mode:	TM1, TM2					

4.7.2 Test Setup Diagram:

RF TEST SYSTEM	- ;E ,OCE
	TST PASS POCE
	POC
	P

4.7.3 Test Data:


4.8 Band edge emissions (Radiated)

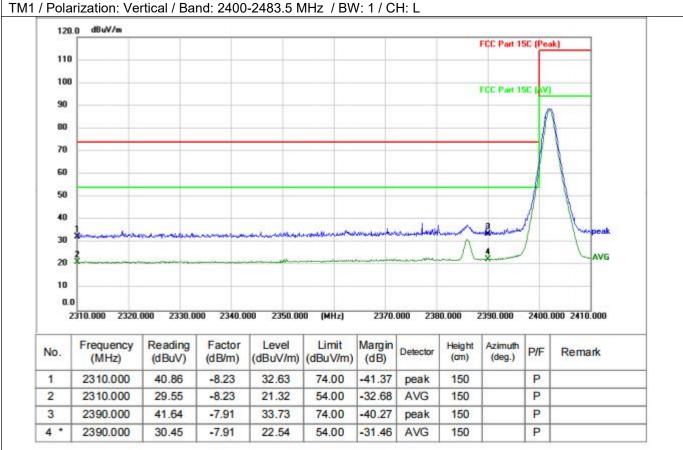
•			
Test Requirement:		n addition, radiated emissions in § 15.205(a), must also comp 15.209(a)(see § 15.205(c)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
DCE	1.705-30.0	-30	30 000
-	30-88	100 **	3
	88-216	150 **	3
DOCE	216-960	200 **	3 0
40	Above 960	500	3
POCE	radiators operating under this 54-72 MHz, 76-88 MHz, 174	agraph (g), fundamental emissi s section shall not be located in -216 MHz or 470-806 MHz. Ho mitted under other sections of	n the frequency bands wever, operation within
Test Method:	ANSI C63.10-2013 section 6	10	
	KDB 558074 D01 15.247 Me		OCE
Procedure:	ANSI C63.10-2013 section 6	10.5.2	PUT

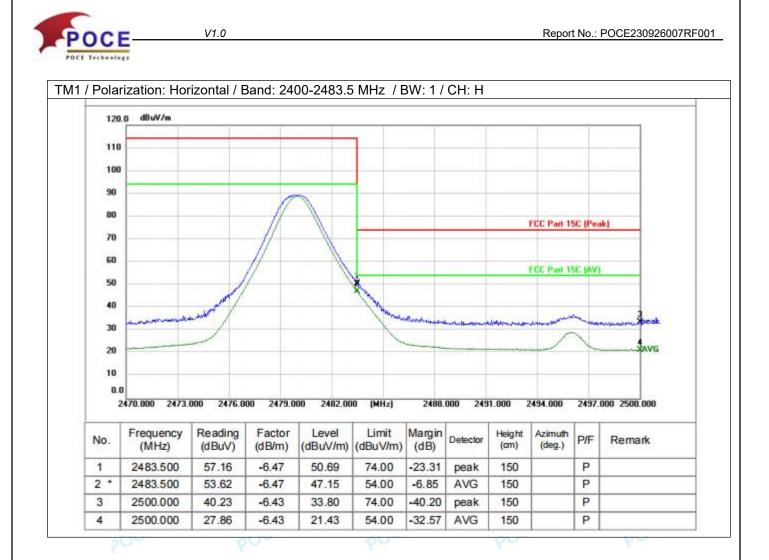
4.8.1 E.U.T. Operation:

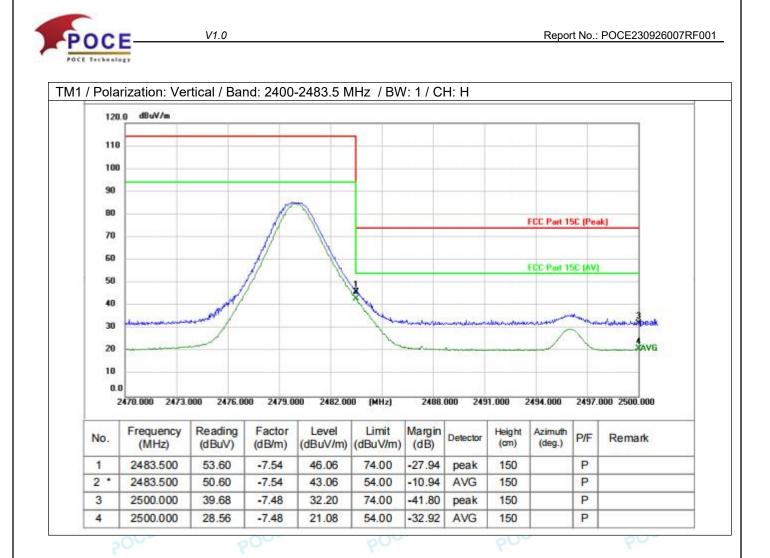
Operating Enviro	onment:	204		POUL	POUL	POU
Temperature:	22.1 °C		Humidity:	48 %	Atmospheric Pressure:	102 kPa
Pre test mode:	-	TM1	OCE	POCE	DOCE	POCK
Final test mode:		TM1		40	40	

4.8.2 Test Setup Diagram:

Report No.: POCE230926007RF001

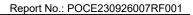

4.8.3 Test Data:




D	0	C	F	
-	<u> </u>	0	-	

Report No.: POCE230926007RF001

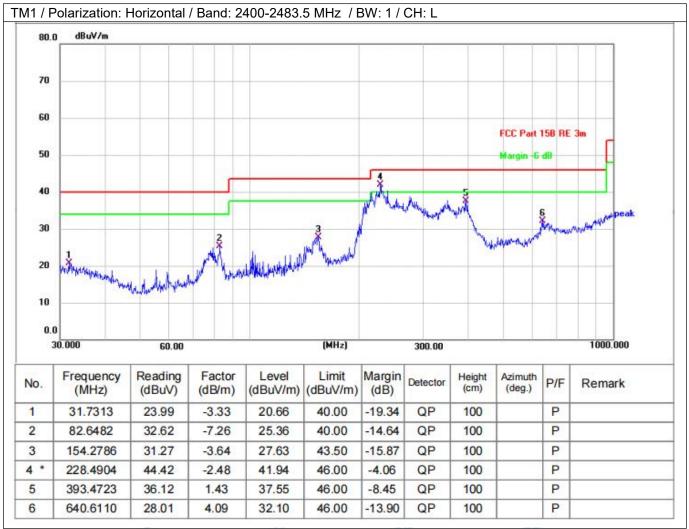
TM1 / Polarization: Vertical / I



4.9 Emissions in frequency bands (below 1GHz)

est Requirement:	Refer to 47 CFR 15.247(d), restricted bands, as defined emission limits specified in §		mply with the radiated				
Fest Limit:	Frequency (MHz)	Field strength	Measurement				
		(microvolts/meter)	distance				
	DCE DCE	DOCH	(meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
			-				
	radiators operating under thi	agraph (g), fundamental emis s section shall not be located -216 MHz or 470-806 MHz. rmitted under other sections	d in the frequency bands However, operation within				
000		pue	PUS				
Fest Method:	ANSI C63.10-2013 section 6						
	KDB 558074 D01 15.247 Me	eas Guidance v05r02					
Procedure:	a. For below 1GHz, the EUT	was placed on the top of a r	otating table 0.8 meters				
		0 meter semi-anechoic chan					
		e position of the highest radi					
		was placed on the top of a					
	above the ground at a 3 met						
	degrees to determine the po						
	c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.						
	d. The antenna height is var						
	determine the maximum value						
	polarizations of the antenna						
		sion, the EUT was arranged					
		ights from 1 meter to 4 meter					
		vas tuned to heights 1 meter					
	was turned from 0 degrees t						
	f. The test-receiver system v						
	Bandwidth with Maximum H		ion alla opeenied				
	g. If the emission level of the		IB lower than the limit				
	specified, then testing could						
	reported. Otherwise the emi						
	tested one by one using pea						
	reported in a data sheet.						
			~E.				
		t channel, the middle channe	OCE				
		t channel, the middle channe hts are performed in X, Y, Z a	l, the Highest channel.				
	i. The radiation measuremer	nts are performed in X, Y, Z a	el, the Highest channel. xis positioning for				
	i. The radiation measuremer Transmitting mode, and four	nts are performed in X, Y, Z and the X axis positioning which	I, the Highest channel. xis positioning for th it is the worst case.				
	i. The radiation measuremer Transmitting mode, and four j. Repeat above procedures	nts are performed in X, Y, Z and the X axis positioning which	I, the Highest channel. xis positioning for th it is the worst case.				
	i. The radiation measuremer Transmitting mode, and four j. Repeat above procedures Remark:	nts are performed in X, Y, Z and the X axis positioning which until all frequencies measure	el, the Highest channel. xis positioning for ch it is the worst case. ed was complete.				
	 i. The radiation measuremen Transmitting mode, and four j. Repeat above procedures Remark: 1) For emission below 1GHz 	nts are performed in X, Y, Z and the X axis positioning whic until all frequencies measure t, through pre-scan found the	el, the Highest channel. xis positioning for ch it is the worst case. ed was complete.				
	 i. The radiation measurement Transmitting mode, and four j. Repeat above procedures Remark: 1) For emission below 1GHz channel. Only the worst case 	nts are performed in X, Y, Z and the X axis positioning which until all frequencies measure t, through pre-scan found the e is recorded in the report.	el, the Highest channel. Ixis positioning for the worst case. ad was complete.				
	 i. The radiation measurement Transmitting mode, and four j. Repeat above procedures Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calculated 	nts are performed in X, Y, Z and the X axis positioning which until all frequencies measured, through pre-scan found the e is recorded in the report. lated by adding the Antenna	el, the Highest channel. xis positioning for ch it is the worst case. ed was complete. e worst case is the lowest Factor, Cable Factor &				
	 i. The radiation measurement Transmitting mode, and four j. Repeat above procedures Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calculated Preamplifier. The basic equation 	nts are performed in X, Y, Z and the X axis positioning which until all frequencies measures, through pre-scan found the e is recorded in the report. Iated by adding the Antenna tion with a sample calculation	el, the Highest channel. exis positioning for th it is the worst case. ed was complete. e worst case is the lowest Factor, Cable Factor & n is as follows:				
	 i. The radiation measurement Transmitting mode, and four j. Repeat above procedures Remark: For emission below 1GHz channel. Only the worst case The field strength is calcular Preamplifier. The basic equations Final Test Level = Receiver Final Test Level = Receiver Final Test Level 	nts are performed in X, Y, Z and the X axis positioning which until all frequencies measures, through pre-scan found the e is recorded in the report. Iated by adding the Antenna tion with a sample calculation	el, the Highest channel. exis positioning for th it is the worst case. ed was complete. e worst case is the lowest Factor, Cable Factor & n is as follows:				
	 i. The radiation measurement Transmitting mode, and four j. Repeat above procedures Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcular Preamplifier. The basic equations Final Test Level = Receiver For the preamplifier Factor 	ts are performed in X, Y, Z and the X axis positioning which until all frequencies measure t, through pre-scan found the e is recorded in the report. lated by adding the Antenna ation with a sample calculatio Reading + Antenna Factor + 0	el, the Highest channel. exis positioning for ch it is the worst case. ed was complete. e worst case is the lowest Factor, Cable Factor & n is as follows: Cable Factor "C				
	 i. The radiation measurement Transmitting mode, and four j. Repeat above procedures Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcular Preamplifier. The basic equations final Test Level = Receiver For Preamplifier Factor 3) Scan from 9kHz to 25GHz 	ts are performed in X, Y, Z and the X axis positioning which until all frequencies measure t, through pre-scan found the e is recorded in the report. lated by adding the Antenna tion with a sample calculatio Reading + Antenna Factor + (z, the disturbance above 12.1	el, the Highest channel. exis positioning for ch it is the worst case. ed was complete. e worst case is the lowest Factor, Cable Factor & n is as follows: Cable Factor "C 75GHz and below 30MHz				
	 i. The radiation measurement Transmitting mode, and four J. Repeat above procedures Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcular Preamplifier. The basic equations of the preamplifier from 9kHz to 25GHz was very low. The points matching the present strength of the points matching the points matc	ts are performed in X, Y, Z and the X axis positioning which until all frequencies measure t, through pre-scan found the e is recorded in the report. lated by adding the Antenna ation with a sample calculation Reading + Antenna Factor + 0 z, the disturbance above 12. Trked on above plots are the	el, the Highest channel. xis positioning for ch it is the worst case. ed was complete. e worst case is the lowest Factor, Cable Factor & n is as follows: Cable Factor "C 75GHz and below 30MHz highest emissions could b				
	 i. The radiation measurement Transmitting mode, and four J. Repeat above procedures Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcular Preamplifier. The basic equations of the preamplifier from 9kHz to 25GHz was very low. The points material found when testing, so only 	nts are performed in X, Y, Z and the X axis positioning which until all frequencies measure t, through pre-scan found the e is recorded in the report. lated by adding the Antenna ation with a sample calculatio Reading + Antenna Factor + C z, the disturbance above 12.7 rked on above plots are the above points had been displa	el, the Highest channel. xis positioning for ch it is the worst case. ed was complete. worst case is the lowest Factor, Cable Factor & n is as follows: Cable Factor "C 75GHz and below 30MHz highest emissions could be ayed. The amplitude of				
DOC	 i. The radiation measurement Transmitting mode, and four J. Repeat above procedures Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcular Preamplifier. The basic equations of the preamplifier from 9kHz to 25GHz was very low. The points matching the present strength of the points matching the points matc	ats are performed in X, Y, Z and the X axis positioning which until all frequencies measure at, through pre-scan found the e is recorded in the report. lated by adding the Antenna ation with a sample calculation Reading + Antenna Factor + 0 z, the disturbance above 12.7 rked on above plots are the above points had been displa radiator which are attenuate	el, the Highest channel. xis positioning for ch it is the worst case. ed was complete. e worst case is the lowest Factor, Cable Factor & n is as follows: Cable Factor "C 75GHz and below 30MHz highest emissions could b ayed. The amplitude of ed more than 20dB below				

		the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.
--	--	--


4.9.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	22.1 °C		Humidity:	48 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1	-	OCE	POCE	DOCE
Final test mode:		TM1		40	40	4-

Report No.: POCE230926007RF001

4.9.2 Test Data:

80.0 dBu	√/m					V: 1 / CH					
70											
60								_			
50								_	FCC Part		3m
40	_			1				5		5	
						MAN	L. WA	Ĭ	m M	A.	peak
30	_				3 M		widd days.	also P	July 18	AND A	New Production
30 20 LAwrig	when it	Lubert	J. MANAMANA	el where whe	A Warner		Widd date.	w. Jun	one was	- may	
30 20 Lawlan	whomen	ndrubulteshed	Jul Market	Untrepresent	A March		What share	also P	out the same		

3

4

5

6

223.7334

341.9786

396.2415

636.1340

41.04

33.42

33.10

32.68

-2.55

0.63

1.32

4.07

38.49

34.05

34.42

36.75

46.00

46.00

46.00

46.00

-7.51

-11.95

-11.58

-9.25

QP

QP

QP

QP

100

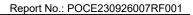
100

100

100

P

Ρ


P

P

4.10 Emissions in frequency bands (above 1GHz)

	In addition, radiated emission 15.205(a), must also comply 15.209(a)(see § 15.205(c)).`	with the radiated emission limit						
Test Limit:	Frequency (MHz)	Field strength	Measurement					
E.	at at	(microvolts/meter)	distance					
F	0000 0000	POUL	(meters)					
r i i i i i i i i i i i i i i i i i i i	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
DCE	1.705-30.0	30						
	30-88	100 **	3					
	88-216	150 **	3					
OCE	216-960	200 **	3 0					
po	Above 960	500	3					
POCE	radiators operating under this 54-72 MHz, 76-88 MHz, 174- these frequency bands is per	agraph (g), fundamental emissi s section shall not be located in -216 MHz or 470-806 MHz. Ho rmitted under other sections of	n the frequency bands wever, operation within					
P00	§§ 15.231 and 15.241.	POC						
Test Method:	ANSI C63.10-2013 section 6 KDB 558074 D01 15.247 Me		OCE					
Procedure:		was placed on the top of a rota						
	0	0 meter semi-anechoic chamb						
-E		e position of the highest radiati						
0-		was placed on the top of a rot						
		er fully-anechoic chamber. The	table was rotated 360					
CE		sition of the highest radiation.						
pour		neters away from the interferen						
PO	which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to							
-F								
POCL	polarizations of the antenna	ie of the field strength. Both ho are set to make the measurem	ent.					
CE.		sion, the EUT was arranged to						
DOCT		ights from 1 meter to 4 meters						
× .		vas tuned to heights 1 meter) a						
		o 360 degrees to find the maxi						
20		as set to Peak Detect Function	and Specified					
PC	Bandwidth with Maximum Ho		Leave and the second second second					
2		EUT in peak mode was 10dB						
E		be stopped and the peak value						
P		sions that did not have 10dB r						
		k, quasi-peak or average meth	on ac encottod and that					
CE	reported in a data sheet.	CE LOCE	ou as specified and the					
	h. Test the EUT in the lowest		OCE					
5-	The nediction of		the Highest channel.					
J=		ts are performed in X, Y, Z axis	the Highest channel. s positioning for					
eE.	Transmitting mode, and foun	ts are performed in X, Y, Z axis d the X axis positioning which	the Highest channel. s positioning for it is the worst case.					
DCE	Transmitting mode, and foun j. Repeat above procedures	ts are performed in X, Y, Z axis	the Highest channel. s positioning for it is the worst case.					
POCE	Transmitting mode, and foun j. Repeat above procedures Remark:	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured	the Highest channel. s positioning for it is the worst case. was complete.					
POCE	Transmitting mode, and foun j. Repeat above procedures Remark: 1) For emission below 1GHz	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured , through pre-scan found the w	the Highest channel. s positioning for it is the worst case. was complete.					
POCE	Transmitting mode, and foun j. Repeat above procedures of Remark: 1) For emission below 1GHz channel. Only the worst case	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured , through pre-scan found the w e is recorded in the report.	the Highest channel. s positioning for it is the worst case. was complete. Porst case is the lowest					
POCE	Transmitting mode, and foun j. Repeat above procedures (Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcul	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured , through pre-scan found the w e is recorded in the report. ated by adding the Antenna Fa	the Highest channel. s positioning for it is the worst case. was complete. Forst case is the lowest actor, Cable Factor &					
POCE	Transmitting mode, and foun j. Repeat above procedures of Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcul Preamplifier. The basic equa	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured , through pre-scan found the w e is recorded in the report. ated by adding the Antenna Fa tion with a sample calculation i	the Highest channel. s positioning for it is the worst case. was complete. Forst case is the lowest actor, Cable Factor & is as follows:					
POCE	Transmitting mode, and foun j. Repeat above procedures (Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcul Preamplifier. The basic equa Final Test Level =Receiver R	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured , through pre-scan found the w e is recorded in the report. ated by adding the Antenna Fa	the Highest channel. s positioning for it is the worst case. was complete. Forst case is the lowest actor, Cable Factor & is as follows:					
POCE	Transmitting mode, and foun j. Repeat above procedures of Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcul Preamplifier. The basic equa Final Test Level =Receiver R Preamplifier Factor	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured , through pre-scan found the w e is recorded in the report. ated by adding the Antenna Fa tion with a sample calculation is reading + Antenna Factor + Ca	the Highest channel. s positioning for it is the worst case. was complete. Forst case is the lowest actor, Cable Factor & is as follows: ble Factor "C					
POCE	Transmitting mode, and foun j. Repeat above procedures of Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcul Preamplifier. The basic equa Final Test Level =Receiver R Preamplifier Factor 3) Scan from 9kHz to 25GHz	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured , through pre-scan found the w e is recorded in the report. ated by adding the Antenna Fa tion with a sample calculation is reading + Antenna Factor + Ca	the Highest channel. s positioning for it is the worst case. was complete. Forst case is the lowest actor, Cable Factor & is as follows: ble Factor "C GHz and below 30MHz					
POCE	Transmitting mode, and foun j. Repeat above procedures of Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcul Preamplifier. The basic equa Final Test Level =Receiver R Preamplifier Factor 3) Scan from 9kHz to 25GHz was very low. The points man	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured , through pre-scan found the w e is recorded in the report. ated by adding the Antenna Fa tion with a sample calculation is leading + Antenna Factor + Ca c, the disturbance above 12.75 rked on above plots are the hig	the Highest channel. s positioning for it is the worst case. was complete. rorst case is the lowest actor, Cable Factor & is as follows: ble Factor "C GHz and below 30MHz ghest emissions could be					
POCE	Transmitting mode, and foun j. Repeat above procedures of Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcul Preamplifier. The basic equa Final Test Level =Receiver R Preamplifier Factor 3) Scan from 9kHz to 25GHz was very low. The points man found when testing, so only a	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured , through pre-scan found the w e is recorded in the report. ated by adding the Antenna Fa tion with a sample calculation i reading + Antenna Factor + Ca treading + Antenna Factor + Ca treading above plots are the hig above points had been displayed	the Highest channel. s positioning for it is the worst case. was complete. orst case is the lowest actor, Cable Factor & is as follows: ble Factor "C GHz and below 30MHz phest emissions could be ed. The amplitude of					
POCE	Transmitting mode, and foun j. Repeat above procedures of Remark: 1) For emission below 1GHz channel. Only the worst case 2) The field strength is calcul Preamplifier. The basic equa Final Test Level =Receiver R Preamplifier Factor 3) Scan from 9kHz to 25GHz was very low. The points man found when testing, so only a	ts are performed in X, Y, Z axis d the X axis positioning which until all frequencies measured , through pre-scan found the w e is recorded in the report. ated by adding the Antenna Fa tion with a sample calculation is leading + Antenna Factor + Ca c, the disturbance above 12.75 rked on above plots are the hig	the Highest channel. s positioning for it is the worst case. was complete. orst case is the lowest actor, Cable Factor & is as follows: ble Factor "C GHz and below 30MHz phest emissions could b ed. The amplitude of					

		the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.
--	--	--

4.10.1 E.U.T. Operation:

Operating Enviro	onment:					
Temperature:	22.1 °C		Humidity:	48 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1	-	OCE	DOCE	DOCE
Final test mode:		TM1		40	4-	4-

V1.0

4.10.2Test Data:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	44.71	-0.90	43.81	74.00	-30.19	peak	100		P	
2	4804.000	30.10	-0.90	29.20	54.00	-24.80	AVG	100		Р	
3	7204.000	52.90	4.13	57.03	74.00	-16.97	peak	100		P	
4 *	7204.000	37.49	4.13	41.62	54.00	-12.38	AVG	100		P	
5	9608.000	35.95	8.09	44.04	74.00	-29.96	peak	100		P	
6	9608.000	24.83	8.09	32.92	54.00	-21.08	AVG	100		P	

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	43.60	-0.28	43.32	74.00	-30.68	peak			P	
2	4804.000	30.64	-0.28	30.36	54.00	-23.64	AVG			P	
3	7204.000	51.63	4.09	55.72	74.00	-18.28	peak		1	P	
4 *	7204.000	36.51	4.09	40.60	54.00	-13.40	AVG			P	
5	9608.000	35.94	8.02	43.96	74.00	-30.04	peak			P	
6	9608.000	24.93	8.02	32.95	54.00	-21.05	AVG			P	

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

V1.0

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4877.500	43.36	-0.65	42.71	74.00	-31.29	peak	149		P	
2	4877.500	29.98	-0.65	29.33	54.00	-24.67	AVG	149		Ρ	
3	7321.500	56.10	4.31	60.41	74.00	-13.59	peak	149		P	
4 *	7321.500	39.87	4.31	44.18	54.00	-9.82	AVG	149		P	
5	9764.000	35.96	8.09	44.05	74.00	-29.95	peak	149		Р	
6	9764.000	24.66	8.09	32.75	54.00	-21.25	AVG	149		P	

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

۱o.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4877.500	44.19	-0.04	44.15	74.00	-29.85	peak	149		P	
2	4959.750	30.48	0.23	30.71	54.00	-23.29	AVG	149		P	
3	7321.500	53.65	4.36	58.01	74.00	-15.99	peak	149	1	P	
4 *	7321.500	38.20	4.36	42.56	54.00	-11.44	AVG	149		P	
5	9764.000	36.49	8.13	44.62	74.00	-29.38	peak	149		P	
6	9764.000	24.96	8.13	33.09	54.00	-20.91	AVG	149		P	

Report No.: POCE230926007RF001

TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

V1.0

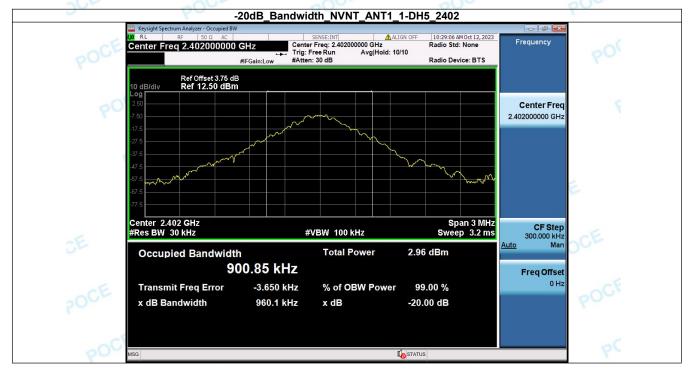
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4960.000	38.08	-0.37	37.71	74.00	-36.29	peak	149		P	
2	4960.000	26.64	-0.37	26.27	54.00	-27.73	AVG	149		Ρ	
3	7439.000	60.16	4.49	64.65	74.00	-9.35	peak	149		P	
4 *	7439.000	44.53	4.49	49.02	54.00	-4.98	AVG	149		P	
5	9920.000	36.67	8.08	44.75	74.00	-29.25	peak	149		P	
6	9920.000	25.36	8.08	33.44	54.00	-20.56	AVG	149		P	

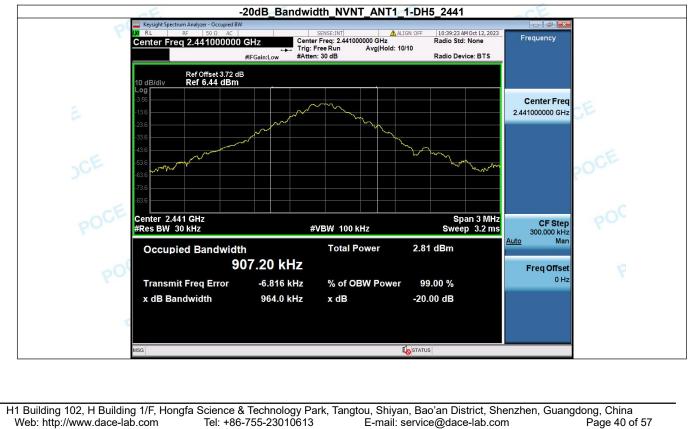
TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4959.750	43.60	0.23	43.83	74.00	-30.17	peak	149		Р	
2	4959.750	30.07	0.23	30.30	54.00	-23.70	AVG	149		P	
3	7439.000	56.58	4.64	61.22	74.00	-12.78	peak	149		P	
4 *	7439.000	40.75	4.64	45.39	54.00	-8.61	AVG	149		P	
5	9920.000	37.33	8.23	45.56	74.00	-28.44	peak	149		Р	
6	9920.000	25.16	8.23	33.39	54.00	-20.61	AVG	149		P	

5 TEST SETUP PHOTOS

6 PHOTOS OF THE EUT


POCE	V1.0		Report	No.: POCE230926007RF00
POCE Technology				
	Ар	pen	UIX	

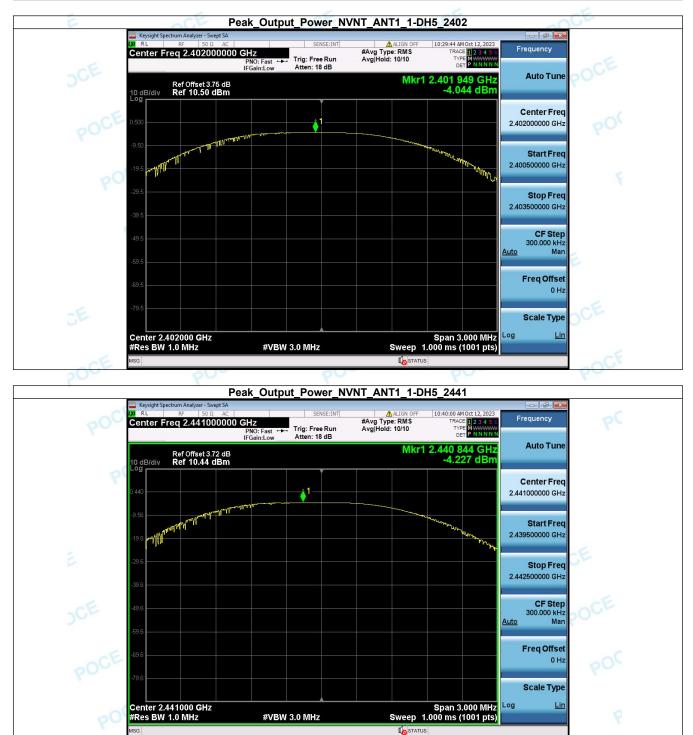


HT230926010--MOU-301--EDR--FCC FCC_BT (Part15.247) Test Data

1. -20dB Bandwidth

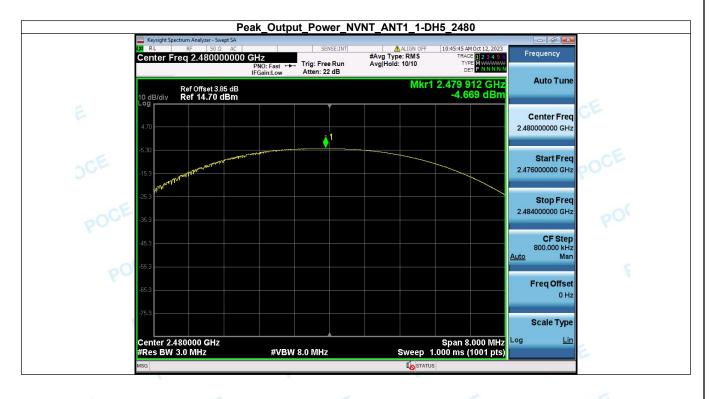

Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5 🧟 🖓	2402.00	0.960	No
NVNT	ANT1	1-DH5	2441.00	0.964	No
NVNT	ANT1	1-DH5	2480.00	1.030	Yes

Report No.: POCE230926007RF001



3. Peak Output Power

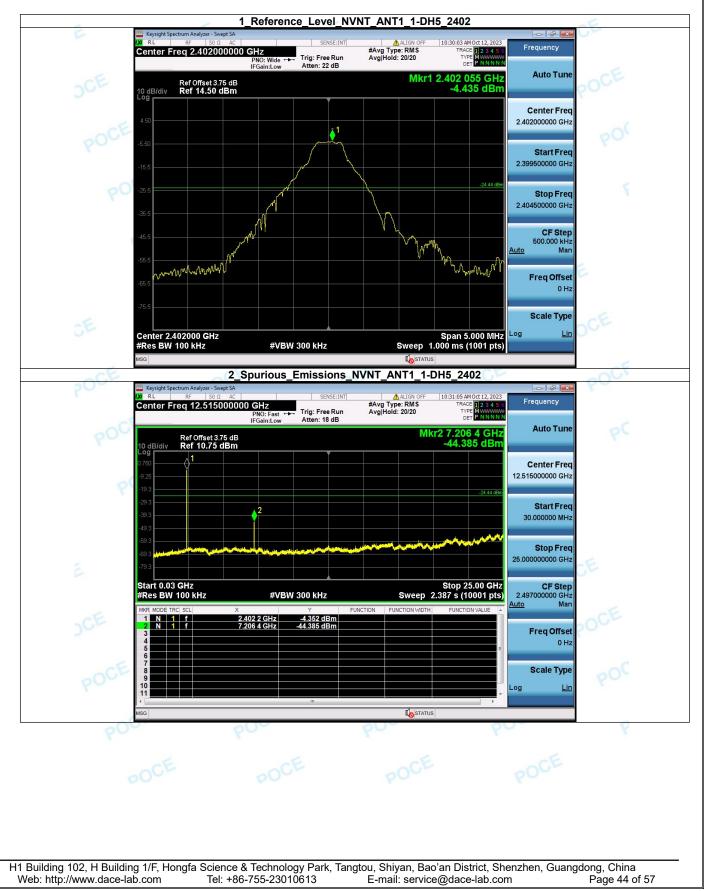
Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	-4.04	0.39	1000	Pass
NVNT	ANT1	1-DH5	2441.00	-4.23	0.38	1000	Pass
NVNT	ANT1	1-DH5	2480.00	-4.67	0.34	125	Pass

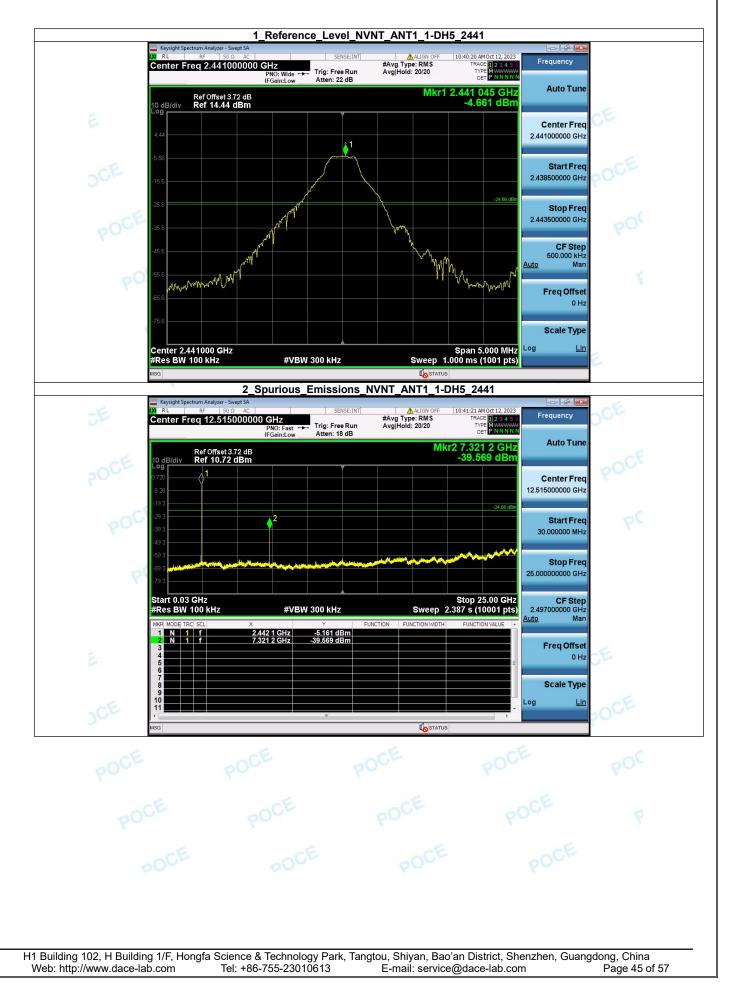


POCE

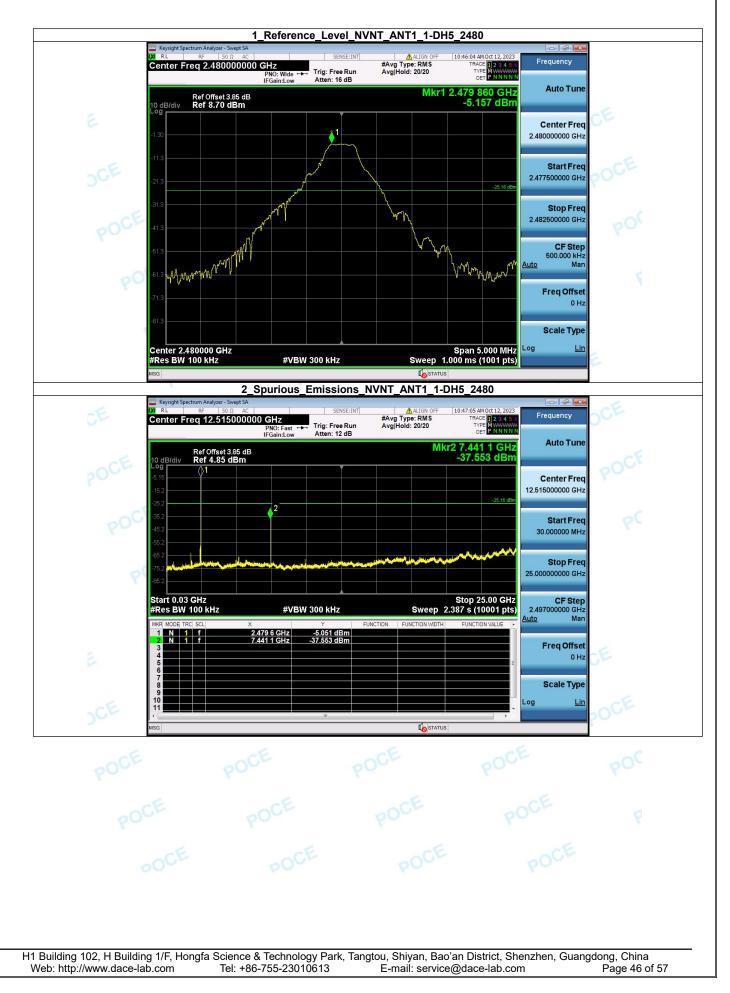
POCE

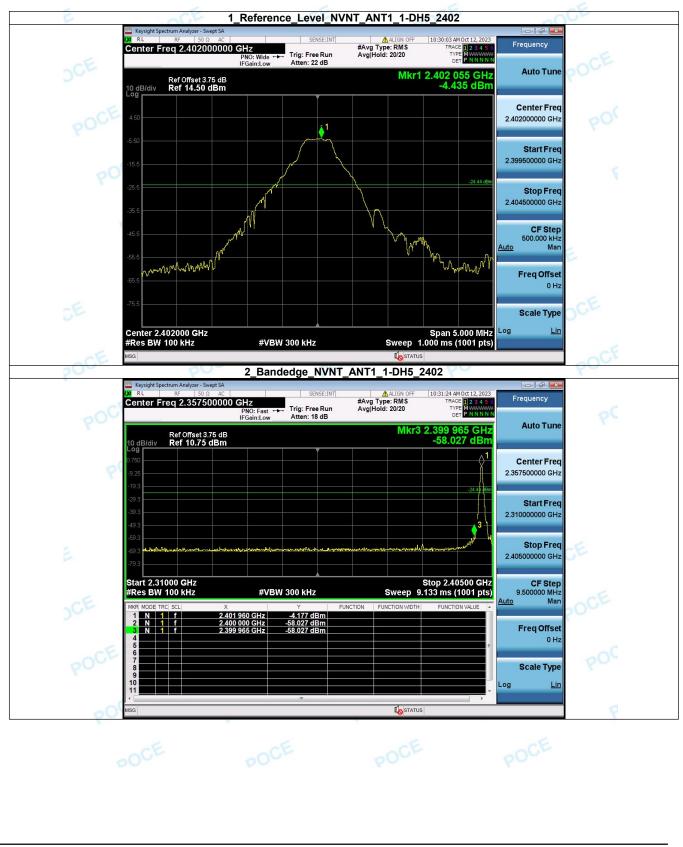
Report No.: POCE230926007RF001

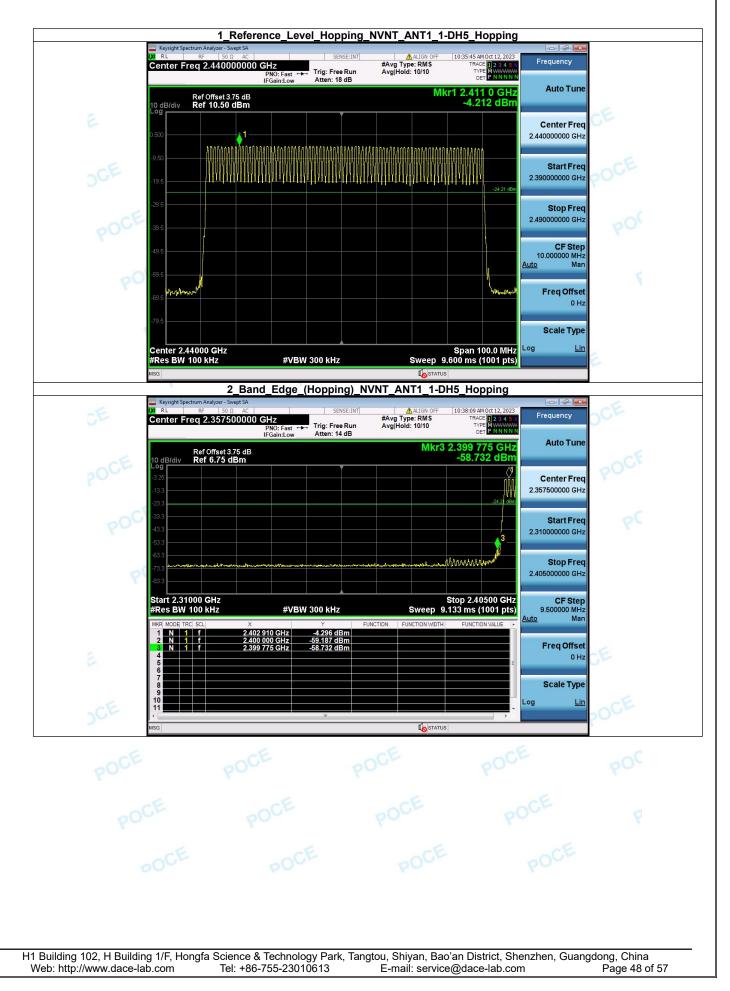



Report No.: POCE230926007RF001

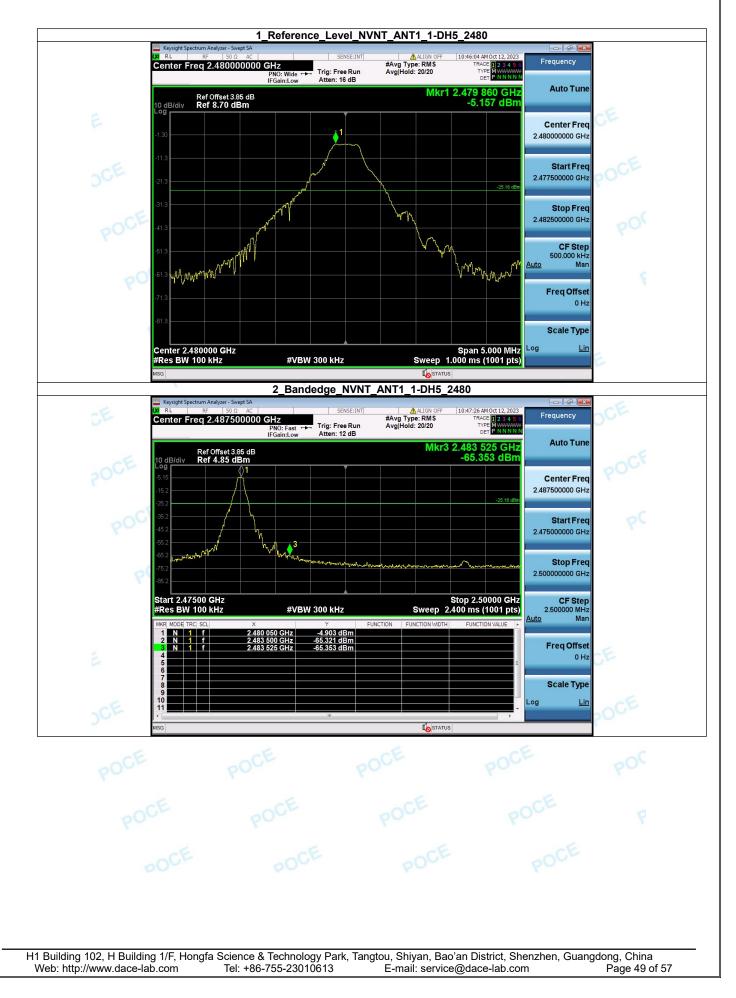
4. Spurious Emissions

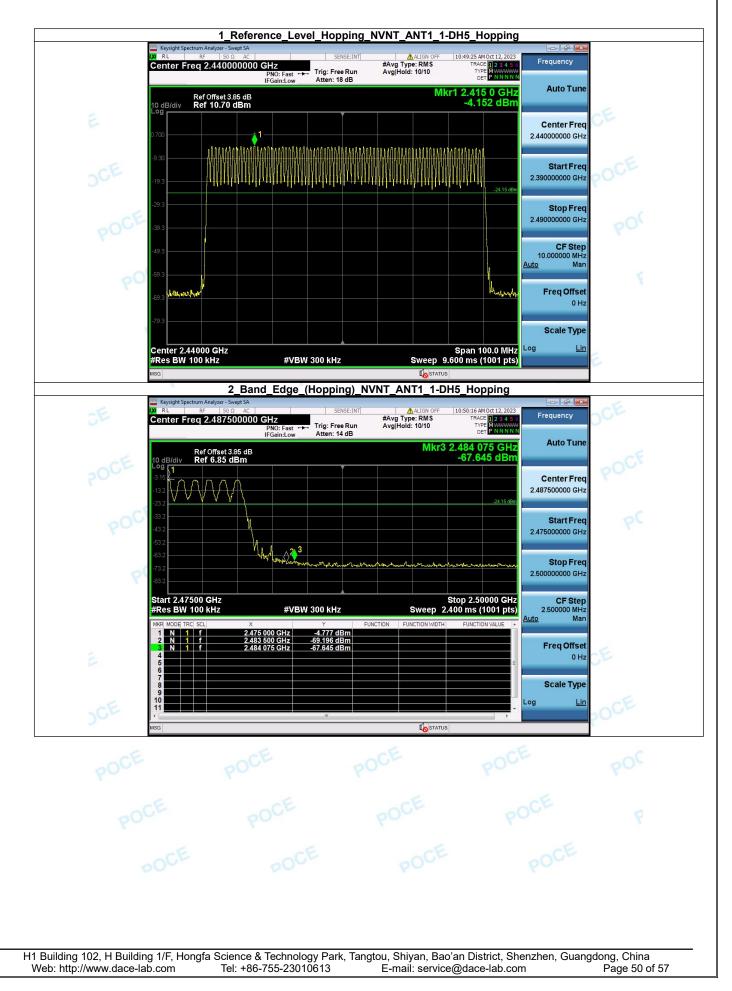

Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-44.385	-24.435	Pass
NVNT	ANT1	1-DH5	2441.00	-39.569	-24.661	Pass
NVNT	ANT1	1-DH5	2480.00	-37.553	-25.157	Pass





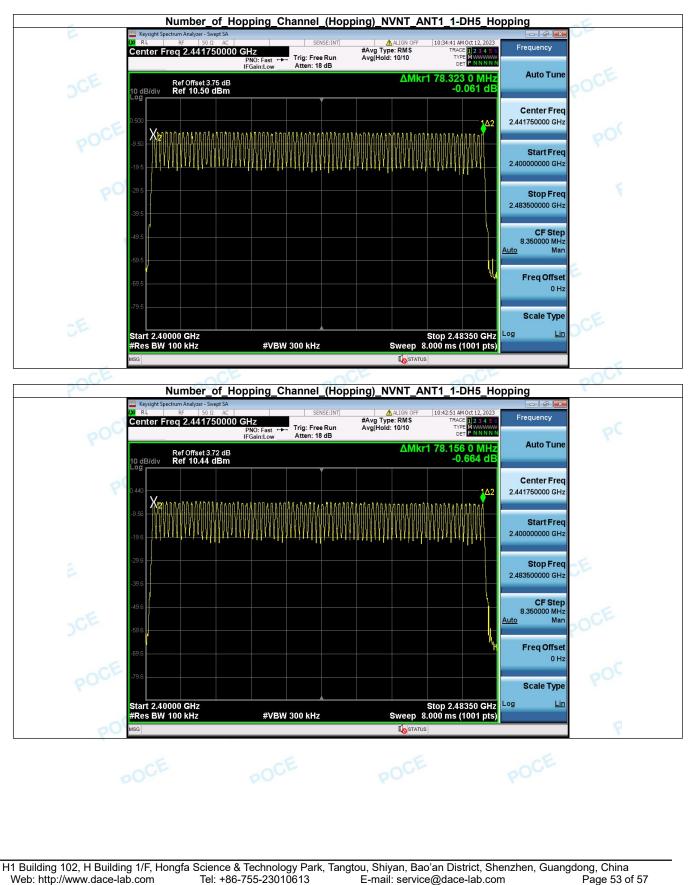
5. Bandedge


Condition	Antenna	Modulation	TX Mode	Bandedge MAX.Value	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-58.027	-24.435	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	-58.732	-24.212	Pass
NVNT	ANT1	1-DH5	2480.00	-65.353	-25.157	Pass
NVNT	ANT1	1-DH5	Hopping_HCH	-67.645	-24.152	Pass



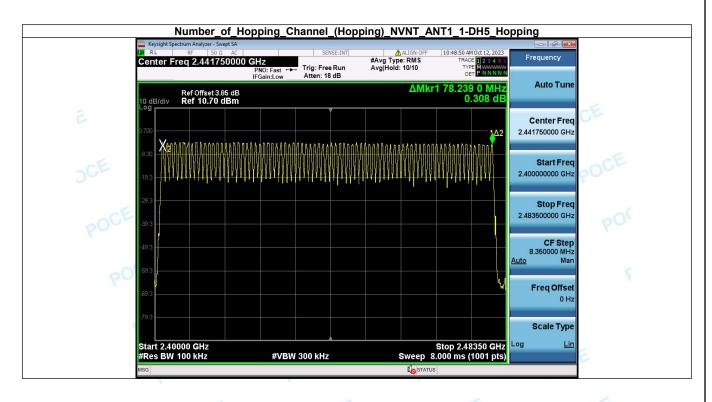

6. Carrier Frequencies Separation (Hopping)

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2402.047	2403.052	1.00	0.960	Pass
NVNT	ANT1	1-DH5	2441.00	2440.972	2442.004	1.03	0.964	Pass
NVNT	ANT1	1-DH5	2480.00	2478.990	2480.052	1.06	0.687	Pass



Report No.: POCE230926007RF001

7. Number of Hopping Channel (Hopping)

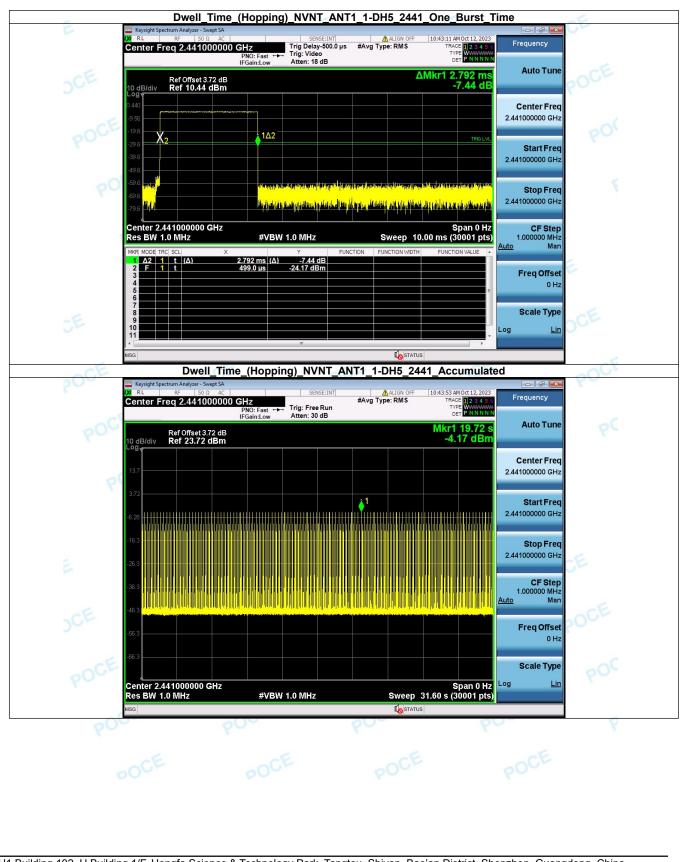

Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass

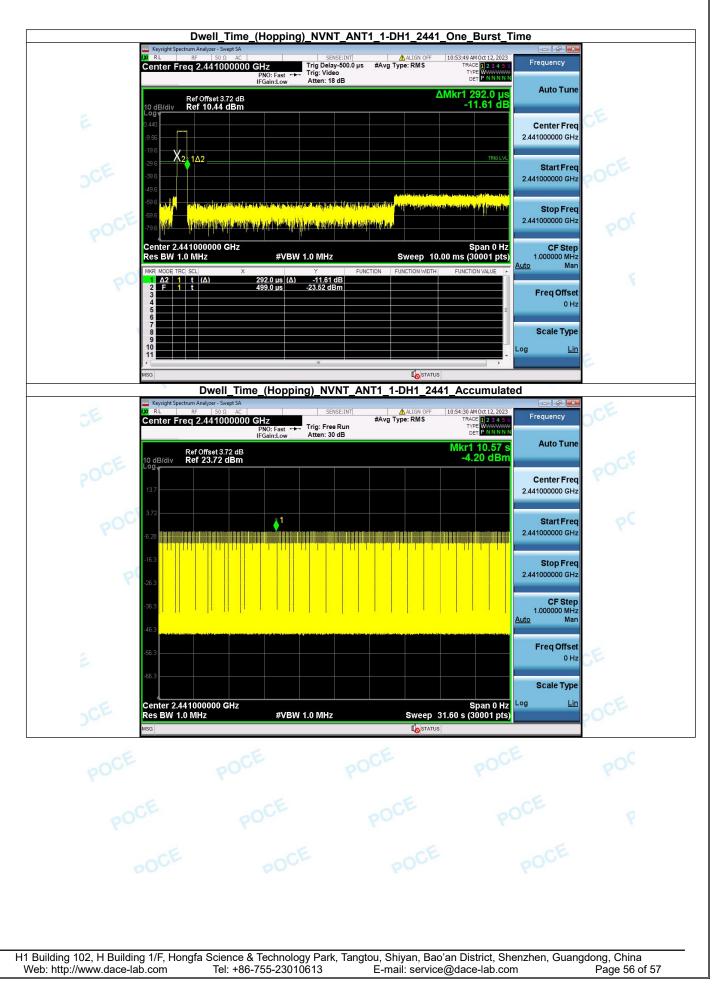
Page 54 of 57

V1.0

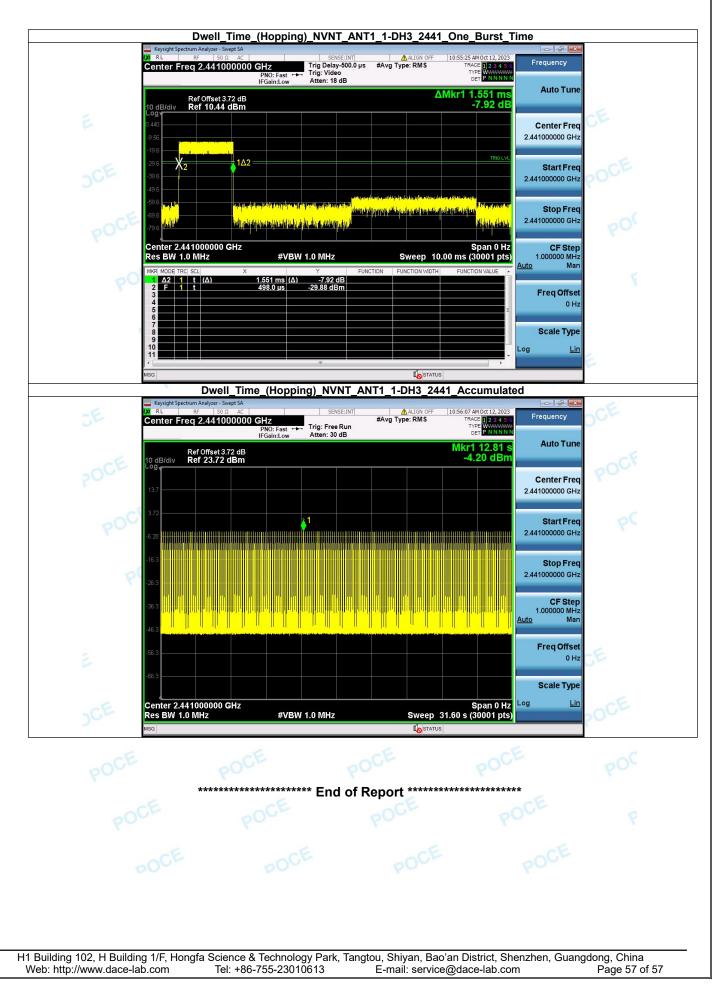
E-mail: service@dace-lab.com

Tel: +86-755-23010613


Web: http://www.dace-lab.com


Report No.: POCE230926007RF001

8. Dwell Time (Hopping)


	· · ·	0,					
Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.792	110.00	307.120	0.40	Pass
NVNT	ANT1	1-DH1	0.292	367.00	107.164	0.40	Pass
NVNT	ANT1	1-DH3	1.551	169.00	262.119	0.40	Pass

