

FCC RF Test Report

APPLICANT	:	CASTLES TECHNOLOGY CO., LTD.	
EQUIPMENT	:	Smart Module	
BRAND NAME	:	CASTLES TECHNOLOGY	
MODEL NAME	:	CWM100	
FCC ID	:	WIYCWM100001	
STANDARD	:	FCC Part 15 Subpart E §15.407	
CLASSIFICATION	:	(NII) Unlicensed National Information Infrastructure	
TEST DATE(S)	:	Nov. 21, 2024 ~ Dec. 11, 2024	

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International Inc.(Kunshan) TEL : +86-512-57900158 FCC ID : WIYCWM100001

TABLE OF CONTENTS

REV	ISION	I HISTORY	.3
SUN	IMAR	Y OF TEST RESULT	.4
1	GENE	RAL DESCRIPTION	.5
	1.1 1.2 1.3 1.4 1.5 1.6	Applicant Manufacturer Product Feature of Equipment Under Test Product Specification of Equipment Under Test Modification of EUT Testing Location	.5 .5 .6 .7
	1.7 1.8	Test Software Applicable Standards	
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.9
	2.1 2.2 2.3 2.4 2.5 2.6	Carrier Frequency and Channel Test Mode	10 11 12 12
3	TEST	RESULT1	13
	3.1 3.2 3.3 3.4 3.5 3.6	6dB and 26dB and 99% Occupied Bandwidth Measurement 1 Maximum Conducted Output Power Measurement 1 Power Spectral Density Measurement 1 Unwanted Emissions Measurement 2 AC Conducted Emission Measurement 2 Antenna Requirements 2	15 19 22 27
4	LIST	OF MEASURING EQUIPMENT	30
5	MEAS	UREMENT UNCERTAINTY	31
APP	PENDI	X A. CONDUCTED TEST RESULTS	

- APPENDIX B. AC CONDUCTED EMISSION TEST RESULT
- APPENDIX C. RADIATED SPURIOUS EMISSION
- APPENDIX D. DUTY CYCLE PLOTS
- **APPENDIX E. SETUP PHOTOGRAPHS**

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR4N0518D	Rev. 01	Initial issue of report	Jan. 06, 2025

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit for U-NII-1/2A/2C	Limit for U-NII-3	Result	Remark
3.1	2.1049 & 15.403(i)	6dB, 26dB & 99% Bandwidth	-	6dB Bandwidth > 500kHz	Pass	-
3.2	15.407(a)	Maximum Conducted Output Power	≤ 24 dBm	\leq 30 dBm	Pass	-
3.3	15.407(a)	Power Spectral Density	≤ 11 dBm/MHz	\leq 30 dBm/500kHz	Pass	-
3.4	15.407(b)	Unwanted Emissions	15.407(b) & 15.209(a)	15.407(b)(4)(i) &15.209(a)	Pass	Under limit 0.68 dB at 7333.15 MHz
3.5	15.207	AC Conducted Emission	15.207(a)	15.207(a)	Pass	Under limit 21.19 dB at 0.159 MHz
3.6	15.203 & 15.407(a)	Antenna Requirement	15.203 & 15.407(a)	15.203 & 15.407(a)	Pass	-

Conformity Assessment Condition:

1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty"

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1 General Description

1.1 Applicant

CASTLES TECHNOLOGY CO., LTD.

6F, NO. 207-5, SEC. 3, BEIXIN RD., XINDIAN DISTRICT, NEW TAIPEI CITY 231030, TAIWAN (R.O.C.)

1.2 Manufacturer

CASTLES TECHNOLOGY CO., LTD.

6F, NO. 207-5, SEC. 3, BEIXIN RD., XINDIAN DISTRICT, NEW TAIPEI CITY 231030, TAIWAN (R.O.C.)

1.3 Product Feature of Equipment Under Test

Product Feature		
Equipment	Smart Module	
Brand Name	CASTLES TECHNOLOGY	
Model Name	CWM100	
FCC ID	WIYCWM100001	
SN Code	Conducted: 219b107d Conduction: 209b11f8 Radiation: 209b11f9	
EUT Stage	Identical Prototype	

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
	5180 MHz ~ 5240 MHz			
Ty/Dy Fraguency Denge	5260 MHz ~ 5320 MHz			
Tx/Rx Frequency Range	5500 MHz ~ 5700 MHz			
	5745 MHz ~ 5825 MHz			
	<5180 MHz ~ 5240 MHz>			
	802.11a : 14.33 dBm / 0.0271 W			
	802.11n HT20 : 13.83 dBm / 0.0242 W			
	802.11n HT40 : 13.95 dBm / 0.0248 W			
	802.11ac VHT20: 14.37 dBm / 0.0274 W			
	802.11ac VHT40: 14.00 dBm / 0.0251 W			
	802.11ac VHT80: 12.06 dBm / 0.0161 W			
	<5260 MHz ~ 5320 MHz>			
	802.11a : 14.71 dBm / 0.0296 W			
	802.11n HT20 : 13.45 dBm / 0.0221 W			
	802.11n HT40 : 13.59 dBm / 0.0229 W			
	802.11ac VHT20: 14.57 dBm / 0.0286 W			
	802.11ac VHT40: 13.63 dBm / 0.0231 W			
Maximum Output Power to Antenna	802.11ac VHT80: 11.39 dBm / 0.0138 W			
·	<5500 MHz ~ 5700 MHz >			
	802.11a : 13.87 dBm / 0.0244 W			
	802.11n HT20 : 12.18 dBm / 0.0165 W			
	802.11n HT40 : 12.39 dBm / 0.0173 W 802.11ac VHT20: 13.71 dBm / 0.0235 W			
	802.11ac VHT40: 12.43 dBm / 0.0175 W			
	802.11ac VHT80: 10.81 dBm / 0.0121 W <5745 MHz ~ 5825 MHz>			
	802.11a : 13.91 dBm / 0.0246 W			
	802.11n HT20 : 12.35 dBm / 0.0172 W			
	802.11n HT40 : 12.71 dBm / 0.0187 W			
	802.11ac VHT20: 13.71 dBm / 0.0235 W			
	802.11ac VHT40: 12.74 dBm / 0.0188 W			
	802.11ac VHT80: 10.81 dBm / 0.0121 W			

<5180 MHz ~ 5240 MHz> 802.11a : 17.200 MHz	
802.11a : 17.200 MHz	
802.11ac VHT20 : 18.327 MHz	
802.11ac VHT40 : 36.509 MHz	
802.11ac VHT80 : 76.073 MHz	
<5260 MHz ~ 5320 MHz>	
802.11a : 17.236 MHz	
802.11ac VHT20 : 18.327 MHz	
802.11ac VHT40 : 36.509 MHz	
99% Occupied Bandwidth 802.11ac VHT80 : 76.073 MHz	
33 % Occupied Bandwidth <5500 MHz ~ 5700 MHz>	
802.11a : 17.200 MHz	
802.11ac VHT20 : 18.291 MHz	
802.11ac VHT40 : 36.509 MHz	
802.11ac VHT80 : 76.218 MHz	
<5745 MHz ~ 5825 MHz>	
802.11a : 17.164 MHz	
802.11ac VHT20 : 18.291 MHz	
802.11ac VHT40 : 36.509 MHz	
802.11ac VHT80 : 76.073 MHz	
<5180 MHz ~ 5240 MHz>	
PIFA Antenna type with gain 5.50 dBi	
<5260 MHz ~ 5320 MHz>	
PIFA Antenna type with gain 5.29 dBi	
Antenna Type / Gain <5500 MHz ~ 5700 MHz>	
PIFA Antenna type with gain 6.52 dBi	
<5745 MHz ~ 5825 MHz>	
PIFA Antenna type with gain 6.89 dBi	
802.11a/n : OFDM (BPSK / QPSK / 16QAM / 64QAM)	-+
Type of Modulation 802.11ac : OFDM (BPSK / QPSK / 16QAM / 64QA	Л/
256QAM)	-

Note:

- 1. WLAN operation in 5600 MHz ~ 5650 MHz is notched.
- 2. For 802.11n HT20 / ac VHT20 and 802.11n HT40 / ac VHT40 mode, the whole testing has assessed only 802.11ac VHT20/ VHT40 by referring to their higher conducted power.

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)					
	No. 1098, Pengxi North	n Road, Kunshan Econom	c Development Zone			
Test Site Location	Jiangsu Province 2153	Jiangsu Province 215300 People's Republic of China				
	TEL : +86-512-57900158					
	Sporton Site No.	FCC Designation No.	FCC Test Firm			
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.			
Test one NU.	CO01-KS 03CH05-KS TH01-KS	CN1257	314309			

1.7 Test Software

ltem	Site	Manufacturer	Name	Version
1.	TH01-KS	Tonscend	JS1120-3 test system China_210602	3.3.10
2.	03CH05-KS	AUDIX	E3	210616
3.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

Frequency Band	Channel	Freq.(MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5180-5240 MHz	38*	5190	46*	5230
U-NII-1	40	5200	48	5240
	42#	5210	-	-
Frequency Band	Channel	Freq.(MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5260-5320 MHz	54*	5270	62*	5310
U-NII-2A	56	5280	64	5320
	58#	5290	-	-
Frequency Band	Channel	Freq.(MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5500-5700MHz	104	5520	132	5660
U-NII-2C	106#	5530	134*	5670
	108	5540	136	5680
	110*	5550	140	5700
Frequency Band	Channel	Freq.(MHz)	Channel	Freq. (MHz)
	149	5745	157	5785
5745-5825 MHz	151*	5755	159*	5795
U-NII-3	153	5765	161	5805
	155 [#]	5775	165	5825

2.1 Carrier Frequency and Channel

- 1. The above Frequency and Channel in "*" are 40MHz bandwidth.
- 2. The above Frequency and Channel in "#" are 80MHz bandwidth.

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

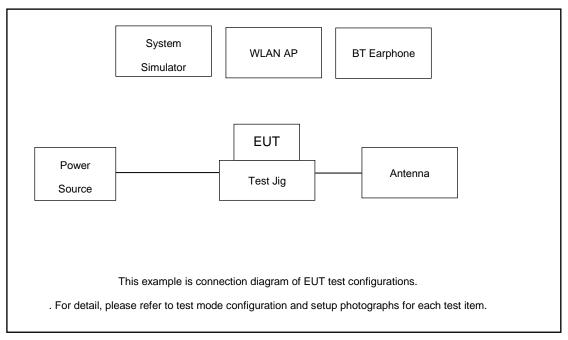
SISO Mode

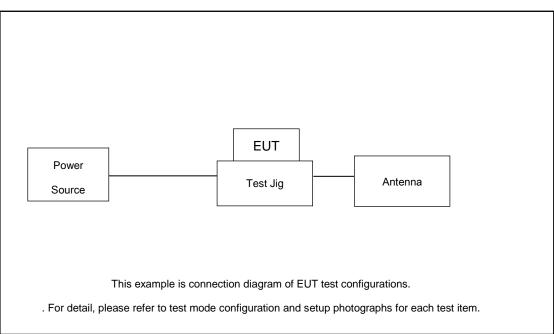
Modulation	Data Rate
802.11a	6 Mbps
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0
802.11ac VHT80	MCS0

AC				
Conducted	Mode 1 : WCDMA Band V + BT Link + WLAN Link(5G) + Test Jig + Adapter			
Emission				
Remark: For Radiated Test Cases, The tests were performance with Adapter.				

RSE Co-location mode WLAN 802.11ac VHT20 CH100 Tx + LTE Band 41 Link

	Ch #	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
	Ch. #	20M BW	20M BW	20M BW	20M BW	
L	Low	36	52	100	149	
М	Middle	44	60	116	157	
н	High	48	64	140	165	


	Ch. #	U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
	Cn. #	40M BW	40M BW	40M BW	40M BW	
L	Low	38	54	102	151	
м	Middle	-	-	110	-	
н	High	46	62	134	159	
		U-NII-1	U-NII-2A	U-NII-2C	U-NII-3	
	Ch. #	U-NII-1 80M BW	U-NII-2A 80M BW	U-NII-2C 80M BW	U-NII-3 80M BW	
L	Ch. # Low					
L	F	80M BW	80M BW	80M BW	80M BW	



2.3 Connection Diagram of Test System

AC Conducted Emission:

Radiated Emission:

2.4 Support	Unit used in	n test config	guration and	system
-------------	--------------	---------------	--------------	--------

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	Shielded cable DC O/P 1.8m, Unshielded AC I/P cable 1.8m
2.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
3.	Bluetooth Earphone	Lenovo	thinkplus-BH3	N/A	N/A	N/A
4.	SD Card	Kingston	8GB	N/A	N/A	N/A
5.	Test Jig	N/A	N/A	N/A	N/A	N/A
6.	Antenna	N/A	N/A	N/A	N/A	N/A
7.	Adapter	N/A	N/A	N/A	N/A	N/A
8.	USB Cable	N/A	N/A	N/A	N/A	N/A
9.	Battery	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuously transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 1.20 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 1.20 + 10 = 11.20 (dB)

3 Test Result

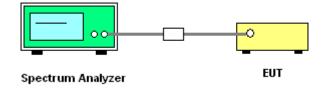
3.1 6dB and 26dB and 99% Occupied Bandwidth Measurement

3.1.1 Description of 6dB and 26dB and 99% Occupied Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz. 26dB and 99% Occupied bandwidth are reporting only.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.1.3 Test Procedures

1. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

\boxtimes	Section C) Bandwidth Measurement									
	1. Emission Bandwidth (EBW) and 99% OBW									
	1. Set RBW = approximately 1% of the emission bandwidth.									
	2. Set the VBW > RBW.									
	3. Detector = Peak.									
	4. Trace mode = max hold									
	5. Measure the maximum width of the emission that is 26 dB down from the peak of the									
	emission. Compare this with the RBW setting of the analyzer. Readjust RBW and									
	repeat measurement as needed until the RBW/EBW ratio is approximately 1%.									
	6. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth									
	(RBW) is set to 1%~5% of the OBW and set the Video bandwidth (VBW) \ge 3 * RBW.									
	7. Measure and record the results in the test report.									
\boxtimes	Section C) Bandwidth Measurement									
	2. Minimum Emission Bandwidth for the band 5.725 - 5.85 GHz									
	1. Set RBW = 100kHz.									
	2. Set the VBW \ge 3 x RBW.									
	3. Detector = Peak.									
	4. Trace mode = max hold									
	5. Measure the maximum width of the emission that is 6 dB down from the peak of the									
	emission.									
	6. Measure and record the results in the test report.									

3.1.4 Test Setup

3.1.5 Test Result of 6dB and 26dB and 99% Occupied Bandwidth

Please refer to Appendix A.

3.2 Maximum Conducted Output Power Measurement

3.2.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW.

For the 5.25–5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm +10 log₁₀ B, where B is the 26 dB emission bandwidth in megahertz.

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

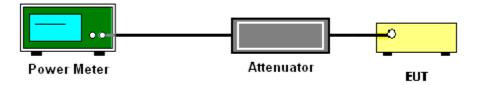
If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures


The testing follows Method PM of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM (Measurement using an RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit continuously with a consistent duty cycle at its maximum power control level.
- 3. Measure the average power of the transmitter, and the average power is corrected with duty factor, $10 \log(1/x)$, where x is the duty cycle.

3.2.4 Test Setup

3.2.5 Test Result of Maximum Conducted Output Power

						U NII-1				
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power with duty factor (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	Pass/Fail	Power Setting
11a	6Mbps	1	36	5180	0.08	14.33	24.00	5.50	Pass	14
11a	6Mbps	1	44	5220	0.08	14.04	24.00	5.50	Pass	13
11a	6Mbps	1	48	5240	0.08	14.22	24.00	5.50	Pass	13.5
HT20	MCS0	1	36	5180	0.08	13.83	24.00	5.50	Pass	13
HT20	MCS0	1	44	5220	0.08	13.80	24.00	5.50	Pass	13
HT20	MCS0	1	48	5240	0.08	13.55	24.00	5.50	Pass	13
HT40	MCS0	1	38	5190	0.17	13.95	24.00	5.50	Pass	13
HT40	MCS0	1	46	5230	0.17	13.95	24.00	5.50	Pass	13
VHT20	MCS0	1	36	5180	0.08	14.11	24.00	5.50	Pass	14
VHT20	MCS0	1	44	5220	0.08	14.37	24.00	5.50	Pass	14
VHT20	MCS0	1	48	5240	0.08	14.25	24.00	5.50	Pass	14
VHT40	MCS0	1	38	5190	0.17	13.98	24.00	5.50	Pass	13
VHT40	MCS0	1	46	5230	0.17	14.00	24.00	5.50	Pass	13
VHT80	MCS0	1	42	5210	0.33	12.06	24.00	5.50	Pass	11

	U NII-2A										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power with duty factor (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	EIRP Power Limit (dBm)	Pass/Fail	Power Setting
11a	6Mbps	1	52	5260	0.08	14.70	23.98	5.29	26.98970004	Pass	15
11a	6Mbps	1	60	5300	0.08	14.71	23.98	5.29	26.98970004	Pass	15
11a	6Mbps	1	64	5320	0.08	14.65	23.98	5.29	26.98970004	Pass	15
HT20	MCS0	1	52	5260	0.08	13.45	23.98	5.29	26.98970004	Pass	13
HT20	MCS0	1	60	5300	0.08	12.97	23.98	5.29	26.98970004	Pass	13
HT20	MCS0	1	64	5320	0.08	12.81	23.98	5.29	26.98970004	Pass	13
HT40	MCS0	1	54	5270	0.17	13.59	23.98	5.29	26.98970004	Pass	13
HT40	MCS0	1	62	5310	0.17	13.05	23.98	5.29	26.98970004	Pass	13
VHT20	MCS0	1	52	5260	0.08	14.52	23.98	5.29	26.98970004	Pass	15
VHT20	MCS0	1	60	5300	0.08	14.57	23.98	5.29	26.98970004	Pass	15
VHT20	MCS0	1	64	5320	0.08	14.45	23.98	5.29	26.98970004	Pass	15
VHT40	MCS0	1	54	5270	0.17	13.63	23.98	5.29	26.98970004	Pass	13
VHT40	MCS0	1	62	5310	0.17	13.08	23.98	5.29	26.98970004	Pass	13
VHT80	MCS0	1	58	5290	0.33	11.39	23.98	5.29	26.98970004	Pass	11

Outy actor dB)	Average Conducted Power with duty factor (dBm)	FCC Conducted Power Limit (dBm)	
.08	13.87	23.46	

U NII-2C

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power with duty factor (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	EIRP Power Limit (dBm)	Pass/Fail	Power Setting
11a	6Mbps	1	100	5500	0.08	13.87	23.46	6.52	26.99	Pass	15
11a	6Mbps	1	116	5580	0.08	13.55	23.46	6.52	26.99	Pass	15
11a	6Mbps	1	140	5700	0.08	13.55	23.46	6.52	26.99	Pass	15
HT20	MCS0	1	100	5500	0.08	12.18	23.46	6.52	26.99	Pass	13
HT20	MCS0	1	116	5580	0.08	12.13	23.46	6.52	26.99	Pass	13
HT20	MCS0	1	140	5700	0.08	11.84	23.46	6.52	26.99	Pass	13
HT40	MCS0	1	102	5510	0.17	12.25	23.46	6.52	26.99	Pass	13
HT40	MCS0	1	110	5550	0.17	12.27	23.46	6.52	26.99	Pass	13
HT40	MCS0	1	134	5670	0.17	12.39	23.46	6.52	26.99	Pass	13
VHT20	MCS0	1	100	5500	0.08	13.71	23.46	6.52	26.99	Pass	15
VHT20	MCS0	1	116	5580	0.08	13.35	23.46	6.52	26.99	Pass	15
VHT20	MCS0	1	140	5700	0.08	13.26	23.46	6.52	26.99	Pass	15
VHT40	MCS0	1	102	5510	0.17	12.29	23.46	6.52	26.99	Pass	13
VHT40	MCS0	1	110	5550	0.17	12.33	23.46	6.52	26.99	Pass	13
VHT40	MCS0	1	134	5670	0.17	12.43	23.46	6.52	26.99	Pass	13
VHT80	MCS0	1	106	5530	0.33	10.81	23.46	6.52	26.99	Pass	11

EIRP

	U NII-3									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power with duty factor (dBm)	FCC Conducted Power Limit (dBm)	DG (dBi)	Pass/Fail	Power Setting
11a	6Mbps	1	149	5745	0.08	13.79	29.11	6.89	Pass	15
11a	6Mbps	1	157	5785	0.08	13.91	29.11	6.89	Pass	15
11a	6Mbps	1	165	5825	0.08	13.83	29.11	6.89	Pass	15
HT20	MCS0	1	149	5745	0.08	12.35	29.11	6.89	Pass	13
HT20	MCS0	1	157	5785	0.08	12.19	29.11	6.89	Pass	13
HT20	MCS0	1	165	5825	0.08	11.77	29.11	6.89	Pass	13
HT40	MCS0	1	151	5755	0.17	12.71	29.11	6.89	Pass	13
HT40	MCS0	1	159	5795	0.17	12.24	29.11	6.89	Pass	13
VHT20	MCS0	1	149	5745	0.08	13.63	29.11	6.89	Pass	15
VHT20	MCS0	1	157	5785	0.08	13.71	29.11	6.89	Pass	15
VHT20	MCS0	1	165	5825	0.08	13.64	29.11	6.89	Pass	15
VHT40	MCS0	1	151	5755	0.17	12.74	29.11	6.89	Pass	13
VHT40	MCS0	1	159	5795	0.17	12.28	29.11	6.89	Pass	13
VHT80	MCS0	1	155	5775	0.33	10.81	29.11	6.89	Pass	11

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

<FCC 14-30 CFR 15.407>

For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum power spectral density shall not exceed 11dBm in any 1 megahertz band.

For the 5.25–5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band.

For the band 5.725–5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r04. Section F) Maximum power spectral density.

For devices operating in the bands UNII-1/2A/2C

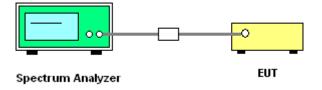
Method SA-2

(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep \geq 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.

For devices operating in the band UNII-3

Method SA-2


(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 500KHz (or 300 kHz if the SA can't set RBW=500KHz).
- Set VBW ≥ 1 MHz.
- Number of points in sweep \geq 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- If the SA can't set RBW=500KHz, then add 10 log(500kHz/RBW) to the test result.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.

- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

3.4 Unwanted Emissions Measurement

This section as specified in FCC Part 15.407(b) is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement. The unwanted emissions shall comply with 15.407(b)(1) to (6), and restricted bands per FCC Part15.205.

3.4.1 Limit of Unwanted Emissions

 For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) For transmitters operating in the 5.725-5.85 GHz band:

15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(3) Unwanted spurious emissions fallen in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 - 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

(4) EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.2

Note: The following formula is used to convert the EIRP to field strength.

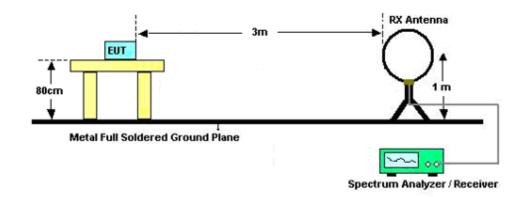
 $EIRP = E_{Meas} + 20log (d_{Meas}) - 104.7$

where

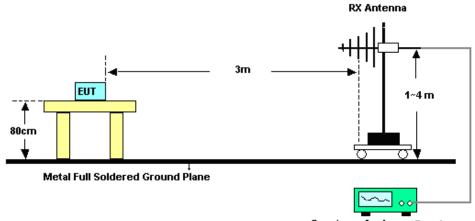
EIRP is the equivalent isotropically radiated power, in dBm E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m d_{Meas} is the measurement distance, in m

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

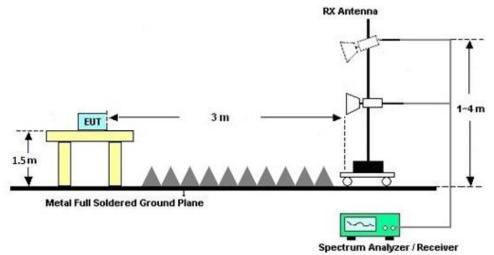

3.4.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v01r04. Section G) Unwanted emissions measurement.
 - (1) Procedure for Unwanted Emissions Measurements Below 1000MHz
 - RBW = 120 kHz
 - VBW = 300 kHz
 - Detector = Peak
 - Trace mode = max hold
 - (2) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (3) Procedures for Average Unwanted Emissions Measurements Above 1000MHz
 - RBW = 1 MHz
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on.
- 2. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 3. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.



3.4.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.4.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.4.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.4.7 Duty Cycle

Please refer to Appendix D.

3.4.8 Test Result of Radiated Spurious Emissions (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

3.5 AC Conducted Emission Measurement

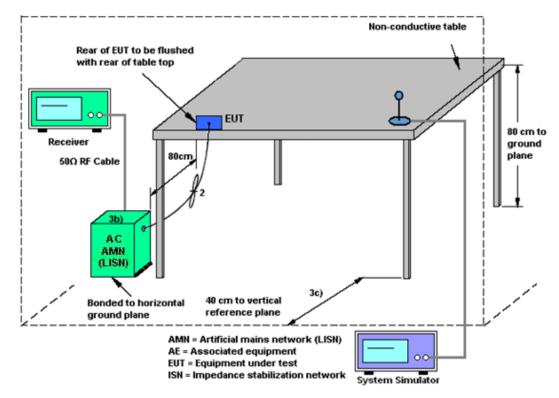
3.5.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)			
Frequency of emission (MHZ)	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.5.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode.

3.5.4 Test Setup

3.5.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.6 Antenna Requirements

3.6.1 Standard Applicable

According to FCC 47 CFR Section 15.407(a)(1)(2), if transmitting antenna directional gain is greater than 6 dBi, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.6.3 Antenna Gain

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi, The directional gain "DG" is calculated as following table.

			DG	DG	Power	PSD
			for	for	Limit	Limit
			Power	PSD	Reduction	Reduction
	(dB	i)	(dBi)	(dBi)	(dB)	(dB)
UNII-1	5.5	0	5.50	5.50	0.00	0.00
UNII-2A	5.2	9	5.29	5.29	0.00	0.00
UNII-2C	6.5	2	6.52	6.52	0.52	0.52
UNII-3	6.8	9	6.89	6.89	0.89	0.89

Power limit reduction = directional gain – 6dBi, (min = 0)

PSD limit reduction = directional gain + PSD Array gain - 6dBi, (min = 0)

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038A	MY57290151	3Hz~8.5GHz;Ma x 30dBm	Jul. 04, 2024	Nov. 26, 2024~ Nov. 27, 2024	Jul. 03, 2025	Radiation (03CH05-KS)
EXA Spectrum Analyzer	Keysight	N9010B	MY60242126	10Hz-44G,MAX 30dB	Oct. 10, 2024	Nov. 26, 2024~ Nov. 27, 2024	Oct. 09, 2025	Radiation (03CH05-KS)
Loop Antenna	R&S	HFH2-Z2E	101125	9kHz~30MHz	Sep. 08, 2024	Nov. 26, 2024~ Nov. 27, 2024	Sep. 07, 2025	Radiation (03CH05-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	Apr. 18, 2024	Nov. 26, 2024~ Nov. 27, 2024	Apr. 17, 2025	Radiation (03CH05-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218642	1GHz~18GHz	Apr. 11, 2024	Nov. 26, 2024~ Nov. 27, 2024	Apr. 10, 2025	Radiation (03CH05-KS)
SHF-EHF Horn	Com-power	AH-840	101093	18GHz~40GHz	Jan. 06, 2024	Nov. 26, 2024~ Nov. 27, 2024	Jan. 05, 2025	Radiation (03CH05-KS)
Amplifier	SONOMA	310N	381512	9KHz-1GHz	Jan. 02, 2024	Nov. 26, 2024~ Nov. 27, 2024	Jan. 01, 2025	Radiation (03CH05-KS)
Amplifier	EM	EM18G40GA	060852	18~40GHz	Jan. 02, 2024	Nov. 26, 2024~ Nov. 27, 2024	Jan. 01, 2025	Radiation (03CH05-KS)
high gain Amplifier	EM	EM01G18GA	060843	1Ghz-18Ghz	Jan. 03, 2024	Nov. 26, 2024~ Nov. 27, 2024	Jan. 02, 2025	Radiation (03CH05-KS)
Amplifier	EM	EM01G18GA	060833	1Ghz-18Ghz	Jan. 03, 2024	Nov. 26, 2024~ Nov. 27, 2024	Jan. 02, 2025	Radiation (03CH05-KS)
AC Power Source	Chroma	61601	F104090004	N/A	NCR	Nov. 26, 2024~ Nov. 27, 2024	NCR	Radiation (03CH05-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Nov. 26, 2024~ Nov. 27, 2024	NCR	Radiation (03CH05-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Nov. 26, 2024~ Nov. 27, 2024	NCR	Radiation (03CH05-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 18, 2024	Dec. 01, 2024	Apr. 17, 2025	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Aug. 20, 2024	Dec. 01, 2024	Aug. 19, 2025	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Apr. 18, 2024	Dec. 01, 2024	Apr. 17, 2025	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP0000008 11	AC 0V~300V, 45Hz~1000Hz	Oct. 09, 2024	Dec. 01, 2024	Oct. 08, 2025	Conduction (CO01-KS)
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 10, 2024	Nov. 21, 2024~ Dec. 11, 2024	Oct. 09, 2025	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GHz	Jan. 02, 2024	Nov. 21, 2024~ Dec. 11, 2024	Jan. 01, 2025	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 02, 2024	Nov. 21, 2024~ Dec. 11, 2024	Jan. 01, 2025	Conducted (TH01-KS)

NCR: No Calibration Required

5 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Measurement

Conducted Spurious Emission & Bandedge	±2.22 dB
Occupied Channel Bandwidth	±0.1%
Conducted Power	±0.50 dB
Conducted Power Spectral Density	±0.90 dB
Frequency	±0.04 Hz

Uncertainty of AC Conducted Emission Measurement (0.15 MHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.84
of 95% (U = 2Uc(y))	2.84

Uncertainty of Radiated Emission Measurement (9 KHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	3.30

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.02
of 95% (U = 2Uc(y))	0.02

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of Confidence	5.22
of 95% (U = 2Uc(y))	0122

Uncertainty of Radiated Emission Measurement (18 GHz ~ 40 GHz)

Measuring Uncertainty for a Level of Confidence	5.34
of 95% (U = 2Uc(y))	5.54

----- THE END ------

Appendix A. Conducted Test Results

Ambient Condition: <u>25</u>°C, <u>45</u>%RH

Test Date: 2024/11/21~12/11

Test Engineer: <u>Jacob Zhang</u>

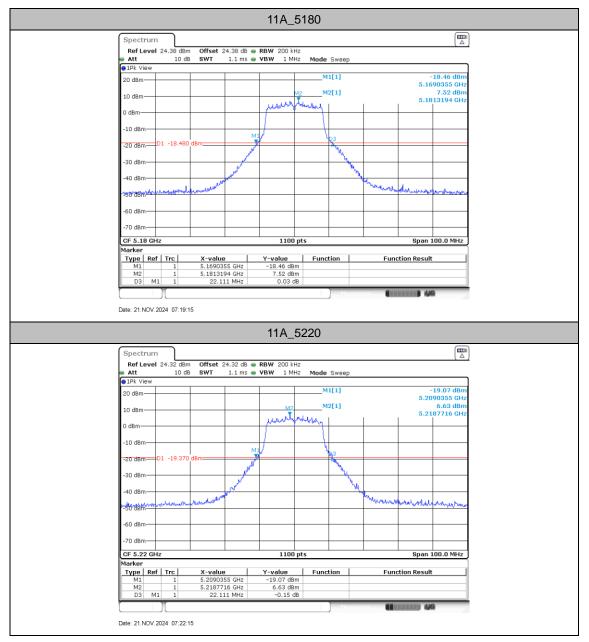
Emission Bandwidth

Test Result

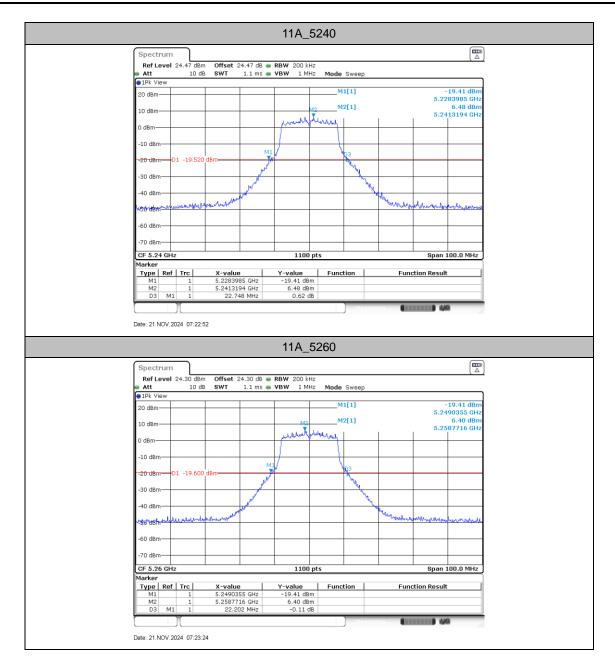
TestMode	Freq(MHz)	26dB EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	5180	22.11	5169.04	5191.15		
	5220	22.11	5209.04	5231.15		
	5240	22.75	5228.40	5251.15		
	5260	22.20	5249.04	5271.24		
	5300	22.38	5288.76	5311.15		
11A	5320	22.20	5308.85	5331.06		
IIA	5500	23.29	5488.40	5511.69		
	5580	22.29	5569.04	5591.33		
	5700	22.84	5688.49	5711.33		
	5745	22.66	5733.40	5756.06		
	5785	22.38	5773.58	5795.96		
	5825	21.75	5814.31	5836.06		
	5180	22.47	5169.04	5191.51		
	5220	22.29	5208.94	5231.24		
	5240	22.29	5229.04	5251.33		
	5260	22.84	5248.85	5271.69		
	5300	22.29	5288.76	5311.06		
44.4.000.010.0	5320	22.57	5308.85	5331.42		
11AC20SISO	5500	22.75	5488.76	5511.51		
	5580	23.38	5568.40	5591.78		
	5700	23.02	5688.76	5711.78		
	5745	23.57	5733.31	5756.87		
	5785	22.47	5773.67	5796.15		
	5825	22.47	5813.76	5836.24		
	5190	41.13	5169.53	5210.66		
	5230	41.13	5209.71	5250.84		
	5270	41.49	5249.16	5290.66		
	5310	41.49	5289.16	5330.66		
11AC40SISO	5510	41.49	5489.16	5530.66		
	5550	41.13	5529.34	5570.47		
	5670	41.13	5649.53	5690.66		
	5755	41.13	5734.53	5775.66		
	5795	41.31	5774.34	5815.66		

Sporton International Inc.(Kunshan)

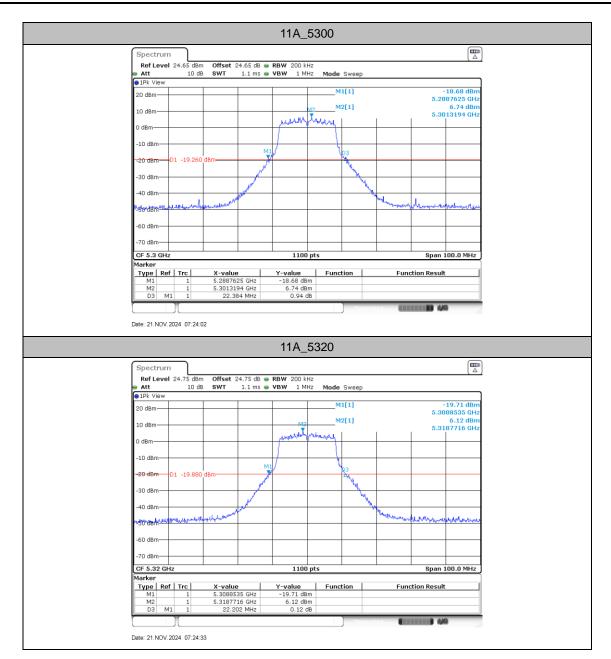
TEL : +86-512-57900158 FCC ID : WIYCWM100001 Page Number : A


: A1 of A66

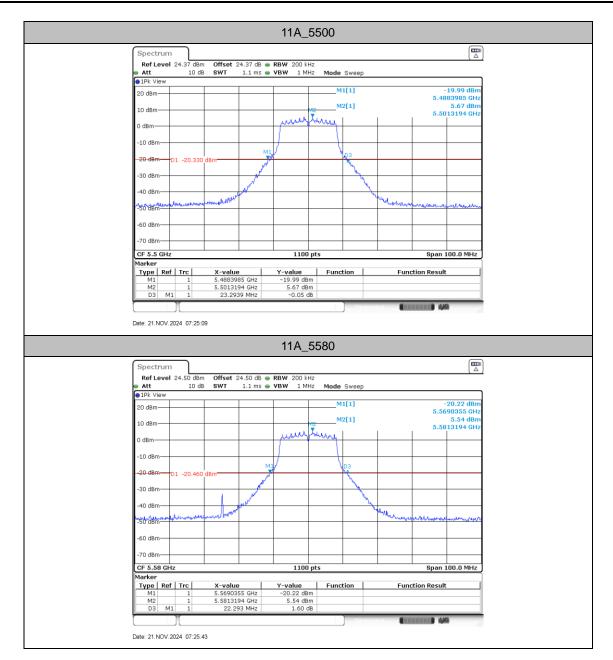
Report No. : FR4N0518D

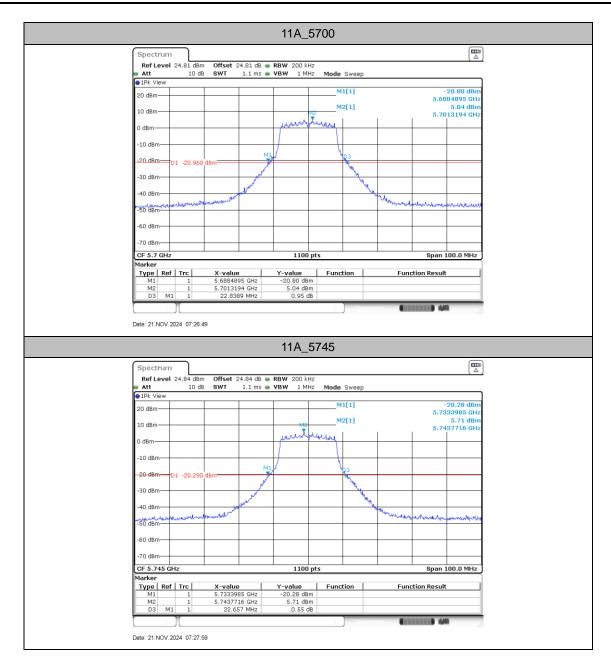

11AC80SISO	5210	83.35	5169.05	5252.40	
	5290	85.53	5246.87	5332.40	
	5530	85.53	5486.14	5571.67	
	5775	85.53	5731.51	5817.04	

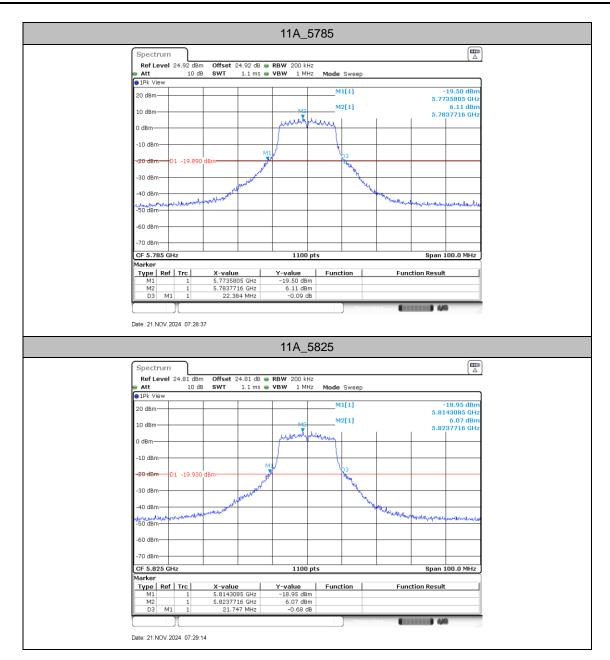
Test Graphs

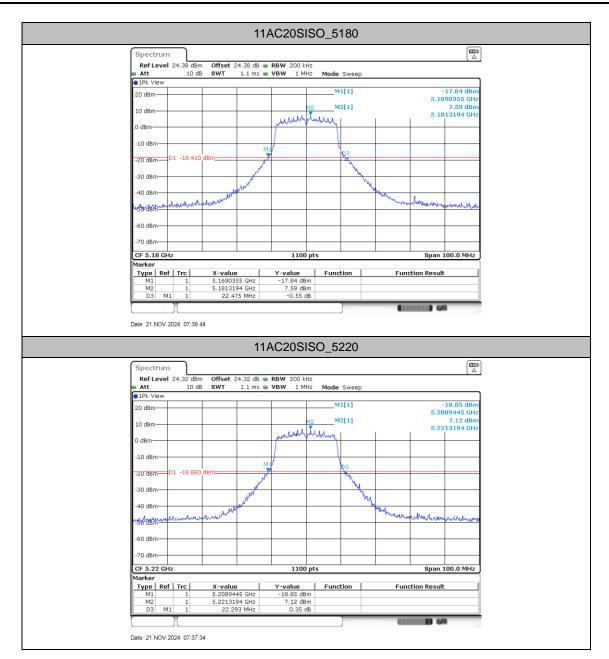


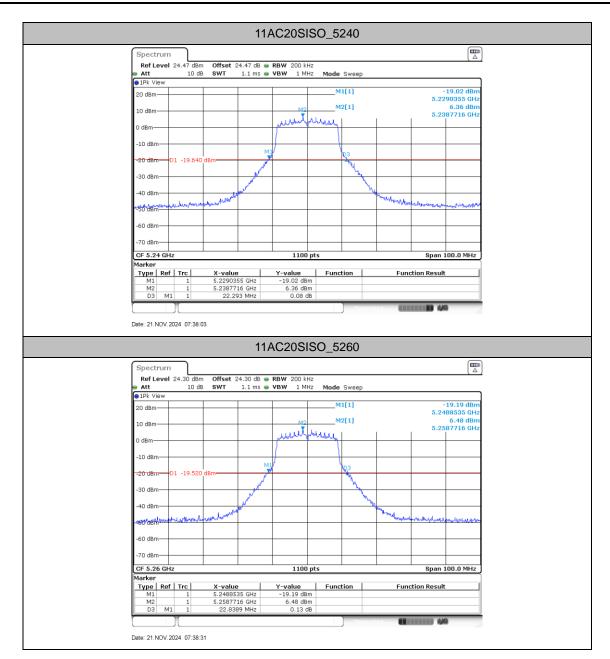


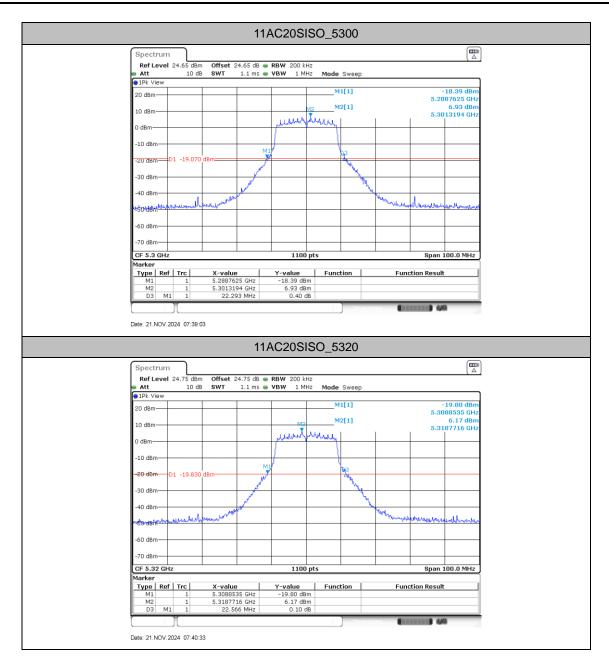


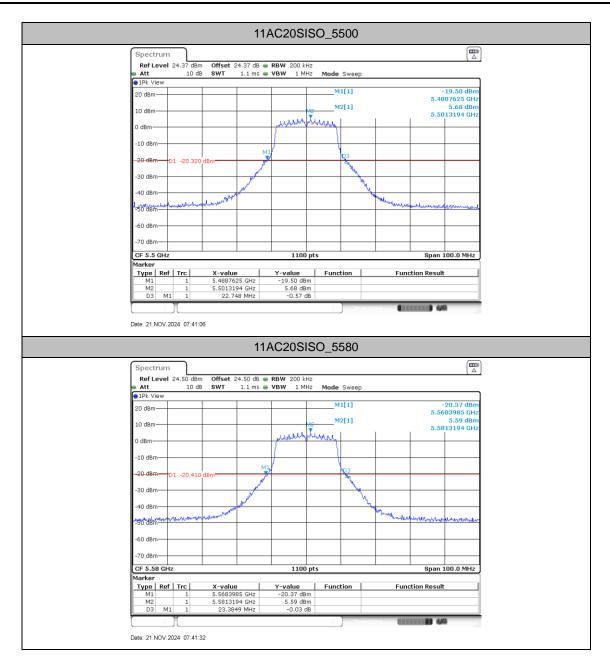


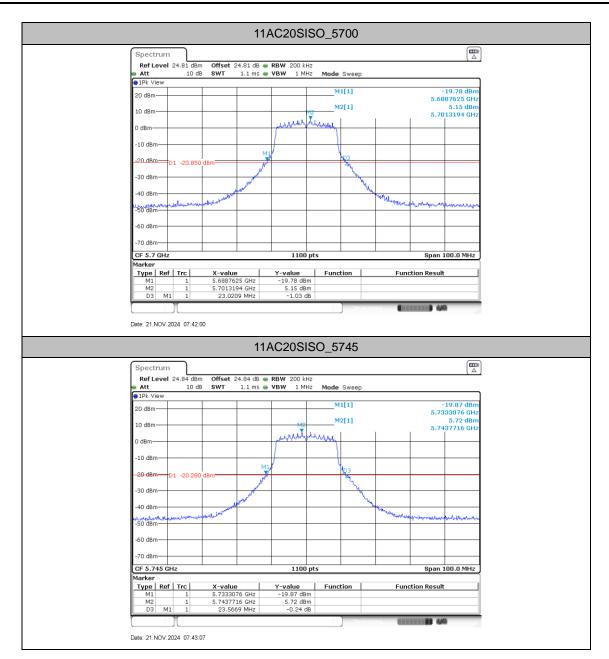


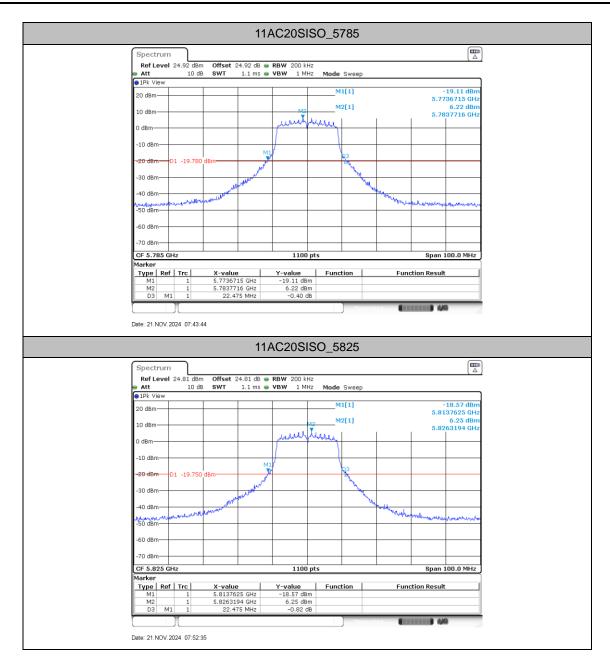


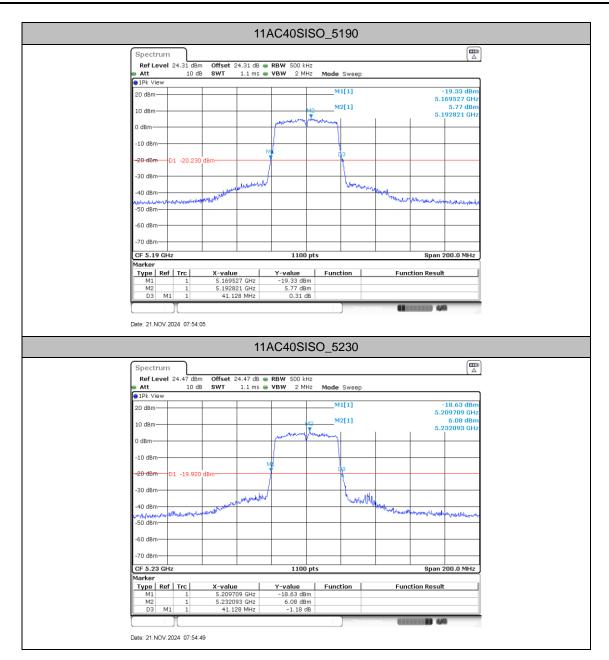


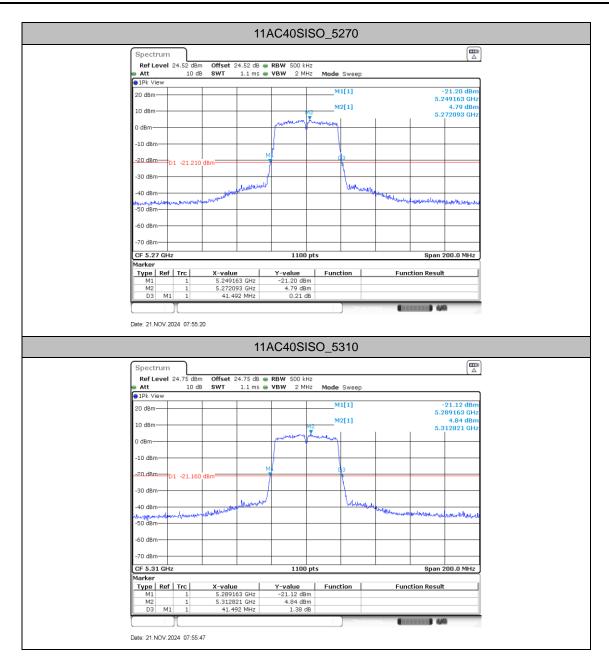


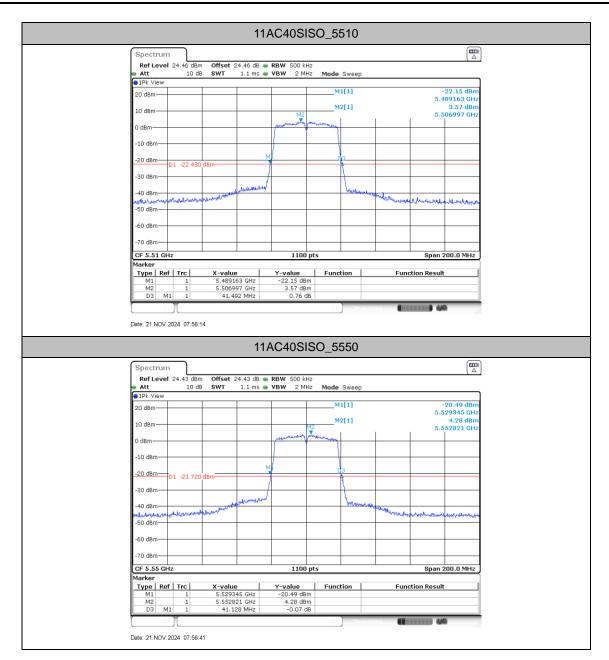


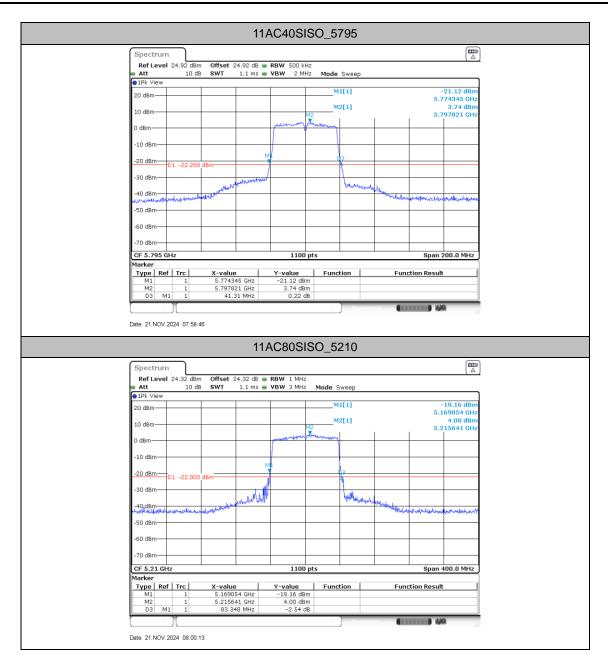


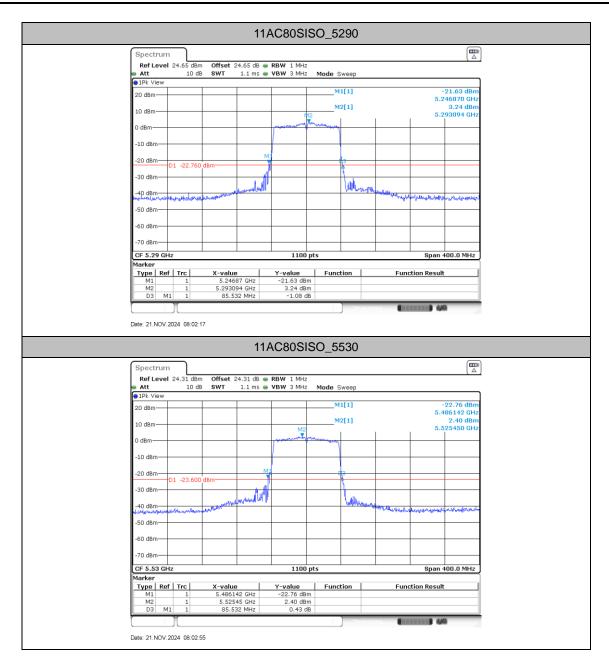


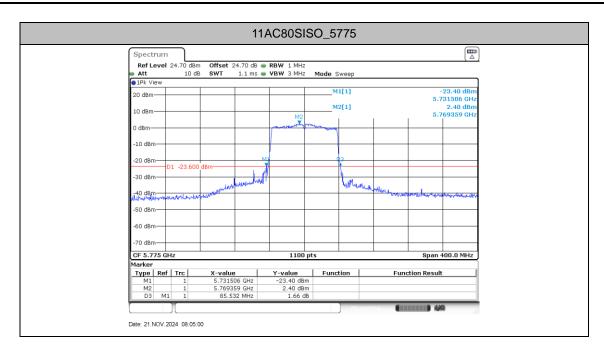






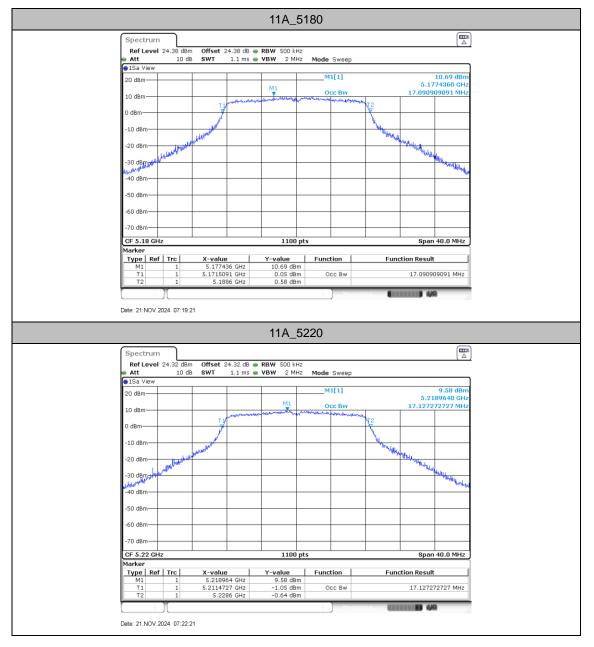






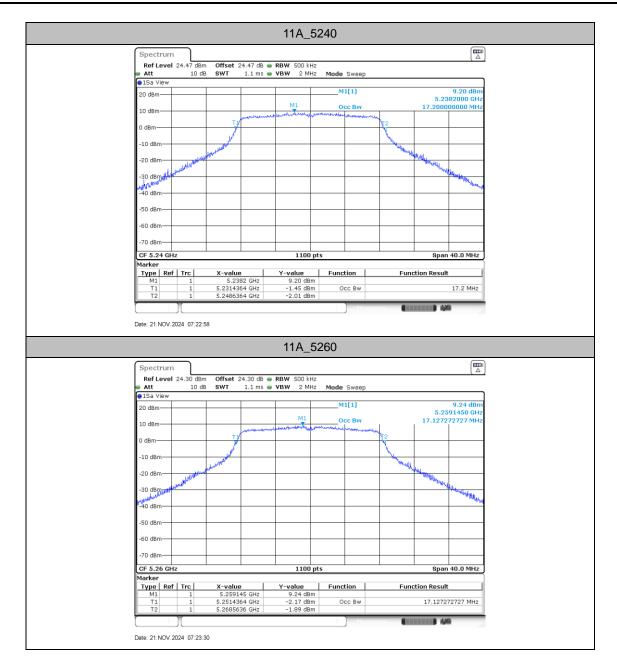
Occupied channel bandwidth

Test Result


TestMode	Freq(MHz)	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11A	5180	17.091	5171.5091	5188.6000		
	5220	17.127	5211.4727	5228.6000		
	5240	17.2	5231.4364	5248.6364		
	5260	17.127	5251.4364	5268.5636		
	5300	17.127	5291.4727	5308.6000		
	5320	17.236	5311.4000	5328.6364		
	5500	17.2	5491.4000	5508.6000		
	5580	17.164	5571.4364	5588.6000		
	5700	17.164	5691.4000	5708.5636		
	5745	17.164	5736.4000	5753.5636		
	5785	17.164	5776.4000	5793.5636		
	5825	17.127	5816.4364	5833.5636		
	5180	18.182	5170.9636	5189.1455		
	5220	18.255	5210.8909	5229.1455		
	5240	18.327	5230.8909	5249.2182		
	5260	18.182	5250.9273	5269.1091		
11AC20SISO	5300	18.218	5290.9273	5309.1455		
	5320	18.327	5310.8545	5329.1818		
	5500	18.255	5490.8545	5509.1091		
	5580	18.255	5570.8545	5589.1091		
	5700	18.291	5690.8182	5709.1091		
	5745	18.255	5735.8545	5754.1091		
	5785	18.255	5775.8545	5794.1091		
	5825	18.291	5815.8182	5834.1091		
11AC40SISO	5190	36.509	5171.7818	5208.2909		
	5230	36.509	5211.7818	5248.2909		
	5270	36.509	5251.7818	5288.2909		
	5310	36.509	5291.7818	5328.2909		
	5510	36.509	5491.7091	5528.2182		
	5550	36.509	5531.7091	5568.2182		
	5670	36.509	5651.7091	5688.2182		
	5755	36.509	5736.7091	5773.2182		
	5795	36.509	5776.7091	5813.2182		
11AC80SISO	5210	76.073	5172.1091	5248.1818		
	5290	76.073	5252.1091	5328.1818		
	5530	76.218	5491.8182	5568.0364		
	5775	76.073	5736.8182	5812.8909		

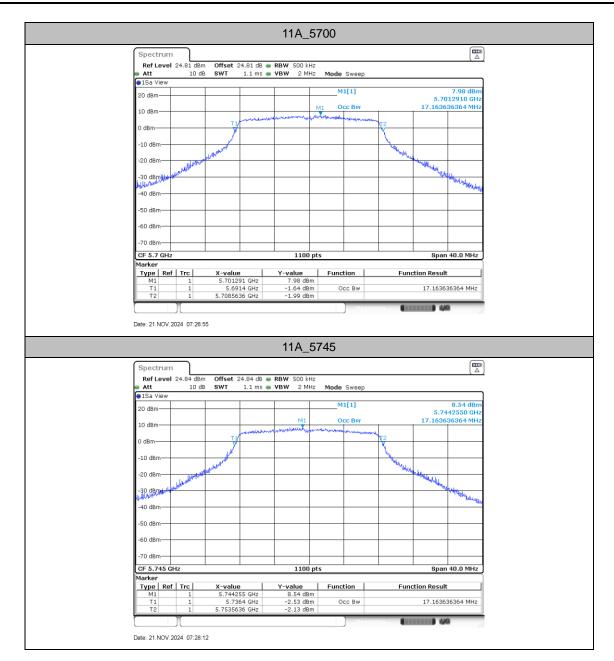
Page Number :

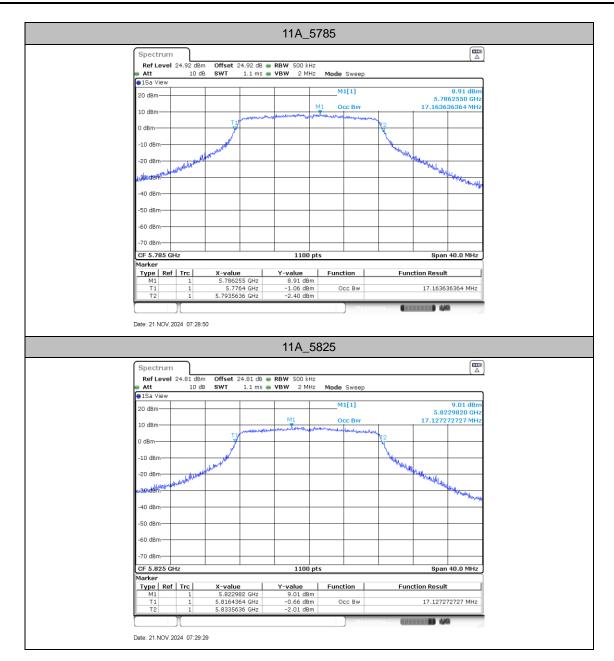
: A21 of A66

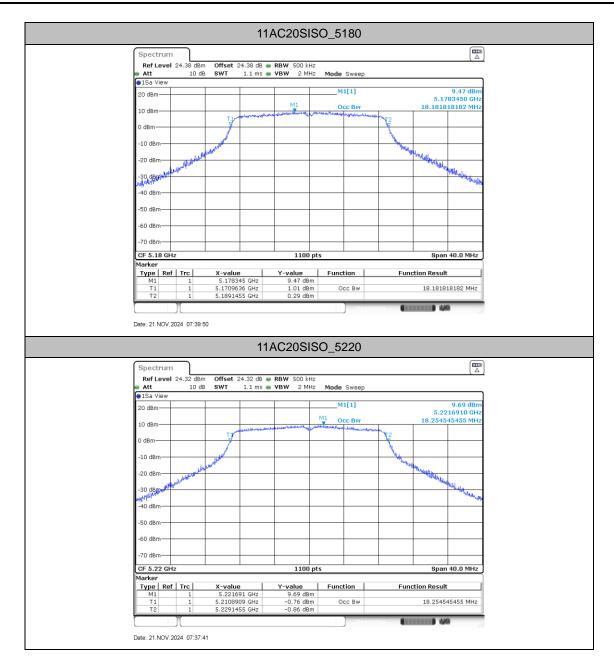


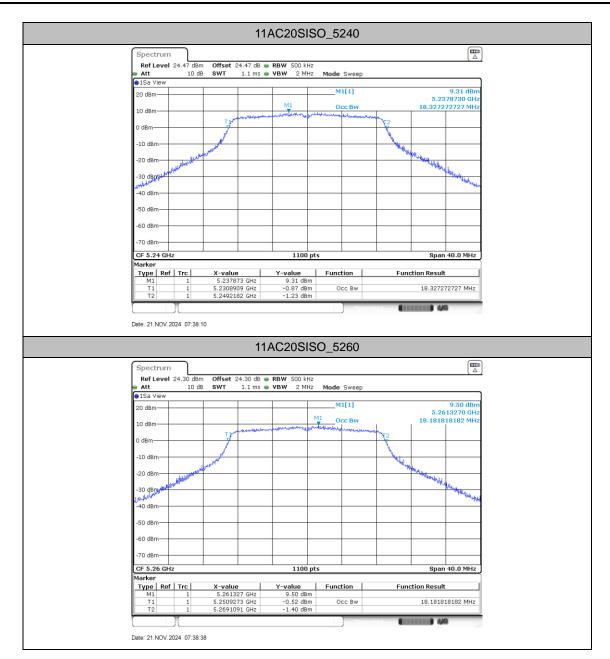
Test Graphs

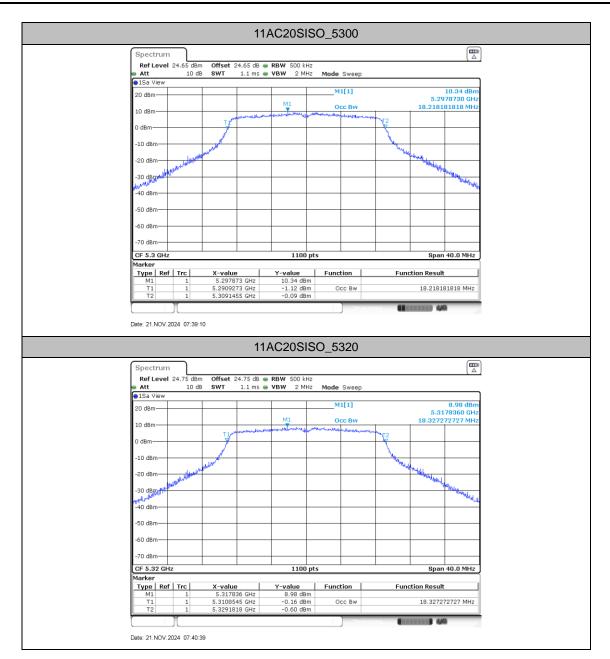


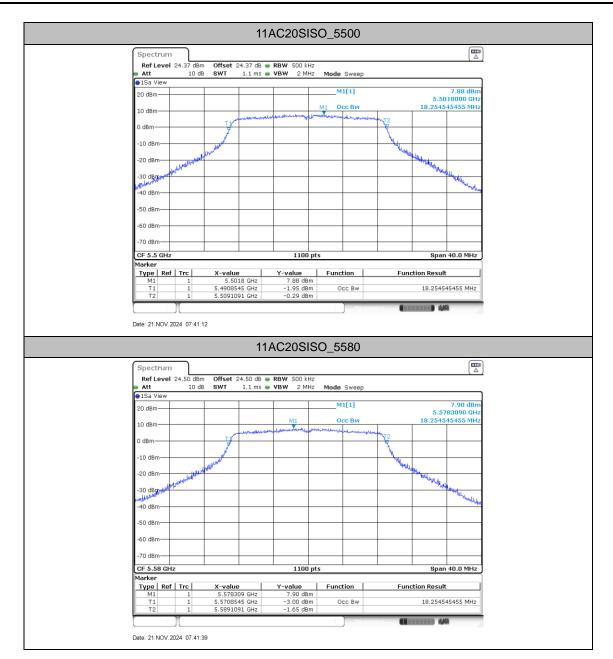


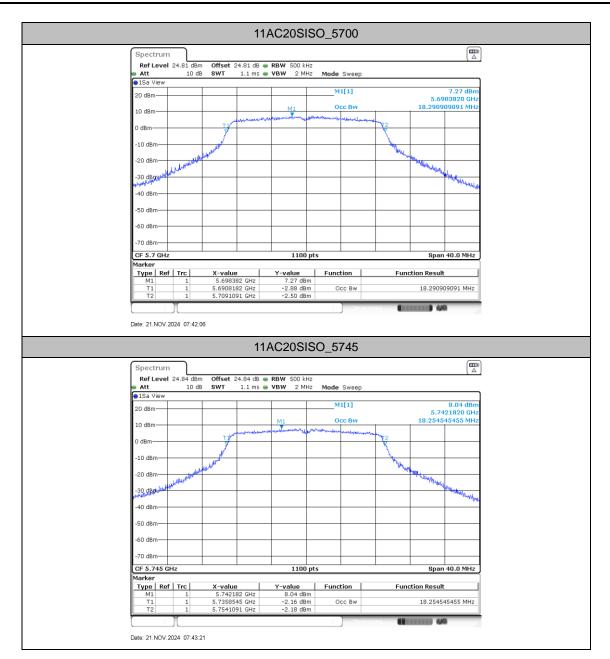


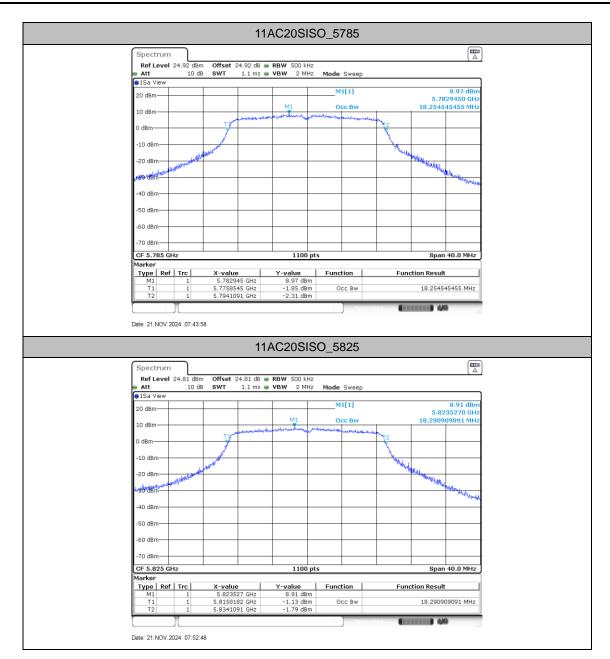


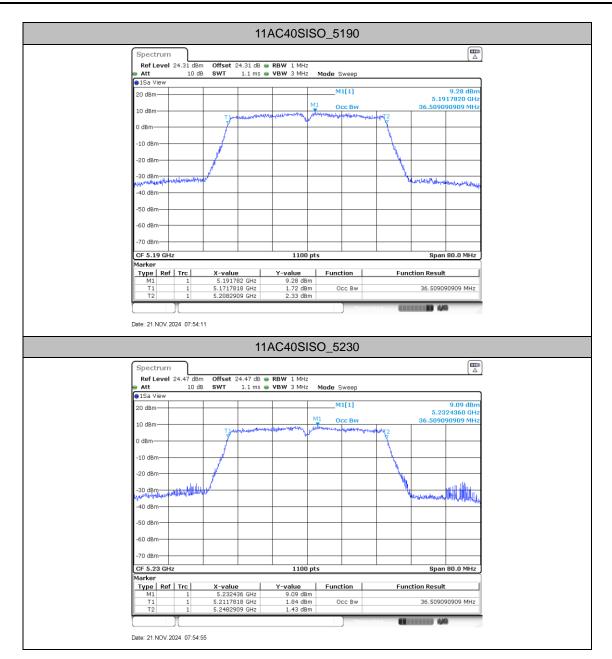




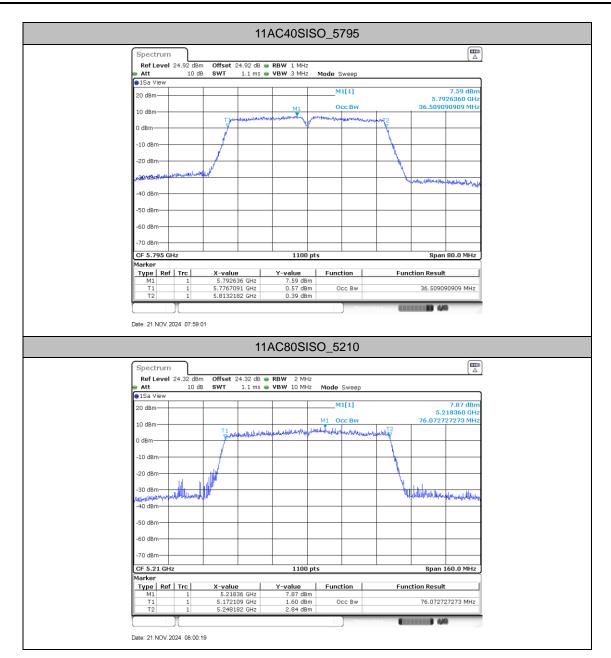


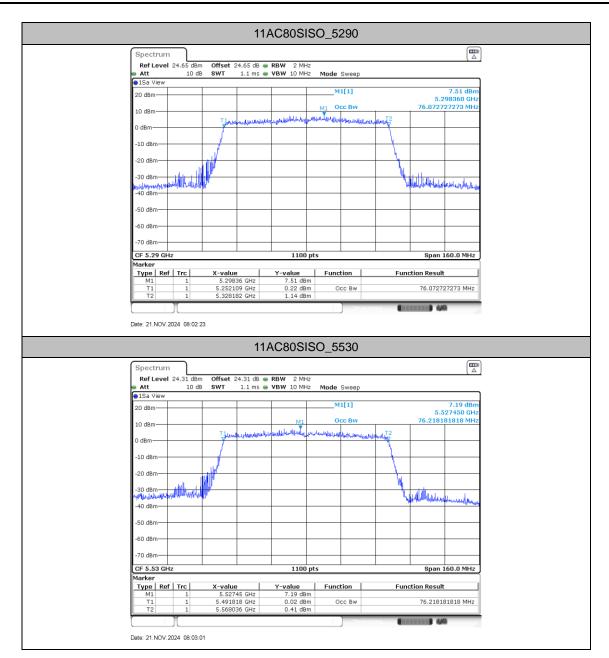


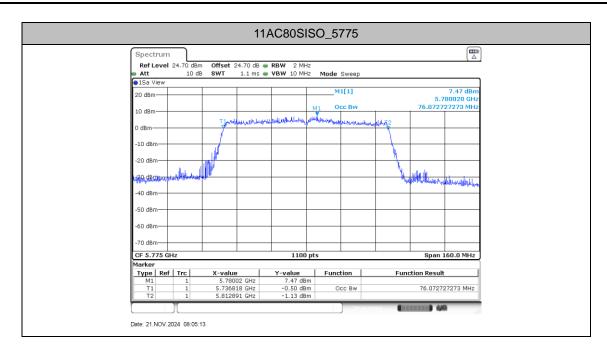


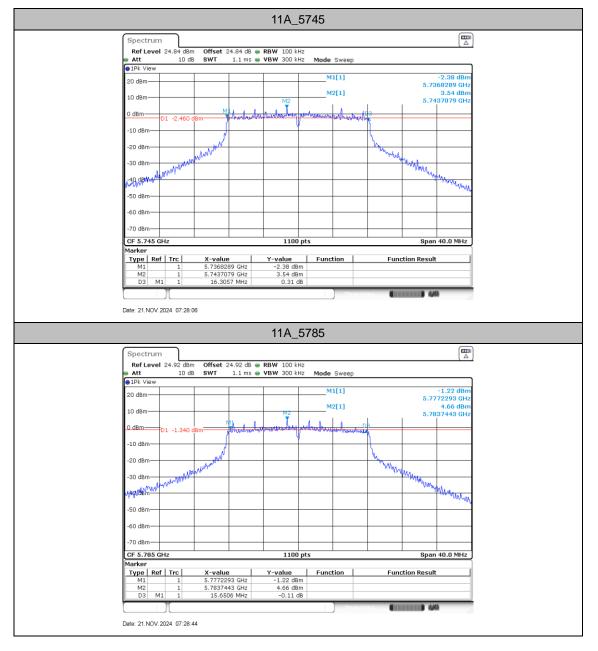






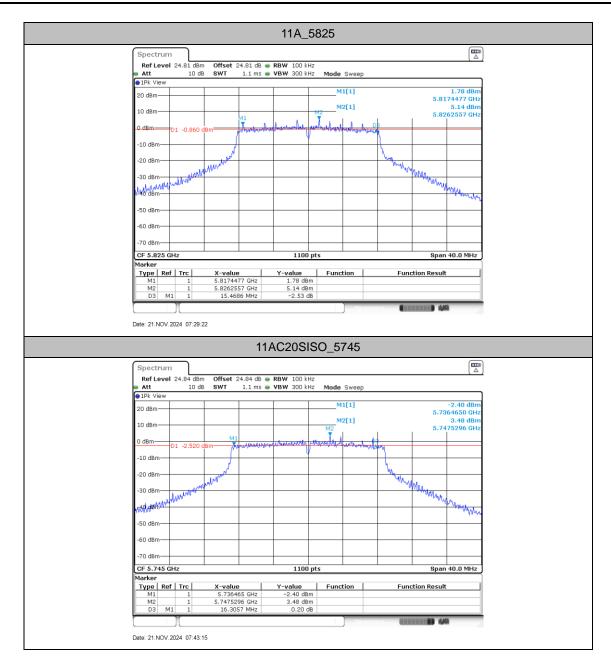





Min emission bandwidth

Test Result

TestMode	Freq(MHz)	6dB EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11A	5745	16.31	5736.83	5753.13	0.5	PASS
	5785	15.65	5777.23	5792.88	0.5	PASS
	5825	15.47	5817.45	5832.92	0.5	PASS
11AC20SISO	5745	16.31	5736.46	5752.77	0.5	PASS
	5785	17.54	5776.21	5793.75	0.5	PASS
	5825	15.10	5817.45	5832.55	0.5	PASS
11AC40SISO	5755	35.30	5737.27	5772.58	0.5	PASS
	5795	35.30	5777.27	5812.58	0.5	PASS
11AC80SISO	5775	75.27	5737.37	5812.63	0.5	PASS



Test Graphs

