Test Report 2023-018

Version A Issued 4 Apr 2023

Project GCL-0304 Product Model A04331 Primary Test Standard

FCC part 15 RSS-247 Issue 2 ICES-003 Issue 7

Garmin Compliance Lab

Garmin International 1200 E 151st Street Olathe Kansas 66062 USA

Client-supplied Information FCC ID: IPH-04431 IC ID: 1792A-04431

See section 6 of this report regarding the presence or absence of accreditation logos or marks on this cover page.

1. Summary

The equipment or product described in section 5 of this report was tested at the Garmin Compliance Lab according to standards listed in section 6. The results are as follows.

Parameter Description		Key Performance Values	Result	Data starts at page	
Hopping Channels	The radio manages it use of channels appropriately. [15.247(a)(1); RSS-247 at 5.1]	Hopping channel carrier frequencies are separated by at least 25 kHz or two- thirds of the 20 dB bandwidth of the hopping channel. Radio uses at least 15 channels with appropriate channel occupancy times.	PASS	11	
DTS Bandwidth	The nature of the radio signal is broadband, being at least 500 kHz wide. [15.247(a)(2); RSS-247 at 5.2(a)]	The 6dB bandwidth is 772 kHz or greater.	PASS	16	
Transmit Power	The peak transmit power presented to the antenna is no greater that 1 Watt or 30 dBm. The effective radiated power is limited to 4 Watts or 36 dBm EIRP. [15.247(b); RSS-247 at 5.4(d)]	The maximum transmit Power is 19.67 dBm (0.0927 W) or 14.35 dBm EIRP.	PASS	23	
Antenna Gain	ain The radio should not focus too much energy in any direction. Unless additional rules are applied, the antenna gain is no greater than 6 dBi. [15.247(b)(4) and (c)]		NT	NT	
Unwanted Emissions (Conducted Spurious)	The radio should not provide too much radio energy to the antenna at frequencies beyond its intended frequency band. [15.247(d); RSS-247 at 5.5]	Emissions outside the band must be reduced at least 20 dB from in-band levels. The measured reduction was at least 31.48 dB.	PASS	29	
Restricted Bands	The radio must not emit in certain designated restricted frequency bands above a set of limit values. [15.247(d) and 15.209; RSS-247 at 3.3]	Emissions in the restricted bands were at least 0.471 dB below the applicable limits.	PASS	40	
Power Spectral Density	The radio must not focus too much radio energy in a narrow frequency band. [15.247(e); RSS-247 at 5.2(b)]	The limit is 8 dBm in a 3 kHz band. The strongest emission level was 3.93 dBm in a band of at least 3 kHz.	PASS	63	
Hybrid Systems	A radio that is both frequency hopping and digitally modulated should a combination of system rules. [15.247(f); RSS-247 at 5.3]	N/A. The radios described in this report are not subject to the Hybrid System rules.	N/A	N/A	
Frequency Hopping Rules	Frequency hopping systems have additional functional requirements. [15.247(g) and (h); RSS-247 at 5.1]	NT. The requirements in these sections have no associated test.	NT	NT	
Radio Safety	The radio emissions must meet public health & safety guidelines related to human exposure. [15.247(i) and 1.1307; RSS-Gen at 3.4]	NT. Client will report radio energy safety results separately.	NT	NT	

Page 2 of 115	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Frequency Stability	The radio tuning must be robust over a range of temperature and supply voltage conditions. [RSS-Gen at 6.11]	Radio emissions remained within the allowed radio band under all environmental conditions tested.	PASS with caveat	70
Other Bandwidths	Bandwidth values are presented for 99% Occupied Bandwidth and Necessary Bandwidth	There are requirements to report these numbers, but they do not have performance limits.	Reported	87
Radiated Emissions	Radio emissions that this device may generate via its structures and connected cables that are not necessary for its operation and that may affect radio communication	12.0 dB of margin to the Class B limit. Tested 30 MHz to 2 GHz applying combined Class B limits.	PASS	94
Conducted Emissions AC Power Port	Radio emissions that this device may generate via its ac power network connections that are not necessary for its operation and that may affect radio communication	17.93 dB of margin to the appropriate limit. Tested 150 kHz to 30 MHz applying combined Class B limits.	PASS	112

NT (Not Tested) means the requirement is or may be applicable, but the relevant measurement or test was not performed as part of this test project.

N/A (Not Applicable) means the lab judged that the test sample is exempt from the requirement.

Table 1: Summary of results

Report Organization

For convenience of the reader, this report is organized as follows:

- 1. Summary
- 2. Test Background
- 3. Report History and Approval
- 4. Test Sample Modifications and Special Conditions
- 5. Description of Equipment Tested
- 6. Test Standards Applied
- 7. Measurement Instrumentation Uncertainty
- 8. Selected Examples of Calculations
- 9. Environmental Conditions During Test

Annex: Test records are provided for each type of test, following the order and page numbering stated in the summary table. Concluding notes appear on the final page of this report.

Due to confidentiality, certain material (such as test setup photographs) has been removed from this report and placed in GCL Test Report 2023-023. That report is treated as a part of this document by way of this reference.

Page 3 of 115 GCL Test Report 2023-018		Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

2. Test Background

The testing reported here was performed at the Garmin Compliance Lab, an organization within Garmin International, located at 1200 E 151st St, Olathe Kansas, USA. The contact telephone number is +1.913.397.8200.

The testing was performed on behalf of the Garmin design group, a separate organization located at 1200 E 151st St, Olathe Kansas, USA. Witnesses from the business group included: None.

Test Sample received:	31 Jan 2023
Test Start Date:	07 Feb 2023
Test End Date:	27 Mar 2023

The data in this test report apply only to the specific samples tested.

Upon receipt all test samples were believed to be properly assembled and ready for testing.

3. Report History and Approval

This report was written by Christian Shepherd and initially issued on 4 Apr 2023 as Version A.

Report Technical Review:

David Arnett Technical Lead EMC Engineer

Report Approval:

Shruti Kohli Manager Test and Measurement (EMC, Reliability and Calibration)

4. Test Sample Modifications and Special Conditions

The following special conditions or usage attributes were found during test to be necessary to achieve compliance with one or more of the standards listed in section 6 of this report: None

The following modifications to the test sample(s) made and are necessary to achieve compliance with one or more of the standards listed in section 6 of this report:

Modifications 1 and 2 only affected relevant Wi-Fi power levels. Other radio services were not changed, therefore not retested.

Modification 1

Detailed Description: Wi-Fi power table changed. Below are the following changes:

SW Version 12.58

Transmit power was reduced for Wi-Fi channels 1-4 and 8-11 in 802.11g mode, channels 1-4 and 9-11 in 802.11n mode, and channel 11 in 802.11b mode.

Date applied: 2/10/2023

Reason for this modification: Decrease Wi-Fi power levels to meet FCC restricted band limits.

Previous testing on modified channels was repeated. The test(s) that were affected and needed a retest on the modified channels only were: FCC restricted bands and transmit power.

Page 4 of 115	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Modification 2 Detailed Description: Wi-Fi power table changed. Below are the following changes: SW Version 12.59 Transmit power was reduced for Wi-Fi channel 10 in 802.11n mode. Date applied: 2/15/2023 Reason for this modification: Decrease Wi-Fi power levels to meet FCC restricted band limits. Previous testing on modified channels was repeated. The test(s) that were affected and needed a retest on the modified channels only were: FCC restricted bands and transmit power.

Modification 3 Detailed Description: Software update. Below are the following changes: SW Version 12.60 Date applied: 2/17/2023 Reason for this modification: Update to newest software version. This change improved EUT functionality but did not affect EMC performance. No previous testing was affected.

Modification 4 Detailed Description: Functional updates. SW Version 12.63 Date applied: 2/23/2023 Reason for this modification: Functional updates that were not relevant to radio performance under the US and Canadian rules. Previous US/Canada testing was not repeated.

Page 5 of 115 GCL Test Report 2023-018		Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

5. Description of the Equipment Tested

5.1 Unique Identification	
Product Model	A04331
Serial Numbers Tested	3437296994, 3437296908

This product tested is portable device with Wi-Fi, BLE, NFC and other connectivity/electronic features used for various activities.

The client affirmed that the test samples will be representative of production in all relevant aspects.

5.2 Key Parameters	
EUT Input Power:	5 Vdc
I/O Ports:	Digital data port with DC power
Radio Transceivers:	IEEE 802.11 b/g/n, Bluetooth, Bluetooth Low Energy, ANT, NFC
Highest internal frequency:	275 MHz
Firmware Revision	See section 4 of this report
Primary Functions:	Creation, collection, and transfer of data.

5.3 Operating modes

During test, the EUT was operated in the following modes.

Mode 1: M1 (NFC Tx). EUT linked to NFC reader pad and transmitting data

Mode 2: M2 (NFC Lnk). EUT linked to NFC reader pad and transmitting data.

Mode 3: M3 (BLE Tx). EUT in test mode-BLE Tx always On.

Mode 4: M4 (BLE Lnk). EUT linked to companion device through BLE.

Mode 7: M7 (ANT Tx). EUT in test mode- ANT Tx always On.

Mode 8: M8 (ANT Lnk). EUT linked to companion device through ANT.

Mode 9: M9 (WiFi Tx). EUT in test mode- Wi-Fi Tx always On.

Mode 10: M10 (NFC Act.). EUT in operating mode linked to NFC reader pad.

Mode 11: M11 (NFC Stnd.). EUT in standby mode awaiting connection to NFC reader pad.

Mode 12: M12 (WiFi Lnk). EUT linked to access point and transmitting data

Mode 13: M13 (All). All relevant radios turned On.

Mode 14: M14 (BLE Rx). EUT in test mode- BLE Rx always On.

Mode 15: M15 (WiFi Rx). EUT in test mode- BLE Rx always On.

Mode 16: M16 (Tx Off). All transmitters turned off on EUT

Mode 17: M17 (BT Class Tx). EUT in test mode- BT Classic Tx always On.

Mode 18: M18 (BT Class Lnk). EUT linked to companion device through Bluetooth Classic.

Mode 19: M19 (BT Class Hop). EUT transmitting Bluetooth Classic while hopping channels.

5.4 EUT Arrangement

During test, the EUT components and associated support equipment were selected including the following arrangement sets.

Arrangement 1: A1 (PwrA) EUT powered up through a DC power supply

Arrangement 2: A2 (NFC) EUT is standalone in NFC mode and near to an NFC reader device

Arrangement 3: A3 (PwrPc) EUT Powered up through DC port of a Laptop

Arrangement 4: A4 (Standalone) EUT Powered up through internal battery

Arrangement 5: A5 (PwrA+NFC) EUT Powered up through arrangement A1 in NFC mode and near to an NFC reader device

Page 6 of 115 GCL Test Report 2023-018		Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

5.5 Associated Equipment (AE) used

Description	Manufacturer	Model	Serial Number
Smartwatch	Garmin	A04112	3400414926
Laptop	Dell	Latitude 5410	5VSPFB3
Laptop power supply	Dell	65 W	CN-OH374X-CH200-OBD-7TC0-A02
NFC reader	ACS	ACR1252	RR554-086776
AC Power adaptor	Garmin	362-00096-00	N/A
iPad	Apple	iPad Pro (11-inch)	DMPZ7582KD6L
Smartwatch	Garmin	A04600	3423419439
Router	TP-Link	Archer C54	Y21C0A5009834
Headset	Garmin	DEZL 200	N/A
Modified Headset	Garmin	DEZL 200	N/A

Table 2: List of associated equipment that may have been used during test

5.6 Cables used

Description	From	То	Length	EMC Treatment
Data & power	Computer or power source	EUT	50 cm	Shielded
Table O. L'at af a shire that we are have been used by the fact that				

Table 3: List of cables that may have been used during test

Page 7 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

6 Test Standards Applied

6.1. Accredited Standards

The following test or measurement standards were applied and are within the scope of the lab's accreditation. All results in this report that cite these standards are presented as Accredited results consistent with ISO/IEC 17025.

FCC Part 15.247 ANSI C63.4: 2014 ANSI C63.10: 2013 ICES-003 Issue 7: 2020 RSS-GEN Issue 5 Amd 2 RSS-247 Issue 2: 2017

6.2. Non-accredited Standards

The following test or measurement standards were applied and are either outside the scope of the lab's accreditation, or were performed in such a way that results are not presented as being fully accredited. TRC-43 Issue 3

6.3 Variances

The following variances were applied to standards cited in this section.

Where different test standards cover the same test parameter or phenomenon, and the standards have compatible differences, the stricter of the requirements is typically applied. For example, a consolidated limit may be applied to emission tests selecting the strictest of the limits at each frequency. Likewise, if one standard requires a vertical antenna sweep with boresighting and another does not, swept motion with boresighting will typically be used as it is the more stringent requirement.

6.4 Laboratory Accreditation

The Garmin Compliance Lab, an organization within Garmin International, is registered with the US Federal Communication Commission as US1311. The lab is recognized by the Canada Department of Innovation, Science, and Economic Development (ISED) under CAB identifier US0233.

The Garmin Compliance Lab, an organization within Garmin International, is accredited by A2LA, Certificate No. 6162.01. The presence of the A2LA logo on the cover of this report indicates this is an accredited ISO/IEC 17025 test report. If the logo is absent, this report is not issued as an accredited report. Other marks and symbols adjacent to the A2LA logo are accreditation co-operations of which A2LA is a member under a mutual recognition agreement, and to which the Garmin Compliance Lab has been sublicensed.

Page 8 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

7 Measurement Instrumentation Uncertainty

The lab has analyzed the sources of measurement instrumentation uncertainty. The analysis concludes that the actual measurement values cited in this report are accurate within the U_{LAB} intervals shown below with approximately 95% statistical confidence. Where the report shows a judgment that a test sample passes a test against a published limit based on these measured values, that judgment has a statistical confidence of 97.5% or greater. Measurement Instrumentation Uncertainty is one component of over-all measurement uncertainty, and other uncertainty components are not considered as part of this analysis.

The primary benchmark for measurement instrumentation uncertainty (MIU) in an electromagnetic compatibility (EMC) test lab is the set of U_{CISPR} values published in CISPR 16-4-2. In all cases where a U_{CISPR} value is published by CISPR, the analysis shows that U_{LAB} – this lab's estimated MIU – is better than the U_{CISPR} benchmark.

The secondary benchmark for MIU in an EMC lab performing radio transceiver tests is a set of uncertainty limit values published in various ETSI standards. In this report, U_{ETSI} is the most restrictive of the values found in the ETSI EN standards listed in section 5 of this report. The analysis principles are described in the ETSI TR documents listed there. In most cases U_{LAB} is better than the U_{ETSI} benchmark. Where U_{LAB} exceeds the U_{ETSI} benchmark cited here, that entry is preceded by an asterisk. When required by the ETSI EN standards, excess uncertainty will be added to the measurand before comparison to a limit. In an individual test report, staff may reevaluate that excess uncertainty based on the uncertainty of the method used and the uncertainty limits of the actual ETSI EN standard being applied, and the revised uncertainty values will be shown in the test report.

Some measurement uncertainties analyzed and reported here are not addressed in CISPR 16-4-2 or the ETSI standards, as indicated by the entry 'None.'

Test Type		ULAB		UETSI
Conducted DC voltage		0.09% + 2 x LSDPV	None	1%
Conducted AC voltage be	low 500 Hz	1.0% + 3 x LSDPV	None	2%
Conducted Emissions, Ma	ains Voltage	0.10% + 10 mV	None	None
Conducted Emissions, Mains Current		0.10% + 3 mA	None	None
Conducted Emissions, Ma	ains Power	0.15% + 100 mW	None	None
Conducted Emissions, Po	wer Mains, 9 kHz to 150 kHz	1.49 dB	3.8 dB	None
Conducted Emissions, Po	wer Mains, 150 kHz to 30 MHz	1.40 dB	3.4 dB	None
Conducted Emissions, Ca	t 6 LCL, 150 kHz to 30 MHz	2.80dB	5 dB	None
Conducted Emissions, Ca	t 5 LCL, 150 kHz to 30 MHz	3.21 dB	5 dB	None
Conducted Emissions, Ca	it 3 LCL, 150 kHz to 30 MHz	4.24 dB	5 dB	None
Radiated Emissions, below	w 30 MHz	0.88 dB	None	6 dB
Radiated Emissions, 30 M	1Hz to 1000 MHz	2.77 dB	6.3 dB	6 dB
Radiated Emissions, 1 GF	Iz to 18 GHz	2.60 dB	5.2 & 5.5 dB	6 dB
Radiated Emissions, 18 G	Hz to 26.5 GHz	2.73 dB	None	6 dB
*Radio Signal Frequency	Accuracy	*1.55 x 10^-7	None	1.0 x 10^-7
Radio Signal Occupied Ba	andwidth	0.95%	None	5%
Radio Power or Power Sp	ectral Density	0.98 dB	None	1 dB
Temperature	-	0.38 °C	None	1 °C
Barometric Pressure		0.38 kPA	None	None
Relative Humidity		2.85% RH	None	±5% RH
Signal Timing	The greater of these three	0.63 usec	None	None
0 0	C C	0.01% of value		
		0.5 x LSDPV		

Note: LSDPV stands for the Least Significant Digit Place Value reported. In the value 1470 msec, the least significant digit is the 7. It has a 10 msec place value. The LSDPV is thus 10 msec and the maximum error due to roundoff would be 5 msec. If the time value were reported as 1470 msec, the underscore indicates that the 0 is a significant figure and the error due to roundoff would be 0.5 msec. All digits provided to the right of a decimal point radix are significant.

Page 9 of 115	GCL Test Report 2023-018	Version A	
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.			
Garmin			

8 Selected Example Calculations

Certain regulators require samples of the calculations that lead from the raw measurement to the final result for AC Mains conducted and unintended radiated emissions. The assumption is that the lab performs raw measurements, then adds, subtracts, multiplies, or divides based on transducer factors, amplifier gains, and losses in the signal transmission path. In this lab, our CISPR 16 Receiver does not work that way. The calibration factors and losses and gains are provided to the receiver as detailed data files. These factors are applied in the RF measurement path prior to the detector. But as a step in the lab measurement process, staff frequently verify that these factors are applied correctly. They make a measurement with the factors applied inside the receiver, then they disable the factors and remeasure the result manually adding in the various relevant factors.

The transmission loss is measured including the combined losses and gains of preamplifiers, cables, and any band-selective filters. In many cases above 1 GHz it is a negative value, indicating that the preamplifier gain is greater than these other losses.

Here are examples of these calculations. The data in these examples was not taken as part of this project:

<u>8.1 AC Mains conducted emissions at 22 MHz</u> (Raw measurement) + (AMN factor) + (transmission loss) = Result

(7.145 dBuV) + (9.812 dB) + (0.216 dB) = 17.173 dBuV

<u>8.2 Radiated Emissions at 630 MHz</u> (Raw measurement) + (Antenna factor) + (transmission loss) = Result

(2.25 dBuV) + (27.80 dB/m) + (2.89 dB) = 32.94 dBuV/m

<u>8.3 Radiated Emissions at 2.7 GHz</u> (Raw measurement) + (Antenna factor) + (transmission loss) = Result

(43.72 dBuV) + (32.22 dB/m) + (-36.09 dB) = 39.85 dBuV/m

9 Environmental Conditions During Test

Environmental conditions in the test lab were monitored during the test period. Temperature and humidity are controlled by an air handling system. As information to the reader, the conditions were observed at the values or within the ranges noted below. For any tests where environmental conditions are critical to test results and require further constraints or details, the test records in the annex may provide more specific information.

Temperature: Relative Humidity: Barometric Pressure 20.3 to 24.3 °C 39.1% to 59.2% (non-condensing) 94.9 to 99.9 kPa

ANNEX

The remainder of this report is an Annex containing individual test data records. These records are the basis for the judgments summarized in section 1 of this report. The Annex ends with a set of concluding notes regarding use of the report.

Page 10 of 115 GCL Test Report 2023-018		Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Record FHSS ANSI Test TR42 Project GCL0304

Test record created by:	David Arnett
Date of this test record:	21 Mar 2023
Pass/Fail Judgment:	PASS
Test Standards:	FCC Part 15.247, ANSI C63.10, AS/NZS 4268, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
RF Output	Is not greater than 125 mW (21 dBm) conducted to the antenna
Operating Mode	M17 (BT Class Tx), M19 (BT Class Hop)
Arrangement	A3 (PwrPc)
Input Power	5 Vdc
Product Model	A04331
Serial Number tested	3437296908
Test Date(s)	20 Mar 2021
Test Personnel	David Arnett

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023

Table TR42.1: Test equipment used

Test software used: Keysight PXE software A.32.06, FHSS ANSI Occupancy Template v1.xlsx

Test Data

This test looks at details specific to frequency hopping systems in the referenced standards: the number of hopping channels; the relationship between 20 dB Occupied bandwidth and channel separation; and channel occupancy time.

This measurement requires that a coaxial feed line from the transmitter is available as a connector exterior to the test sample. This feed line and connector may be a part of the shipping product, or it may be a special modification to the product for testing purposes. The connector is attached via laboratory cables to the measurement instrument. Since the absolute signal amplitude is not relevant to these tests, the results may not have been adjusted to account for the losses in the laboratory cables.

Test Data: Hopping Channels

The test sample was placed in a test mode where it transmits on its various frequency channels while hopping. The spectrum analyzer scanned a frequency range that included these frequencies in Max Hold condition. The resulting spectra are attached, showing that the sample uses each of the 79 hopping frequencies from 2402 MHz to 2480 MHz, also confirming a channel separation of 1 MHz.

Page 11 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Figure TR42.1: Spectral data, Bluetooth Basic Rate transmissions, showing channels used

Spectrum Analyzer 1 Occupied BW	Spectrum Analyzer 2 Swept SA	Spectrum A Swept SA		+		Frequency	·
KEYSIGHT →→ Coupling: AC Align: Auto	sel Input Ζ: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Pre: Int off, LNA off RF Presel: On	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Avg Type: Voltage Avg Hold: 5000/5000 Trig: Free Run	123456 M WWWWW PNNNNN	Center Frequency 2.441500000 GHz Span	Settings
1 Spectrum 🔹				Mkr1 2.44		91.0000000 MHz	
Scale/Div 10 dB		Ref Level 20.00 dE	3m	1	1.21 dBm	Swept Span Zero Span	
10.0	***				PEAK	Full Span	
0.00						Start Freq 2.396000000 GHz	
-10.0						Stop Freq 2.487000000 GHz	
-30.0						AUTO TUNE	
-40.0						CF Step 9.100000 MHz	
-50.0						Auto Man	
-70.0						Freq Offset 0 Hz	
Start 2.39600 GHz Res BW (CISPR) 1 MHz		Video BW 50 MH	Z		2.48700 GHz ns (9101 pts)	X Axis Scale Log Lin	
	Mar 20, 2023 12:30:54 PM					Signal Track (Span Zoom)	

Figure TR42.2: Spectral data, Bluetooth EDR2 transmissions, showing channels used

Page 12 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

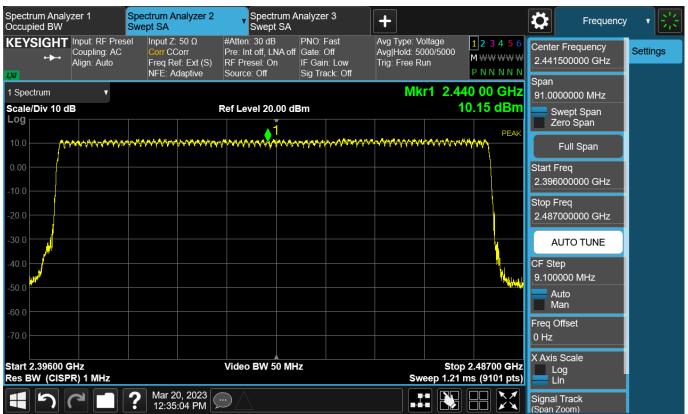


Figure TR42.3: Spectral data, Bluetooth EDR3 transmissions, showing channels used

Test Data: Bandwidth and Channel Separation

The 20 dB Occupied bandwidth (OBW20) was measured for each modulation type, with the transmission fixed on low, middle, and high channels. The maximum bandwidth observed is highlighted in yellow, and the spectrum image for that case is also provided.

The standards require that the hopping channel separation is no less than OBW20 if the transmitted power is above 125 mW. For lower power transmissions, the hopping channel separation must be no less than two-thirds of OBW20. This second case can also be expressed as limiting OBW20 to 1.5 times the channel separation. Based on the 1 MHz separation between hopping channel, and the output power of the transmitter, the 20 dB occupied bandwidth must be no greater than 1.5 MHz. The data below shows compliance with this limit.

	2402	2440	2480
BTBR	0.997	0.97	0.976
BT EDR2	1.299	1.302	1.284
BT EDR3	1.306	1.309	1.302

Table TR42.2: Summa	y of 20 dB Occupied	Bandwidth results
---------------------	---------------------	-------------------

Page 13 of 115	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Occupied	d BW 🦳 📍	Spectrum Analyzer 2 Swept SA	Spectrum A Swept SA	nalyzer 3	+	Frequency	• ※
	GHT Input: RF Coupling: AC Align: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Ext (S) NFE: Adaptive	Atten: 30 dB Pre: Int off, LNA off RF Presel: Off	Gate: Off	Center Freq: 2.440000000 GHz Avg Hold: 1500/1500 Radio Std: None	Center Frequency 2.440000000 GHz	Settings
1 Graph	· · · · · ·	III E. Aduptivo				Span 3.0000 MHz	
Log 20.0 5.00 -10.0 -25.0 -40.0 -55.0 -70.0 -85.0 -100 Center 2	2.440000 GHz 27.000 kHz		Ref Value 35.00 dE		PEAK PEAK Span 3 MHz Sweep 3.93 ms (1001 pts)	CF Step 300.000 kHz Auto Man Freq Offset 0 Hz	
2 Metrics	Occupied Bandwidt	811 MHz		Measure Trace Total Power % of OBW Power x dB	Trace 1 17.8 dBm 99.00 % -20.00 dB		
	<u> </u>	? Mar 20, 2023 12:21:04 PM					

Figure TR42.1: Spectral data for Bluetooth EDR3 modulation at 2440 MHz

Test Data: Channel Occupancy

The channel occupancy requirement ensures that the transmissions are distributed consistently across the hopping channels. The measurement is made on each of the three randomly selected channels for a period of 0.4 seconds multiplied by the number of hopping channels. For this product, that is a measurement period of 31.6 seconds. During that time, the sum of the transmission times on the selected channel cannot exceed the limit of 0.4 seconds.

This testing is performed at three test channel frequencies, randomly selected within a range. The first range is 2402 to 2427 MHz. The second test frequency range is 2428 to 2454 MHz. The final range is 2455 to 2480 MHz.

The test sample was placed in a test mode where it transmits on its various frequency channels while hopping. The transmissions were measured while the test equipment was tuned to each one of the three test channels using a detector more narrow than the OBW20 value. This provides a record of transmissions only on the selected channel over time. A spreadsheet analyzed the data to determine channel occupancy -- the total sum of time that the transmitter was on the selected channel. The maximum channel occupancy values is highlighted in yellow, and a zero-span time plot image for that case is also provided.

Freq (MHz)	2409	2428	2470
BTBR	0.220	0.224	0.220
BT EDR2	0.223	0.220	0.220
BT EDR3	0.230	0.221	0.223

Table TR42.3: Summary	of Channel	Occupancy results
-----------------------	------------	-------------------

Page 14 of 115	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

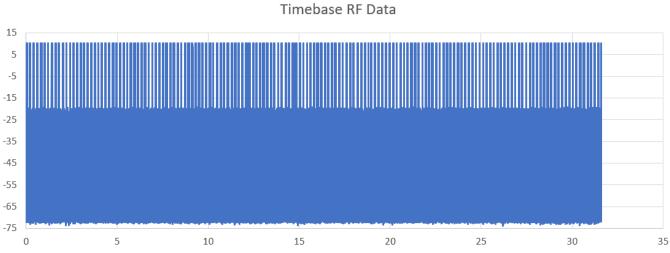
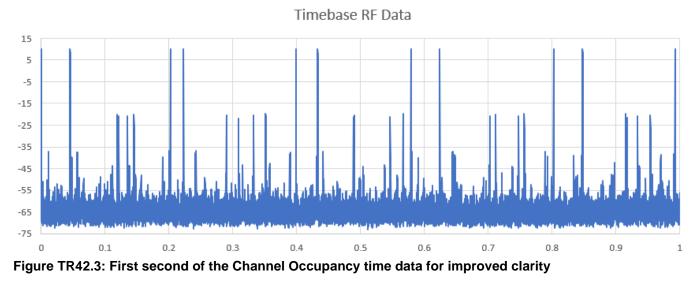



Figure TR42.2: Channel Occupancy time data for Bluetooth EDR3 modulation at 2409 MHz

This line is the end of the test record.

Page 15 of 115	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

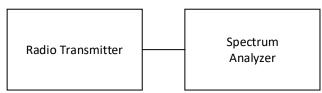
Test Record Transmitter DTS Bandwidth Tests Test IDs TR14 – TR16 Project GCL-0304

Test record created by:	David Arnett
Pass/Fail Judgment:	PASS
Radio Protocol	Bluetooth Low Energy (1 Mbps, 2 Mbps) and ANT
Radio Band	2400 to 2483.5 MHz
Arrangement	A3 (PwrPc)
Test Standards:	FCC Part 15, ANSI C63.10, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Product Model	A04331
Serial Number tested	3437296908
Test Date(s)	21 Feb 2023
Test Personnel	Majid Farah

Date of this record: Original record, Version A.

Test Equipment Used

PXE Receiver 44GHz Keysight N9048B MY62220139 30-Jap-2023 1-Eeb	Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
	PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024


Table TR14a.1: List of test equipment used

Test Software Used: Keysight PXE firmware A.33.03

25 Mar 2023

Test Method

During this test the transmitter output is fed directly, or through RF attenuators, to the spectrum analyzer. The analyzer has a built-in capability to identify the minimum bandwidth that contains a specified percentage of the total power observed, and also identify the center frequency error. The spectrum is scanned several hundred times so that the varied effects of modulation are appropriately assessed. Since the focus is on the relative distribution of energy across a range of frequencies, the absolute amplitudes recorded during this test are not relevant and may not include cable losses or attenuation factors.

Figure TR14a.1: Test arrangement

Test Data

The data for each test is summarized below, followed by the spectral data for each case analyzed and reported. The test strategy is to measure the bandwidth with the radio tuned to its lowest tunable frequency, its highest tunable frequency, and a mid-band frequency. The midband frequency is 2440 MHz. The low and high frequencies are 2402 MHz and 2480 MHz, except for 2 Mbps BLE where the limits are 2404 MHz and 2478 MHz.

Page 16 of 115	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

The analysis threshold for the occupied test was the bandwidth containing 99% of the observed power. The standards cited do not limit the Occupied Bandwidth (OBW) for all transmitter types. In such cases an OBW limit stated below may be inapplicable.

Some standards also evaluate a parameter called DTS Bandwidth, which is tested using a spectrum analyzer operating with a specified resolution bandwidth. The analysis finds the smallest continuous range of frequencies containing all emissions within 6 dB of the highest value.

The bold data in the table below is the measured bandwidth, in units of kHz. The values highlighted in yellow are the worst-case results for each signal type, or other data points of interest for which plots of the data are included. Any grey cells indicate operating conditions that were not selected for. The DTS Bandwidth is the x dB Bandwidth shown in the figures.

The data all meet the limit, which is that the DTS Bandwidth be at least 500 kHz.

Mode	Speed	Low	Mid	High
BLE	1 Mb	772	798	830
BLE	2 Mb	1443	1447	1783
ANT	Fixed	793.2	972.8	974.3

Table TR14a.2: Summary of measured bandwidths

Figure TR14a.2: Bluetooth Low Energy, 1 Mbps, 2402 MHz

Page 17 of 115	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

ANSI BT Occupied BW		ETSI WiFi Occupied E	3W	ANSI Wi			SI DTS BT supied BW	• + •
	Coupling: DC C Nign: Auto Fi	nput Ζ: 50 Ω orr CCorr req Ref: Int (S) IFE: Adaptive	Atten: 12 dB Pre: Int off, LNA off RF Presel: Off	Trig: Free Run Gate: Off #IF Gain: Low	Center Free Avg Hold: 1 Radio Std:			
1 Graph	•						Mkr1	2.404156000 GHz
Scale/Div 10.0 d	В			Ref Value 15.00	dBm			-0.96 dBm
5.00					1			
-15.0 -25.0 -35.0								
-45.0 -55.0 -65.0 -75.0								
Center 2.404000 #Res BW 100.00		ļ	 #	∜Video BW 300.(00 kHz		! s	Span 4 MHz weep 1.00 ms (1001 pts)
2 Metrics	T							
		: -111-				Measure Trace	Trace 1	
	Occupied Bandw	2.4006 MHz				Total Power	8.7	75 dBm
	Transmit Freq Er x dB Bandwidth		3.647 kHz 1.443 MHz			% of OBW Power x dB		9.00 % 6.00 dB
4 50	۲ ۲ (۲	Feb 21, 2023	$\overline{\mathbb{O}}$					

Figure TR14a.3: Bluetooth Low Energy, 2 Mbps, 2404 MHz

	ANSI BT Occupied BW		ETSI WiFi Occupied BW		ANSI WiFi Occupied B	w		ANSI DTS BT Occupied BW	+ >
KEYSIGH	Coupling: DC	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive	Atten: 10 dB Pre: Int off, LNA off RF Presel: Off	Trig: Free Run Gate: Off #IF Gain: Low	Center Free Avg Hold: 1 Radio Std:		000 GHz		
1 Graph	•							Mkr1 2.402	236000 GHz
Scale/Div 10	.0 dB			Ref Value 10.00	dBm				-2.10 dBm
0.00 -10.0 -20.0 -30.0					<u>1</u>				
-40.0 -50.0 -60.0 -70.0									
-80.0 Center 2.402 #Res BW 10			#	∜Video BW 300.0	00 kHz			Sweep 1	Span 4 MHz .00 ms (1001 pts)
2 Metrics	T								
	Occupied Ba	ndwidth				Measure ⁻	Trace	Trace 1	
		1.2869 MHz				Total Pow	/er	5.60 dBm	
	Transmit Free x dB Bandwid		816 Hz 793.2 kHz			% of OBV x dB	V Power	99.00 % -6.00 dB	
1		Feb 21, 2023 10:49:05 AM	\square						

Figure TR14a.4: ANT, 2402 MHz This line is the end of the test record.

Page 18 of 115	GCL Test Report 2023-018	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Test Record Transmitter DTS Bandwidth Tests Test IDs TR17a Project GCL-0304

Test record created by:	David Arnett
Date of this record:	25 Mar 2023
Pass/Fail Judgment:	PASS
Radio Protocol	IEEE 802.11b/g/n
Radio Band	2400 to 2483.5 MHz
Arrangement	A3 (PwrPc)
Test Standards:	FCC Part 15, ANSI C63.10, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Product Model	A04331
Serial Number tested	3437296908
Test Date(s)	24 Feb and 25 Mar 2023
Test Personnel	Majid Farah, David Arnett

Original record, Version A.

Test Equipment Used

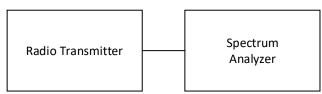

DYE Passiver 44GHz Kovsight N0048P MY62220120 20 Jap 2022 1 E	Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PAE Receiver 440Hz Revsignt 109046B 101102220159 50-3d1-2025 1-H	PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024

Table TR17a.1: List of test equipment used

Test Software Used: Keysight PXE firmware A.33.03

Test Method

During this test the transmitter output is fed directly, or through RF attenuators, to the spectrum analyzer. The analyzer has a built-in capability to identify the minimum bandwidth that contains a specified percentage of the total power observed, and also identify the center frequency error. The spectrum is scanned several hundred times so that the varied effects of modulation are appropriately assessed. Since the focus is on the relative distribution of energy across a range of frequencies, the absolute amplitudes recorded during this test are not relevant and may not include cable losses or attenuation factors.

Figure TR17a.1: Test arrangement

Test Data

The data for each test is summarized below, followed by the spectral data for each case analyzed and reported. The test strategy is to measure channel 13 on all modulation types. Channels 1, 6, 11, 12, and 13 are measured for the slowest and fastest data rates in each WiFi mode (b, g, n), in addition to other data rates of interest based on transmit power data.

Page 19 of 115	Version A					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

The analysis threshold for the occupied test was the bandwidth containing 99% of the observed power. The standards cited do not limit the Occupied Bandwidth (OBW) for all transmitter types. In such cases an OBW limit stated below may be inapplicable.

Some standards also evaluate a parameter called DTS Bandwidth, which is tested using a spectrum analyzer operating with a specified resolution bandwidth. The analysis finds the smallest continuous range of frequencies containing all emissions within 6 dB of the highest value.

The bold data in the table below is the measured bandwidth, in units of MHz. The values highlighted in yellow are the worst-case results for each signal type, or other data points of interest for which plots of the data are included. Any grey cells indicate operating conditions that were not selected for. The DTS Bandwidth is the difference between the x dB Bandwidth upper boundary frequency and lower boundary frequency shown in the figures.

Mode	Speed	Ch 1	Ch 6	Ch 11	Ch 12	Ch 13
В	1	10.060	10.082	10.062	10.041	10.038
В	2	10.072				10.046
В	5.5	8.259				8.775
В	11	9.074	9.076	9.066	9.074	9.061
G	6	16.550	16.563	16.565	16.598	16.526
G	9	16.578				16.542
G	12	16.561				16.573
G	18	16.547				16.530
G	24	16.546				16.499
G	36	16.518				16.540
G	48	16.521				16.555
G	54	16.536	16.562	16.565	16.558	16.554
N	0	17.642	17.650	17.659	17.639	17.638
N	1	17.674				17.697
Ν	2	17.664				17.683
Ν	3	17.705				17.678
Ν	4	17.687				17.715
Ν	5	17.658				17.698
Ν	6	17.681				17.727
Ν	7	17.663	17.679	17.679	17.680	17.699

The data all meet the limit, which is that the DTS Bandwidth be at least 500 kHz.

Table TR17a.2: Summary of measured bandwidths

Page 20 of 115	GCL Test Report 2023-018	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Figure TR17a.2: Channel 1, B mode, 5.5 Mbps modulation

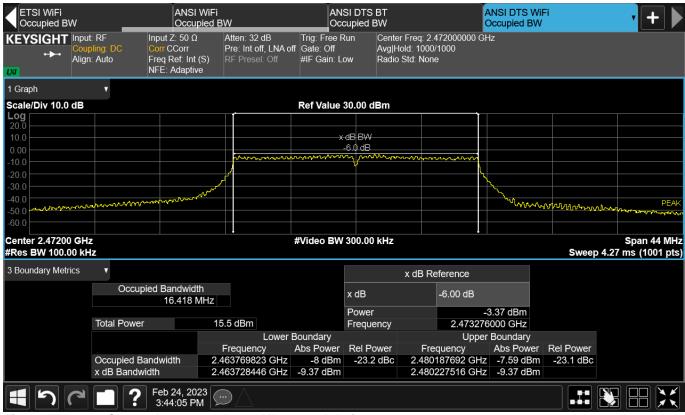


Figure TR17a.3: Channel 13, G mode, 24 Mbps modulation

Page 21 of 115	Page 21 of 115 GCL Test Report 2023-018					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

ETSI WiFi Occupied BV	N		ANSI WiFi Occupied I	3W		ANSI DTS Occupied I			ANSI DTS Occupied B		• + •
	Input: RF Coupling: D Align: Auto	C Cor	ut Ζ: 50 Ω r CCorr q Ref: Int (S) Ξ: Adaptive	Atten: 32 dB Pre: Int off, LNA of RF Presel: Off	Trig: Fre f Gate: O #IF Gair	ff	Center Free Avg Hold: 1 Radio Std:		0 GHz		
1 Graph	•										
Scale/Div 10.0	dB				Ref Val	ue 30.00 d	IBm				
20.0											
10.0						x dB BW					
0.00				, ብርሱሎ-ዓጮብ/- ጊይም-ሲም-ታታ-	ᡔᠼᡗᠧᠾᡊᡎ᠇ᠴᢩᢣ	-6.0 dB	ᠬ᠇ᠵ᠘ᡘ᠋᠋ᡅᢂᡔᠰᢧ᠋ᢏᡘᡁᢧᠬ	ᢢ᠇ᡘᡟᡐᠺᠬᢧᡁᢛᢊ᠇ᠺᠰ	where		
-10.0				/		Ŷ					
-30.0			لممر	1					- When the second secon		
-40.0	wwwww	ᡁ᠊᠋ᢢᢦᡊᠵ᠋᠋ᡒᢑᢋᢪᠬᢛ	yarar ar								. PEAK
-50.0											╲╏┍╍╺╺╖╍╣╲┉╌╺╏╱╖┵╱┞┅╏┝╏┠╵┷╻╼╼┾╾┥
Center 2.47200	CH7				#\/ideo	3W 300.00			<u></u>		Span 44 MHz
#Res BW 100.0					#video i	500.00	KI12			Swee	p 4.27 ms (1001 pts)
3 Boundary Metri	ics 🔻						x d	B Reference			
		Occupied I	Bandwidth			x dB		-6.00 dE	2		
			17.571 MHz					-0.00 ut	-		
	Total	Power	1	5.2 dBm		Power Freque		2 472	-4.58 dBm 2836000 GHz		
					Boundary				oper Boundary		
				,	Abs Pow			Frequency	Abs Powe		
		ipied Bandv Bandwidth		463196295 GHz 463167521 GHz	-9 dE -10.6 dE				GHz -9.45 dB GHz -10.6 dB		
			eb 24, 2023 :02:36 PM								

Figure TR17a.4: Channel 13, N mode, MCS0 modulation

This line is the end of the test record.

Page 22 of 115	GCL Test Report 2023-018	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Test Record Transmitter Power Test IDs TR1a Project GCL-0304

Test Date(s)	14 Feb and 24 Feb 2023
Test Personnel	David Arnett, Majid Farah
Product Model	A04331
Serial Number tested	3437296908
Operating Mode	M9 (WiFi Tx)
Arrangement	A1 (PwrA)
Input Power	5Vdc
Test Standards:	FCC Part 15, ANSI C63.10, ETSI EN 300 328, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Antenna Gain	-3.43 dBi, as reported by the client
Radio Protocol	IEEE 802.11b/g/n
Pass/Fail Judgment:	PASS
Test record created by: Date of this record: Original record, Version A.	David Arnett 24 Mar 2023

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
RF Power Sensor	Rohde&Schwarz	NRP8S	109927	13-Jul-2022	15-Jul-2023

Table TR1a.1: List of test equipment used

Software used: Rohde & Schwarz Power Viewer V11.3; TimePowerAnalysisSpreadsheetv9.xls

Test Method

The basic test standards provide options for the time evaluation test method. The following test methods were applied.

ETSI EN 300 328: 5.4.2.2.1.2 ANSI C63.10: 11.9.1.3

Firmware, Test Dates, and Additional Details

As indicated in earlier parts of the test report, there were several changes to firmware during the course of this project affecting transmit power.

Most of the data presented here was taken on 14 Feb, when almost all of the relevant power settings were finalized. An additional set of data was taken on 24 Feb in response to the changes made for N mode channel 10. In the data tables below, a green highlight indicates data from the 24 Feb test date. All other data was taken on the earlier date. Yellow highlight indicates the value for a particular mode with the highest value, which are all from the early February data. Grey 'NA' entries indicate channels or speeds that were not selected for measurement per the design of the experiment.

Transmit Power Data

Each measurement is made conducted from the antenna port with the transmitter on a specified channel and in a selected transmission protocol. The data record lengths are 1 second for WiFi and 100 msec for the Bluetooth-like protocols. Where standards cited here apply harmonized test methods and different limits, the more strict limit has applied.

Page 23 of 115	GCL Test Report 2023-018	Version A						
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.								
Garmin								

There are three separate analyses performed on the data set from the broadband fast diode power sensor. Under the ANSI method, the analysis reports the peak value of power observed, in dBm units. Under the ETSI method, each transmission burst is analyzed to find the burst with the highest average power, antenna gain is added, and the resulting unit is dBm EIRP. The third analysis looks at average power over the entire data record, in milliwatt units, and is used for RF Exposure evaluations. All three analyses will be reported, even though the report in which this record appears may not need each of these methods.

Mode	Speed	1	2	3	4	5	6	7	8	9	10	11	12	13
В	1	17.83	17.60	17.57	17.52	17.58	17.61	17.67	17.69	17.67	17.67	15.44	9.79	8.89
В	2	17.26	NT	NT	NT	NT	17.54	NT	NT	NT	NT	15.47	9.85	8.95
В	5.5	17.38	NT	NT	NT	NT	17.74	NT	NT	NT	NT	15.63	9.88	8.97
В	11	17.40	17.33	17.38	17.39	17.54	17.77	17.66	17.71	17.75	17.81	15.98	9.82	8.87
G	6	11.43	14.32	14.42	15.64	18.22	18.77	18.78	16.64	16.70	14.76	14.83	10.36	7.01
G	9	10.72	NT	NT	NT	NT	19.17	NT	NT	NT	NT	13.62	9.06	7.27
G	12	10.93	NT	NT	NT	NT	19.67	NT	NT	NT	NT	13.67	9.59	7.99
G	18	10.93	NT	NT	NT	NT	19.31	NT	NT	NT	NT	12.92	9.89	8.20
G	24	11.00	NT	NT	NT	NT	18.10	NT	NT	NT	NT	13.79	9.63	7.99
G	36	10.93	NT	NT	NT	NT	15.23	NT	NT	NT	NT	13.01	9.79	8.12
G	48	11.03	NT	NT	NT	NT	13.65	NT	NT	NT	NT	13.16	9.85	8.17
G	54	11.15	12.66	12.68	13.56	13.56	13.56	13.59	13.57	13.59	13.13	13.10	9.83	8.17
Ν	MCS0	11.63	13.61	13.57	15.89	19.03	18.95	18.98	18.85	16.80	14.11	12.59	10.88	8.09
N	MCS1	11.45	NT	NT	NT	NT	19.25	NT	NT	NT	NT	13.02	11.23	8.83
N	MCS2	11.61	13.64	13.59	16.34	19.65	19.45	19.40	19.39	17.02	14.45	12.66	10.93	9.54
Ν	MCS3	11.34	NT	NT	NT	NT	19.27	NT	NT	NT	NT	12.89	11.27	8.83
Ν	MCS4	12.20	NT	NT	NT	NT	15.71	NT	NT	NT	NT	12.71	10.75	9.32
Ν	MCS5	12.00	NT	NT	NT	NT	14.16	NT	NT	NT	NT	12.82	10.80	9.36
Ν	MCS6	12.03	NT	NT	NT	NT	14.13	NT	NT	NT	NT	12.81	10.83	9.34
Ν	MCS7	11.02	11.17	11.19	12.15	12.16	12.20	12.22	12.25	12.28	12.54	12.26	10.73	9.30

Table TR1a.2: ANSI Transmit Power Summary, dBm peak

Mode	Speed	1	2	3	4	5	6	7	8	9	10	11	12	13
В	1	14.35	14.13	14.11	14.06	14.12	14.15	14.21	14.22	14.21	14.21	11.96	6.31	5.41
В	2	13.79	NT	NT	NT	NT	14.08	NT	NT	NT	NT	12.00	6.38	5.47
В	5.5	13.92	NT	NT	NT	NT	14.28	NT	NT	NT	NT	12.14	6.39	5.50
В	11	13.92	13.85	13.89	13.90	13.96	14.19	14.18	14.23	14.26	14.22	12.49	6.24	5.35
G	6	7.88	10.79	10.84	12.10	14.70	15.18	15.19	13.11	13.17	11.21	11.32	6.83	3.49
G	9	7.19	NT	NT	NT	NT	15.58	NT	NT	NT	NT	10.08	5.50	3.74
G	12	7.43	NT	NT	NT	NT	16.09	NT	NT	NT	NT	10.18	6.08	4.48
G	18	7.44	NT	NT	NT	NT	15.82	NT	NT	NT	NT	9.42	6.40	4.70
G	24	7.44	NT	NT	NT	NT	14.50	NT	NT	NT	NT	10.25	6.07	4.44
G	36	7.37	NT	NT	NT	NT	11.71	NT	NT	NT	NT	9.49	6.26	4.59
G	48	7.50	NT	NT	NT	NT	10.12	NT	NT	NT	NT	9.64	6.31	4.63
G	54	7.55	9.08	9.10	10.02	10.01	10.01	10.04	10.03	10.03	9.59	9.56	6.29	4.62
Ν	MCS0	8.08	10.08	10.02	12.32	15.51	15.43	15.36	15.33	13.27	10.57	9.04	7.33	4.56
Ν	MCS1	7.91	NT	NT	NT	NT	15.75	NT	NT	NT	NT	9.49	7.72	5.32
Ν	MCS2	8.11	10.11	10.08	12.84	16.15	15.93	15.91	15.88	13.51	10.95	9.14	7.42	6.03
Ν	MCS3	7.79	NT	NT	NT	NT	15.77	NT	NT	NT	NT	9.35	7.72	5.29
Ν	MCS4	8.60	NT	NT	NT	NT	12.18	NT	NT	NT	NT	9.19	7.21	5.79
Ν	MCS5	8.45	NT	NT	NT	NT	10.61	NT	NT	NT	NT	9.25	7.26	5.80
Ν	MCS6	8.44	NT	NT	NT	NT	10.59	NT	NT	NT	NT	9.27	7.28	5.80
Ν	MCS7	7.48	7.63	7.64	8.61	8.61	8.65	8.68	8.71	8.72	8.99	8.70	7.20	5.76

Table TR1a.3: ETSI Transmit Power Summary, dBm EIRP

Page 24 of 115	GCL Test Report 2023-018	Version A								
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.									
	Garmin									

Mode	Speed	1	2	3	4	5	6	7	8	9	10	11	12	13
В	1	60.00	57.10	56.77	56.16	56.82	57.10	58.02	58.21	57.96	58.00	34.64	9.42	7.65
В	2	52.66	NT	NT	NT	NT	56.31	NT	NT	NT	NT	34.88	9.57	7.77
В	5.5	54.30	NT	NT	NT	NT	58.93	NT	NT	NT	NT	36.10	9.62	7.81
В	11	54.28	53.42	53.94	54.09	54.78	57.59	57.62	58.34	58.71	57.99	39.11	9.25	7.57
G	6	13.52	26.39	26.63	35.73	65.04	72.61	73.04	45.16	45.78	29.14	29.86	10.57	4.92
G	9	11.52	NT	NT	NT	NT	79.45	NT	NT	NT	NT	22.51	7.84	5.22
G	12	12.18	NT	NT	NT	NT	89.34	NT	NT	NT	NT	23.00	8.94	6.18
G	18	12.20	NT	NT	NT	NT	84.06	NT	NT	NT	NT	19.28	9.61	6.49
G	24	12.23	NT	NT	NT	NT	61.92	NT	NT	NT	NT	23.36	8.94	6.12
G	36	11.99	NT	NT	NT	NT	32.70	NT	NT	NT	NT	19.59	9.32	6.34
G	48	12.40	NT	NT	NT	NT	22.66	NT	NT	NT	NT	20.26	9.42	6.40
G	54	12.53	17.82	17.81	22.14	22.05	22.08	22.17	22.17	22.17	20.06	19.89	9.37	6.38
N	MCS0	14.17	22.42	22.14	37.46	78.29	76.89	75.66	75.13	46.78	25.07	17.62	11.92	6.29
N	MCS1	13.57	NT	NT	NT	NT	82.69	NT	NT	NT	NT	19.58	13.02	7.50
Ν	MCS2	14.23	22.52	22.42	42.34	90.83	86.36	85.85	85.43	49.52	27.37	18.07	12.16	8.84
N	MCS3	13.24	NT	NT	NT	NT	83.16	NT	NT	NT	NT	18.97	12.99	7.45
Ν	MCS4	15.89	NT	NT	NT	NT	36.43	NT	NT	NT	NT	18.27	11.61	8.36
Ν	MCS5	15.41	NT	NT	NT	NT	25.35	NT	NT	NT	NT	18.54	11.72	8.38
Ν	MCS6	15.35	NT	NT	NT	NT	25.25	NT	NT	NT	NT	18.61	11.79	8.37
Ν	MCS7	12.32	12.74	12.80	16.00	15.99	16.17	16.26	16.36	16.42	17.47	16.31	11.55	8.30

Table TR1a.4: RF Exposure Transmit Power Summary, milliwatts

For reference, the test mode for WiFi produced a 100% duty cycle.

This table is a summary of the highest power readings and limits for each type of radio.

WiFi	ANSI Power	ANSI Limit	ANSI Power	ESTI Power	ETSI Limit
Туре	(dBm)	(dBm)	(Watt)	(dBm EIRP)	(dBm EIRP)
b	17.83	30	0.0606	14.35	20
g	19.67	30	0.0927	16.09	20
n	19.65	30	0.0923	16.15	20

Table TR1a.5: Transmit Power and Results Summary

Setup Diagram

The following block diagrams show how the EUT and test equipment is arranged for test.

RF Power Meter

Figure TR1a.1: Test equipment setup

This line is the end of the test record.

Page 25 of 115	GCL Test Report 2023-018	Version A								
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.									
	Garmin									

Test Record Transmitter Power Test IDs TR1b Project GCL-0304

Test Date(s)	15 Feb 2023
Test Personnel	Majid Farah
Product Model	A04331
Serial Number tested	3437296908
Operating Mode	M3 (BLE Tx), M7 (ANT Tx), M17 (BT Class Tx)
Arrangement	A1 (PwrA)
Input Power	5Vdc
Test Standards:	FCC Part 15, ANSI C63.10, ETSI EN 300 328, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Antenna Gain	-3.43 dBi, as reported by the client
Radio Protocol	Bluetooth, Bluetooth Low Energy, ANT
Pass/Fail Judgment:	PASS
Test record created by: Date of this record: Original record, Version A.	David Arnett 23 Mar 2023

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
RF Power Sensor	Rohde&Schwarz	NRP8S	109927	13-Jul-2022	15-Jul-2023

Table TR1b.1: List of test equipment used

Software used: Rohde & Schwarz Power Viewer V11.3; TimePowerAnalysisSpreadsheetv9.xls

Test Method

The basic test standards provide options for the time evaluation test method. The following test methods were applied.

ETSI EN 300 328: 5.4.2.2.1.2 ANSI C63.10: 11.9.1.3

Firmware Test Dates, and Additional Details

In the data tables below, a yellow highlight indicates the value for a particular mode with the highest value. Grey 'NA' entries indicate channels or speeds that were not selected for measurement per the design of the experiment, or that are not available under the radio protocol.

Transmit Power Data

Each measurement is made conducted from the antenna port with the transmitter on a specified channel and in a selected transmission protocol. The data record lengths are 1 second for WiFi and 100 msec for the Bluetooth-like protocols. Where standards cited here apply harmonized test methods and different limits, the more strict limit has applied.

There are three separate analyses performed on the data set from the broadband fast diode power sensor. Under the ANSI method, the analysis reports the peak value of power observed, in dBm units. Under the ETSI method, each transmission burst is analyzed to find the burst with the highest average power, antenna gain is added, and the resulting unit is dBm EIRP. The third analysis looks at average power over the entire data record, in milliwatt units, and is used for RF Exposure evaluations. All three analyses will be reported, even though the report in which this record appears may not need each of these methods.

Page 26 of 115	GCL Test Report 2023-018	Version A							
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.									
	Garmin								

The results are shown below.

Frequency	(MHz)	2402	2403	2404	2420	2440	2460	2478	2479	2480
Bluetooth	Basic	10.98	11.01	10.98	11.13	11.21	11.29	11.00	10.96	12.01
Bluetooth	EDR2	10.69	10.73	10.70	10.89	10.98	11.23	10.93	10.92	10.92
Bluetooth	EDR3	10.29	10.29	10.29	10.40	10.41	10.78	10.48	10.45	10.42
BT Low Energy	1 Mbps	-0.27	NT	3.38	3.38	3.55	3.81	0.60	NT	0.61
BT Low Energy	2 Mbps	NT	NT	3.20	3.39	3.72	3.66	0.62	NT	NT
ANT		0.12	0.13	3.31	3.50	3.61	3.73	3.79	0.57	0.57

Table TR1b.2: ANSI Transmit Power Summary, dBm peak

Frequency	(MHz)	2402	2403	2404	2420	2440	2460	2478	2479	2480
Bluetooth	Basic	7.36	7.39	7.37	7.51	7.57	7.70	7.46	7.41	8.45
Bluetooth	EDR2	6.65	6.68	6.67	6.86	6.94	7.16	6.88	6.87	6.86
Bluetooth	EDR3	6.24	6.23	6.24	6.34	6.37	6.74	6.44	6.42	6.39
BT Low Energy	1 Mbps	-3.72	NT	-0.11	-0.10	0.06	0.32	-2.86	NT	-2.86
BT Low Energy	2 Mbps	NT	NT	-0.28	-0.10	0.24	0.17	-2.84	NT	NT
ANT		-3.33	-3.32	-0.17	0.02	0.13	0.25	0.29	-2.88	-2.89

Table TR1b.3: ETSI Transmit Power Summary, dBm EIRP

		_								
ANT		1.02	1.03	2.12	2.21	2.27	2.33	2.35	1.13	1.13
BT Low Energy	2 Mbps	NT	NT	2.07	2.15	2.33	2.29	1.15	NT	NT
BT Low Energy	1 Mbps	0.93	NT	2.15	2.15	2.23	2.37	1.14	NT	1.14
Bluetooth	EDR3	7.20	7.19	7.19	7.38	7.43	8.06	7.54	7.50	7.46
Bluetooth	EDR2	7.93	7.98	7.95	8.30	8.46	8.91	8.36	8.33	8.31
Bluetooth	Basic	9.32	9.39	9.34	9.66	9.79	10.09	9.53	9.43	12.00
Frequency	(MHz)	2402	2403	2404	2420	2440	2460	2478	2479	2480

Table TR1b.4: RF Exposure Transmit Power Summary, milliwatts

For reference, the test mode for Bluetooth produced a 77.9% duty cycle, and for all other radios produced a 100% Duty Cycle.

This table is a summary of the highest power readings and limits for each type of radio.

Radio	ANSI Power	ANSI Limit	ANSI Power	ESTI Power	ETSI Limit
Туре	(dBm)	(dBm)	(Watt)	(dBm EIRP)	(dBm EIRP)
Bluetooth	12.01	21	0.0159	8.45	20
BLE	3.81	21	0.0024	0.32	20
ANT	3.79	21	0.0024	0.29	20

Table TR1b.5: Transmit Power and Results Summary

Setup Diagram

The following block diagrams show how the EUT and test equipment is arranged for test.

Page 27 of 115	GCL Test Report 2023-018	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

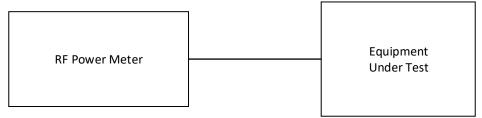


Figure TR1b.1: Test equipment setup

This line is the end of the test record.

Page 28 of 115	GCL Test Report 2023-018	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Test Record Conducted Spurious Emissions Test IDs TR22, TR23 and TR24 Project GCL-0304

Test Date(s) Test Personnel	13 Mar 2023 Majid Farah
Product Model	A04331
Serial Number tested	3437296908
Operating Mode Arrangement Input Power	M3 (BLE Tx), M7 (ANT Tx) and M17 (BT Class Tx) A1 (PwrA) 5 Vdc
Test Standards:	FCC Part 15, ANSI C63.10, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Pass/Fail Judgment:	PASS
Test record created by: Date of this test record: Original record, Version A.	Majid Farah 27 Mar 2023

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
Signal analyzer PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024
Table TD00 4. Test sourcement used	-	-		-	

Table TR22.1: Test equipment used

Software used: Keysight PXE software A.33.03.

Test Method

The basic test standards provide options for the test method. The following test methods were applied. ANSI C63.10: 11.11.2 and 11.11.3

Test Setup

This block diagram shows the test equipment setup.

Figure TR22.1: Test setup

Page 29 of 115 GCL Test Report 2023-018		Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Test Data

The conducted spurious emission test measures the strength of intentional and unintentional radio signals conducted from the transmitter to the antenna across a wide range of frequencies. It does not evaluate whether intentional signals meet specific limits. Rather, it ensures that magnitudes unintentional signals are sufficiently reduced relative to the intentional signal to satisfy the requirements of the relevant standards.

This measurement requires that a coaxial feed line from the transmitter is available as a connector exterior to the test sample. This feed line and connector may be a part of the shipping product, or it may be a special modification to the product for testing purposes. The connector is attached via laboratory cables to the measurement instrument. The results have been adjusted to account for the losses in the laboratory cables. Where feasible, the losses of any added feed lines are also included in that adjustment.

Data is collected using the required detector function(s) across the frequency range. The instrument uses a 100 kHz bandwidth detector.

The data table below shows the final measurement data which may be at harmonics of the carrier, or at frequencies that represent one of the highest data points measured.

The peak level of the fundamental is also identified. The harmonics or spurious emissions must be reduced from this fundamental level by 20 dBc. This harmonic limit is calculated and used to determine compliance. A reduction form the carrier that is greater that 20 is a passing result. The minimum margin from the peak level for each mode are highlighted in yellow.

Data plots are provided for the worst-case data sets. One plot shows the spectrum at the carrier, and another shows the spectrum across the band. On this second plot, a green reference line is at approximately the 20 dBc maximum spurious emission level.

		Frequency (MHz)						
	2402	2404	2440	2478	2480			
Bluetooth BR	46.72	NT	60.64	NT	61.49			
BLE 1 Mbps	31.48	NT	52.22	NT	49.87			
BLE 2 Mbps	NT	45.40	51.56	48.11	NT			
ANT	48.08	NT	51.81	NT	49.66			

Table TR22.2: Results Summary

NT: (Not tested) means the requirement is or may not be applicable by EUT or it is not required by standards.

Page 30 of 115	GCL Test Report 2023-018	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Figure TR22.2: Reference level measurement for Bluetooth BR at 2402 MHz

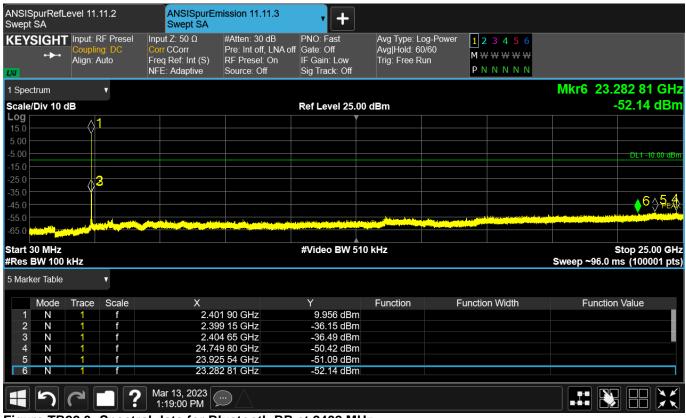


Figure TR22.3: Spectral data for Bluetooth BR at 2402 MHz

Page 31 of 115 GCL Test Report 2023-018		Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

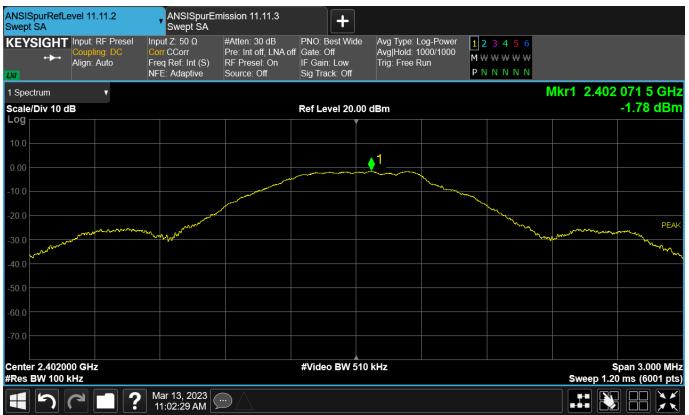


Figure TR22.4: Reference level measurement for Bluetooth BLE 1 Mbps at 2402 MHz

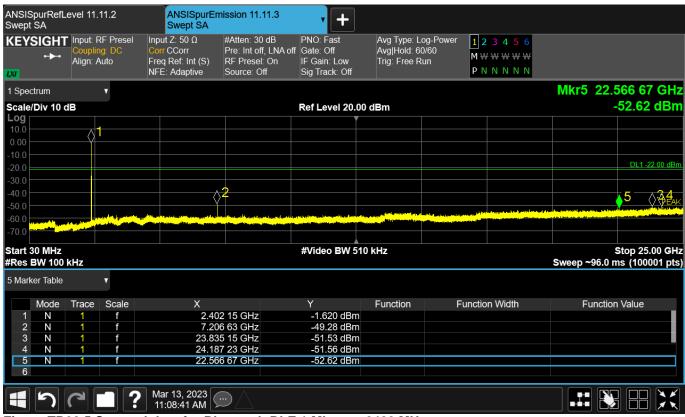


Figure TR22.5 Spectral data for Bluetooth BLE 1 Mbps at 2402 MHz

Page 32 of 115	Page 32 of 115 GCL Test Report 2023-018				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					



Figure TR22.6: Reference level measurement for Bluetooth BLE 2 Mbps at 2404 MHz

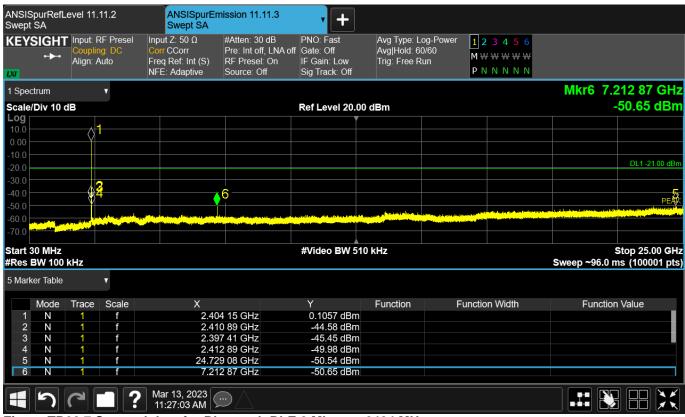


Figure TR22.7 Spectral data for Bluetooth BLE 2 Mbps at 2404 MHz

Page 33 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				



Figure TR22.9 Spectral data for ANT at 2402 MHz This line is the end of the test record.

Page 34 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Record Conducted Spurious Emissions Test IDs TR25 Project GCL-0304

Test Date(s)	13 and 14 Mar 2023
Test Personnel	Majid Farah
Product Model	A04331
Serial Number tested	3437296908
Operating Mode	M9 (WiFi Tx)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Test Standards:	FCC Part 15, ANSI C63.10, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Pass/Fail Judgment:	PASS
Test record created by: Date of this test record: Original record, Version A.	Majid Farah 27 Mar 2023

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
Signal analyzer PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024
Table TDOF 4. Test southment used			-		

Table TR25.1: Test equipment used

Software used: Keysight PXE software A.33.03.

Test Method

The basic test standards provide options for the test method. The following test methods were applied. ANSI C63.10: 11.11.2 and 11.11.3

Test Setup

This block diagram shows the test equipment setup.

Figure TR25.1: Test setup

Page 35 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Data

The conducted spurious emission test measures the strength of intentional and unintentional radio signals conducted from the transmitter to the antenna across a wide range of frequencies. It does not evaluate whether intentional signals meet specific limits. Rather, it ensures that magnitudes unintentional signals are sufficiently reduced relative to the intentional signal to satisfy the requirements of the relevant standards.

This measurement requires that a coaxial feed line from the transmitter is available as a connector exterior to the test sample. This feed line and connector may be a part of the shipping product, or it may be a special modification to the product for testing purposes. The connector is attached via laboratory cables to the measurement instrument. The results have been adjusted to account for the losses in the laboratory cables. Where feasible, the losses of any added feed lines are also included in that adjustment.

Data is collected using the required detector function(s) across the frequency range. The instrument uses a 100 kHz bandwidth detector.

The data table below shows the final measurement data which may be at harmonics of the carrier, or at frequencies that represent one of the highest data points measured.

The peak level of the fundamental is also identified. The harmonics or spurious emissions must be reduced from this fundamental level by 20 dBc. This harmonic limit is calculated and used to determine compliance. A reduction form the carrier that is greater that 20 is a passing result. The minimum margin from the peak level for each mode are highlighted in yellow.

Data plots are provided for the worst-case data sets. One plot shows the spectrum at the carrier, and another shows the spectrum across the band. On this second plot, a green reference line is at approximately the 20 dBc maximum spurious emission level.

		Channel No.				
Mode	Data rate (Mbps)	1	6	11	12	13
В	1	35.10	56.88	52.92	53.33	45.42
В	5.5	34.40	60.54	52.92	52.08	51.28
G	6	48.52	53.75	52.92	49.22	40.57
G	12	45.29	53.15	52.92	42.91	41.55
N	MCS0	44.97	53.10	52.92	45.57	41.94
Ν	MCS1	45.34	53.29	52.92	43.79	42.28
Ν	MCS2	43.58	53.43	52.92	45.06	41.56

Table TR25.2: Results Summary

Page 36 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

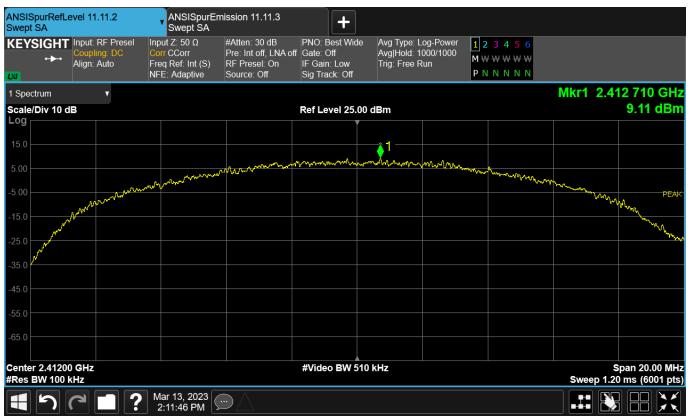


Figure TR25.2: Reference level measurement for IEEE 802.11 b 5.5 Mbps on Ch.1

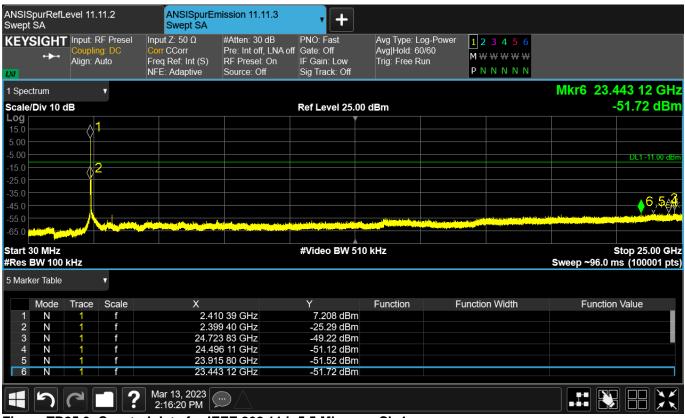


Figure TR25.3: Spectral data for IEEE 802.11 b 5.5 Mbps on Ch.1

Page 37 of 115	Version A					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

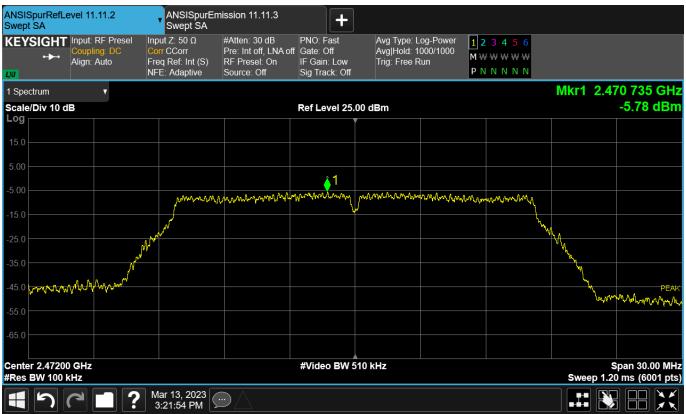


Figure TR25.4: Reference level measurement for IEEE 802.11 g 6 Mbps on Ch.13

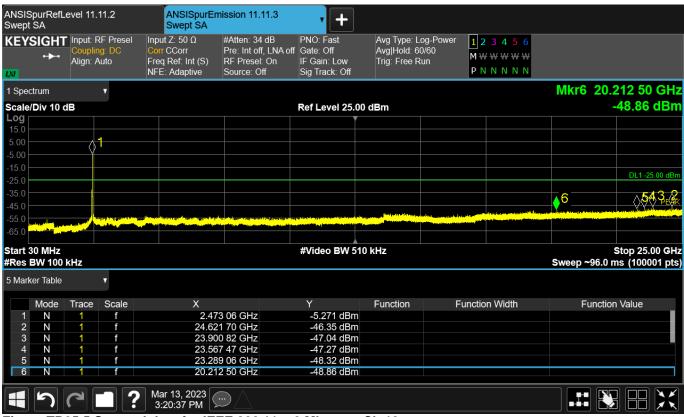


Figure TR25.5 Spectral data for IEEE 802.11 g 6 Mbps on Ch.13

Page 38 of 115	Version A					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						



Figure TR25.6: Reference level measurement for IEEE 802.11 n MCS2 on Ch.13

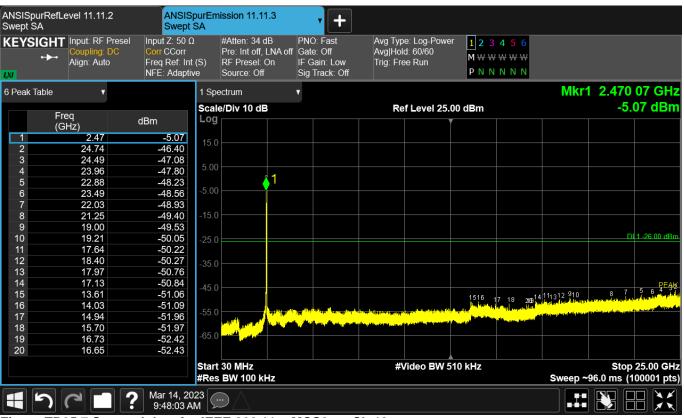


Figure TR25.7 Spectral data for IEEE 802.11 n MCS2 on Ch.13 This line is the end of the test record.

Page 39 of 115	Page 39 of 115 GCL Test Report 2023-018					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Test Record Radiated Emission Test RE06 Project GCL0304

Test record created by:	Jim Solum
Date of this record:	13 Mar 2023
Frequency Range:	FCC Restricted Bands (2200 - 2390MHz, 2483.5 - 2500MHz)
Pass/Fail Judgment:	PASS
Test Standards:	FCC Part 15, ANSI C63.10, (as noted in Section 6 of the report).
Operating Mode	M3 (BLE Tx)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Product Model	A04331
Serial Number tested	3437296994
Test Date(s)	15 Feb 2023
Test Personnel	David Kerr

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023
FSOATS 3m, above 1 GHz	Frankonia	SAC3	F199004	16-Nov-2022	16-Nov-2025
Antenna, Horn, 1-18 GHz	ETS Lindgren	3117	00227596	27-Aug-2021	1-Sep-2023
Preamplifier, 500 MHz 18 GHz	Com-Power	PAM-118A	18040133	Calibration	Not Required
Wifi Filter	K&L	8NSL26-2437/E82.2-0	0/0 1	Calibration	Not Required
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026

Table RE06.1: Test Equipment Used

Software Used

Keysight PXE N9048B Firmware version A.32.06 RE Signal Maximization Tool v2021Feb25.xlsx FCC Restricted Band 2p4GHz Template v1 2022Sep08.xlsx

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

Page 40 of 115 GCL Test Report 2023-018 Version							
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin							

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The tables show the selected final measurement data between the FCC restricted bands. It includes the strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted in yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC restricted band Class B Limit at 3m.

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2216	54	74	32.01	47.115	21.99	26.885	166	1844	Horz
2389	54	74	32.784	46.653	21.216	27.347	166	1844	Horz

Table RE06.2: Emission summary FCC restricted band from 2200 to 2390 MHz (1 Mbps)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2483.5	54	74	38.704	51.938	15.296	22.062	170	1506	Horz
2483.5	54	74	38.723	52.487	15.277	21.513	170	1506	Horz

 Table RE06.3: Emission summary FCC restricted band from 2483.5 to 2500 MHz (1Mbps)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2389.3	54	74	34.778	47.609	19.222	26.391	166	1844	Horz
2389.3	54	74	34.773	47.792	19.227	26.208	166	1844	Horz

Table RE06.4: Emission summary FCC restricted band from 2200 to 2390 MHz (2 Mbps)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2483.5	54	74	44.853	55.807	9.147	18.193	170	1506	Horz
2484.8	54	74	44.769	54.048	9.231	19.952	170	1506	Horz

Table RE06.5: Emission summary FCC restricted band from 2483.5 to 2500 MHz (2 Mbps)

The graphs below show the background spectrum observed during pre-scan, as well as the final data points from the table above.

Page 41 of 115	Version A							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin								

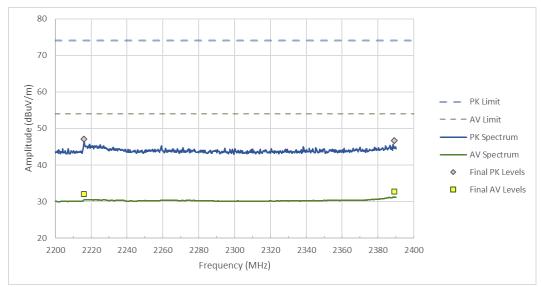


Figure RE06.1: Spectral data FCC restricted band from 2200 to 2390 MHz (1Mbps)

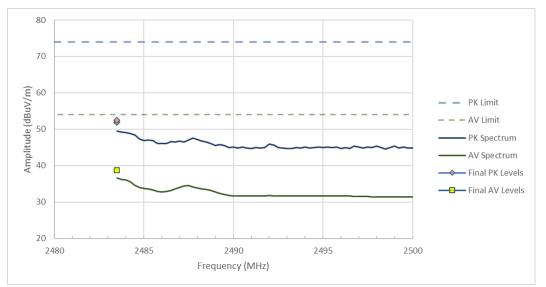


Figure RE06.2: Spectral data FCC restricted band from 2483.5 to 2500 MHz (1 Mbps)

Page 42 of 115	Version A							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin								

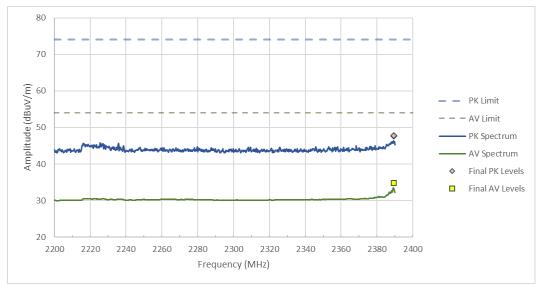


Figure RE06.3: Spectral data FCC restricted band from 2200 to 2390 MHz (2 Mbps)

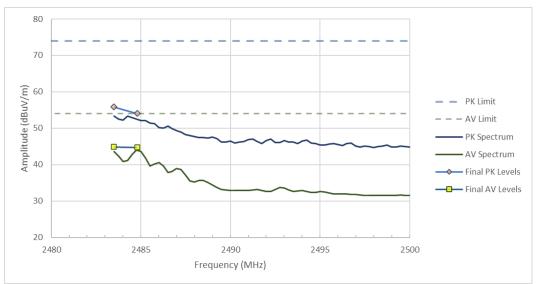


Figure RE06.4: Spectral data FCC restricted band from 2483.5 to 2500 MHz (2 Mbps)

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 43 of 115	GCL Test Report 2023-018	Version A				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Image removed for client confidentiality. See section 1 of this report to identify the report where

the photos may be viewed.

Figure RE06.5: EUT test setup, front view (Z orientation)

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure RE06.6: EUT test setup, reverse view (Z orientation)

This line is the end of the test record.

Page 44 of 115	GCL Test Report 2023-018	Version A				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Test Record Radiated Emission Test RE07 Project GCL0304

Test record created by:	Jim Solum
Date of this record:	13 Mar 2023
Frequency Range: Pass/Fail Judgment:	FCC Restricted Bands PASS
Test Standards:	FCC Part 15, ANSI C63.10, (as noted in Section 6 of the report).
Operating Mode	M7 (ANT Tx)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Product Model	A04331
Serial Number tested	3437296994
Test Date(s)	15 Feb 2023
Test Personnel	David Kerr

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023
FSOATS 3m, above 1 GHz	Frankonia	SAC3	F199004	16-Nov-2022	16-Nov-2025
Antenna, Horn, 1-18 GHz	ETS Lindgren	3117	00227596	27-Aug-2021	1-Sep-2023
Preamplifier, 500 MHz 18 GHz	Com-Power	PAM-118A	18040133	Calibration	Not Required
Wifi Filter	K&L	8NSL26-2437/E82.2-	0/0 1	Calibration	Not Required
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026

Table RE07.1: Test Equipment Used

Software Used

Keysight PXE N9048B Firmware version A.32.06 RE Signal Maximization Tool v2021Feb25.xlsx FCC Restricted Band 2p4GHz Template v1 2022Sep08.xlsx

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The

Page 45 of 115	GCL Test Report 2023-018				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The tables show the selected final measurement data between the FCC restricted bands. It includes the strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted in yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC restricted band Class B Limit at 3m.

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2216	54	74	31.963	47.162	22.037	26.838	166	1844	Horz
2390	54	74	32.954	46.514	21.046	27.486	166	1844	Horz

Table RE07.2: Emission summary FCC restricted band from 2200 to 2390 MHz

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2484	54	74	42.688	51.498	11.312	22.502	170	1506	Horz
2484	54	74	42.777	51.638	11.223	22.362	170	1506	Horz

Table RE07.3: Emission summary FCC restricted band from 2483.5 to 2500 MHz

The graphs below show the background spectrum observed during pre-scan, as well as the final data points from the table above.

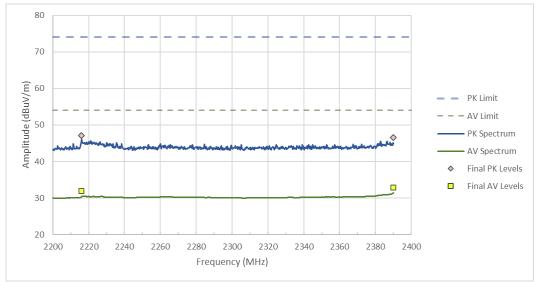


Figure RE07.1: Spectral data FCC restricted band from 2200 to 2390 MHz

Page 46 of 115	Page 46 of 115 GCL Test Report 2023-018					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

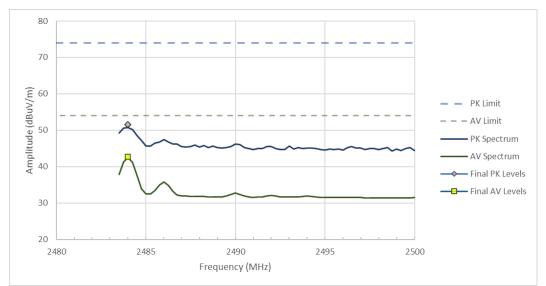


Figure RE07.2: Spectral data FCC restricted band from 2483.5 to 2500 MHz

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

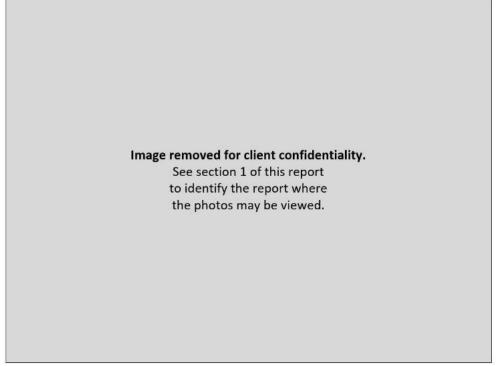


Figure RE07.3: EUT test setup, front view (Z orientation)

Page 47 of 115	GCL Test Report 2023-018					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed.

Figure RE07.4: EUT test setup, reverse view (Z orientation)

This line is the end of the test record.

Page 48 of 115	GCL Test Report 2023-018	Version A				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Test Record Radiated Emission Test RE08 Project GCL0304

Test record created by:	Jim Solum
Date of this record:	16 Mar 2023
Frequency Range:	FCC Restricted Bands (2200 - 2390MHz, 2483.5 - 2500MHz)
Pass/Fail Judgment:	PASS
Test Standards:	FCC Part 15, ANSI C63.10, (as noted in Section 6 of the report).
Operating Mode	M9 (WiFi Tx)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Product Model	A04331
Serial Number tested	3437296994
Test Date(s) Test Personnel	David Kerr

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023
FSOATS 3m, above 1 GHz	Frankonia	SAC3	F199004	16-Nov-2022	16-Nov-2025
Antenna, Horn, 1-18 GHz	ETS Lindgren	3117	00227596	27-Aug-2021	1-Sep-2023
Preamplifier, 500 MHz 18 GHz	Com-Power	PAM-118A	18040133	Calibration	Not Required
Wifi Filter	K&L	8NSL26-2437/E82.2-	0/0 1	Calibration	Not Required
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026

Table RE08.1: Test Equipment Used

Software Used

Keysight PXE N9048B Firmware version A.32.06 RE Signal Maximization Tool v2021Feb25.xlsx WiFi FCC Restricted Band 2p4GHz Template v1 2022Sep08.xlsx

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The

Page 49 of 115	GCL Test Report 2023-018	Version A								
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.									
	Garmin									

designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The tables show the selected final measurement data between the FCC restricted bands. It includes the strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted in yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC restricted band Class B Limit at 3m.

Channel &	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
Modulation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
B11 Peak	2387.8	54	74	42.456	54.355	11.544	19.645	166	1844	HORZ
B11 Average	2390	54	74	42.518	54.875	11.482	19.125	166	1844	HORZ
G18 Peak	2390	54	74	42.959	61.112	11.041	12.888	166	1844	HORZ
G18 Average	2390	54	74	42.865	61.511	11.135	12.489	166	1844	HORZ
N1 Peak	2390	54	74	46.07	63.929	7.93	10.071	166	1844	HORZ
N1 Average	2390	54	74	46.123	63.856	7.877	10.144	166	1844	HORZ

Table RE08.2: Emission summary FCC restricted band from 2200 to 2390 MHz (WiFi Ch.1))

Channel &	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
Modulation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
B11 Peak	2390	54	74	40.187	53.59	13.813	20.41	166	1844	HORZ
B11 Average	2390	54	74	40.166	53.078	13.834	20.922	166	1844	HORZ
G18 Peak	2387.5	54	74	44.221	63.212	9.779	10.788	166	1844	HORZ
G18 Average	2390	54	74	45.948	62.945	8.052	11.055	166	1844	HORZ
N1 Peak	2389	54	74	47.315	65.706	6.685	8.294	166	1844	HORZ
N1 Average	2390	54	74	47.857	65.247	6.143	8.753	166	1844	HORZ

Table RE08.3: Emission summary FCC restricted band from 2200 to 2390 MHz (WiFi Ch.2)

Channel &	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
Modulation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
G18 Peak	2389.3	54	74	42.847	61.094	11.153	12.906	166	1844	HORZ
G18 Average	2390	54	74	43.302	63.689	10.698	10.311	166	1844	HORZ
N1 Peak	2390	54	74	44.768	63.738	9.232	10.262	166	1844	HORZ
N1 Average	2390	54	74	44.781	63.531	9.219	10.469	166	1844	HORZ

Table RE08.4: Emission summary FCC restricted band from 2200 to 2390 MHz (WiFi Ch.3)

Channel &	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
Modulation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
G18 Peak	2389.8	54	74	40.848	60.07	13.152	13.93	166	1844	HORZ
G18 Average	2390	54	74	40.984	59.705	13.016	14.295	166	1844	HORZ
N1 Peak	2389.5	54	74	45.256	64.189	8.744	9.811	166	1844	HORZ
N1 Average	2390	54	74	45.523	64.669	8.477	9.331	166	1844	HORZ

Table RE08.5: Emission summary FCC restricted band from 2200 to 2390 MHz (WiFi Ch.4)

Channel &	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
Modulation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
G6 Peak	2486.8	54	74	43.369	60.28	10.631	13.72	170	1506	HORZ
G6 Average	2483.5	54	74	43.875	60.296	10.125	13.704	170	1506	HORZ

Table RE08.6: Emission summary FCC restricted band from 2483.5 to 2500 MHz (WiFi Ch.8)

Page 50 of 115	GCL Test Report 2023-018	Version A
This re	port may be reproduced in whole. Reproduction of parts or excerpts requires lab management a	pproval.
	Garmin	

Channel &	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
Modulation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
G6 Peak	2484.8	54	74	45.795	64.603	8.205	9.397	170	1506	HORZ
G6 Average	2483.5	54	74	46.435	64.076	7.565	9.924	170	1506	HORZ
N3 Peak	2486.8	54	74	50.118	71.967	3.882	2.033	170	1506	HORZ
N3 Average	2483.5	54	74	52.019	73.529	1.981	0.471	170	1506	HORZ

Table RE08.7: Emission summary FCC restricted band from 2483.5 to 2500 MHz (WiFi Ch.9)

Channel &	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
Modulation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
B2 Peak	2483.5	54	74	51.233	59.746	2.767	14.254	170	1506	HORZ
B2 Average	2483.5	54	74	51.25	60.005	2.75	13.995	170	1506	HORZ
G6 Peak	2483.5	54	74	42.59	58.737	11.41	15.263	170	1506	HORZ
G6 Average	2483.5	54	74	42.553	58.099	11.447	15.901	170	1506	HORZ
N3 Peak	2483.5	54	74	51.976	71.582	2.024	2.418	170	1506	HORZ
N3 Average	2483.5	54	74	51.897	71.824	2.103	2.176	170	1506	HORZ

Table RE08.8: Emission summary FCC restricted band from 2483.5 to 2500 MHz (WiFi Ch.10)

Channel &	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
Modulation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
B2 Peak	2487.5	54	74	42.708	55.262	11.292	18.738	170	1506	HORZ
B2 Average	2487.8	54	74	42.68	55.09	11.32	18.91	170	1506	HORZ
G6 Peak	2484.3	54	74	47.819	67.601	6.181	6.399	170	1506	HORZ
G6 Average	2483.5	54	74	49.039	67.058	4.961	6.942	170	1506	HORZ
N3 Peak	2483.5	54	74	50.112	69.263	3.888	4.737	170	1506	HORZ
N3 Average	2483.5	54	74	50.159	69.932	3.841	4.068	170	1506	HORZ

Table RE08.9: Emission summary FCC restricted band from 2483.5 to 2500 MHz (WiFi Ch.11)

Channel &	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
Modulation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
B2 Peak	2484	54	74	44.364	54.625	9.636	19.375	170	1506	HORZ
B2 Average	2484.3	54	74	44.579	54.921	9.421	19.079	170	1506	HORZ
G6 Peak	2483.8	54	74	47.852	62.664	6.148	11.336	170	1506	HORZ
G6 Average	2483.5	54	74	47.917	63.013	6.083	10.987	170	1506	HORZ
N3 Peak	2484.3	54	74	51.179	71.225	2.821	2.775	170	1506	HORZ
N3 Average	2483.5	54	74	51.588	70.862	2.412	3.138	170	1506	HORZ

Table RE08.10: Emission summary FCC restricted band from 2483.5 to 2500 MHz (WiFi Ch.12)

Channel &	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
Modulation	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
B2 Peak	2485.8	54	74	45.459	54.232	8.541	19.768	170	1506	HORZ
B2 Average	2486	54	74	45.572	54.8	8.428	19.2	170	1506	HORZ
G6 Peak	2484.3	54	74	42.83	56.661	11.17	17.339	170	1506	HORZ
G6 Average	2484	54	74	42.979	56.795	11.021	17.205	170	1506	HORZ
N3 Peak	2485.8	54	74	44.777	66.012	9.223	7.988	170	1506	HORZ
N3 Average	2483.5	54	74	45.989	70.064	8.011	3.936	170	1506	HORZ

Table RE08.11: Emission summary FCC restricted band from 2483.5 to 2500 MHz (WiFi Ch.13)

Page 51 of 115	Version A					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
	Garmin					

The graphs below show the background spectrum observed during pre-scan, as well as the final data points from the table above.

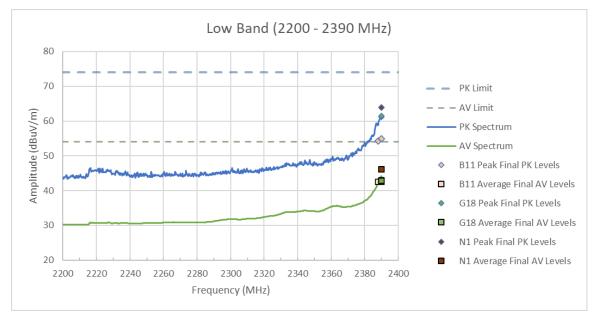


Figure RE08.1: Spectral data FCC restricted band from 2200 to 2390 MHz (WiFi Ch.1)

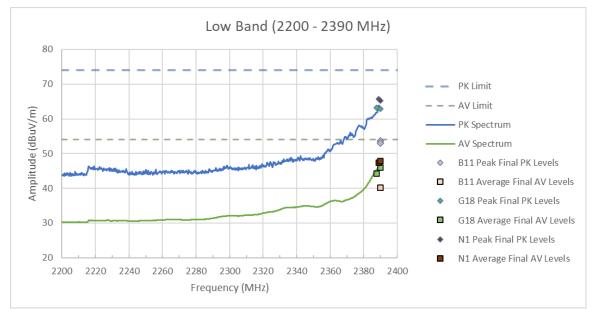


Figure RE08.2: Spectral data FCC restricted band from 2200 to 2390 MHz (WiFi Ch.2)

Page 52 of 115	Version A					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

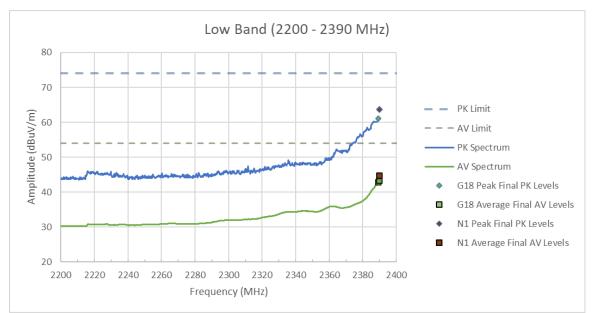


Figure RE08.3: Spectral data FCC restricted band from 2200 to 2390 MHz (Wifi Ch.3)

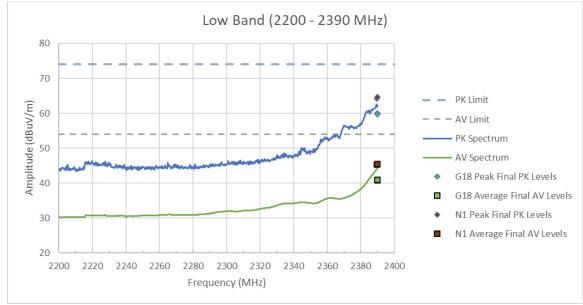


Figure RE08.4: Spectral data FCC restricted band from 2200 to 2390 MHz (Wifi Ch.4)

Page 53 of 115	Version A					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

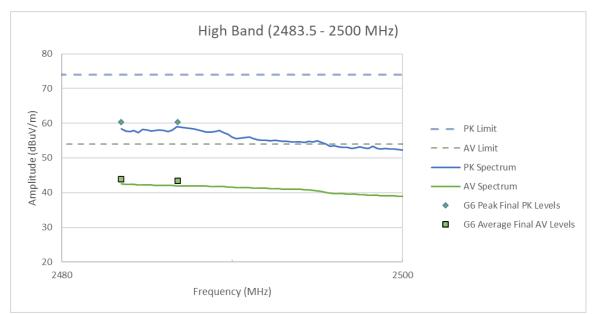


Figure RE08.5: Spectral data FCC restricted band from 2483.5 to 2500 MHz (Wifi Ch.8)

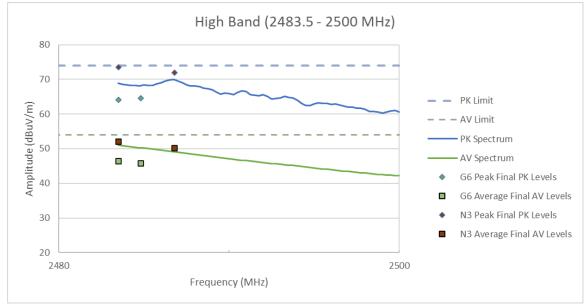


Figure RE08.6: Spectral data FCC restricted band from 2483.5 to 2500 MHz (Wifi Ch.9)

Page 54 of 115	Page 54 of 115 GCL Test Report 2023-018					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

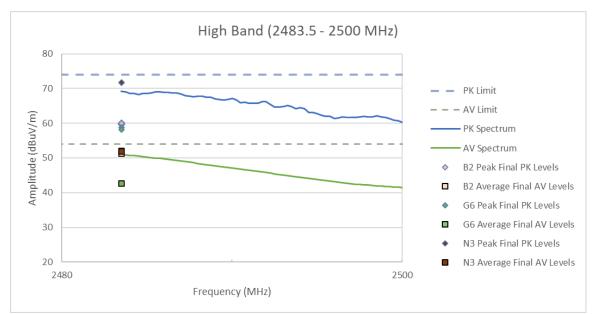


Figure RE08.7: Spectral data FCC restricted band from 2483.5 to 2500 MHz (Wifi Ch.10)

Figure RE08.8: Spectral data FCC restricted band from 2483.5 to 2500 MHz (Wifi Ch.11)

Page 55 of 115	5 of 115 GCL Test Report 2023-018					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
	Garmin					

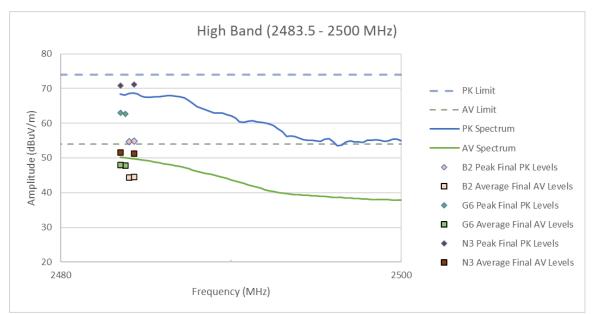


Figure RE08.9: Spectral data FCC restricted band from 2483.5 to 2500 MHz (Wifi Ch.12)

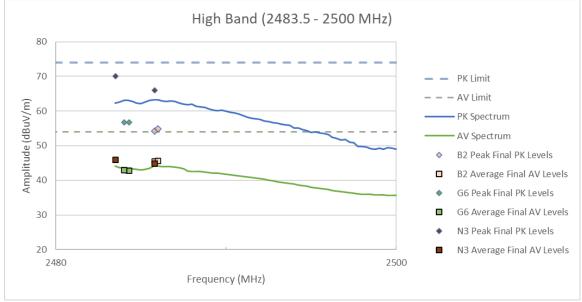


Figure RE08.10: Spectral data FCC restricted band from 2483.5 to 2500 MHz (Wifi Ch.13)

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 56 of 115	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed.

Figure RE08.11: EUT test setup, front view (Z orientation)

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure RE08.12: EUT test setup, reverse view (Z orientation)

This line is the end of the test record.

Page 57 of 115	Page 57 of 115 GCL Test Report 2023-018				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Test Record Radiated Emission Test RE09 Project GCL0304

Test record created by:	Jim Solum
Date of this record:	21 Mar 2023
Frequency Range:	FCC Restricted Bands (2200 - 2390MHz, 2483.5 - 2500MHz)
Pass/Fail Judgment:	PASS
Test Standards:	FCC Part 15, ANSI C63.10, (as noted in Section 6 of the report).
Operating Mode	M3 (BT Class)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Product Model	A04331
Serial Number tested	3437296994
Test Date(s)	15 Feb, Mar 21 2023
Test Personnel	David Kerr / Jim Solum

Original record, Version A dated 13 Mar 2023. Version B corrected 2483.5 MHz to 2500 MHz EDR 2 data.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023
FSOATS 3m, above 1 GHz	Frankonia	SAC3	F199004	16-Nov-2022	16-Nov-2025
Antenna, Horn, 1-18 GHz	ETS Lindgren	3117	00227596	27-Aug-2021	1-Sep-2023
Preamplifier, 500 MHz 18 GHz	Com-Power	PAM-118A	18040133	Calibration	Not Required
Wifi Filter	K&L	8NSL26-2437/E82.2-0/0	1	Calibration	Not Required
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026

Table RE09.1: Test Equipment Used

Software Used

Keysight PXE N9048B Firmware version A.32.06 RE Signal Maximization Tool v2021Feb25.xlsx FCC Restricted Band 2p4GHz Template v1 2022Sep08.xlsx

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

Page 58 of 115	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The tables show the selected final measurement data between the FCC restricted bands. It includes the strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted in yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the FCC restricted band Class B Limit at 3m.

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2385.5	54	74	33.939	48.673	20.061	25.327	166	1844	Horz
2390	54	74	34.311	48.169	19.689	25.831	166	1844	Horz

Table RE09.2: Emission summary FCC restricted band from 2200 to 2390 MHz (EDR 2)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2483.5	54	74	36.362	52.125	17.638	21.875	170	1506	Horz
2483.5	54	74	36.301	52.046	17.699	21.954	170	1506	Horz
Table DEA	0.2. Emico	ion oumm		otriotod b	and from	0402 E to 2	500 MU- /		

 Table RE09.3: Emission summary FCC restricted band from 2483.5 to 2500 MHz (EDR 2)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
2389.8	54	74	34.039	48.2	19.961	25.8	166	1844	Horz
2390	54	74	34.06	48.211	19.94	25.789	166	1844	Horz

Table RE09.4: Emission summary FCC restricted band from 2200 to 2390 MHz (EDR 3)

Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Azimuth Height	
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree) (mm)		
2483.5	54	74	43.128	71.922	10.872	2.078	170	1506	Horz
2483.5	54	74	42.975	72.169	11.025	1.831	170	1506	Horz

Table RE09.5: Emission summary FCC restricted band from 2483.5 to 2500 MHz (EDR 3)

The graphs below show the background spectrum observed during pre-scan, as well as the final data points from the table above.

Page 59 of 115	Page 59 of 115 GCL Test Report 2023-018						
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin							

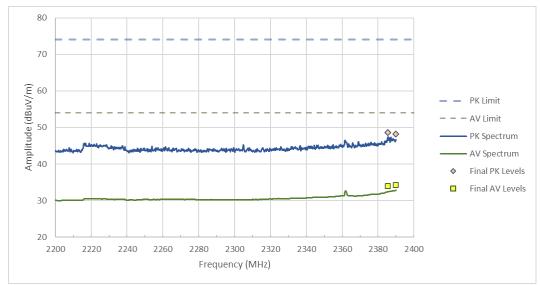


Figure RE09.1: Spectral data FCC restricted band from 2200 to 2390 MHz (EDR 2)

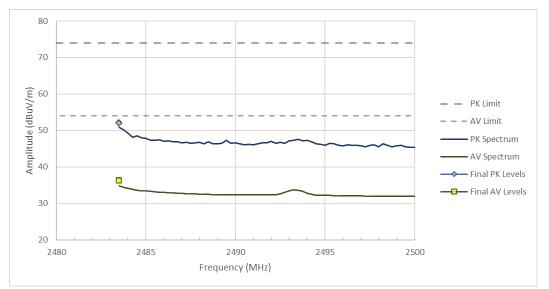


Figure RE09.2: Spectral data FCC restricted band from 2483.5 to 2500 MHz (EDR 2)

Page 60 of 115	Page 60 of 115 GCL Test Report 2023-018						
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin							

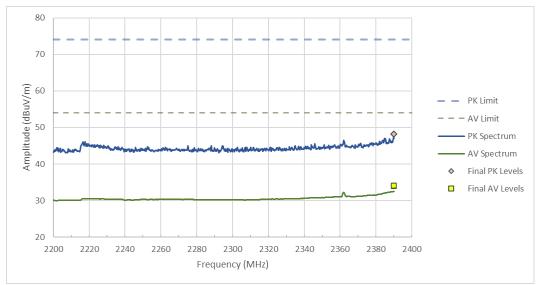


Figure RE09.3: Spectral data FCC restricted band from 2200 to 2390 MHz (EDR 3)

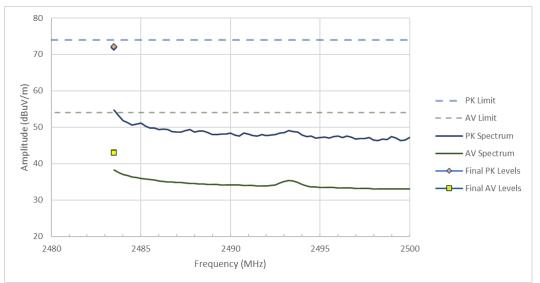


Figure RE09.4: Spectral data FCC restricted band from 2483.5 to 2500 MHz (EDR 3)

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 61 of 115	GCL Test Report 2023-018						
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin							

Image removed for client confidentiality. See section 1 of this report to identify the report where

the photos may be viewed.

Figure RE09.5: EUT test setup, front view (Z orientation)

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure RE09.6: EUT test setup, reverse view (Z orientation)

This line is the end of the test record.

Page 62 of 115	Page 62 of 115 GCL Test Report 2023-018						
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin							

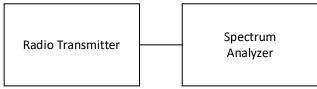
Test Record Transmitter Power Spectral Density Test IDs TR6, TR7 and TR8 Project GCL-0304

Test Date(s)	10 Mar 2023
Test Personnel	Majid Farah
Product Model	A04331
Serial Number tested	3437296908
Operating Mode	M3 (BLE Tx), M7 (ANT Tx) and M17 (BT Class Tx)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Test Standards:	FCC Part 15, ANSI C63.10, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Antenna Gain	-3.43 dBi, as reported by the client
Radio Protocol	Bluetooth (BR, EDR2 and EDR3), BLE (Bluetooth Low Energy), ANT
Pass/Fail Judgment:	PASS
Test record created by: Date of this record: Original record, Version A.	Majid Farah 24 Mar 2023

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
Signal analyzer PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024
Table TDC 1. Test equipment used					

Table TR6.1: Test equipment used


Software Used: Keysight PXE software A.33.03

Test Method

The basic test standards provide options for the test method. The following test methods were applied. ANSI C63.10: PKPSD (11.10.2)

Test Setup

This block diagram shows the test equipment setup.

Figure TR6.1: Test setup

Test Data

Each measurement is made conducted from the antenna port with the transmitter on a specified channel and in a selected transmission protocol. The results include the effects of any measurement cable losses. Results reported as EIRP include the effect of antenna gain.

Page 63 of 115	Page 63 of 115 GCL Test Report 2023-018					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

The highest PSD for each mode are highlighted in yellow, and graphical results are provided for those cases. The PSD limit is 8 dbm per 3 KHz.

		Frequency (MHz)								
	2402	2404	2440	2478	2480					
Bluetooth BR	0.96	NT	1.38	NT	1.16					
Bluetooth EDR2	-4.56	NT	-4.13	NT	-4.40					
Bluetooth EDR3	-4.86	NT	-4.49	NT	-4.36					
BLE 1 Mbps	-17.71	NT	-13.86	NT	-16.06					
BLE 2 Mbps	NT	-13.55	-14.41	-18.05	NT					
ANT	-17.80	NT	-11.20	NT	-16.10					

Table TR6.2: Summary of results

NT: (Not tested) means the requirement is or may not be applicable by EUT or it is not required by standards.

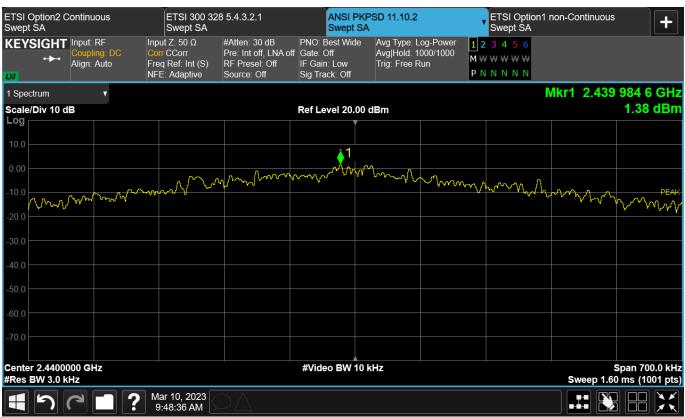


Figure TR6.2: Test data for Bluetooth BR on 2440 MHz

Page 64 of 115	ge 64 of 115 GCL Test Report 2023-018						
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin							

ETSI Swep	Option2 (t SA	Continuou	3	ETSI 300 328 Swept SA	3 5.4.3.2.1	ANSI Swept	PKPSD 11.1	0.2	ETS Swe	l Option1 ı pt SA	non-Continuous	+
KEY	'SIGHT +→-	Input: RF Coupling: Align: Aut	DC Co o Fre	out Ζ: 50 Ω nr CCorr eq Ref: Int (S) Έ: Adaptive	#Atten: 30 dB Pre: Int off, LNA off RF Presel: Off Source: Off	PNO: Best Wi Gate: Off IF Gain: Low Sig Track: Off		e: Log-Power d: 1000/1000 ee Run	1 2 3 4 M₩₩₩ P N N N	₩₩		
1 Spe	ctrum	•								Ν		974 0 GHz
Scale Log	e/Div 10 c	B				Ref Level 0.	00 dBm				•	-13.86 dBm
-10.0							Ī					
-20.0		1	ռուծորին ((((())))	ARAPERTARIA AND A AND					NANANAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		<u></u>	PEAK
-30.0	WWWW	MMMM	AMALALALA.		41 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA						<u>, en an an</u>	MMMMMMMMMMMM
-40.0												
-50.0												
-60.0												
-70.0												
-80.0												
-90.0												
	er 2.4400 BW 3.0 k					#Video BW	10 kHz					Span 1.300 MHz 0 ms (1001 pts)
H	5	C		lar 10, 2023								

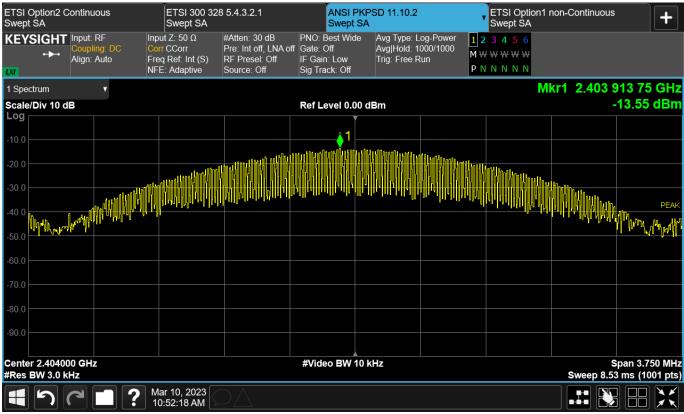


Figure TR6.4: Test data for BLE 2 Mbps on 2404 MHz

Page 65 of 115 GCL Test Report 2023-018		Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

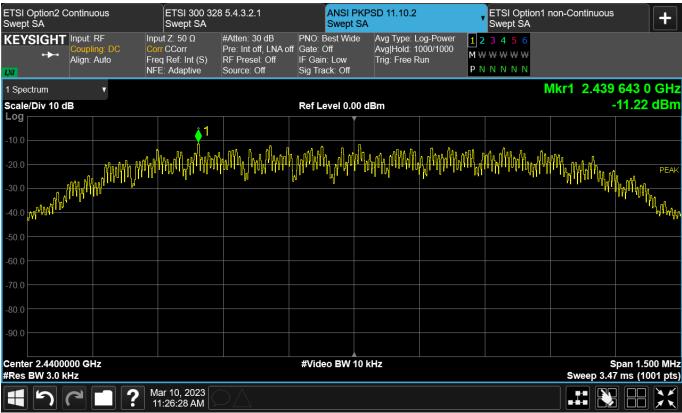


Figure TR6.5: Test data for ANT on 2440 MHz

This line is the end of the test record.

Page 66 of 115	Page 66 of 115 GCL Test Report 2023-018				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

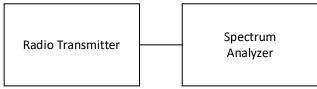
Test Record Transmitter Power Spectral Density Test IDs TR9 Project GCL-0304

Test Date(s)	3,6,9 and 24 Mar 2023
Test Personnel	Majid Farah
Product Model	A04331
Serial Number tested	3437296908
Operating Mode	M9 (WiFi Tx)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Test Standards:	FCC Part 15, ANSI C63.10, RSS-GEN, RSS-247 (as noted in Section 6 of the report).
Antenna Gain	-3.43 dBi, as reported by the client
Radio Protocol	WiFi (IEEE 802.11 b/g/n)
Pass/Fail Judgment:	PASS
Test record created by: Date of this record: Original record, Version A.	Majid Farah 24 Mar 2023

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
Signal analyzer PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024
Table TDO 1. Test equipment used					

Table TR9.1: Test equipment used


Software Used: Keysight PXE software A.33.03

Test Method

The basic test standards provide options for the test method. The following test methods were applied. ANSI C63.10: PKPSD (11.10.2)

Test Setup

This block diagram shows the test equipment setup.

Figure TR9.1: Test setup

Test Data

Each measurement is made conducted from the antenna port with the transmitter on a specified channel and in a selected transmission protocol. The results include the effects of any measurement cable losses. Results reported as EIRP include the effect of antenna gain.

Page 67 of 115 GCL Test Report 2023-018		Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

The highest PSD for each mode are highlighted in yellow, and graphical results are provided for those cases. The PSD limit is 8 dbm per 3 KHz.

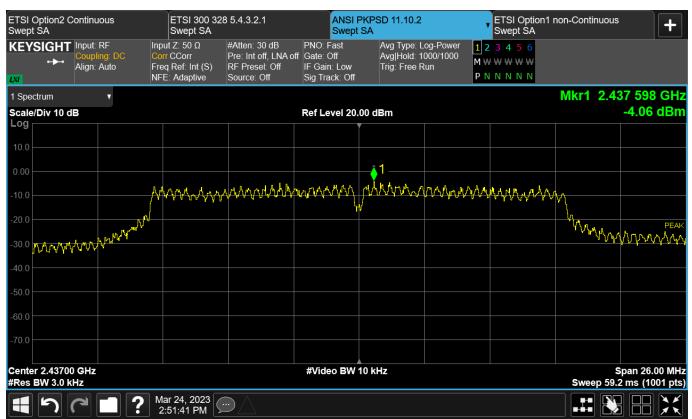

		Channel No.				
Mode	Data rate (Mbps)	1	6	11	12	13
В	1	-6.06	3.93	1.35	-3.47	-5.00
В	2	-2.53	-0.95	-2.82	-8.55	-9.92
В	11	-6.34	-5.31	-7.06	-12.28	-13.98
G	6	-11.67	-4.06	-8.76	-14.73	-16.11
G	54	-13.57	-9.30	-10.57	-14.36	-15.69
Ν	MCS0	-13.44	-5.26	-11.80	-14.69	-15.96
Ν	MCS2	-12.58	-4.05	-11.00	-13.10	-14.64
Ν	MCS7	-14.09	-12.02	-12.14	-14.22	-15.01

Table TR9.2: Summary of results

Figure TR9.2: Test data for IEEE 802.11 b 1 Mbps on Ch. 6

Page 68 of 115 GCL Test Report 2023-018		Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

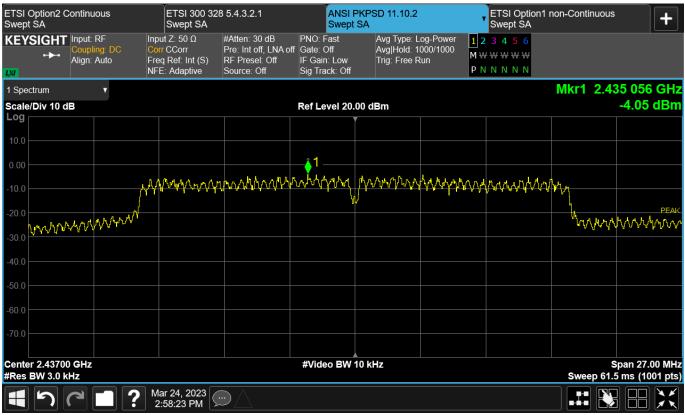


Figure TR9.4: Test data for IEEE 802.11 n MCS2 on Ch. 6 This line is the end of the test record.

Page 69 of 115 GCL Test Report 2023-018		Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Test Record Transmitter Frequency Stability Test IDs TR33, TR34 and TR35 Project GCL-0304

Test record created by:	Majid Farah
Date this record:	24 Mar 2023
Pass/Fail Judgment:	PASS
Radio Protocol	Bluetooth (BR, EDR2 and EDR3), BLE (Bluetooth Low Energy), ANT
Test Standards:	FCC part 15, RSS-GEN, RSS-210, ANSI C63.10 (as noted in Section 6 of the report)
Operating Mode	M3 (BLE Tx), M7 (ANT Tx) and M17 (BT Class Tx)
Arrangement	A1 (PwrA)
Nominal Input Power	5 Vdc
Test Date(s)	17 and 20 Mar 2023
Test Personnel	Majid Farah
Product Model	A04331
Serial Number tested	3437296908

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
DMM Multimeter	FLUKE	79 III	71740743	18-Apr-2022	15-Apr-2023
Signal analyzer PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024
Thermometer	Thermco	ACCD370P	210607316	11-Aug-2021	15-Aug-2023
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
Thermal Chamber	TPS	T2RC	32774-02	19-Oct-22	15-Oct-23
Power source	TENMA	72-2080	2440	Calibration	Not Required

Table TR33.1: Equipment used

Software Used: PXE Software Revision A.33.03, FrequencyStabilityAnalysistemplateV1.xlsx

Test Method

The RSS-GEN standard requires a frequency stability test with variations in temperature and supply voltage, but RSS-247 does not provide further guidance on this test. RSS-GEN suggests one possible criterion for unlicensed transmitters could be that the carrier remains in the central 80% of the frequency band. However, the Bluetooth and ANT protocols have carriers that are intentionally closer to the band edge. The basic concept applied here is that the 6 dBc Occupied Bandwidth of the modulated signal should remain within the 2400-2483.5 MHz radio band. To evaluate this, the peak carrier level and the level at the band edge are compared to ensure that signal at the band edge is reduced at least 6 dB across the specified range of voltages and temperatures. The data is reported in terms of dBc as a positive value, meaning we report the ratio between the peak carrier signal level and the level at the band edge to demonstrate that the resulting intentional signals remained within the allowed band.

Bluetooth, BLE and ANT use channel plans with a minimum transmission center frequency at 2402 MHz and a maximum at 2480 MHz. EDR2 was selected as the worst case in Bluetooth to investigate, due to its higher

Page 70 of 115	GCL Test Report 2023-018	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

occupied bandwidth. Additional information regarding Bluetooth, BLE and ANT technologies is provided in the following table.

	First Channel	Last Channel	Channel spacing	Data rate
	MHz	MHz	MHz	Mb/s
Bluetooth BR	2402	2480	1	1
Bluetooth EDR2	2402	2480	1	2
Bluetooth EDR3	2402	2480	1	3
BLE1	2402	2480	2	1
BLE2	2404	2478	2	2
ANT	2402	2402	1	60 Kb/s

Table TR33.2 Bluetooth, BLE and ANT overview

The test sample was placed in a thermal chamber and connected to an appropriate dc power source. The sample has an appropriate output to be used for conducted measurement. The analyzer was set up to detect radio signals from the test sample.

The test temperatures range is from +50 °C to -20 °C by 10 °C decrement at each test step for nominal input voltage (5 V). For the voltage variation test at +20 °C, the voltage is to be varied 15% above and below nominal input voltage. Data was taken at 5 Vdc and 15% lower at 4.25 Vdc plus 15% higher at 5.75 Vdc.

Test Data

The various standards require observation of the stability for transmission frequency and/or power at certain environmental extremes. The reference is performance on nominal input voltage and a temperature of 20 °C. Where the standards cited here apply to different limits or conditions, the most stringent limits and conditions have been applied.

During Bluetooth, BLE and ANT test mode, each measurement is made conducted from the antenna port of the sample with the transmitter continuous "ON" at a specified channel and in a selected transmission protocol. The amplitude results are unscaled and may not include the effects such as cable losses. Such effects are minimal when comparing two nearby data points in a single spectral scan.

Yellow highlights indicate the highest level for a protocol, for which an image of the spectrum is also provided. In the spectral plots, the data sets have been combined to present the low and high channel results side by side. Orange diamond markers indicate the spectral peak, which the black square markers are at the 2400 MHz or 2483.5 MHz band edge.

Tx Mode	Temp	Volts	Low Ch.	High Ch.
	°C	Vdc	dBc	dBc
BT EDR2	50	5	28.6	47.8
BT EDR2	40	5	27.4	48.3
BT EDR2	30	5	28.0	50.3
BT EDR2	20	5	27.5	49.8
BT EDR2	10	5	28.4	48.8
BT EDR2	0	5	28.6	50.4
BT EDR2	-10	5	29.2	51.7
BT EDR2	-20	5	29.4	51.9

Table TR33.3 Difference between peak and band edge levels for Bluetooth EDR2 transmissions during temperature variations

Page 71 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

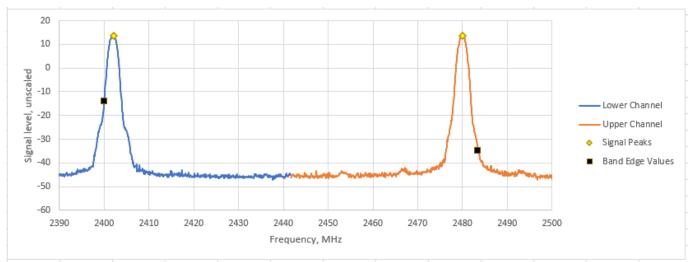


Figure TR33.1: Spectral data for Bluetooth EDR2 at 40 °C

Tx Mode	Temp	Volts	Low Ch.	High Ch.
	°C	Vdc	dBc	dBc
BT EDR2	20	4.25	27.2	49.4
BT EDR2	20	5	27.5	49.8
BT EDR2	20	5.75	27.5	49.1

Table TR33.4 Difference between peak and band edge levels for Bluetooth EDR2 transmissions at 20 °C during voltage variations

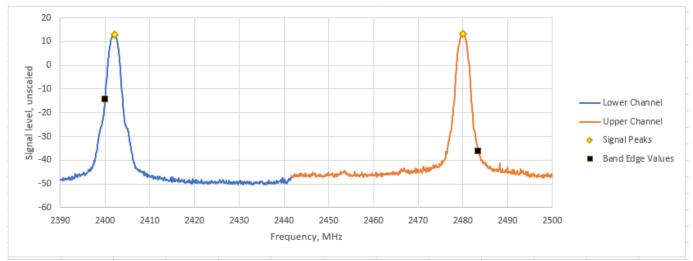


Figure TR33.2: Spectral data for Bluetooth EDR2 at 20 °C and 4.25 Vdc

Page 72 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Tx Mode	Temp	Volts	Low Ch.	High Ch.
	°C	Vdc	dBc	dBc
BLE 1 Mbps	50	5	22.9	40.8
BLE 1 Mbps	40	5	23.4	41.5
BLE 1 Mbps	30	5	24.1	41.3
BLE 1 Mbps	20	5	22.6	42.9
BLE 1 Mbps	10	5	23.0	40.2
BLE 1 Mbps	0	5	23.7	41.4
BLE 1 Mbps	-10	5	39.6	41.3
BLE 1 Mbps	-20	5	23.9	42.1

Table TR33.5 Difference between peak and band edge levels for BLE 1 Mbps transmissions during temperature variations

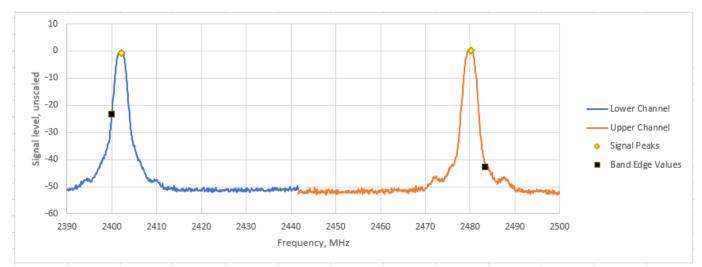


Figure TR33.3: Spectral data for BLE 1 Mbps at 20 °C

Tx Mode	Temp	Volts	Low Ch.	High Ch.
	°C	Vdc	dBc	dBc
BLE 1 Mbps	20	4.25	23.7	41.7
BLE 1 Mbps	20	5	22.6	42.9
BLE 1 Mbps	20	5.75	23.1	42.8

Table TR33.6 Difference between peak and band edge levels for BLE 1 Mbps transmissions at 20 °C during voltage variations

Page 73 of 115	GCL Test Report 2023-018	Version A
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.		
Garmin		

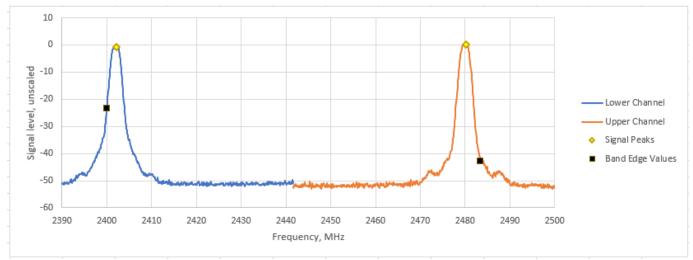


Figure TR33.4: Spectral data for BLE 1 Mbps at 20 °C and 5 Vdc

Tx Mode	Temp	Volts	Low Ch.	High Ch.
	°C	Vdc	dBc	dBc
BLE 2 Mbps	50	5	33.3	38.9
BLE 2 Mbps	40	5	33.1	37.5
BLE 2 Mbps	30	5	34.0	38.2
BLE 2 Mbps	20	5	33.5	37.8
BLE 2 Mbps	10	5	34.0	37.6
BLE 2 Mbps	0	5	35.8	36.6
BLE 2 Mbps	-10	5	33.6	38.2
BLE 2 Mbps	-20	5	33.8	38.1

Table TR33.7 Difference between peak and band edge levels for BLE 2 Mbps transmissions during temperature variations

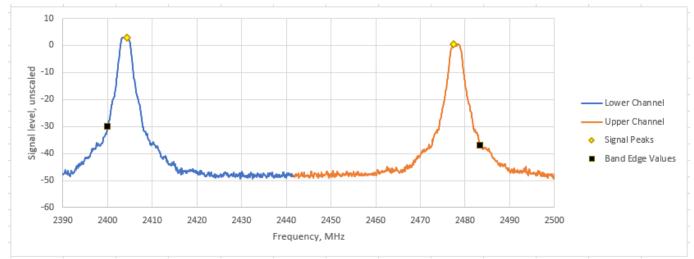


Figure TR33.5: Spectral data for BLE 2 Mbps at 40 °C

Page 74 of 115	GCL Test Report 2023-018	Version A
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.		
Garmin		

Tx Mode	Temp	Volts	Low Ch.	High Ch.
	°C	Vdc	dBc	dBc
BLE 2 Mbps	20	4.25	33.3	37.3
BLE 2 Mbps	20	5	33.5	37.8
BLE 2 Mbps	20	5.75	32.6	37.8

Table TR33.8 Difference between peak and band edge levels for BLE 2 Mbps transmissions at 20 °C during voltage variations

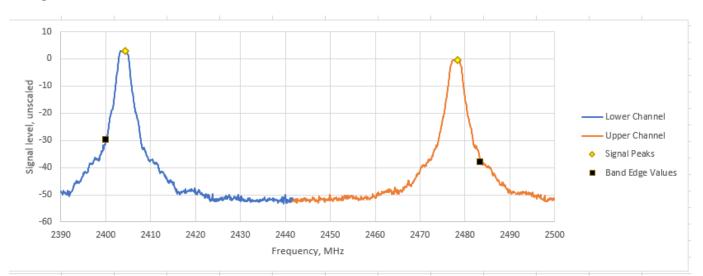


Figure TR33.6: Spectral data for BLE 2 Mbps at -20 °C and 5.75 Vdc

Tx Mode	Temp	Volts	Low Ch.	High Ch.
	°C	Vdc	dBc	dBc
ANT	50	5	23.7	41.2
ANT	40	5	25.2	43.0
ANT	30	5	25.1	43.8
ANT	20	5	24.0	41.5
ANT	10	5	24.0	42.6
ANT	0	5	25.9	41.6
ANT	-10	5	25.3	43.5
ANT	-20	5	24.3	41.7

Table TR33.9 Difference between peak and band edge levels for ANT transmissions during temperature variations

Page 75 of 115	GCL Test Report 2023-018	Version A
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.		
Garmin		

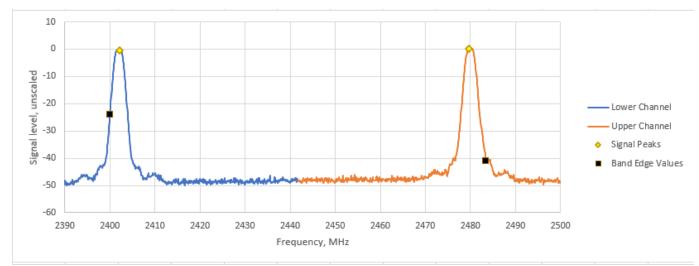


Figure TR33.7: Spectral data for ANT at 50 °C

Tx Mode	Temp	Volts	Low Ch.	High Ch.
	°C	Vdc	dBc	dBc
ANT	20	4.25	24.2	40.5
ANT	20	5	24.0	41.5
ANT	20	5.75	24.2	41.6

Table TR33.10 Difference between peak and band edge levels for ANT transmission at 20 °C during voltage variations

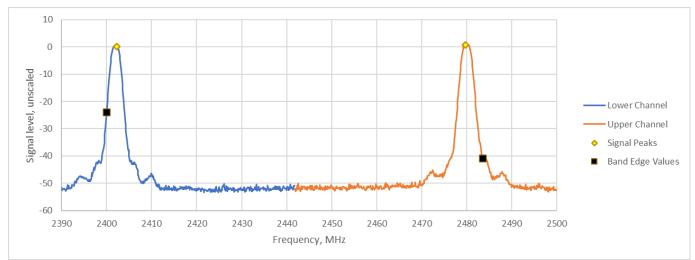


Figure TR33.8: Spectral data for ANT at 20 °C and 5 Vdc

Page 76 of 115	GCL Test Report 2023-018	Version A
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.		
Garmin		

Setup Block Diagram

The following block diagrams show the EUT configured and arranged in the manner which it was measured.

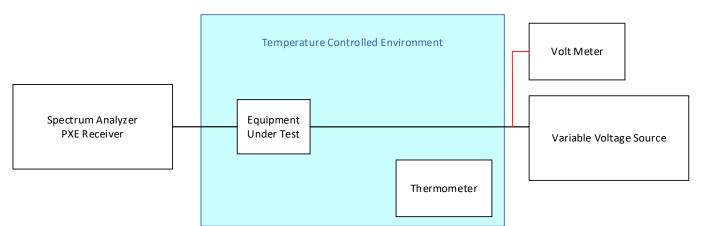


Figure TR33.9: Schematic drawing of the test equipment setup for Bluetooth, BLE and ANT

Page 77 of 115	GCL Test Report 2023-018	Version A
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.		
Garmin		

Test Record Transmitter Frequency Stability Test IDs TR36 Project GCL-0304

Test Date(s)	17 and 20 Mar 2023
Test Personnel	Majid Farah
Product Model	A04331
Serial Number tested	3437296908
Operating Mode	M9 (WiFi Tx)
Arrangement	A1 (PwrA)
Nominal Input Power	5 Vdc
Test Standards:	FCC part 15, RSS-GEN, RSS-210, ANSI C63.10 (as noted in Section 6 of the report)
Radio Protocol	WiFi (IEEE 802.11 b/g/n)
Pass/Fail Judgment:	PASS
Test record created by:	Majid Farah
Date this record:	24 Mar 2023

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
DMM Multimeter	FLUKE	79 III	71740743	18-Apr-2022	15-Apr-2023
Signal analyzer PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024
Thermometer	Thermco	ACCD370P	210607316	11-Aug-2021	15-Aug-2023
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
Thermal Chamber	TPS	T2RC	32774-02	19-Oct-22	15-Oct-23
Power source	TENMA	72-2080	2440	Calibration	Not Required

Table TR36.1: Equipment used

Software Used: PXE Software Revision A.33.03, FrequencyStabilityAnalysistemplateV1.xlsx

Test Method

The RSS-GEN standard requires a frequency stability test with variations in temperature and supply voltage, but RSS-247 does not provide further guidance on this test. RSS-GEN suggests one possible criterion for unlicensed transmitters could be that the carrier remains in the central 80% of the frequency band. However, the Bluetooth and ANT protocols have carriers that are intentionally closer to the band edge. The basic concept applied here is that the 6 dBc Occupied Bandwidth of the modulated signal should remain within the 2400-2483.5 MHz radio band. To evaluate this, the peak carrier level and the level at the band edge are compared to ensure that signal at the band edge is reduced at least 6 dB across the specified range of voltages and temperatures. The data is reported in terms of dBc as a positive value, meaning we report the ratio between the peak carrier signal level and the level at the band edge to demonstrate that the resulting intentional signals remained within the allowed band.

The EUT has a minimum transmission center frequency at 2412 MHz (channel 1) and a maximum at 2472 MHz (channel 13). The temperature stability of these transmissions was observed for channel 1, 11 and 13 and for different link rates of IEEE 802.11 b/g/n. b1, g9 and n MCS5 modulations were selected as the worst case to investigate due to their high occupied bandwidth.

Page 78 of 115	Version A				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin					

The test sample was placed in a thermal chamber and connected to an appropriate dc power source. The sample has an appropriate output to be used for conducted measurement. The analyzer was set up to detect radio signals from the test sample.

The test temperatures range is from +50 °C to -20 °C by 10 °C decrement at each test step for nominal input voltage (5 V). For the voltage variation test at +20 °C, the voltage is to be varied 15% above and below nominal input voltage. Data was taken at 5 Vdc and 15% lower at 4.25 Vdc plus 15% higher at 5.75 Vdc.

Test Data

The various standards require observation of the stability for transmission frequency and/or power at certain environmental extremes. The reference is performance on nominal input voltage and a temperature of 20 °C. Where the standards cited here apply to different limits or conditions, the most stringent limits and conditions have been applied.

During WiFi test mode, each measurement is made conducted from the antenna port of the sample with the transmitter continuous "ON" at a specified channel and in a selected transmission protocol. The amplitude results are unscaled and may not include the effects such as cable losses. Such effects are minimal when comparing two nearby data points in a single spectral scan.

Yellow highlights indicate the highest level for a protocol, for which an image of the spectrum is also provided. In the spectral plots, the data sets have been combined to present the low and high channel results side by side. Orange diamond markers indicate the spectral peak, which the black square markers are at the 2400 MHz or 2483.5 MHz band edge.

Page 79 of 115	Version A					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Tx Mode	Temp	Volts	Ch. 1	Ch. 11	Ch. 13
WiFi	°C	Vdc	dBc	dBc	dBc
B 1 Mbps	50	5	38.6	48.0	43.8
B 1 Mbps	40	5	37.2	43.7	43.4
B 1 Mbps	30	5	37.6	48.7	43.7
B 1 Mbps	20	5	36.2	47.8	43.3
B 1 Mbps	10	5	35.7	47.4	44.0
B 1 Mbps	0	5	38.2	48.8	43.8
B 1 Mbps	-10	5	37.8	48.2	43.2
B 1 Mbps	-20	5	37.3	48.4	43.9

Table TR36.2 Difference between peak and band edge levels for IEEE 802.11 b 1 Mbps transmissions during temperature variations

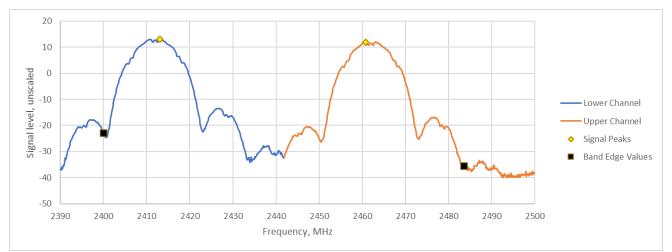


Figure TR36.1: Spectral data for IEEE 802.11 b 1 Mbps at 10 °C which represent Ch1 and Ch11

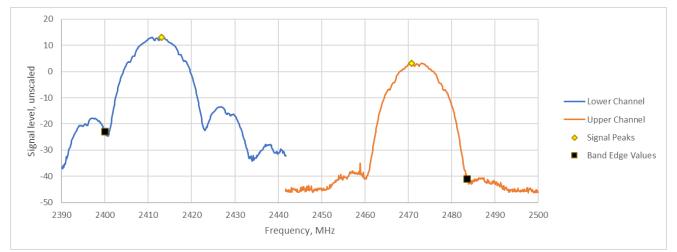


Figure TR36.2: Spectral data for IEEE 802.11 b 1 Mbps at 10 °C which represent Ch1 and Ch13

Page 80 of 115	Version A					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Tx Mode	Temp	Volts	Ch. 1	Ch. 11	Ch. 13
WiFi	°C	Vdc	dBc	dBc	dBc
B 1 Mbps	20	4.25	36.8	44.8	44.2
B 1 Mbps	20	5	36.2	47.8	43.3
B 1 Mbps	20	5.75	36.7	48.4	44.5

Table TR36.3 Difference between peak and band edge levels for IEEE 802.11 b 1 Mbps transmissions at 20 °C during voltage variations

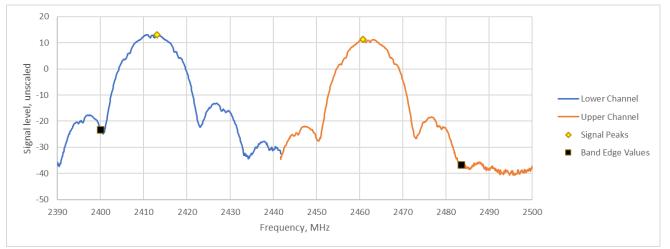


Figure TR36.3: Spectral data for IEEE 802.11 b 1 Mbps at 20 °C and 5 Vdc which represent Ch1 and Ch11

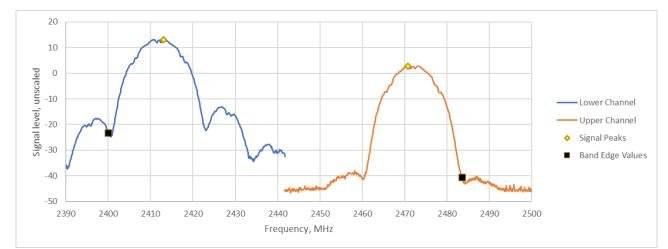


Figure TR36.4: Spectral data for IEEE 802.11 b 1 Mbps at 20 °C and 5 Vdc which represent Ch1 and Ch13

Page 81 of 115	^{81 of 115} GCL Test Report 2023-018					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Tx Mode	Temp	Volts	Ch. 1	Ch. 11	Ch. 13
WiFi	°C	Vdc	dBc	dBc	dBc
G 9 Mbps	50	5	37.4	33.1	42.0
G 9 Mbps	40	5	37.5	36.5	42.3
G 9 Mbps	30	5	38.1	36.8	49.4
G 9 Mbps	20	5	38.9	33.0	42.5
G 9 Mbps	10	5	38.1	33.9	42.2
G 9 Mbps	0	5	38.2	32.9	40.7
G 9 Mbps	-10	5	36.9	33.8	40.6
G 9 Mbps	-20	5	36.7	37.0	39.4

Table TR36.4 Difference between peak and band edge levels for IEEE 802.11 g 9 Mbps transmissions during temperature variations

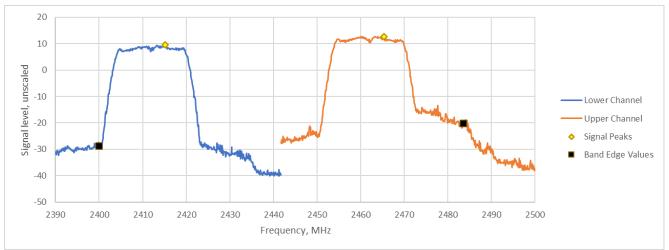


Figure TR36.5: Spectral data for IEEE 802.11 g 9 Mbps at 0 °C which represent Ch1 and Ch11

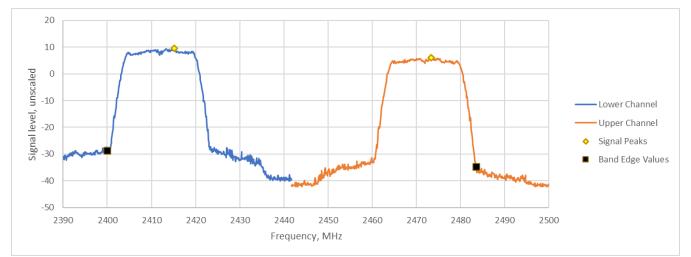


Figure TR36.6: Spectral data for IEEE 802.11 g 9 Mbps at 0 °C which represent Ch1 and Ch13

Page 82 of 115	ge 82 of 115 GCL Test Report 2023-018					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Tx Mode	Temp	Volts	Ch. 1	Ch. 11	Ch. 13
WiFi	°C	Vdc	dBc	dBc	dBc
G 9 Mbps	20	4.25	38.7	36.8	42.0
G 9 Mbps	20	5	38.9	33.0	42.5
G 9 Mbps	20	5.75	38.5	34.8	42.5

Table TR36.5 Difference between peak and band edge levels for IEEE 802.11 g 9 Mbps transmissions at20 °C during voltage variations

Figure TR36.7: Spectral data for IEEE 802.11 g 9 Mbps at 20 °C and 5 Vdc which represent Ch1 and Ch11

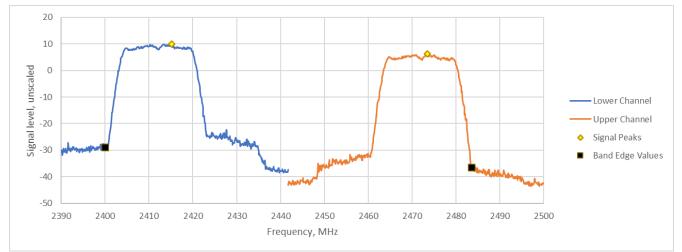


Figure TR36.8: Spectral data for IEEE 802.11 g 9 Mbps at 20 °C and 5 Vdc which represent Ch1 and Ch13

Page 83 of 115	Version A					
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Tx Mode	Temp	Volts	Ch. 1	Ch. 11	Ch. 13
WiFi	°C	Vdc	dBc	dBc	dBc
N MCS5	50	5	33.7	33.9	35.7
N MCS5	40	5	35.6	35.6	37.7
N MCS5	30	5	33.2	33.5	34.9
N MCS5	20	5	31.0	32.9	31.7
N MCS5	10	5	31.9	33.9	30.2
N MCS5	0	5	29.9	35.2	31.6
N MCS5	-10	5	27.1	33.8	31.1
N MCS5	-20	5	28.5	33.3	31.5

Table TR36.6 Difference between peak and band edge levels for IEEE 802.11 n MCS5 transmissions during temperature variations

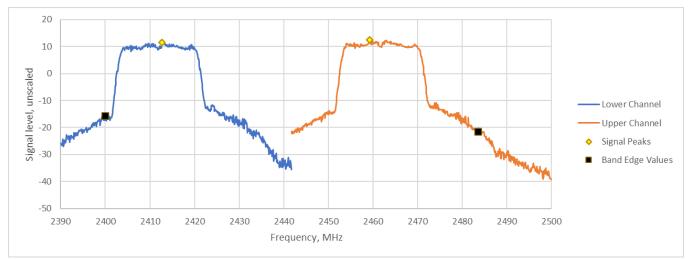


Figure TR36.9: Spectral data for IEEE 802.11 n MCS5 at -10 °C which represent Ch1 and Ch11

Figure TR36.10: Spectral data for IEEE 802.11 n MCS5 at -10 °C which represent Ch1 and Ch13

Page 84 of 115	GCL Test Report 2023-018	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Tx Mode	Temp	Volts	Ch. 1	Ch. 11	Ch. 13
WiFi	°C	Vdc	dBc	dBc	dBc
N MCS5	20	4.25	31.8	32.8	33.0
N MCS5	20	5	31.0	32.9	31.7
N MCS5	20	5.75	30.3	34.6	33.3

Table TR36.7 Difference between peak and band edge levels for IEEE 802.11 n MCS5 transmissions at 20 °C during voltage variations

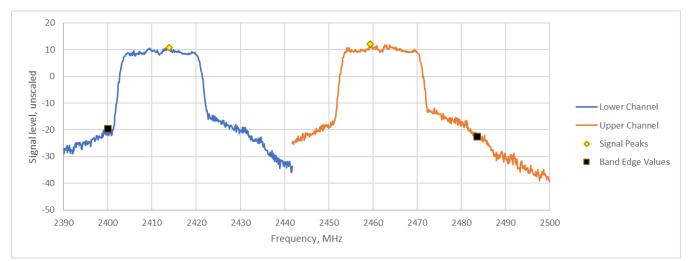


Figure TR36.11: Spectral data for IEEE 802.11 n MCS5 at 20 °C and 5.75 Vdc which represent Ch1 and Ch11



Figure TR36.12: Spectral data for IEEE 802.11 n MCS5 at 20 °C and 5.75 Vdc which represent Ch1 and Ch13

Page 85 of 115	GCL Test Report 2023-018	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Setup Block Diagram

The following block diagrams show the EUT configured and arranged in the manner which it was measured.

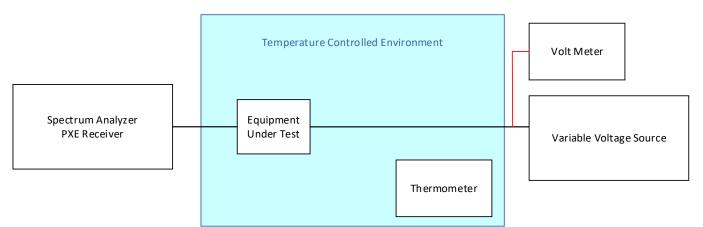


Figure TR36.13: Schematic drawing of the test equipment setup for WiFi (IEEE 802.11 b/g/n)

Page 86 of 115	GCL Test Report 2023-018	Version A						
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
	Garmin							

Test Record Other Bandwidth Tests Test IDs TR15 (TR14 – TR17) Project GCL0304

Test record created by: Date of this record:	David Arnett 25 Mar 2023
Pass/Fail Judgment:	Reported
Radio Band Arrangement	IEEE 802.11 b/g/n (WiFi) 2480 to 2483.5 MHz A3 (PwrPc)
Radio Protocol	Bluetooth Classic (Including EDR2 and EDR3), Bluetooth Low Energy (BLE), ANT,
Test Standards:	FCC Part 2.202, ANSI C63.10, TRC-43, RSS-GEN (as noted in Section 6 of the report).
Product Model Serial Number tested	A04331 3437296908
Test Date(s) Test Personnel	21 Feb, 24 Feb, 25 Mar2023 Majid Farah, David Arnett

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due		
PXE Receiver 44GHz	Keysight	N9048B	MY62220139	30-Jan-2023	1-Feb-2024		
Table TD45 4. List of test a minmont used							

Table TR15.1: List of test equipment used

Test Software Used: Keysight PXE firmware A.33.03

Background

There are regulatory requirements to present two additional types of bandwidth analyses: 99% Occupied Bandwidth and Necessary Bandwidth. There are no limits or functional requirements around these data, beyond a reporting requirement. The contents of this test record are for information, and do not affect compliance of the devices that are the subject of this report.

Test Setup

This block diagram shows the test equipment setup.

Figure TR15.1: Test setup

Occupied Bandwith, 99% Test Method

During this test the transmitter output is fed directly, or through RF attenuators, to the spectrum analyzer. The analyzer has a built-in capability to identify the minimum bandwidth that contains a specified percentage of the total power observed. The spectrum is scanned hundreds of times so that the varied effects of modulation are appropriately assessed. Since the focus is on the relative distribution of energy across a range of frequencies, the absolute amplitudes recorded during this test are not relevant and may not include cable losses or attenuation factors.

Page 87 of 115	GCL Test Report 2023-018	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Occupied Bandwith, 99% Test Data

The data for each type of bandwidth is summarized below, followed by the spectral data for the cases highlighted in yellow. Grey cells are cases where no measurement was made. The analysis threshold for this test was the bandwidth containing 99% of the observed power using the ANSI C63.10 method. The standards require testing a frequency near the bottom, middle, and top of the band. The measured bandwidth data are in bold font and have MHz as their units of measure for WiFi, and kHz for other radio types. Channel numbers are provided for WiFi. The Low-Mid-High frequency designators for Bluetooth Classic, Bluetooth Low Energy, and ANT radios are 2402, 2440, and 2480 MHz – except for BLE 2MB where the lowest and highest frequencies are limited to 2404 and 2478 MHz.

Mode	Speed	Low	Mid	High
BTC	BR	911	911	903
BTC	EDR2	1205	1203	1203
BTC	EDR3	1192	1191	1191
BLE	1 Mb	1301	1375	1333
BLE	2 Mb	2462	2487	2535
ANT	Fixed	1293	1762	1811

Table TR15.2: Units in kHz. Summary of 99% Occupied Bandwidth Data, ANT, BTC and BLE modes

Mode	Speed	Ch 1	Ch 6	Ch 11	Ch 12	Ch 13
В	1	15.640	15.494	15.224	14.972	14.979
В	2	15.658				14.944
В	5.5	14.661				14.774
В	11	14.969	15.060	14.874	14.781	14.773
G	6	17.061	20.583	17.104	17.050	17.060
G	9	17.082				17.056
G	12	16.829				16.825
G	18	16.768				16.775
G	24	16.826				16.809
G	36	16.940				16.909
G	48	16.804				16.843
G	54	16.861	17.237	16.928	16.857	16.839
Ν	0	17.742	23.718	17.727	17.704	17.702
Ν	1	17.687				17.652
Ν	2	17.694				17.651
Ν	3	17.692				17.651
Ν	4	17.715				17.676
N	5	17.766				17.751
N	6	17.734				17.683
Ν	7	17.663	17.699	17.706	17.654	17.645

Table TR15.3: Units in MHz. Summary of 99% Occupied Bandwidth Data, IEEE 802.11 WiFi modes

Page 88 of 115	GCL Test Report 2023-018	Version A				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
	Garmin					

ETSI BT Occupied BW	I	ANSI BT Occupied B	3W	ETSI WiF Occupied			ANSI WiFi Occupied BW		+
	Coupling: DC C Align: Auto F	nput Ζ: 50 Ω Corr Freq Ref: Int (S) NFE: Adaptive	Atten: 20 dB Pre: Int off, LNA off RF Presel: Off	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: Avg Hold: 20 Radio Std: N		GHz		
1 Graph	•						M	kr1 2.40183	
Scale/Div 10.0 c	IB			Ref Value 25.00	dBm				8.79 dBm
15.0 5.00 -5.00 -25.0 -35.0 -55.0 -65.0 Center 2.402000 #Res BW 43.000 2 Metrics) GHz			#Video BW 130.0	0 kHz			#Sweep 1.00	Span 4 MHz) s (1001 pts)
2 metros	Occupied Bandw Transmit Freq E x dB Bandwidth	1.2049 MHz	6.037 kHz 879.3 kHz			Measure Trac Total Power % of OBW Po x dB		18.2 dBm 99.00 % -6.00 dB	
	۲ – ۲	Feb 21, 2023 2:10:44 PM							

Figure TR15.1: Occupied bandwidth data for Bluetooth Classic EDR2 at low channel (2402 MHz)

Ali Graph	put: RF oupling: DC lign: Auto	Input Ζ: 50 Ω Corr CCorr Freq Ref: Int (S)	Atten: 12 dB Pre: Int off, LNA off	Trig: Free Run					
		NFE: Adaptive	RF Presel: Off		Center Free Avg Hold: 2 Radio Std:				
	▼						Mkr	1 2.47768	
ale/Div 10.0 dE	В			Ref Value 10.00	0 dBm			•	-7.32 dB
00				1					
.0							~~~~~		
.0	and the state of t							and the second s	
.0									
.0									
.0									
nter 2.478000 (es BW 43.000				#Video BW 130.	.00 KHZ			#Sweep 1.0	Span 4 M 00 s (1001)
1etrics									
						Measure Trace	Trace 1		
	Occupied Band	dwidth 2.5351 MHz				Total Power		5.94 dBm	
	Transmit Freq	Error	2.195 kHz			% of OBW Power		99.00 %	
	x dB Bandwidt		1.731 MHz			x dB		-6.00 dB	
		Feb 21, 2023 11:50:01 AM	\frown						

Figure TR15.2: Occupied bandwidth data for BLE 2Mbps at high channel (2478 MHz)

Page 89 of 115	Version A							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin								

	ANSI BT Occupied BW	¥	ETSI WiFi Occupied BW	_	ANSI WiFi Occupied B	W	ANSI DTS BT Occupied BW	+ >
	HT Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr Freq Ref: Int (S) NFE: Adaptive	Atten: 10 dB Pre: Int off, LNA off RF Presel: Off	Trig: Free Run Gate: Off #IF Gain: Low	Center Free Avg Hold: 2 Radio Std:			
1 Graph							Mkr1 2.479	656000 GHz
Scale/Div	10.0 dB			Ref Value 10.00	dBm			-5.25 dBm
0.00				♦ 1	~~~			
-10.0 -20.0								
-30.0	the second s							
-50.0								
-70.0								
	80000 GHz		#	#Video BW 130.	00 kHz			Span 4 MHz
#Res BW 4	43.000 kHz						#Sweep	1.00 s (1001 pts)
2 Metrics	•							
						Measure Trace	Trace 1	
	Occupied Ba	ndwidth						
		1.8114 MHz				Total Power	6.44 dBm	
	Transmit Fre		25.351 kHz			% of OBW Power	99.00 %	
	x dB Bandwi	dth	1.037 MHz			x dB	-6.00 dB	
•		Feb 21, 2023 10:56:57 AM						

Figure TR15.3: Occupied bandwidth data for ANT at high channel (2480 MHz)

Figure TR15.4: Occupied bandwidth data for 802.11b 2 Mbps at channel 1

Page 90 of 115	Version A							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin								

Occupied BW Occupied BW Occupied BW Concupied BW T KEYSIGHT Input: RF Opport Z: 50 0 Present of Lind (Lind Cate: Off Pre Ran) Center Freq: 2.43700000 GHz Atten: 32 dB Ref Fint off, LNAG Present off Presentoff Present off Present off Present off Present off Present off P	(
Comparison Concepting DC Free Int oft, LNA off Gale: Off NFE: Adaptive Avg Hold: 2020 Radio Std None Comparison Ref Value 30.00 dBm Scale/Div 8.0 dB Ref Value 30.00 dBm Comparison Ref Value 30.00 dBm Ref Value 30.00 dBm Comparison Ref Value 30.00 dBm Ref Value 30.00 dBm Ref Value 30.00 dBm 280 Ref Value 30.00 dBm Ref Value 30.00 dBm Ref Value 30.00 dBm 280 Ref Value 30.00 dBm Ref Value 30.00 dBm Ref Value 30.00 dBm 280 Ref Value 30.00 dBm Ref Value 30.00 dBm Ref Value 30.00 dBm 280 Ref Value 30.00 dBm Ref Value 30.00 dBm Ref Value 30.00 dBm </th <th>•</th> <th></th> <th></th> <th>ANSI WiFi Occupied E</th> <th>3W</th> <th></th> <th></th> <th></th> <th></th> <th>+</th> <th></th> <th></th>	•			ANSI WiFi Occupied E	3W					+		
Scale/Div 8.0 dB Ref Value 30.00 dBm Add Baw Add Baw Add Baw Add Baw Add Baw Add Baw Ref Value 30.00 dBm Add Baw Add Baw Ref Value 30.00 dBm Add Baw Ref Value 30.00 dBm PEAK Add Baw Ref Value 30.00 dBm PEAK Ref Value 30.00 dBm PEAK Ref Value 30.00 dBm PEAK Ref Value 30.00 MHz Span 44 MHz S	• • • A	Coupling:	DC Co DC Fre	rr CCorr eq Ref: Int (S)	Pre: Int off, LNA of	ff Gate: Off	,	Avg Hold: 2	0/20	GHz		
Log 22.0 4.0 6.0 dB 6.0 dB 7.40 6.0 dB 7.40 7.41 7.43 dB 7.43 dB 7.43 dB 7.43 dB 7.440 7.43 dB 7.440 7.43 dB 7.43	1 Graph	V										
14.0 -6.0.dB -6.0.dB 2.00 -2.00 -2.00 2.01 -2.00 -2.00 18.0 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.010 -2.00 -2.00 2.010 -2.00 -2.00 3 Boundary Metrics		3				Ref Value	30.00 dE	3m				
14.0 -6.0.dB -6.0.dB 2.00 -2.00 -2.00 2.01 -2.00 -2.00 18.0 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.00 -2.00 -2.00 2.010 -2.00 -2.00 2.010 -2.00 -2.00 3 Boundary Metrics	22 0					x	dB BW					
2.00 10.0 18.0 2.60 4.10							-6.0 dB					
100 Image: Constraint of the second seco									montany	<u>\</u>		
-100 -180 -280 -280 -280 -280 -420 -4 -420 -4				,	<i>M</i>					www.or		PEAK
260 34.0 42.0 Center 2.43700 GHz #Video BW 1.5000 MHz Span 44 MHz #Res BW 470.00 kHz Span 44 MHz #Sweep 1.00 s (1001 pts) 3 Boundary Metrics V X dB Reference X dB -6.00 dB Power 11.9 dBm Total Power 25.8 dBm Frequency 2.440476000 GHz Doccupied Bandwidth 2.428203400 GHz 1 dBm -24.5 dBc 2.448786263 GHz -7.43 dBm -33.2 dBc X dB Bandwidth 2.428609462 GHz 5.89 dBm 2.445296048 GHz 5.89 dBm			and a second and a second and a second as a second	all and the second second								and the former and the second of the second se
34.0 42.0 Image: Contex 2.43700 GHz #Video BW 1.5000 MHz Span 44 MHz #Res BW 470.00 kHz #Video BW 1.5000 MHz Span 44 MHz #Sweep 1.00 s (1001 pts) 3 Boundary Metrics Image: Contex 2.43700 GHz Image: Contex 2.43700 GHz Image: Contex 2.43700 GHz Image: Contex 2.4404 F6000 GHz 3 Boundary Metrics Image: Contex 2.5.8 dBm Frequency 2.4404 F6000 GHz Image: Contex 2.4404 F6000 GHz Total Power 25.8 dBm Frequency Abs Power Frequency Abs Power Occupied Bandwidth 2.42803400 GHz 1 dBm -24.5 dBc 2.448786263 GHz -7.43 dBm -33.2 dBc Occupied Bandwidth 2.428669462 GHz 5.89 dBm 2.445296048 GHz 5.89 dBm -33.2 dBc	and - 4-											
Center 2.43700 GHz #Video BW 1.5000 MHz Span 44 MHz #Res BW 470.00 kHz Sweep 1.00 s (1001 pts) 3 Boundary Metrics 3 Boundary Metrics 3 Boundary Metrics												
#Res BW 470.00 kHz #Sweep 1.00 s (1001 pts) 3 Boundary Metrics x dB Reference x dB -6.00 dB Power 11.9 dBm Power 11.9 dBm Frequency Abs Power Suddary Metrics X dB Reference x dB -6.00 dB Power 11.9 dBm Power Suddary Metrics Y dB -6.00 dB Power Suddary Metrics X dB -6.00 dB Power Suddary Power Suddary Suddary Power Suddary Suddary Sudary Sudary 	-42.0											
3 Boundary Metrics 3 Boundary Metrics Coccupied Bandwidth 20.583 MHz Total Power Total Power 25.8 dBm Cover Boundary Lower Boundary Frequency Abs Power Rel Power Rel Power Rel Power Frequency Abs Power Rel Power Rel Power Frequency Abs Power Rel Power Rel Power StadBm Coccupied Bandwidth 2.428203400 GHz 1 dBm -24.5 dBc 2.448786263 GHz -7.43 dBm -33.2 dBc -33.2 dBc					••	#Video BW	1.5000	ИHz		•		Span 44 MHz
Occupied Bandwidth 20.583 MHz x dB -6.00 dB Total Power 25.8 dBm Frequency 2.440476000 GHz Total Power 25.8 dBm Frequency 2.440476000 GHz Very Prequency Abs Power Frequency Abs Power Occupied Bandwidth 2.428203400 GHz 1 dBm -24.5 dBc 2.448786263 GHz -7.43 dBm Very Occupied Bandwidth 2.428669462 GHz 5.89 dBm 2.445296048 GHz 5.89 dBm -33.2 dBc	#Res BW 470.00) kHz									#Swe	ep 1.00 s (1001 pts)
20.583 MHz X dB -6.00 dB Power 11.9 dBm Total Power 25.8 dBm Frequency Lower Boundary Upper Boundary Frequency Abs Power Frequency Abs Power Frequency Abs Power Cocupied Bandwidth 2.428203400 GHz 1 dBm -24.5 dBc 2.448786263 GHz -7.43 dBm -33.2 dBc x dB Bandwidth 2.428669462 GHz 5.89 dBm 2.445296048 GHz 5.89 dBm 5.89 dBm	3 Boundary Metric	s ▼						x dE	8 Reference			
Total Power 25.8 dBm Frequency 2.440476000 GHz Lower Boundary Upper Boundary Upper Boundary Frequency Abs Power Rel Power Occupied Bandwidth 2.428203400 GHz 1 dBm -24.5 dBc 2.448786263 GHz -7.43 dBm -33.2 dBc x dB Bandwidth 2.428669462 GHz 5.89 dBm 2.445296048 GHz 5.89 dBm -7.45 dBc			Occupied				x dB		-6.00 dB			
Lower Boundary Upper Boundary Frequency Abs Power Rel Power Occupied Bandwidth 2.428203400 GHz 1 dBm -24.5 dBc 2.448786263 GHz -7.43 dBm -33.2 dBc x dB Bandwidth 2.428669462 GHz 5.89 dBm 2.445296048 GHz 5.89 dBm -35.89 dBm		Tota	Dower		25.8 dBm			2014	2 4404			
Frequency Abs Power Rel Power Frequency Abs Power Rel Power Occupied Bandwidth 2.428203400 GHz 1 dBm -24.5 dBc 2.448786263 GHz -7.43 dBm -33.2 dBc x dB Bandwidth 2.428669462 GHz 5.89 dBm 2.445296048 GHz 5.89 dBm -35.89 dBm		1012				Boundary	Flequel	Су				
x dB Bandwidth 2.428669462 GHz 5.89 dBm 2.445296048 GHz 5.89 dBm							Rel Po	wer			r Rel Power	
							-24.5					
		x dE	Bandwidth		2.428669462 GHz	5.89 dBm		2.4	145296048 GH	z 5.89 dBn	n	
					\odot							

Figure TR15.5: Occupied bandwidth data for 802.11g 6 Mbps at channel 6

Figure TR15.6: Occupied bandwidth data for 802.11n MCS0 at channel 6

Page 91 of 115	Version A					
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.						
Garmin						

Necessary Bandwidth Calculations

The Necessary Bandwidth is a theoretical value based on the specifications for a communication protocol, rather than the hardware implementation and a subsequent lab measurement. The analysis methods in FCC Part 2.202 and TRC-43 are the same for Bluetooth, ANT, and IEEE 802.11b WiFi. However, they differ for IEEE 802.11g and 11n systems because the Canadian TRC-43 standard provides different analysis methods for Orthogonal Frequency Division Multiplexing systems (OFDM). The tables below will show the analysis for most of the radios signals as a combined approach, then separately analyze the results for IEEE 802.11g and n systems. The tables below may include radio protocols that are not part of the product being evaluated.

The radio modulation schemes for Ant, for the various Bluetooth protocols, and for IEEE 802.11 b WiFi are a mix of Phase Shift Key (PSK) and Quadrature Amplitude Modulation (QAM) techniques. The Necessary Bandwidth calculations use the equations from 47CFR Part 2.202(g) table section 6. We have set the variable K=1, which leaves the equation for both PSK and QAM as:

 $B_N = 2R / Log_2(S)$

where B_N is the Necessary Bandwidth, R is the bit rate, and S is the number of signaling states.

Radio Type	R Mbps	К	S	LogBase2 of (S)	BN (MHz)
ANT / ANT+	1	1	2	1	2

Table TR15.101: Necessary Bandwidth for ANT and ANT+ Radio Protocols (FCC and TRC-43)

Radio Type	Sub-type	Method	R Mbps	К	S	LogBase2 of (S)	BN (MHz)
Bluetooth	BR	GFSK	1	1	2	1	2
	EDR2	Pi/4 DPSK	2	1	4	2	2
	EDR3	8DPSK	3	1	8	3	2
BLE	1Mbps	GFSK	1	1	2	1	2
	2Mbps	DQPSK	2	1	4	2	2

Table TR15.102: Necessary Bandwidth for Bluetooth Radio Protocols (FCC and TRC-43)

Radio Type	Sub-type	R Mbps	К	S	LogBase2 of (S)	BN (MHz)
802.11 b	1	1	1	2	1	2
	2	2	1	4	2	2
	5.5	5.5	1	4	2	5.5
	11	11	1	4	2	11

Table TR15.103: Necessary Bandwidth for IEEE 802.11 b Radio Protocol (FCC and TRC-43)

Page 92 of 115	age 92 of 115 GCL Test Report 2023-018							
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin								

Radio Type	Sub-type	R Mbps	К	S	LogBase2 of (S)	BN (MHz)
802.11 g	6	6	1	2	1	12
	9	9	1	2	1	18
	12	12	1	4	2	12
	18	18	1	4	2	18
	24	24	1	16	4	12
	36	36	1	16	4	18
	48	48	1	64	6	16
	54	54	1	64	6	18
802.11 n	MCS0	7.2	1	2	1	14.4
	MCS1	14.4	1	4	2	14.4
	MCS2	21.7	1	4	2	21.7
	MCS3	28.9	1	16	4	14.5
	MCS4	43.3	1	16	4	21.7
	MCS5	57.8	1	64	6	19.3
	MCS6	65	1	64	6	21.7
	MCS7	72.2	1	64	6	24.1

Table TR15.104: Necessary Bandwidth for IEEE 802.11 g and n 20 MHz Radio Protocols (FCC)

As a note, the bit rate for IEEE 802.11 n WiFi is calculated based on the IEEE standard's short guard interval of 400 nsec. If only the long guard interval of 800 nsec were implemented, the bit rate for MCS7would decrease to 65 Mbps for a Necessary Bandwidth of 21.7 MHz.

The TRC-43 method for OFDM signals simply multiplies the number of subcarriers, K, and the subcarrier spacing, N_S. In both cases, Ns is 312.5 kHz. The count of subcarriers includes nulls. So for example, 802.11 n uses 4 pilot subcarriers, 52 data subcarriers, and one null suppressed subcarrier in the middle for 57 total subcarrier channels.

 $B_N = N_S * K$

Radio Type	Ns (MHz)	К	BN (MHz)
802.11g	0.3125	53	16.6
802.11n	0.3125	57	17.8

Table TR15.105: Necessary Bandwidth for IEEE 802.11 g and n 20 MHz Radio Protocols (TRC-43)

Page 93 of 115	Page 93 of 115 GCL Test Report 2023-018						
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.							
Garmin							

Test Record Radiated Emission Test RE01 Project GCL0304

Test Date(s)	22 Feb 2023
Test Personnel	David Kerr
Product Model	A04331
Serial Number tested	3437296994
Operating Mode	M3 (BLE Tx)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Test Standards:	FCC Part 15, ANSI C63.4, ICES-003, CISPR 32, EN 55032, (as noted in Section 6 of the report).
Frequency Range:	30 MHz to 1000 MHz
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum
Date of this record:	02 Mar 2023

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023
Antenna, Biconilog, 30M-6 GHz	ETS Lindgren	3142E	00233201	19-Jul-2022	15-Jul-2024
SAC 3m, below 1 GHz	Frankonia	SAC3	F199004	7-Nov-2022	7-Nov-2025
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024

Table RE01.1: Test Equipment Used

Software Used:

Keysight PXE software A.32.06 RE Signal Maximization Tool v2021Feb25.xlsx RE 30M to 1G Data Analysis Template V3 2022May10.xlsx

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

Page 94 of 115	GCL Test Report 2023-018	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

The tables show the selected final measurement data between 30 MHz and 1 GHz. It includes at least the six strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the Composite FCC/CISPR Class B Limit at 3m.

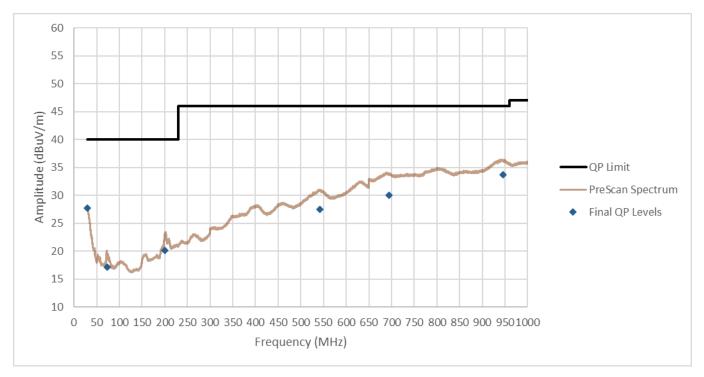
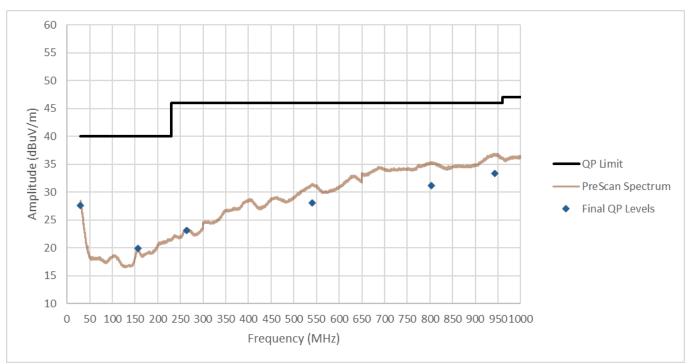

Frequency	Limit	Measured	Margin	Azimuth	Height	Antenna
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(degree)	(mm)	Polarity
30.000	40.0	27.7	12.3	48	1692	HORZ
72.570	40.0	17.1	22.9	48	1692	HORZ
200.550	40.0	20.1	19.9	48	1692	HORZ
541.980	46.0	27.5	18.5	48	1692	HORZ
694.950	46.0	30.0	16.0	48	1692	HORZ
945.390	46.0	33.7	12.3	48	1692	HORZ

Table RE01.2: Emission summary (1 Mbps)

Frequency	Limit	Measured	Margin	Azimuth	Height	Antenna
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(degree)	(mm)	Polarity
30.000	40.0	27.6	12.4	105	3740	HORZ
156.780	40.0	19.9	20.1	105	3740	Horz
263.970	46.0	23.1	22.9	105	3740	HORZ
540.630	46.0	28.1	17.9	105	3740	HORZ
802.560	46.0	31.2	14.8	105	3740	HORZ
942.570	46.0	33.3	12.7	105	3740	HORZ


Table RE01.3: Emission summary (2 Mbps)

The graphs below show the background spectrum observed during pre-scan, as well as the final data points from the tables above.

Page 95 of 115	GCL Test Report 2023-018	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

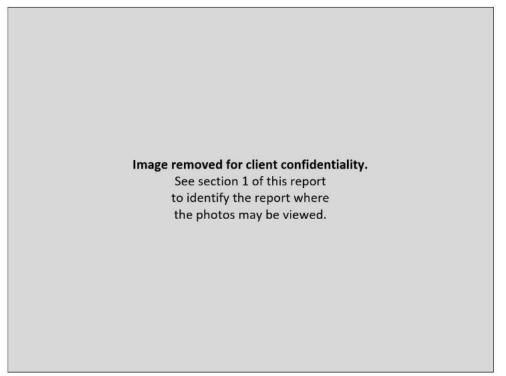

Figure RE01.1: Spectral data (1 Mbps)

Figure RE01.2: Spectral data (2 Mbps)

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Figure RE01.3: EUT test setup, front view

Page 96 of 115	GCL Test Report 2023-018	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Image removed for client confidentiality. See section 1 of this report to identify the report where

the photos may be viewed.

Figure RE01.4: EUT test setup, reverse view

This line is the end of the test record.

Test Record Radiated Emission Test RE04 Project GCL0304

Test Date(s)	22 Feb 2023
Test Personnel	David Kerr
Product Model	A04331
Serial Number tested	3437296994
Operating Mode	M7 (ANT Tx)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Test Standards:	FCC Part 15, ANSI C63.4, ICES-003, CISPR 32, EN 55032, (as noted in Section 6 of the report).
Frequency Range:	30 MHz to 1000 MHz
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum
Date of this record:	02 Mar 2023
Original record, Version A.	

Test Equipment

Page 97 of 115	GCL Test Report 2023-018	Version A				
This re	This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin						

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023
Antenna, Biconilog, 30M-6 GHz	ETS Lindgren	3142E	00233201	19-Jul-2022	15-Jul-2024
SAC 3m, below 1 GHz	Frankonia	SAC3	F199004	7-Nov-2022	7-Nov-2025
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024

 Table RE04.1: Test Equipment Used

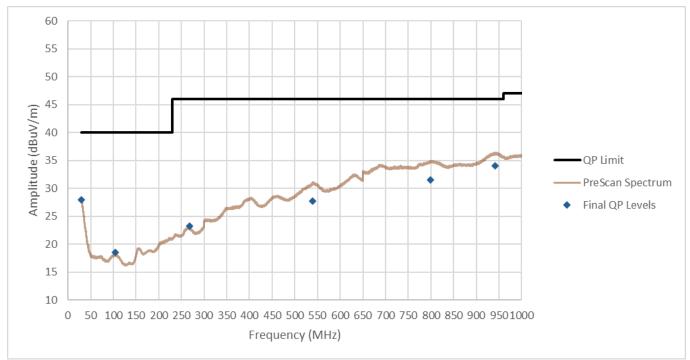
Software Used:

Keysight PXE software A.32.06 RE Signal Maximization Tool v2021Feb25.xlsx RE 30M to 1G Data Analysis Template V3 2022May10.xlsx

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.


The table shows the selected final measurement data between 30 MHz and 1 GHz. It includes at least the six strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the Composite FCC/CISPR Class B Limit at 3m.

Frequency	Limit	Measured	Margin	Azimuth	Height	Antenna
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(degree)	(mm)	Polarity
30.000	40.0	27.9	12.1	-198	2272	VERT
103.770	40.0	18.5	21.5	-198	2272	VERT
267.720	46.0	23.2	22.8	-198	2272	VERT
538.830	46.0	27.7	18.3	-198	2272	VERT
798.870	46.0	31.5	14.5	-198	2272	VERT
941.520	46.0	34.0	12.0	-198	2272	VERT

Table RE04.2: Emission summary

The graph below shows the background spectrum observed during pre-scan, as well as the final data points from the table above.

Page 98 of 115	GCL Test Report 2023-018	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Figure RE04.1: Spectral data

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Figure RE04.2: EUT test setup, front view

Page 99 of 115	OP of 115 GCL Test Report 2023-018			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Image removed for client confidentiality. See section 1 of this report to identify the report where the photos may be viewed.

Figure RE04.3: EUT test setup, reverse view

Page 100 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Record Radiated Emission Test RE05 Project GCL0304

Test Date(s)	28 Feb 23
Test Personnel	David Kerr
Product Model	A04331
Serial Number tested	3437296994
Operating Mode	M9 (WiFi Tx)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Test Standards:	FCC Part 15, ANSI C63.4, ICES-003, CISPR 32, EN 55032, (as noted in Section 6 of the report).
Frequency Range:	30 MHz to 1000 MHz
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum
Date of this record:	03 Mar 2023

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023
Antenna, Biconilog, 30M-6 GHz	ETS Lindgren	3142E	00233201	19-Jul-2022	15-Jul-2024
SAC 3m, below 1 GHz	Frankonia	SAC3	F199004	7-Nov-2022	7-Nov-2025
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024

Table RE05.1: Test Equipment Used

Software Used

Keysight PXE software A.32.06 RE Signal Maximization Tool v2021Feb25.xlsx RE 30M to 1G Data Analysis Template V3 2022May10.xlsx

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.


Page 101 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

The table shows the selected final measurement data between 30 MHz and 1 GHz. It includes at least the six strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the Composite FCC/CISPR Class B Limit at 3m.

Frequency	Limit	Measured	Margin	Azimuth	Height	Antenna
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(degree)	(mm)	Polarity
30.000	40.0	27.5	12.5	-52	1611	HORZ
154.980	40.0	19.9	20.1	80	3784	VERT
202.710	40.0	19.7	20.3	71	3551	VERT
688.260	46.0	30.3	15.7	51	3154	VERT
809.190	46.0	31.2	14.8	-106	1860	HORZ
944.100	46.0	32.9	13.1	163	1953	VERT

Table RE05.2: Emission summary

The graph below shows the background spectrum observed during pre-scan, as well as the final data points from the table above.

Figure RE05.1: Spectral data

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 102 of 115	age 102 of 115 GCL Test Report 2023-018			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Image removed for client confidentiality. See section 1 of this report to identify the report where

the photos may be viewed.

Figure RE05.2: EUT test setup, front view (Y orientation)

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure RE05.3: EUT test setup, reverse view (Y orientation)

Page 103 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Image removed for client confidentiality. See section 1 of this report to identify the report where

the photos may be viewed.

Figure RE05.2: EUT test setup, front view (Z orientation)

Image removed for client confidentiality.

See section 1 of this report to identify the report where the photos may be viewed.

Figure RE05.3: EUT test setup, reverse view (Z orientation)

Page 104 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Record Radiated Emission Test RE16 Project GCL0303

Test record created by:	Jim Solum
Date of this record:	23 Mar 2023
Frequency Range:	1000 MHz to 2000 MHz
Pass/Fail Judgment:	PASS
Test Standards:	FCC Part 15.109, EN 55032 (as noted in Section 6 of the report).
Operating Mode	M16 (Tx off)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Product Model	A04331
Serial Number tested	3437296994
Test Date(s)	22 Mar 2023
Test Personnel	Jim Solum

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023
Antenna, Horn, 1-18 GHz	ETS Lindgren	3117	00227596	27-Aug-2021	1-Sep-2023
FSOATS 3m, above 1 GHz	Frankonia	SAC3	F199004	16-Nov-2022	16-Nov-2025
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
Preamplifier, 500 MHz 18 GHz	Com-Power	PAM-118A	18040133	Calibration	Not Required

Table RE16.1: Test Equipment Used

Software Used:

Keysight PXE software A.32.06 RE Signal Maximization Tool v2021Feb25.xlsx RE 1G to 2G Data AnalysisV1 2022May10.xlsx.

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The

Page 105 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

The table shows the selected final measurement data between 1GHz and 2 GHz. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the Composite FCC/CISPR Class B Limit at 3m. No emissions were found and a noise floor measurement was made.

(MHz) (dBuV/m) (dBuV/m) (dBuV/m) (dB) (dB) (degree) (mm) 1973.500 50.0 70.0 31.7 44.9 18.3 25.1 22 3902 VERT	Frequency	Avg Limit	Pk Limit	Avg Level	Pk Level	Av Margin	Pk Margin	Azimuth	Height	Polarity
1973 500 50 0 70 0 31 7 44 9 18 3 25 1 22 3902/VERT	(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(dB)	(degree)	(mm)	
	1973.500	50.0	70.0	31.7	44.9	18.3	25.1	22	3902	VERT

Table RE16.2: Emission summary

The graph below shows the background spectrum observed during pre-scan, as well as the final data points from the table above.

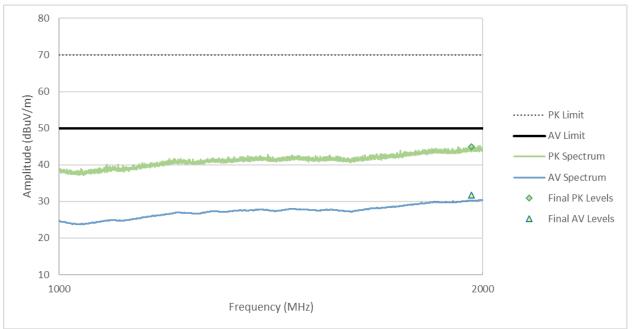


Figure RE16.3: Spectral data

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 106 of 115	GCL Test Report 2023-018	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Image removed for client confidentiality. See section 1 of this report

to identify the report where the photos may be viewed.

Figure RE16.4: EUT test setup, front view



Figure RE16.5: EUT test setup, reverse view

Page 107 of 115	Page 107 of 115 GCL Test Report 2023-018				
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

Test Record Radiated Emission Test RE17 Project GCL0304

Test Date(s)	22 Feb 23
Test Personnel	David Kerr
Product Model	A04331
Serial Number tested	3437296994
Operating Mode	M17 (BT Class Tx)
Arrangement	A1 (PwrA)
Input Power	5 Vdc
Test Standards:	FCC Part 15, ANSI C63.4, ICES-003, CISPR 32, EN 55032, (as noted in Section 6 of the report).
Frequency Range:	30 MHz to 1000 MHz
Pass/Fail Judgment:	PASS
Test record created by:	Jim Solum
Date of this record:	02 Mar 2023

Original record, Version A.

Test Equipment

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023
Antenna, Biconilog, 30M-6 GHz	ETS Lindgren	3142E	00233201	19-Jul-2022	15-Jul-2024
SAC 3m, below 1 GHz	Frankonia	SAC3	F199004	7-Nov-2022	7-Nov-2025
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10720	16-Jan-2023	15-Jan-2026
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024

Table RE17.1: Test Equipment Used

Software Used:

Keysight PXE software A.32.06 RE Signal Maximization Tool v2021Feb25.xlsx RE 30M to 1G Data Analysis Template V3 2022May10.xlsx

Test Data

The radiated emission test process began with a preliminary scan at multiple turntable angles, antenna heights, and both antenna polarizations. For test standards that require reorienting the test sample, further preliminary scans were taken in those alternate orientations typically described as X, Y, and Z. Subsequent testing was done using on the orientation(s) producing the highest result relative to the test limit. Where the test standard requires cable manipulation, this was done at one of more likely worst case frequencies selected by the test personnel while observing the receiver display. At each of the frequencies selected for final measurements, the turntable angle, antenna height, and antenna polarization were explored to find the worst-case settings. Final field strength measurements were taken in that set of positions. Full maximization was not performed at frequencies that are noise floor measurements included per the test standard requirements.

At azimuth angle 0° the 'front' reference mark of the turntable is pointed Southward. At 90° the reference mark points West. At -90° it points East. At -7° the turntable reference mark is pointed directly at the antenna. The designation of the X, Y, and Z orientations of the test sample are sample dependent, so these are reported by use of photographs.

Page 108 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

The tables show the selected final measurement data between 30 MHz and 1 GHz. It includes at least the six strongest emissions observed relative to the test limit, along with other data points of interest. Where a data point is highlighted is yellow, this is an aid to indicate the data point(s) with the least margin to the test limit. A positive margin value indicates that the emission was below the test limit. The test limit is the Composite FCC/CISPR Class B Limit at 3m.

Frequency	Limit	Measured	Margin	Azimuth	Height	Antenna
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(degree)	(mm)	Polarity
30.000	40.0	27.7	12.3	155	2868	HORZ
103.770	40.0	18.5	21.5	155	2868	HORZ
267.720	46.0	23.2	22.8	155	2868	HORZ
538.830	46.0	27.5	18.5	155	2868	HORZ
798.870	46.0	31.6	14.4	155	2868	HORZ
941.520	46.0	33.9	12.1	155	2868	HORZ

Table RE17.2: Emission summary (EDR 2)

Frequency	Limit	Measured	Margin	Azimuth	Height	Antenna
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	(degree)	(mm)	Polarity
30.000	40.0	27.7	12.3	-115	3933	VERT
156.030	40.0	20.2	19.8	-115	3933	VERT
267.690	46.0	23.2	22.8	-115	3933	VERT
548.040	46.0	28.3	17.7	-115	3933	VERT
806.340	46.0	31.0	15.0	-115	3933	VERT
990.990	47.0	33.1	13.9	-115	3933	VERT

Table RE17.3: Emission summary (EDR 3)

The graphs below show the background spectrum observed during pre-scan, as well as the final data points from the tables above.

Page 109 of 115	GCL Test Report 2023-018	Version A			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.					
Garmin					

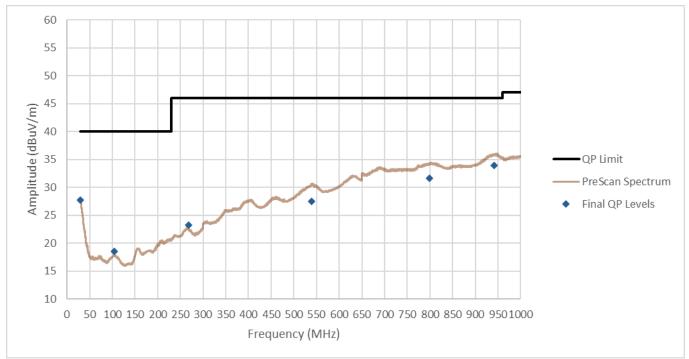


Figure RE17.1: Spectral data (EDR 2)

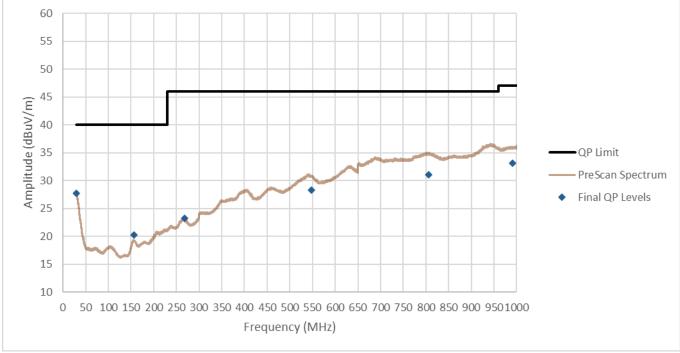


Figure RE17.2: Spectral data (EDR 3)

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Page 110 of 115	Page 110 of 115 GCL Test Report 2023-018			
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Image removed for client confidentiality. See section 1 of this report

to identify the report where the photos may be viewed.

Figure RE17.3: EUT test setup, front view

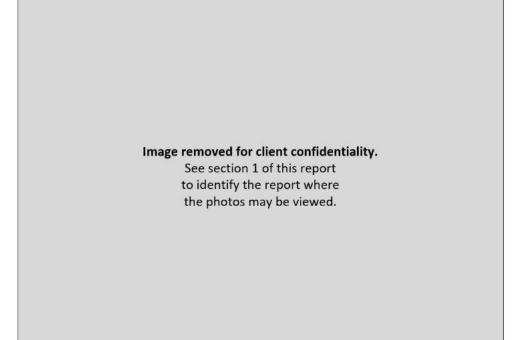


Figure RE17.4: EUT test setup, reverse view

Page 111 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Record Conducted Emissions Mains Test CE02 Project GCL0304

Test Date(s)	16 Feb 2023
Test Personnel	Christian Shepherd assisted by David Kerr
Product Model	A04331
Serial Number tested	3437296994
Operating Mode	M3 (BLE Tx)
Arrangement	A2 (PwrA)
Input Power	120 Vac 60 Hz
Test Standards:	FCC Part 15, ANSI C63.4 (as noted in Section 6 of the report).
Frequency Range:	150 kHz to 30 MHz
Pass/Fail Judgment:	PASS

Test record created by: Christian Shepherd Date of this record: 02 Mar 2023

Original record, Version A.

Test Equipment Used

Description	Make	Model #	Serial #	Last Cal/Ver	Next Due
PXE Receiver	Keysight	N9048B	MY59290135	21-Sep-2022	15-Sep-2023
Tape measure, 1" x 33'	Lufkin	PHV1410CMEN	10721	15-Aug-2022	15-Aug-2023
DMM Multimeter	FLUKE	79 III	71740743	18-Apr-2022	15-Apr-2023
Barometer	Traceable	6453	221702700	3-Aug-2022	1-Aug-2024
LISN multiline; 15A to 9kHz	Com-Power	LI-215A	192027	22-Aug-2022	15-Aug-2023

Table CE02.1: Test Equipment Used

Software Used

PXE Receiver firmware version A.32.06

Page 112 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Test Data

The conducted emission test process began with a set of preliminary scans on both power conductors using both Quasi-Peak and Average detectors across the frequency range. Where the test standard requires cable manipulation, one or more likely worst case frequencies selected by the test personnel. Cables were manipulated to find the maximal signal strength while observing the receiver levels at those selected frequencies. At each of the frequencies selected for final measurements, Quasi-peak and Average detector readings were taken on each conductor.

The table shows the selected final measurement data. It includes at least the six strongest emissions observed relative to the limit lines, along with other data points of interest. The yellow highlight indicate the data points with the least margin to the quasi-peak detector limit and the average detector limit. A positive margin value indicates that the emission was below the test limit. The test limit is the Composite FCC/CISPR Class B Limit.

Frequency	QP Limit	AV Limit	L1 QP	L2 QP	L1 AV	L2 AV	QP Margin	AV Margin
(kHz)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)
150	66.00	56.00	26.21	25.94	14.80	14.02	39.79	41.20
321	59.68	49.68	23.64	21.6	19.23	18.27	36.04	30.45
344	59.12	49.12	21.62	19.28	15.95	15.02	37.50	33.17
688	56	46	38.07	32.57	27.84	27.35	17.93	18.16
1363	56	46	24.83	19.91	14.56	13.79	31.17	31.44
1775	56	46	21.03	17.44	13.86	13.17	34.97	32.14
2551	56	46	20.3	16.35	13.45	12.08	35.70	32.55
4117	56	46	19.25	15.59	12.79	11.31	36.75	33.21
14557	60	50	14.25	13.04	9.28	8.17	45.75	40.72

Table CE02.2: Emission summary

The graph below shows preliminary scan data as continuous curves. Superimposed are the final measurement data points reported in the table above.

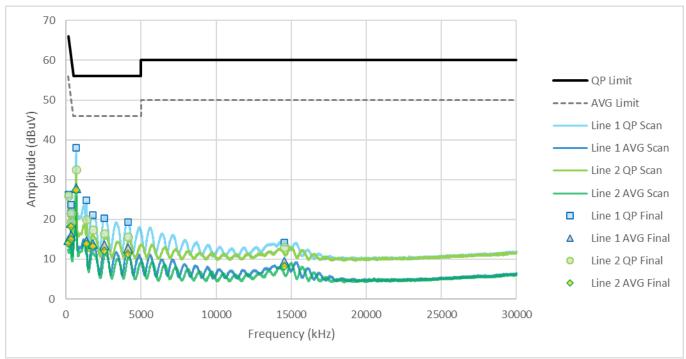
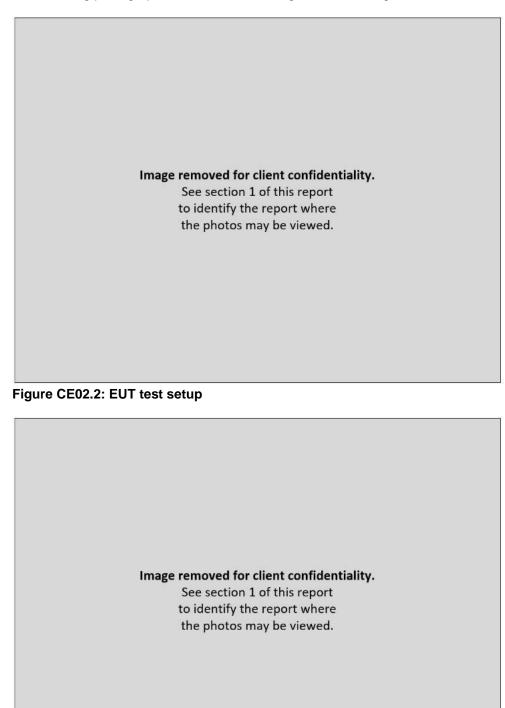



Figure CE02.1: Spectral data

Page 113 of 115 GCL Test Report 2023-018		Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Setup Photographs

The following photographs show the EUT configured and arranged in the manner in which it was measured.

Figure CE02.3: EUT test setup

Page 114 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				

Concluding Notes

This report stands as an integrated record of the tests performed and must be copied or distributed in its complete form. The reproduction of selected pages or sections separate from the complete report would require specific approval from the manager of the Garmin Compliance Lab.

This is the final page of the report.

Page 115 of 115	GCL Test Report 2023-018	Version A		
This report may be reproduced in whole. Reproduction of parts or excerpts requires lab management approval.				
Garmin				