

FCC Test Report

Report No.: AGC11486230802FE01

FCC ID	:	2AX68GTR8
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Two-Way Radio
BRAND NAME	:	PXTON
MODEL NAME	:	PX-666S, PX-777S, PX-888 Pro, PX-S1, PX-S2, PX-S4, PX-888S
APPLICANT	:	Shenzhen Puxintong Electronics Co.,Ltd
DATE OF ISSUE	:	Sep. 07, 2023
STANDARD(S)	:	FCC Part 15 Subpart B
REPORT VERSION	:	V 1.0

REPORT REVISE RECORD

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	Sep. 07, 2023	Valid	Initial Release

TABLE OF CONTENTS

1. GENERAL INFORMATION	. 4
2. PRODUCT INFORMATION	. 5
2.1 PRODUCT TECHNICAL DESCRIPTION	. 5
2.2 AUXILIARY SURROUNDING DESCRIPTION	. 5
2.3 TEST METHODOLOGY	. 6
2.4 DESCRIPTION OF TEST MODES	. 6
3. TEST ENVIRONMENT	.7
3.1 ADDRESS OF THE TEST LABORATORY	. 7
3.2 TEST FACILITY	. 7
3.3 ENVIRONMENTAL CONDITIONS	. 8
3.4 MEASUREMENT UNCERTAINTY	. 8
3.5 LIST OF EQUIPMENTS USED	. 9
4. SUMMARY OF TEST RESULTS	10
5. RADIATED EMISSION MEASUREMENTS	11
5.1 PROVISIONS APPLICABLE	11
5.2 MEASUREMENT SETUP	11
5.3 MEASUREMENT PROCEDURE	12
5.4 MEASUREMENT RESULT	14
6. CONDUCTED EMISSION MEASUREMENTS	18
6.1 PROVISIONS APPLICABLE	18
6.2 MEASUREMENT SETUP	18
6.3 MEASUREMENT PROCEDURE	19
6.4 MEASUREMENT RESULT	20
7. ANTENNA CONDUCTED POWER FOR RECEIVERS	22
7.1 PROVISIONS APPLICABLE	22
7.2 MEASUREMENT SETUP	22
7.3 MEASUREMENT PROCEDURE	22
7.4 MEASUREMENT RESULT	23
8. SCANNING RECEIVERS AND FREQUENCY CONVERTERS USED WITH SCANNING RECEIVERS	25
8.1 PROVISIONS APPLICABLE	25
8.2 MEASUREMENT SETUP	25
8.3 MEASUREMENT PROCEDURE	25
8.4 MEASUREMENT RESULT	26
APPENDIX I: PHOTOGRAPHS OF TEST SETUP	27

1. GENERAL INFORMATION

Shenzhen Puxintong Electronics Co.,Ltd	
13E, Zitengxuan, Caitian Mingyuan, No. 3016, Caitian South Road, Gangxia Community, Futian Street, Futian District, Shenzhen	
Shenzhen Puxintong Electronics Co.,Ltd	
13E, Zitengxuan, Caitian Mingyuan, No. 3016, Caitian South Road, Gangxia Community, Futian Street, Futian District, Shenzhen	
Shenzhen Puxintong Electronics Co.,Ltd	
13E, Zitengxuan, Caitian Mingyuan, No. 3016, Caitian South Road, Gangxia Community, Futian Street, Futian District, Shenzhen	
Two-Way Radio	
PXTON	
PX-666S	
PX-777S, PX-888 Pro, PX-S1, PX-S2, PX-S4, PX-888S	
Only different model names & cover designs	
Aug. 18, 2023	
Aug. 18, 2023~Sep. 06, 2023	
No any deviation from the test method	
Normal	
Pass	
AGCTR-ER-FCC-SDOC V1.0	

The above equipment was tested by Attestation Of Global Compliance (Shenzhen) Co., Ltd. for compliance with the requirements set forth in the FCC Rules and Regulations Part 15, the measurement procedure according to ANSI C63.4:2014. This said equipment in the configuration described in this report shows the maximum emission levels emanating from equipment are within the compliance requirements. The test results of this report relate only to the tested sample identified in this report.

Bibo zhang Prepared By Bibo Zhang Sep. 07, 2023 (Project Engineer) nn. **Reviewed By** Calvin Liu Sep. 07, 2023 (Reviewer) Approved By Max Zhang Sep. 07, 2023 Authorized Officer

2. PRODUCT INFORMATION

2.1 PRODUCT TECHNICAL DESCRIPTION

Housing Type	Plastic and metal	
RX Frequency Range	400-470 MHz (Scanning Receiver)	
Equipment Type	Table-Top	
Hardware Version	V1.3	
Software Version	V1.1.5	
Power Supply	DC 3.7V,1500mAh by battery	

I/O Port Information (Applicable Not Applicable)				
I/O Port of EUT				
I/O Port Type	Q'TY	Cable	Tested with	
Antenna Port	1	-	1	
Earphone Port	1	-	1	

2.2 AUXILIARY SURROUNDING DESCRIPTION

The Following Peripheral Devices And Interface Cables Were Connected During The Measurement:

Equipment	Manufacturer	Model Name	Specification	Data Cable	Power Cable
Adapter	Huawei	HW-200325CP 0	-	-	1.0m Unshielded

☑ Test Accessories Come From The Manufacturer

Equipment	Manufacturer	Model Name	Specification	Data Cable	Power Cable
Charger	-	CH-8S-USB	-	-	1.0m Unshielded
Battery	-	BL-1	-	-	-
Back Clip	-	-	-	-	-
Lanyard	-	-	-	-	0.5m Unshielded

2.3 TEST METHODOLOGY

The tests were performed according to following standards:

No.	Identity	Document Title
1	FCC 47 CFR Part 15	Radio Frequency Devices
2	ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2.4 DESCRIPTION OF TEST MODES

No.	Test Mode	Remark
1	Scanning mode	Worst
2	Scanning stopped/Receiving at low channel of 400 MHz to 470 MHz	
3	Scanning stopped/Receiving at middle channel of 400 MHz to 470 MHz	
4	Scanning stopped/Receiving at high channel of 400 MHz to 470 MHz	

Note: Only the result of the worst case was recorded in the report.

3. TEST ENVIRONMENT

3.1 ADDRESS OF THE TEST LABORATORY

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842 (CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 ENVIRONMENTAL CONDITIONS

	NORMAL CONDITIONS
Temperature range (°C)	15 - 35
Relative humidty range	20 % - 75 %
Pressure range (kPa)	86 - 106

3.4 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ±U, where expended uncertainty U is based on a standard

uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty
Uncertainty of Conducted Emission	$U_c = \pm 2.9 \text{ dB}$
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$

3.5 LIST OF EQUIPMENTS USED

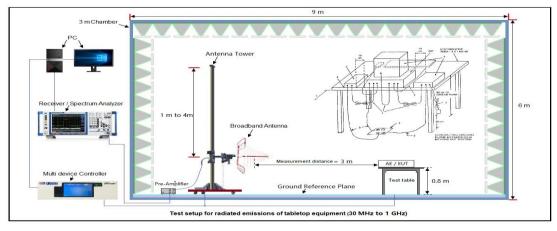
• Ra	adiated Emissio	on					
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2023/02/18	2024/02/17
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2023/06/03	2024/06/02
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023/05/11	2025/05/10
\boxtimes	AGC-EM-E029	Horn Antenna	ETS	3117	00034609	2023/03/23	2024/03/22
\boxtimes	AGC-EM-E096	Pre-amplifier	ETS	3117-PA	00246148	2022/08/04	2024/08/03
	AGC-EM-S003	Test Software	FARA	V.RA-03A	N/A	N/A	N/A
\boxtimes	AGC-EM-S004	Test Software	Tonscend	4.0.0.0	N/A	N/A	N/A

• Co	onducted Emiss	sion					
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\boxtimes	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023/06/03	2024/06/02
\boxtimes	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2023/06/03	2024/06/02
	AGC-EM-S001	Test Software	R&S	ES-K1 (Ver.V1.71)	N/A	N/A	N/A

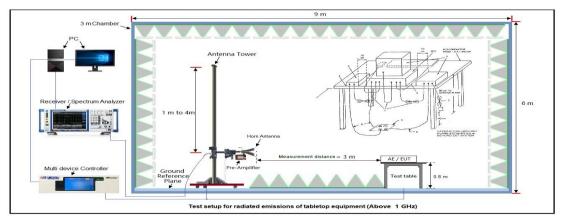
• RF	RF Conducted Measurement								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
	AGC-EM-E002	RF Communication Test Set	HP	8920B	US35010161	2023/06/02	2024/06/01		
\boxtimes	AGC-ER-E086	Spectrum Analyzer	KEYSIGHT	N9020A	MY53300860	2023/06/01	2024/05/31		
\square	AGC-EM-A007	30dB Attenuator	N/A	58-30-33	N/A	2023/06/01	2024/05/31		

4. SUMMARY OF TEST RESULTS

Item	FCC Rules	Description Of Test	Class/Severity	Result
1	§15.107	Radiated Emission	Class B	Pass
2	§15.109	Conducted Emission	Class B	Pass
3	§15.111	Antenna Conducted Power for Receivers	/	Pass
4	§15.121(b)	Scanning receivers and frequency converters used with scanning receivers	/	Pass


5. RADIATED EMISSION MEASUREMENTS

5.1 PROVISIONS APPLICABLE


FCC CFR Title 47 Part 15 Subpart B Section 15.109:

Frequency Range	Class B Limit (dBuV/m @3m)	Class A Limit (dBuV/m @3m)	Value
30MHz-88MHz	40.00	50.00	Quasi-peak
88MHz-216MHz	43.50	53.50	Quasi-peak
216MHz-960MHz	46.00	56.00	Quasi-peak
960MHz-1GHz	54.00	64.00	Quasi-peak
Above 1GHz	54.00	60.00	Average
ADOVE IGHZ	74.00	80.00	Peak

5.2 MEASUREMENT SETUP

(Radiated Emission Measurements Test Setup for 30MHz to 1GHz)

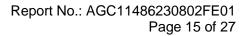
(Radiated Emission Measurements Test Setup for above 1GHz)

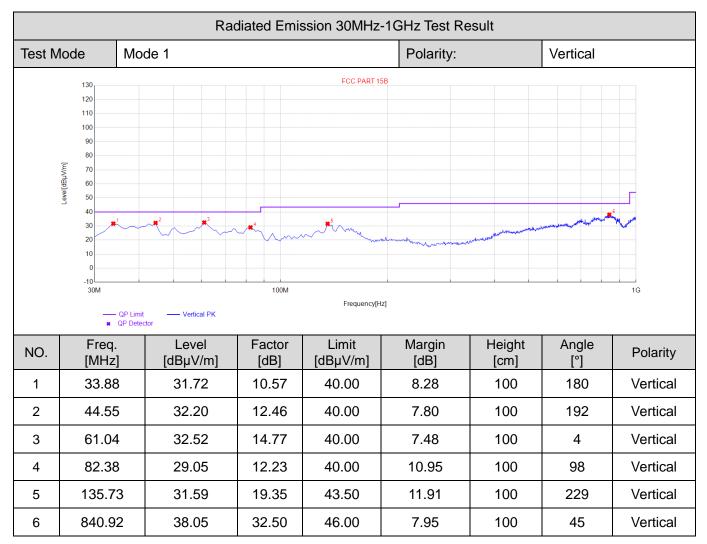
5.3 MEASUREMENT PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden turntable with a height of 0.8 meters is used which is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. The EUT received power by AC 120V/60Hz.
- 5. The antenna was placed at 3 meter away from the EUT as stated in FCC Part 15. The antenna connected to the Analyzer via a cable and at times a pre-amplifier would be used.
- 6. The Analyzer / Receiver quickly scanned from 30MHz to 1000MHz. The EUT test program was started. Emissions were scanned and measured rotating the EUT to 360 degrees and positioning the antenna 1 to 4 meters above the ground plane, in both the vertical and the horizontal polarization, to maximize the emission reading level.
- 7. The test mode(s) were scanned during the test:
- 8. Recorded at least the six highest emissions. Emission frequency, amplitude, antenna position, polarization and turntable position were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit and Q.P./Peak reading is presented. For emissions below 1GHz, use 120KHz RBW and VBW>=3RBW for QP reading.
- 9. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 10. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 11. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 12. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 13. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.
- 14. The test data of the worst case condition (mode 1) was reported on the following Data page.


EMI TEST RECEIVER SETUP:

During the radiated emission test, the EMI test receiver was set with the following configurations:


Frequency Range	RBW	Video B/W	IF B/W	Measurment
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
Above T GHz	1MHz	10 Hz	/	Ave.


5.4 MEASUREMENT RESULT

RESULT: PASS

			Ra	diated Em	ission Above	1GHz Test Re	sult		
Test M	lode	Мос	de 1			Polarity:		Horizontal	
-	130				FCC Part 15	B			
	120 110								
	100 90								
	80								
	And 60								
	50 40		1		and the second states are set of the second states are second states are set of the second states are second states are set of the second states are set of the second states are second states	3. 1.111 - 1.111 - 1.111 - 1.111 - 1.111 - 1.111 - 1.111	silaring a state of the state o	6	and of the second s
	30 20	pergeneralise postar	en al fanne sterland water and fan de fan Eine fan de fa	er under eine ster ster ster ster ster ster ster ste					
	10 0								
	-10 1G			2	2G	3G	4G	5G	6G
		PK Limit AV Detec		Horizontal PK	Frequency[H	z]			
NO.	Freq. [MHz		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1264.05	528	31.82	-19.89	74.00	42.18	100	340	Horizontal
2	2159.23	818	35.38	-15.10	74.00	38.62	100	300	Horizontal
3	2562.31	25	38.66	-12.88	74.00	35.34	100	10	Horizontal
4	3103.42	207	40.95	-10.91	74.00	33.05	100	150	Horizontal
5	4253.65	507	42.44	-7.80	74.00	31.56	100	140	Horizontal
6	4833.76	668	42.85	-6.71	74.00	31.15	100	140	Horizontal

			Ra	diated Em	ission Above	1GHz Test Re	sult		
Test M	lode	Мо	de 1			Polarity:		Vertical	
		PK Limit AV Detec		Vertical PK	FCC Part 15	36	46	5G	6G
NO.	Freq [MHz		Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	1134.02	268	30.80	-19.86	74.00	43.20	100	200	Vertical
2	2104.22	208	34.86	-15.42	74.00	39.14	100	220	Vertical
3	2516.30)33	38.50	-13.06	74.00	35.50	100	290	Vertical
4	3239.44	179	41.32	-10.50	74.00	32.68	100	350	Vertical
5	4038.60)77	41.89	-8.05	74.00	32.11	100	90	Vertical
6	4865.77	732	43.24	-6.64	74.00	30.76	100	20	Vertical

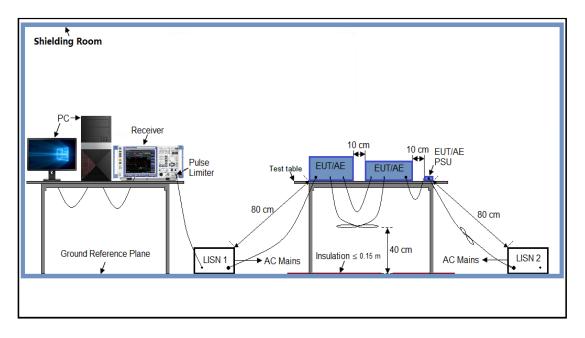
Note:

- 1. Factor=Antenna Factor + Cable loss Amplifier gain, Margin= Limit-Measurement.
- 2. The "Factor" value can be calculated automatically by software of measurement system.

6. CONDUCTED EMISSION MEASUREMENTS

6.1 PROVISIONS APPLICABLE

FCC CFR Title 47 Part 15 Subpart B Section 15.107:

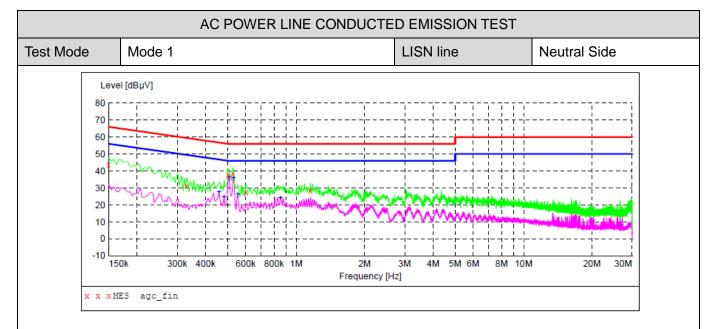

For Class B Limits:

Frequency	Maximum RF Line Voltage				
Frequency	Q.P. (dBµV)	Average (dBµV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

For Class A Limits:

Frequency	Maximum RF Line Voltage				
Frequency	Q.P. (dBµV)	Average (dBµV)			
150kHz~500kHz	79	66			
500kHz~30MHz	73	60			

6.2 MEASUREMENT SETUP



6.3 MEASUREMENT PROCEDURE

- 1. The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.4.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4.
- 4. The EUT received AC 120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5. All support equipments received AC power from a second LISN, if any.
- 6. The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test data of the worst case condition (Mode 1) was reported on the following Data page.

6.4 MEASUREMENT RESULT

MEASUREMENT RESULT: "agc fin"

2023/8/22	9:27						
Frequenc MF	-			Margin dB	Detector	Line	
0.15000	00 43.7	70 6.1	66	22.3	QP	L1	
0.33000	00 31.0	00 6.1	60	28.5	QP	L1	1
0.50200	0 37.5	50 6.2	56	18.5	QP	L1	1
0.52600	38.5	50 6.2	56	17.5	QP	L1	1
0.60200	27.1	LO 6.2	56	28.9	QP	L1	1
1.15400	28.3	6.2	56	27.7	QP	L1	1

MEASUREMENT RESULT: "agc fin2"

2023/8/2 Frequ			Transd dB	Limit dBµV	Margin dB	Detector	Line	
0.45	8000	27.50	6.1	47	19.2	AV	L1	1
0.48	2000	24.60	6.1	46	21.7	AV	L1	1
0.50	6000	36.50	6.2	46	9.5	AV	L1	1
0.53	0000	35.80	6.2	46	10.2	AV	L1	1
0.55	4000	26.50	6.2	46	19.5	AV	L1	1
0.85	4000	24.30	6.2	46	21.7	AV	L1	1

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/

Report No.: AGC11486230802FE01 Page 21 of 27

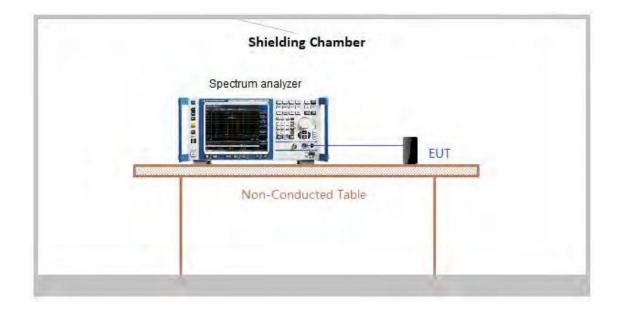
AC POWER LINE CONDUCTED EMISSION TEST							
Node	Mode 1			LIS	N line	Hot Sid	de
Level	[dBµV]						
80						 	
70		-+-+-+-+-++++++++++++++++++++++++++++++				i- i -i	
60		- + + - + - + - + - + - + - + - + -		 			
50	mu.		- 	ii ! !			
40	WWWWW		dulatei	·		4-+-l	
30	my	W H.		, align and the second			والمتلك المسرو المحاد
10		- F j F - i j -	A CONTRACTOR OF A CONTRACTOR O	\sim	www	And the second design of	
0	+++	-+	-+	 		 	+
-10							
150	0k 300k 400k	600k 800k		M 3M ency [Hz]	4M 5M 6M 8	M 10M	20M 30M
x x x ME	S agc fin						
				<i>c</i> :			
MEA	SUREMENT	RESULT	: "agc_				
2023	3/8/22 9:2	9					
	Frequency	Level	Transd	Limit	Margin	Detector	Line
	MHz	dBµV	dB	dBµV	dB		
	0.178000	43.00	6.1	65	21.6	QP	N
	0.462000	30.80	6.1	57	25.9		N
	0.530000	39.90 33.60	6.2 6.2	56 56	16.1	QP	N
	0.554000 0.854000	28.80	6.2	56	22.4 27.2	QP QP	N N
	1.034000	29.90	6.2	56	26.1	QP	N
MEA	SUREMENT	RESULT	: "agc_	fin2"			
2023	3/8/22 9:2	9					
I	Frequency	Level	Transd	Limit	-	Detector	Line
	MHz	dBµV	dB	dBµV	dB		
	0.250000	25.80	6.1	52	26.0	AV	N
	0.454000	26.50	6.1	47	20.0		N
	0.506000	35.30	6.2	46	10.7		N
	0.530000	35.60	6.2	46	10.4		N
	0.554000	26.60	6.2	46	19.4		N
	0.854000	23.20	6.2	46	22.8	AV	N

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com


7. ANTENNA CONDUCTED POWER FOR RECEIVERS

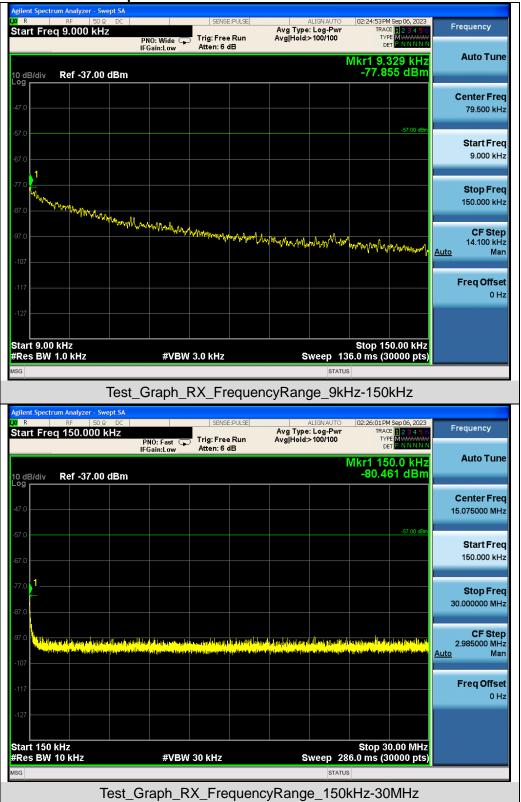
7.1 PROVISIONS APPLICABLE

The antenna conducted power of the receiver as defined in §15.111 shall not exceed the values given in the following tables

Frequency Range	9 KHz to 2GHz			
Limit	2.0 nW (-57 dBm)			

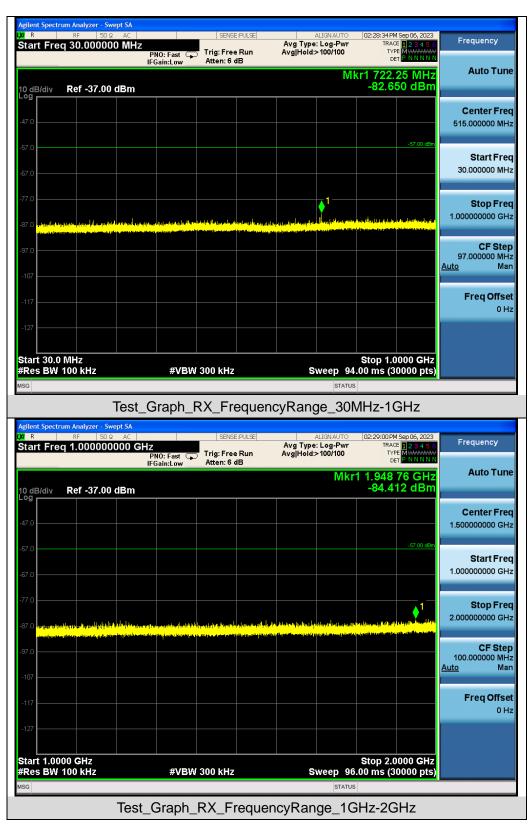
7.2 MEASUREMENT SETUP

7.3 MEASUREMENT PROCEDURE


- 1. The receiver antenna terminal connected to a spectrum analyzer.
- 2. Receiver set as follow:

Frequency range	RBW (kHz)	VBW (kHz)	
9 kHz ~ 150 kHz	1	3	
150 kHz ~ 30 MHz	10	30	
30 MHz ~ 1000 MHz	100	300	
1000 MHz ~ 3000 MHz	1000	3000	

3. The test data of the worst case condition (mode 1) was reported on the following Data page.



7.4 MEASUREMENT RESULT

Test Graphs of Antenna Conducted Power For Receivers

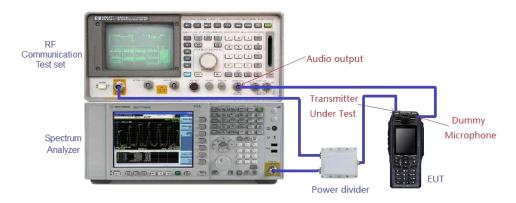
Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

 Attestation of Global Compliance(Shenzhen)Co., Ltd

 Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

 Tel: +86-755 2523 4088
 E-mail: agc@agccert.com

 Web: http://www.agccert.com/



8. SCANNING RECEIVERS AND FREQUENCY CONVERTERS USED WITH SCANNING RECEIVERS

8.1 PROVISIONS APPLICABLE

Except as provided in paragraph (c) of this section, scanning receivers shall reject any signals from the Cellular Radiotelephone Service frequency bands that are 38 dB or lower based upon a 12 dB SINAD measurement, which is considered the threshold where a signal can be clearly discerned from any interference that may be present.

8.2 MEASUREMENT SETUP

8.3 MEASUREMENT PROCEDURE

- 1) Connected the EUT as shown in the above block diagram.
- 2) Apply a RF signal to the receiver input port at lowest, middle and highest channel frequencies of receiver operation band.
- 3) Adjust the audio output level of the receiver to it's rated value with the distortion less than 10%.
- 4) Adjust the RF Signal Generator Output Power to produce 12 dB SINAD without the audio output power dropping by more than 3 dB. This output level of the RF SG at each channel frequency is the sensitivity of the receiver.
- 5) Select the lowest or worse-case sensitivity level for all of the bands as the reference sensitivity.
- 6) Adjust the RF Signal Generator output to a level of +60 dB above the reference sensitivity obtained in step 5) and its frequency to the frequency points in the cellular band.
- 7) Set the Receiver squelch to threshold, the signal required to open the squelch must be lower than the reference sensitivity level.
- 8) Set the receiver in a scanning mode and allow it to scan through it's complete receiving range.
- 9) If the receiver unsquelched or stopped on any frequency, receiving at this frequency, then adjust the signal generator output level until 12 dB SINAD is produced, this level is the spurious value and the difference between the reference sensitivity and the spurious value is the rejection ratio and must be at least 38dB.
- 10) Repeat above procedure at the frequencies 824.5, 836.0, and 848.5 MHz for the mobile band, and 869.1, 881.5, and 893.5MHz for the cellular base band.

8.4 MEASUREMENT RESULT

Scanning Frequency Band (MHz)	Test Frequency of Cellular Band (MHz)	Spurious Value of Cellular Frequency (dBm)	Reference Sensitivity (dBm)	Measurement Result (dB)	Limit (dB)
400-470	824.5/836.0/848.5	>-43	-107	<-64	<-38
400-470	869.1/881.5/893.5	>-43	-107	<-64	<-38

Note:

- 1. Measurement Result = Rejection Ratio
- 2. Reference Sensitivity is the recorded value when the signal-to-noise ratio is 12dB.
- 3. Measurement Result = Reference Sensitivity- Spurious Value.

Report No.: AGC11486230802FE01 Page 27 of 27

APPENDIX I: PHOTOGRAPHS OF TEST SETUP

Refer to the Report No.: AGC11486230802AP03

APPENDIX II: PHOTOGRAPHS OF TEST EUT

Refer to the Report No.: AGC11486230802AP02

-----END OF REPORT-----

Conditions of Issuance of Test Reports

1. All samples and goods are accepted by the Attestation of Global Compliance (Shenzhen) Co., Ltd (the "Company") solely for testing and reporting in accordance with the following terms and conditions. The company provides its services on the basis that such terms and conditions constitute express agreement between the company and any person, firm or company requesting its services (the "Clients").

2. Any report issued by Company as a result of this application for testing services (the "Report") shall be issued in confidence to the Clients and the Report will be strictly treated as such by the Company. It may not be reproduced either in its entirety or in part and it may not be used for advertising or other unauthorized purposes without the written consent of the Company. The Clients to whom the Report is issued may, however, show or send it, or a certified copy thereof prepared by the Company to its customer, supplier or other persons directly concerned. The Company will not, without the consent of the Clients, enter into any discussion or correspondence with any third party concerning the contents of the Report, unless required by the relevant governmental authorities, laws or court orders.

3. The Company shall not be called or be liable to be called to give evidence or testimony on the Report in a court of law without its prior written consent, unless required by the relevant governmental authorities, laws or court orders.

4. In the event of the improper use of the report as determined by the Company, the Company reserves the right to withdraw it, and to adopt any other additional remedies which may be appropriate.

5. Samples submitted for testing are accepted on the understanding that the Report issued cannot form the basis of, or be the instrument for, any legal action against the Company.

6. The Company will not be liable for or accept responsibility for any loss or damage however arising from the use of information contained in any of its Reports or in any communication whatsoever about its said tests or investigations.

7. Clients wishing to use the Report in court proceedings or arbitration shall inform the Company to that effect prior to submitting the sample for testing.

8. The Company is not responsible for recalling the electronic version of the original report when any revision is made to them. The Client assumes the responsibility to providing the revised version to any interested party who uses them.

9. Subject to the variable length of retention time for test data and report stored hereinto as otherwise specifically required by individual accreditation authorities, the Company will only keep the supporting test data and information of the test report for a period of six years. The data and information will be disposed of after the aforementioned retention period has elapsed. Under no circumstances shall we provide any data and information which has been disposed of after retention period. Under no circumstances shall we be liable for damage of any kind, including (but not limited to) compensatory damages, lost profits, lost data, or any form of special, incidental, indirect, consequential or punitive damages of any kind, whether based on breach of contract of warranty, tort (including negligence), product liability or otherwise, even if we are informed in advance of the possibility of such damages.