Report No.: FR122663-04 FCC ID : LDK603202337 Equipment : Cisco Board Pro 75 G2 Brand Name : Cisco Model Name : TTC60-36 Applicant : Cisco Systems Inc 125 West Tasman Drive, San Jose, CA 95134-1706, USA Manufacturer : Cisco Systems Norway AS Philip Pedersens vei 1, 1366 Lysaker, Norway Standard : 47 CFR FCC Part 15 Subpart C § 15.249 The product was received on Oct. 19, 2023, and testing was started from Oct. 26, 2023 and completed on Nov. 06, 2023. We, Sporton International Inc. Hsinchu Laboratory, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart C and shown compliance with the applicable technical standards. The test results in this variant report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Hsinchu Laboratory, the test report shall not be reproduced except in full. Approved by: Sam Chen Sporton International Inc. Hsinchu Laboratory No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.) TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A11_2 Ver1.4 Page Number : 1 of 33 Issued Date : Jan. 25, 2024 Report Version : 01 # **Table of Contents** | Hi | stor | y of this test report | 3 | |----|------|---|----| | Sı | ımm | nary of Test Result | 4 | | 1 | Gen | neral Information | 5 | | | 1.1 | Product Details | 5 | | | 1.2 | Antenna Information | 5 | | | 1.3 | Table for Permissive Change | 6 | | | 1.4 | Table for Test Modes | 7 | | | 1.5 | Applicable Standards | 7 | | | 1.6 | Table for Testing Locations | 7 | | | 1.7 | Table for Supporting Units | 8 | | | 1.8 | Test Configurations | 9 | | 2 | Test | t Result | 11 | | | 2.1 | AC Power Line Conducted Emissions Measurement | 11 | | | 2.2 | Field Strength of Fundamental Emissions Measurement | 19 | | | 2.3 | 20dB Spectrum Bandwidth Measurement | 22 | | | 2.4 | Radiated Emissions Measurement | | | | 2.5 | Antenna Requirements | 31 | | 3 | List | of Measuring Equipments | 32 | | 4 | Mea | asurement Uncertainty | 33 | | Αį | open | ndix A. Test Photos | | | Pl | noto | graphs of EUT v01 | | TEL: 886-3-656-9065 FAX: 886-3-656-9085 Report Template No.: CB-A11_2 Ver1.4 Page Number : 2 of 33 Issued Date : Jan. 25, 2024 Report No.: FR122663-04 Report Version : 01 # History of this test report Report No.: FR122663-04 | Report No. | Version | Description | Issued Date | |-------------|---------|-------------------------|---------------| | FR122663-04 | 01 | Initial issue of report | Jan. 25, 2024 | TEL: 886-3-656-9065 Page Number : 3 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## **Summary of Test Result** Report No.: FR122663-04 | Report
Clause | Ref Std.
Clause | Test Items | Result
(PASS/FAIL) | Remark | |---------------------------------------|--------------------|---|-----------------------|--------| | 2.1 | 15.207 | AC Power Line Conducted Emissions | PASS | Note | | 2.2 | 15.249(a) | Field Strength of Fundamental Emissions | PASS | - | | 2.3 15.215(c) 20dB Spectrum Bandwidth | | PASS | - | | | 2.2 | 15.249(a)/(d) | Radiated Emissions | PASS | - | | 2.5 | 15.203 | Antenna Requirements | PASS | - | Note: The unintentional signal is meet part 15 class A requirement, the reference standard clause is 15.107. ### **Conformity Assessment Condition:** - 1. The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account. - 2. The measurement uncertainty please refer to each test result in the chapter "Measurement Uncertainty". #### Disclaimer: - The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity. - 2. The test configuration, test mode and test software were written in this test report are declared by the manufacturer. Reviewed by: Sam Chen Report Producer: Wendy Pan TEL: 886-3-656-9065 Page Number : 4 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 1 General Information ## 1.1 Product Details | Items | Description | |---------------------------|--| | Power Type | From AC power | | Modulation | FMCW | | Frequency Range | 24000 ~ 24250 MHz | | Operation Frequency Range | 24060 ~ 24240 MHz | | Testing Frequency | 24150 MHz | | Channel Bandwidth (99%) | 180.174 MHz | | Max. Field Strength | 61.46 dBuV/m at 3m(Average) / 71.00 dBuV/m at 1m (Average) | | | 93.5 dBuV/m at 3m(Peak) / 103.04 dBuV/m at 1m (Peak) | | Accessories | N/A | Report No.: FR122663-04 Note: The above information was declared by manufacturer. ## 1.2 Antenna Information | Ant. | Brand | Model Name | Antenna Type | Connector | Gain (dBi) | |------|-------|------------|--------------------|-----------|------------| | 1 | N/A | N/A | Integrated Antenna | N/A | 2 | Note: The above information was declared by manufacturer. TEL: 886-3-656-9065 Page Number : 5 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 1.3 Table for Permissive Change This product is an extension of original one reported under Sporton project number: FR122663 Below is the table for the change of the product with respect to the original one. Report No.: FR122663-04 | Modifications | Description | |--|--| | Implemented the Board device Model Product Name | | | Cisco Webex Board Pro 75 with Model Name TTC60-32, | | | with the following changes, creating a new Product | | | Name Cisco Board Pro 75 G2 with Model Name | | | TTC60-36. | AC Power Line Conducted Emissions. | | The list below describes the implementations done | 2. Radiated Emissions 30MHz~1GHz. | | to the new Board device. | | | a. Added two I/O Ports: One HDMI Output Port, and | | | one Ethernet Port. | | | b. Upgraded the Camera. | | | 2. Applied the second source component to the 24 | | | GHz Radio Radar PCB with the following changes | | | without causing any function or performance | | | differences. | | | a. Alternate second source of crystal from Diodes. | Field Strength of Fundamental Emissions. | | b. Increased the PCB space paths to accommodate | Their Strength of Fundamental Emissions. 99%Bandwidth. | | the following second source components: | 2. 9976Bandwidth. | | Resistor R16, R17, and C28 capacitor location. | | | The R16 and R17 resistors are zero-ohm jumpers | | | used for debugging. The C28 capacitor serves as | | | a decoupling capacitor. | | TEL: 886-3-656-9065 Page Number : 6 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 #### 1.4 Table for Test Modes The following table is a list of the test modes shown in this test report. | Test Items | Mode | |---|------| | AC Power Line Conducted Emissions | CTX | | Test Voltage: 120Vac / 60Hz | CIX | | Field Strength of Fundamental Emissions | CTX | | 20dB Spectrum Bandwidth | | | Radiated Emissions 30MHz~1GHz | СТХ | Report No.: FR122663-04 Note: 1.CTX=continuously transmitting 2.After evaluating, the worst case was found at the X axis. Thus, the measurement followed the same configuration. ## 1.5 Applicable Standards According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards: - ANSI C63.10-2013 - 47 CFR FCC Part 15 Subpart C The following reference test guidance is not within the scope of accreditation of TAF. FCC KDB 414788 D01 v01r01 ## 1.6 Table for Testing Locations | Testing Location Information | | | | | |---|--|-------|--|--| | Test Lab. : Sporton International Inc. Hsinchu Laboratory | | | | | | Hsinchu | Hsinchu ADD: No.8, Ln. 724, Bo'ai St., Zhubei City, Hsinchu County 302010, Taiwan (R.O.C.) | | | | | (TAF: 3787) | TEL: 886-3-656-9065 FAX: 886-3-656-9085 | | | | | | Test site Designation No. TW3787 with FCC. | | | | | | Conformity Assessment Body Identifier (CABID) TW3787 with | ISED. | | | | Test Condition | Test Site No. | Test Engineer | Test Environment
(°C / %) | Test Date | |--------------------------------------|---------------|---------------|------------------------------|---------------| | Radiated (Below 1GHz and Above 1GHz) | 10CH01-CB | Richard Pai | 22.4-23.5 / 55-58 | Nov. 06, 2023 | | AC Conduction | CO01-CB | Tim Chen | 23~24 / 62~64 | Oct. 26, 2023 | TEL: 886-3-656-9065 Page Number : 7 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 1.7 Table for Supporting Units #### For AC Conduction | No. | Support Unit | Brand | Model | FCC ID | |-----|------------------|-------------------|----------------|--------| | Α | Flash disk3.0 | Transcend | JetFlash-700 | N/A | | В | Earphone | SHYARO CHI | MIC-04 | N/A | | С | Table microphone | Cisco Systems Inc | CS-MIC-TABLE-J | N/A | | D | Table microphone | Cisco Systems Inc | CS-MIC-TABLE-J | N/A | Report No.: FR122663-04 ## For Radiated (Below 1GHz) and (Above 1GHz) | No. | Support Unit | Brand | Model | FCC ID | |-----|------------------|-------|---------|--------| | Α | Notebook | DELL | E4300 | N/A | | | Webex Room | | | | | В | Navigator (small | Cisco | TTC5-15 | N/A | | | touch screen) | | | | TEL: 886-3-656-9065 Page Number: 8 of 33 FAX: 886-3-656-9085 Issued Date: Jan. 25, 2024 Report No. : FR122663-04 ## 1.8 Test Configurations ## 1.8.1 AC Power Line Conduction Emissions Test Configuration | Item | Connection | Shielded | Length | |------|------------------------|----------|--------| | 1 | Power cable | No | 5m | | 2 | HDMI cable | Yes | 1.8m | | 3 | HDMI cable*2 | Yes | 8m | | 4 | Micro USB cable | Yes | 1.8m | | 5 | Type C USB cable | Yes | 9m | | 6 | RJ-45 cable*3 | No | 5m | | 7 | Table microphone cable | Yes | 7.5m | | 8 | Table microphone cable | Yes | 7.5m | | 9 | Audio cable | No | 1.2m | TEL: 886-3-656-9065 Page Number: 9 of 33 FAX: 886-3-656-9085 Issued Date: Jan. 25, 2024 ## 1.8.2 Radiation Emissions Test Configuration Report No.: FR122663-04 | Item | Connection | Shielded | Length | |------|--------------------|----------|--------| | 1 | Power cable | No | 5m | | 2 | RJ-45 cable | No | 5m | | 3 | USB to Micro cable | Yes | 1m | TEL: 886-3-656-9065 Page Number : 10 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 2 Test Result #### 2.1 AC Power Line Conducted Emissions Measurement #### 2.1.1 Limit For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table. Report No.: FR122663-04 #### Class B | Frequency (MHz) | QP Limit (dBuV) | AV Limit (dBuV) | |-----------------|-----------------|-----------------| | 0.15~0.5 | 66~56 | 56~46 | | 0.5~5 | 56 | 46 | | 5~30 | 60 | 50 | #### Class A | Frequency (MHz) | QP Limit (dBuV) | AV Limit (dBuV) | |-----------------|-----------------|-----------------| | 0.15~0.5 | 79 | 66 | | 0.5~30 | 73 | 60 | #### 2.1.2 Measuring Instruments and Setting Refer a test equipment and calibration data table in this test report. The following table is the setting of the receiver. | Receiver Parameters | Setting | |---------------------|----------| | Attenuation | 10 dB | | Start Frequency | 0.15 MHz | | Stop Frequency | 30 MHz | | IF Bandwidth | 9 kHz | #### 2.1.3 Test Procedures - Configure the EUT according to ANSI C63.10. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface. - 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN). - 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance. TEL: 886-3-656-9065 Page Number : 11 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 - 4. The frequency range from 150 kHz to 30 MHz was searched. - 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. Report No.: FR122663-04 6. The measurement has to be done between each power line and ground at the power terminal. TEL: 886-3-656-9065 Page Number : 12 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 #### 2.1.4 **Test Setup Layout** Report No.: FR122663-04 - 1—Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 cm to 40 cm long. - 2—The I/O cables that are not connected to an accessory shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m. - 3—EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 Ω loads. LISN may be placed on top of, or immediately beneath, reference ground plane. - -All other equipment powered from additional LISN(s). - 3.2—A multiple-outlet strip may be used for multiple power cords of non-EUT equipment. 3.3—LISN at least 80 cm from nearest part of EUT chassis. - 4-Non-EUT components of EUT system being tested. - 5—Rear of EUT, including peripherals, shall all be aligned and flush with edge of tabletop. - 6—Edge of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground - Antenna can be integral or detachable. If detachable, then the antenna shall be attached for this test. #### 2.1.5 **Test Deviation** There is no deviation with the original standard. #### 2.1.6 **EUT Operation during Test** The EUT was placed on the test table and programmed in normal function. TEL: 886-3-656-9065 Page Number : 13 of 33 FAX: 886-3-656-9085 : Jan. 25, 2024 Issued Date ## 2.1.7 Measurement Results Calculation The measured Level is calculated using: a. Corrected Reading: LISN Factor (LISN) + Attenuator (AT/AUX) + Cable Loss (CL) + Read Level (Raw) = Level Report No.: FR122663-04 b. Margin = -Limit + Level TEL: 886-3-656-9065 Page Number : 14 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ### 2.1.8 Results of AC Power Line Conducted Emissions Measurement | Configuration | CTX | Phase | Line | |---------------|-----|-------|------| |---------------|-----|-------|------| Report No.: FR122663-04 Class B Note: The frequency 4.79 MHz is the unintentional signal. The unintentional signal is meet part 15 class A requirement. TEL: 886-3-656-9065 Page Number : 15 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 Report No. : FR122663-04 | Configuration | CTX | Phase | Neutral | |---------------|-----|-------|---------| |---------------|-----|-------|---------| Class B TEL: 886-3-656-9065 Page Number : 16 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 Report No. : FR122663-04 | Configuration | CTX | Phase | Line | |---------------|-----|-------|------| |---------------|-----|-------|------| Part 15 Class A test Result TEL: 886-3-656-9065 Page Number : 17 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 Report No.: FR122663-04 | Configuration CTX | Phase Neutral | | |--------------------------|---------------|--| |--------------------------|---------------|--| Part 15 Class A test Result TEL: 886-3-656-9065 Page Number : 18 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 2.2 Field Strength of Fundamental Emissions Measurement #### 2.2.1 Limit The field strength of fundamental emissions within these bands specified at a distance of 3 meters (measurement instrumentation employing an average detector) shall comply with the following table. Report No.: FR122663-04 | Frequency Band | Fundamental Emissions Limit Average/Peak | | |-------------------|--|--| | , , | (dBuV/m) at 3m | | | 24000 ~ 24250 MHz | 107.96/127.96 | | Note 1: 107.96 dBuV/m rounding to 108dBuV/m and 127.96 dBuV/m rounding to 128dBuV/m Note 2: Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade from 3m to 1m. Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB]. Average limit = 108dBuV/m + distance extrapolation factor (9.54 dB) =117.54dBuV/m. Peak limit = 128dBuV/m + distance extrapolation factor (9.54 dB) =137.54dBuV/m. ## 2.2.2 Measuring Instruments and Setting Refer a test equipment and calibration data table in this test report. The following table is the setting of the spectrum analyzer. | Power Meter Parameter | Setting | |-----------------------|---------------------------| | RBW | 1 MHz Peak / 3MHz Average | | VBW | 1 MHz Peak / 1/T Average | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | #### 2.2.3 Test Procedures - 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable. - 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation. - 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. - 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading. - 5. For Fundamental emissions, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW TEL: 886-3-656-9065 Page Number : 19 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 and 1/T VBW for average reading in spectrum analyzer. 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. Report No.: FR122663-04 ### 2.2.4 Test Setup Layout #### 2.2.5 Test Deviation There is no deviation with the original standard. ## 2.2.6 EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. #### 2.2.7 Measurement Results Calculation The measured Level is calculated using: Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level. TEL: 886-3-656-9065 Page Number : 20 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 2.2.8 Test Result of Field Strength of Fundamental Emissions #### Horizontal Report No.: FR122663-04 #### Vertical #### Note: Emission level (dBuV/m) = 20 log Emission level (uV/m). TEL: 886-3-656-9065 Page Number : 21 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 2.3 20dB Spectrum Bandwidth Measurement #### 2.3.1 Limit Intentional radiators must be designed to ensure that the 20 dB bandwidth of the emissions in the specific band $(24000 \sim 24250 \text{ MHz})$. Report No.: FR122663-04 ## 2.3.2 Measuring Instruments and Setting Refer a test equipment and calibration data table in this test report. The following table is the setting of the spectrum analyzer. | Spectrum Parameters | Setting | |---------------------|------------------| | Attenuation | Auto | | Span Frequency | > 20dB Bandwidth | | RBW | 100 kHz | | VBW | 100 kHz | | Detector | Peak | | Trace | Max Hold | | Sweep Time | Auto | #### 2.3.3 Test Procedures - 1. The test procedure is the same as section 2.4.3. - 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used. - 3. Measured the spectrum width with power higher than 20dB below carrier. TEL: 886-3-656-9065 Page Number : 22 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 2.3.4 Test Setup Layout Report No.: FR122663-04 ### 2.3.5 Test Deviation There is no deviation with the original standard. ## 2.3.6 EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. TEL: 886-3-656-9065 Page Number : 23 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 2.3.7 Test Result of 20dB Spectrum Bandwidth | Frequency | 99% OBW
(MHz) | Frequency range (MHz) f _L >24000MHz | Frequency range
(MHz)
f _H <24250MHz | Test Result | |-----------|------------------|--|--|-------------| | 24150 MHz | 180.174 | 24060.999 | 24241.172 | PASS | Report No.: FR122663-04 TEL: 886-3-656-9065 Page Number : 24 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 99% Bandwidth Plot on 24150 MHz Report No.: FR122663-04 Date: 23.NOV.2023 13:06:51 TEL: 886-3-656-9065 Page Number : 25 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 #### 2.4 Radiated Emissions Measurement #### 2.4.1 Limit For 9kHz~40GHz Harmonic emissions limits comply with below 54 dBuV/m at 3m. Other emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or comply with the radiated emissions limits specified in section 15.209(a) limit in the table below has to be followed. Report No.: FR122663-04 | Frequencies
(MHz) | Field Strength (micorvolts/meter) | Measurement Distance (meters) | |----------------------|-----------------------------------|-------------------------------| | 0.009~0.490 | 2400/F(kHz) | 300 | | 0.490~1.705 | 24000/F(kHz) | 30 | | 1.705~30.0 | 30 | 30 | | 30~88 | 100 | 3 | | 88~216 | 150 | 3 | | 216~960 | 200 | 3 | | Above 960 | 500 | 3 | ## 2.4.2 Measuring Instruments and Setting Refer a test equipment and calibration data table in this test report. The following table is the setting of the spectrum analyzer and receiver. | Spectrum Parameter | Setting | |--------------------|---| | Attenuation | Auto | | Start Frequency | 1000 MHz | | Stop Frequency | 10th carrier harmonic | | RBW / VBW | 1MHz / 1MHz for Peak, 1 MHz / 1/T for Average | | Receiver Parameter | Setting | |------------------------|-----------------------------------| | Attenuation | Auto | | Start ~ Stop Frequency | 9kHz~150kHz / RBW 200Hz for QP | | Start ~ Stop Frequency | 150kHz~30MHz / RBW 9kHz for QP | | Start ~ Stop Frequency | 30MHz~1000MHz / RBW 120kHz for QP | TEL: 886-3-656-9065 Page Number : 26 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 #### 2.4.3 Test Procedures Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable. Report No.: FR122663-04 - 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation. - 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization. - 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading. - 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode. - 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer. - 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. - 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz. - 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported. - 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case. TEL: 886-3-656-9065 Page Number : 27 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ADIO TEST REPORT Report No. : FR122663-04 ## 2.4.4 Test Setup Layout For Radiated Emissions: 9kHz ~30MHz For Radiated Emissions: 30MHz~1GHz ## 2.4.5 Test Deviation There is no deviation with the original standard. ## 2.4.6 EUT Operation during Test The EUT was programmed to be in continuously transmitting mode. #### 2.4.7 Measurement Results Calculation The measured Level is calculated using: For below 40GHz Corrected Reading: Antenna factor (AF) + Cable loss (CL) + Read level (Raw) - Preamp factor (PA)(if applicable) = Level. TEL: 886-3-656-9065 Page Number : 28 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 2.4.8 Results of Radiated Emissions (9kHz~30MHz) | Freq. | Level | Over Limit | Limit Line | Remark | |-------|--------|------------|------------|----------| | (MHz) | (dBuV) | (dB) | (dBuV) | | | - | - | - | - | See Note | Report No.: FR122663-04 #### Note: There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to KDB414788 Radiated Test Site, and the result came out very similar. The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported. The radiated emissions were investigated from 9 kHz or the lowest frequency generated within the device, up to the 10 harmonic or 40 GHz, whichever is appropriate. Distance extrapolation factor = 40 log (specific distance / test distance) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor. TEL: 886-3-656-9065 Page Number : 29 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ### 2.4.9 Results of Radiated Emissions (30MHz~1GHz) #### Horizontal Report No.: FR122663-04 #### Vertical #### Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. Emission level (dBuV/m) = 20 log Emission level (uV/m). TEL: 886-3-656-9065 Page Number : 30 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 ## 2.5 Antenna Requirements #### 2.5.1 Limit Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Report No.: FR122663-04 #### 2.5.2 Antenna Connector Construction The antenna connector complied with the requirements. TEL: 886-3-656-9065 Page Number : 31 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 # 3 List of Measuring Equipments | | | | | | Calibration | Calibration | | |---|---------------------|---------------------|-------------------|----------------------|---------------|---------------|--------------------------| | Instrument | Brand | Model No. | Serial No. | Characteristics | Date | Due Date | Remark | | EMI Receiver | Agilent | N9038A | My52260123 | 9kHz ~ 8.4GHz | Feb. 20, 2023 | Feb. 19, 2024 | Conduction
(CO01-CB) | | LISN | F.C.C. | FCC-LISN-50-16-2 | 04083 | 150kHz ~ 100MHz | Feb. 16, 2023 | Feb. 15, 2024 | Conduction
(CO01-CB) | | LISN | Schwarzbeck | NSLK 8127 | 8127647 | 9kHz ~ 30MHz | Apr. 27, 2023 | Apr. 26, 2024 | Conduction
(CO01-CB) | | Pulse Limiter | Rohde&Schwarz | ESH3-Z2 | 100430 | 9kHz ~ 30MHz | Feb. 09, 2023 | Feb. 08, 2024 | Conduction
(CO01-CB) | | COND Cable | Woken | Cable | Low
cable-CO01 | 9kHz ~ 30MHz | Oct. 17, 2023 | Oct. 16, 2024 | Conduction
(CO01-CB) | | Software | SPORTON | SENSE | V5.10 | - | N.C.R. | N.C.R. | Conduction
(CO01-CB) | | 10m Semi
Anechoic
Chamber
NSA | TDK | SAC-10M | 10CH01-CB | 30MHz~1GHz
10m,3m | Jan. 18, 2023 | Jan. 17, 2024 | Radiation
(10CH01-CB) | | 10m Semi
Anechoic
Chamber
VSWR | TDK | SAC-10M | 10CH01-CB | 1GHz ~18GHz
3m | Feb. 24, 2023 | Feb. 23, 2024 | Radiation
(10CH01-CB) | | Amplifier | Agilent | 8447D | 2944A10783 | 9kHz ~ 1.3GHz | Mar. 10, 2023 | Mar. 09, 2024 | Radiation
(10CH01-CB) | | Amplifier | Agilent | 8447D | 2944A10784 | 9kHz ~ 1.3GHz | Mar. 10, 2023 | Mar. 09, 2024 | Radiation
(10CH01-CB) | | Low Cable | Woken | SUCOFLEX 104 | low cable-01 | 25MHz ~ 1GHz | Oct. 17, 2023 | Oct. 16, 2024 | Radiation
(10CH01-CB) | | Low Cable | Woken | SUCOFLEX 104 | low cable-02 | 25MHz ~ 1GHz | Oct. 17, 2023 | Oct. 16, 2024 | Radiation
(10CH01-CB) | | Bilog Antenna
with 6dB
Attenator | Schaffner &
EMCI | CBL6112B&
N-6-06 | 2888&AT-N0605 | 30MHz ~ 1GHz | Jan. 19, 2023 | Jan. 18, 2024 | Radiation
(10CH01-CB) | | Amplifier | EM | EM101 | 060703 | 10MHz ~ 1GHz | Oct. 18, 2023 | Oct. 17, 2024 | Radiation
(10CH01-CB) | | Low Cable | TITAN | T318E | low cable-03 | 30MHz ~ 1GHz | Nov. 07, 2023 | Nov. 06, 2024 | Radiation
(10CH01-CB) | | EMI Test
Receiver | Rohde&Schwarz | ESCI | 100186 | 9kHz ~ 3GHz | Jul. 11, 2023 | Jul. 10, 2024 | Radiation
(10CH01-CB) | | Signal
Analyzer | R&S | FSV3044 | 101437 | 10kHz ~ 44GHz | Nov. 29, 2022 | Nov. 29, 2023 | Radiation
(10CH01-CB) | | Horn Antenna | ESCO | 3117 | 00081283 | 1GHz ~ 18GHz | Nov. 25, 2022 | Nov. 24, 2023 | Radiation
(10CH01-CB) | | Horn Antenna | Schwarzbeck | BBHA 9170 | BBHA9170252 | 15GHz ~ 40GHz | Sep. 04, 2023 | Sep. 03, 2024 | Radiation
(10CH01-CB) | | Pre-Amplifier | Agilent | 8449B | 3008A02660 | 1GHz ~ 26.5GHz | May 18, 2023 | May 17, 2024 | Radiation
(10CH01-CB) | | Pre-Amplifier | SGH | SGH184 | 20221107-3 | 18GHz ~ 40GHz | Nov. 16, 2022 | Nov. 15, 2023 | Radiation
(10CH01-CB) | | High Cable | Woken | WCA0929M | 40G#5+6 | 1GHz ~ 40 GHz | Oct. 02, 2023 | Oct. 01, 2024 | Radiation
(10CH01-CB) | | High Cable | Woken | WCA0929M | 40G#5 | 1GHz ~ 40 GHz | Oct. 02, 2023 | Oct. 01, 2024 | Radiation
(10CH01-CB) | | High Cable | Woken | WCA0929M | 40G#6 | 1GHz ~ 40 GHz | Oct. 02, 2023 | Oct. 01, 2024 | Radiation
(10CH01-CB) | | Loop Antenna | Teseq | HLA 6121 | 65417 | 9kHz - 30 MHz | Oct. 13, 2023 | Oct. 12, 2024 | Radiation
(10CH01-CB) | | Test Software | SPORTON | SENSE | V5.10 | - | N.C.R. | N.C.R. | Radiation
(10CH01-CB) | Report No.: FR122663-04 Note: Calibration Interval of instruments listed above is one year. N.C.R. means Non-Calibration required. TEL: 886-3-656-9065 Page Number : 32 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024 # 4 Measurement Uncertainty | Test Items | Uncertainty | Remark | |--------------------------------------|-------------|--------------------------| | Conducted Emission (150kHz ~ 30MHz) | 3.4 dB | Confidence levels of 95% | | Radiated Emission (9kHz ~ 30MHz) | 3.7 dB | Confidence levels of 95% | | Radiated Emission (30MHz ~ 1,000MHz) | 5.1 dB | Confidence levels of 95% | | Radiated Emission (1GHz ~ 18GHz) | 4.1 dB | Confidence levels of 95% | | Radiated Emission (18GHz ~ 40GHz) | 4.2 dB | Confidence levels of 95% | Report No.: FR122663-04 TEL: 886-3-656-9065 Page Number : 33 of 33 FAX: 886-3-656-9085 Issued Date : Jan. 25, 2024