

EX3DV4 - SN:3759

December 15, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E $k=2$
10472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10474	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10475	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10477	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10478	AAC	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10479		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10480	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6
	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10482	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6
10483		LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	±9.6
10486	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	±9.6
10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
10488	AAG	LTE-TDD (SC-FDMA, 50% RB, 5MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	±9.6
10489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	±9.6
10489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
		LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	±9.6
10493		LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	±9.6
10499		LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	±9.6
10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	±9.6
10502	AAG	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	±9.6
10503		LTE-TDD (SC-FDMA, 100% RB, 5MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	±9.6
10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10506		LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10507 10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	±9.6
		LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10513	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10515	AAA	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	LTE-TDD	8.45	±9.6
10516	AAA		WLAN	1.58	±9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle) IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6
10517	AAC		WLAN	1.58	±9.6
10518	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle) IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	±9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6
10521	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10523	AAC	IEEE 802.11a/n WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.27	±9.6
10525	AAC		WLAN	8.36	±9.6
10526	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle) IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.42	±9.6
10527	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.6
10529	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.36	±9.6
10529	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.36	±9.6
10531	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.43	±9.6
10532	AAC		WLAN	8.29	±9.6
10533	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.38	±9.6
	_	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6
10535	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6
10536	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6
10537	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
10538	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6
10540	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.39	±9.6

Page 16 of 23

EX3DV4 - SN:3759

December 15, 2022

UID 10541	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k =
10541	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6
10542	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
10544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.47	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle) IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.42	±9.6
10554	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
10555	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6
10556	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.47	±9.6
10557	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.50	±9.6
10558	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.52	±9.6
10560	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.61	±9.6
10561	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.73	±9.6
10562	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.56	±9.6
10563	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.69	±9.6
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.77	±9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	±9.6
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	±9.6
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.37	±9.6
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6
0571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)		8.30	±9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN WLAN	1.99	±9.6
0573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN		±9.6
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
0575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN		±9.6
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.59 8.60	±9.6
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN		±9.6
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.70 8.49	±9.6
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN		±9.6
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.76 8.35	±9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	
10583	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10584	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10585	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10586	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	
10587	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10588	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN		±9.6
0589	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.76 8.35	±9.6
0590	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
0591	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle)	WLAN	8.63	±9.6
0592	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
0593	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle)	WLAN	8.64	±9.6
0594	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
0595	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6
0596	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6
0597	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6
0598	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle)	WLAN	8.50	±9.6
0599	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6
0600	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
0601	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)	WLAN	8.82	
0602	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle)	WLAN	8.82	±9.6
0603	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.6
0604	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN		±9.6
0605	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle)		8.76	±9.6
	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle)	WLAN WLAN	8.97	±9.6
				8.82	±9.6
0606 0607	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.6

Page 17 of 23

EX3DV4 - SN:3759 December 15, 2022

	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.57	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.78	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.94	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.59	±9.6
	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.82	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.81	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.58	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.86	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.87	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.68	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.96	±9.6
	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.96	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.71	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.72	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.81	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.83	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.80	±9.6
	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.83	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.86	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 90pc duty cycle)	WLAN	8.85	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 90pc duty cycle)	WLAN	8.98	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS5, 90pc duty cycle)	WLAN	9.06	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 90pc duty cycle)	WLAN	9.06	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.89	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 90pc duty cycle)	WLAN	9.05	±9.6
	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 90pc duty cycle)	WLAN	9.11	±9.6
	AAH	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,7)	LTE-TDD	11.96	±9.6
	AAA	CDMA2000 (1x Advanced)	CDMA2000	3.45	±9.6
	AAF	LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.91	±9.6
	AAF	LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.42	±9.6
	AAE	LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	6.96	±9.6
	AAF	LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-TDD	7.21	±9.6
	AAB	Pulse Waveform (200Hz, 10%)	Test	10.00	±9.6
	AAB	Pulse Waveform (200Hz, 20%)	Test	6.99	±9.6
	AAB	Pulse Waveform (200Hz, 40%)	Test	3.98	±9.6
	AAB	Pulse Waveform (200Hz, 60%)	Test	2.22	±9.6
	AAB	Pulse Waveform (200Hz, 80%)	Test	0.97	±9.6
	AAA	Bluetooth Low Energy	Bluetooth	2.19	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS0, 90pc duty cycle)	WLAN	9.09	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.57	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS2, 90pc duty cycle)	WLAN	8.78	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS4, 90pc duty cycle)	WLAN	8.90	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS5, 90pc duty cycle)	WLAN	8.77	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS6, 90pc duty cycle)	WLAN	8.73	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS7, 90pc duty cycle)	WLAN	8.78	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS8, 90pc duty cycle)	WLAN	8.89	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS9, 90pc duty cycle)	WLAN	8.80	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS10, 90pc duty cycle)	WLAN	8.62	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS11, 90pc duty cycle)	WLAN	8.83	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.26	±9.6
	AAC	IEEE 802.11ax (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10686	AAC	IEEE 802.11ax (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.28	±9.6

Page 18 of 23

EX3DV4 - SN:3759 December 15, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	$Unc^{E} k = 2$
10687	AAC	IEEE 802.11ax (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.45	±9.6
10688	AAC	IEEE 802.11ax (20 MHz, MCS5, 99pc duty cycle)	WLAN	8.29	±9.6
10689	AAC	IEEE 802.11ax (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.55	±9.6
10690	AAC	IEEE 802.11ax (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10691	AAC	IEEE 802.11ax (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.25	±9.6
10692	AAC	IEEE 802.11ax (20 MHz, MCS9, 99pc duty cycle)	WLAN	8.29	±9.6
10693	AAC	IEEE 802.11ax (20 MHz, MCS10, 99pc duty cycle)	WLAN	8.25	±9.6
10694	AAC	IEEE 802.11ax (20 MHz, MCS11, 99pc duty cycle)	WLAN	8.57	±9.6
10695	AAC	IEEE 802.11ax (40 MHz, MCS0, 90pc duty cycle)	WLAN	8.78	±9.6
10696	AAC	IEEE 802.11ax (40 MHz, MCS1, 90pc duty cycle)	WLAN	8.91	±9.6
10697	AAC	IEEE 802.11ax (40 MHz, MCS2, 90pc duty cycle)	WLAN	8.61	±9.6
10698	AAC	IEEE 802.11ax (40 MHz, MCS3, 90pc duty cycle)	WLAN	8.89	±9.6
10699	AAC	IEEE 802.11ax (40 MHz, MCS4, 90pc duty cycle)	WLAN	8.82	±9.6
10700	AAC	IEEE 802.11ax (40 MHz, MCS5, 90pc duty cycle)	WLAN	8.73	±9.6
10701	AAC	IEEE 802.11ax (40 MHz, MCS6, 90pc duty cycle)	WLAN	8.86	±9.6
10702	AAC	IEEE 802.11ax (40 MHz, MCS7, 90pc duty cycle)	WLAN	8.70	±9.6
10703	AAC	IEEE 802.11ax (40 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10704	AAC	IEEE 802.11ax (40 MHz, MCS9, 90pc duty cycle)	WLAN	8.56	±9.6
10705	AAC	IEEE 802.11ax (40 MHz, MCS10, 90pc duty cycle)	WLAN	8.69	±9.6
10706	AAC	IEEE 802.11ax (40 MHz, MCS11, 90pc duty cycle)	WLAN	8.66	±9.6
10707	AAC	IEEE 802.11ax (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.32	±9.6
10708	AAC	IEEE 802.11ax (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10709	AAC	IEEE 802.11ax (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.33	±9.6
10710	AAC	IEEE 802.11ax (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.29	±9.6
10711	AAC	IEEE 802.11ax (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.39	±9.6
10712	AAC	IEEE 802.11ax (40 MHz, MCS5, 99pc duty cycle)	WLAN	8.67	±9.6
10713	AAC	IEEE 802.11ax (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.33	±9.6
10714	AAC	IEEE 802.11ax (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.26	±9.6
10715	AAC	IEEE 802.11ax (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.45	±9.6
10716	AAC	IEEE 802.11ax (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.30	±9.6
10717	AAC	IEEE 802.11ax (40 MHz, MCS10, 99pc duty cycle)	WLAN	8.48	±9.6
10718	AAC	IEEE 802.11ax (40 MHz, MCS11, 99pc duty cycle)	WLAN	8.24	±9.6
10719	AAC	IEEE 802.11ax (80 MHz, MCS0, 90pc duty cycle)	WLAN	8.81	±9.6
10720	AAC	IEEE 802.11ax (80 MHz, MCS1, 90pc duty cycle)	WLAN	8.87	±9.6
10721	AAC	IEEE 802.11ax (80 MHz, MCS2, 90pc duty cycle)	WLAN	8.76	±9.6
10722	AAC	IEEE 802.11ax (80 MHz, MCS3, 90pc duty cycle)	WLAN	8.55	±9.6
10723	AAC	IEEE 802.11ax (80 MHz, MCS4, 90pc duty cycle)	WLAN	8.70	±9.6
10724	AAC	IEEE 802.11ax (80 MHz, MCS5, 90pc duty cycle)	WLAN	8.90	±9.6
10725	AAC	IEEE 802.11ax (80 MHz, MCS6, 90pc duty cycle)	WLAN	8.74	±9.6
10726	AAC	IEEE 802.11ax (80 MHz, MCS7, 90pc duty cycle)	WLAN	8.72	±9.6
10727	AAC	IEEE 802.11ax (80 MHz, MCS8, 90pc duty cycle)	WLAN	8.66	±9.6
10728	AAC	IEEE 802.11ax (80 MHz, MCS9, 90pc duty cycle)	WLAN	8.65	±9.6
10729	AAC	IEEE 802.11ax (80 MHz, MCS10, 90pc duty cycle)	WLAN	8.64	±9.6
10730	AAC	IEEE 802.11ax (80 MHz, MCS11, 90pc duty cycle)	WLAN	8.67	±9.6
10731	AAC	IEEE 802.11ax (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.42	±9.6
10732	AAC	IEEE 802.11ax (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.46	±9.6
10733	AAC	IEEE 802.11ax (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.40	±9.6
10734	AAC	IEEE 802.11ax (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.25	±9.6
10735	AAC	IEEE 802.11ax (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.33	±9.6
10736	AAC	IEEE 802.11ax (80 MHz, MCS5, 99pc duty cycle)	WLAN	8.27	±9.6
10737	AAC	IEEE 802.11ax (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.36	±9.6
10738	AAC	IEEE 802.11ax (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.42	±9.6
10739	AAC	IEEE 802.11ax (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.29	±9.6
10740	AAC	IEEE 802.11ax (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.48	±9.6
10741	AAC	IEEE 802.11ax (80 MHz, MCS10, 99pc duty cycle)	WLAN	8.40	±9.6
10742	AAC	IEEE 802.11ax (80 MHz, MCS11, 99pc duty cycle)	WLAN	8.43	±9.6
10743	AAC	IEEE 802.11ax (160 MHz, MCS0, 90pc duty cycle)	WLAN	8.94	±9.6
10744	AAC	IEEE 802.11ax (160 MHz, MCS1, 90pc duty cycle)	WLAN	9.16	±9.6
10745	AAC	IEEE 802.11ax (160 MHz, MCS2, 90pc duty cycle)	WLAN	8.93	±9.6
10746	AAC	IEEE 802.11ax (160 MHz, MCS3, 90pc duty cycle)	WLAN	9.11	±9.6
10747	AAC	IEEE 802.11ax (160 MHz, MCS4, 90pc duty cycle)	WLAN	9.04	±9.6
10748	AAC	IEEE 802.11ax (160 MHz, MCS5, 90pc duty cycle)	WLAN	8.93	±9.6
10749	AAC	IEEE 802.11ax (160 MHz, MCS6, 90pc duty cycle)	WLAN	8.90	±9.6
10750	AAC	IEEE 802.11ax (160 MHz, MCS7, 90pc duty cycle)	WLAN	8.79	±9.6
10751	AAC	IEEE 802.11ax (160 MHz, MCS8, 90pc duty cycle)	WLAN	8.82	±9.6
10752	AAC	IEEE 802.11ax (160 MHz, MCS9, 90pc duty cycle)	WLAN	8.81	±9.6

Page 19 of 23

EX3DV4 - SN:3759

December 15, 2022

UID	Rev	Communication System Name			
10753	AAC	IEEE 802.11ax (160 MHz, MCS10, 90pc duty cycle)	Group	PAR (dB)	Unc ^E $k=2$
10754	AAC		WLAN	9.00	±9.6
		IEEE 802.11ax (160 MHz, MCS11, 90pc duty cycle)	WLAN	8.94	±9.6
10755	AAC	IEEE 802.11ax (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.64	±9.6
10756	AAC	IEEE 802.11ax (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.77	±9.6
10757	AAC	IEEE 802.11ax (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.77	±9.6
10758	AAC	IEEE 802.11ax (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.69	±9.6
10759	AAC	IEEE 802.11ax (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.58	±9.6
10760	AAC	IEEE 802.11ax (160 MHz, MCS5, 99pc duty cycle)	WLAN	8.49	±9.6
10761	AAC	IEEE 802.11ax (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.58	±9.6
10762	AAC	IEEE 802.11ax (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.49	±9.6
10763	AAC	IEEE 802.11ax (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.53	
10764	AAC	IEEE 802.11ax (160 MHz, MCS9, 99pc duty cycle)	WLAN		±9.6
10765	AAC	IEEE 802.11ax (160 MHz, MCS10, 99pc duty cycle)		8.54	±9.6
10766	AAC	IEEE 802.11ax (160 MHz, MCS11, 99pc duty cycle)	WLAN	8.54	±9.6
10767	AAE	5G NR (CP-OFDM, 1 RB, 5MHz, QPSK, 15 kHz)	WLAN	8.51	±9.6
10768	AAD		5G NR FR1 TDD	7.99	±9.6
		5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10769	AAD	5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.01	±9.6
10770	AAD	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10771	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10772	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.23	±9.6
10773	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.03	±9.6
10774	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.02	±9.6
10775	AAD	5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10776	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	±9.6
10777	AAC	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.30	
10778	AAD	5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)			±9.6
10779	AAC	5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.34	±9.6
10780	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.42	±9.6
10780	AAD		5G NR FR1 TDD	8.38	±9.6
		5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.38	±9.6
10782	AAD	5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.43	±9.6
10783	AAE	5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.31	±9.6
10784	AAD	5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.29	±9.6
10785	AAD	5G NR (CP-OFDM, 100% RB, 15MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.40	±9.6
10786	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.35	±9.6
10787	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.44	±9.6
10788	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10789	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.37	±9.6
10790	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	8.39	±9.6
10791	AAE	5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.83	±9.6
10792	AAD	5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz)			
10793	AAD	5G NR (CP-OFDM, 1 RB, 15MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.92	±9.6
10794	AAD		5G NR FR1 TDD	7.95	±9.6
10794	_	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
	AAD	5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.84	±9.6
10796	AAD	5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.82	±9.6
10797	AAD	5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.01	±9.6
10798	AAD	5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10799	AAD	5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10801	AAD	5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.89	±9.6
10802	AAD	5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.87	±9.6
10803	AAD	5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	7.93	±9.6
10805	AAD	5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	±9.6
10806	AAD	5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.37	±9.6
10809	AAD	5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.34	
10810	AAD	5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)			±9.6
10810	AAD		5G NR FR1 TDD	8.34	±9.6
10812	AAE	5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
		5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.35	±9.6
10818			5G NR FR1 TDD	8.34	±9.6
10819	AAD	5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.33	±9.6
10820	AAD	5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.30	±9.6
10821	AAD	5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10822	AAD	5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10823	AAD	5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.36	±9.6
10824	AAD	5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.39	±9.6
10825	AAD	5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.41	±9.6
10827	AAD	5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.42	±9.6
10828	AAD	5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	8.43	±9.6
				0.40	10.0

Certificate No: EX-3759_Dec22

Page 20 of 23

EX3DV4 - SN:3759

December 15, 2022

UID Rev Communication System Name Group	DD 7.63 DD 7.63 DD 7.73 DD 7.73 DD 7.75 DD 7.70 DD 7.70 DD 7.68 DD 7.68 DD 7.69 DD 7.69 DD 7.69 DD 8.34 DD 8.34 DD 8.34 DD 8.34 DD 8.34 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.37 DD 8.38 DD 8.36 DD 8.37 DD 8.37 DD 8.38 DD 8.38 DD 8.39 DD 8.39 DD 8.39 DD 8.39 DD 8.39 DD 8.30 DD 8.30 DD 8.30 DD 8.30 DD 8.31 DD 8.35 DD 8.36 DD 8.36 DD 8.37 DD 8.37 DD 8.37 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.57 DD 8.575 DD 8.575	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10830	DD 7.63 DD 7.63 DD 7.73 DD 7.73 DD 7.75 DD 7.70 DD 7.75 DD 7.70 DD 7.68 DD 7.68 DD 7.69 DD 7.69 DD 8.49 DD 8.34 DD 8.35 DD 8.35 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.37 DD 8.37 DD 8.38 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.3	±9.6 ±9.6
10831 AAD 5G NR (CP-OFDM, 1 RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, OPSK, 60 kHz) 5G NR (RCP-OFDM, 1 RB, 20 MHz, OPSK, 60 kHz) 5G NR RF1 110834 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, OPSK, 60 kHz) 5G NR RF1 110835 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 110836 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110836 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110837 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110839 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 110839 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 110840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 110841 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 110843 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 110844 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 110844 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 110854 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 110854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, OPSK, 60 kHz) 5G NR FR1 110854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 50 kHz) 5G NR FR1 1	DD 7.73 DD 7.74 DD 7.75 DD 7.76 DD 7.66 DD 7.66 DD 7.67 DD 7.67 DD 7.67 DD 7.67 DD 8.49 DD 8.34 DD 8.34 DD 8.34 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.37 DD 8.36 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.568 DD 8.75	±9.6 ±9.6
10832 AAD 5G NR (CP-OFDM, 1 RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10833 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, OPSK, 60 kHz) 5G NR FR1 10834 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10835 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10836 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 10837 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 10840 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 10841 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10854 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10855 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10869 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK,	DD 7.74 DD 7.70 DD 7.70 DD 7.75 DD 7.66 DD 7.68 DD 7.67 DD 7.67 DD 7.67 DD 8.49 DD 8.41 DD 8.34 DD 8.34 DD 8.35 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.37 DD 8.36 DD 8.37 DD 8.37 DD 8.37 DD 8.36 DD 8.37 DD 8.37 DD 8.37 DD 8.36 DD 8.37 DD 8.3	±9.6 ±9.6
10833 AAD 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) 5G NR FR11 10835 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR11 10836 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) 5G NR FR11 10837 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR11 10837 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR11 10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) 5G NR FR11 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR11 10841 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR11 10841 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR11 10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR11 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR11 10845 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR11 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR11 10857 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR11 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR11 10859 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR11 10859 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR11 10859 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR11 10859 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR11 10859 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR11 10859 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR11 10859 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR11 10860 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR11 10861 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR11 10863 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR11 10864 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR11 10865 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR11 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR11 10869 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 50 kHz) 5G NR FR11 10869 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 50 kHz) 5G NR FR21 10873 AAE 5G NR (CP-OFDM, 100% RB,	0D 7.70 0D 7.75 0D 7.75 0D 7.76 0D 7.68 0D 7.68 0D 7.69 0D 7.69 0D 8.49 0D 8.34 0D 8.35 0D 8.35 0D 8.36 0D 8.36 0D 8.36 0D 8.36 0D 8.36 0D 8.37 0D 8.41 0D 8.41 0D 8.41 0D 8.41 0D 8.41 0D 8.41 0D 8.56 0D 8.36	±9.6 ±9.6
10834 AAD 5G NR (CP-OFDM, 1 RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1	DD 7.75 DD 7.70 DD 7.68 DD 7.68 DD 7.69 DD 7.69 DD 7.67 DD 7.71 DD 8.49 DD 8.34 DD 8.34 DD 8.35 DD 8.35 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.3	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10835 AAD 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) 10836 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 10837 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 10839 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 10841 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 10843 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 10845 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 10854 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 10856 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 10857 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 10859 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 10859 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 10850 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 10851 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 10852 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 10853 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 10854 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 10855 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 10856 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 10857 ABD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 10858 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 10859 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 10860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 10862 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 10863 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 50 kHz) 10864 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 50 kHz) 10865 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 50 kHz) 10866 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 50 kHz) 10867 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 50 kHz) 10868 AAD 5G NR (CP	DD 7.70 DD 7.68 DD 7.68 DD 7.68 DD 7.69 DD 7.69 DD 7.67 DD 7.67 DD 7.71 DD 8.49 DD 8.34 DD 8.34 DD 8.34 DD 8.34 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.41 DD 8.41 DD 8.41 DD 8.40 DD 8.41 DD 8.70 DD 8.568 DD 8.575	±9.6 ±9.6
10836 AAD 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10837 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10841 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10841 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10854 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 80 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 80 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 80 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 80 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 8	DD 7.66 DD 7.68 DD 7.68 DD 7.68 DD 7.67 DD 7.67 DD 7.71 DD 8.49 DD 8.34 DD 8.34 DD 8.34 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.41 DD 8.40 DD 8.41 DD 8.56 DD 8.57 DD 8.70 DD 8.7	±9.6 ±9.6
10837 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, OPSK, 60 kHz) 5G NR FR1 10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 10841 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, OPSK, 60 kHz) 5G NR FR1 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10857 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10869 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, OPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, OPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 80 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 80 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 80 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 30 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 30 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM,	DD 7.68 DD 7.68 DD 7.68 DD 7.67 DD 7.70 DD 7.67 DD 7.71 DD 8.49 DD 8.34 DD 8.34 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.41 DD 8.41 DD 8.40 DD 8.41 DD 8.56 DD 8.575 DD 5.68	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10837 AAD 5G NR (CP-OFDM, 1 RB, 60 MHz, OPSK, 60 kHz) 5G NR FR1 10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 10841 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10846 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, OPSK, 60 kHz) 5G NR FR1 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10857 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10869 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, OPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, OPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 80 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 80 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 80 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 30 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 30 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM,	DD 7.68 DD 7.68 DD 7.70 DD 7.77 DD 7.67 DD 7.71 DD 8.49 DD 8.34 DD 8.34 DD 8.36 DD 8.36 DD 8.35 DD 8.35 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.41 DD 8.568 DD 8.575	±9.6 ±9.6
10839 AAD 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10841 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10843 AAD 5G NR (CP-OFDM, 50% RB, 150 MHz, QPSK, 60 kHz) 5G NR FR1 10844 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 10844 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10845 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10854 AAD 5G NR (CP-OFDM, 100% RB, 16 MHz, QPSK, 60 kHz) 5G NR FR1 10855 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 50 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 50 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 50 kHz) 5G NR FR1 10868 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 50 kHz) 5G NR FR2 10872 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (CP-OFDM, 1	DD 7.70 DD 7.67 DD 7.67 DD 7.67 DD 8.49 DD 8.34 DD 8.34 DD 8.35 DD 8.35 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.37 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.56 DD 8.57 DD 8.57 DD 8.57 DD 8.575	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10840 AAD 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1	DD 7.67 DD 7.71 DD 7.71 DD 8.49 DD 8.34 DD 8.34 DD 8.34 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.41 DD 8.41 DD 8.41 DD 8.40 DD 8.41 DD 8.568 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10841 AAD 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10846 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 50 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 1087	DD 7.71 DD 8.49 DD 8.34 DD 8.34 DD 8.34 DD 8.35 DD 8.36 DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.36 DD 8.41 DD 8.40 DD 8.41 DD 8.40 DD 8.41 DD 8.70 DD 8.57 DD 8.58 DD 5.68 DD 5.89 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10843 AAD 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 KHz) 5G NR FR1 10844 AAD 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 110854 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 KHz) 5G NR FR1 110854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 KHz) 5G NR FR1 110855 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 KHz) 5G NR FR1 110856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 110857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 KHz) 5G NR FR1 110858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 110858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 KHz) 5G NR FR1 110858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 KHz) 5G NR FR1 110859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 KHz) 5G NR FR1 110860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 KHz) 5G NR FR1 110861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 KHz) 5G NR FR1 110861 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 KHz) 5G NR FR1 110864 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 KHz) 5G NR FR1 110865 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 KHz) 5G NR FR1 110865 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 KHz) 5G NR FR1 110865 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 KHz) 5G NR FR1 110866 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 KHz) 5G NR FR1 110868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 KHz) 5G NR FR1 110869 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz) 5G NR FR1 110869 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz) 5G NR FR1 110872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz) 5G NR FR2 110872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz) 5G NR FR2 110872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz) 5G NR FR2 110872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz) 5G NR FR2 110872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz) 5G NR FR2 110872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz) 5G NR FR2 110872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz) 5G NR FR2 110872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 KHz)	DD 8.49 DD 8.34 DD 8.34 DD 8.36 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.575 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10844 AAD 5G NR (CP-OFDM, 50% RB, 20MHz, QPSK, 60 kHz) 5G NR FR1 10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 10855 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10857 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10850 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 18, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (CP-OFDM, 18, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (DFTs-OFDM, 18, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (DFTs-OFDM, 18, 100 MHz, QPSK, 120 kHz) 5G NR FR1 10869 AAE 5G NR (DFTs-OFDM, 18, 100 MHz, QPSK, 120 kHz) 5G NR FR1 10872 AAE 5G NR (DFTs-OFDM, 18, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 18, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 18, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 18, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 18, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 5G NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 5G NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G	DD 8.34 DD 8.41 DD 8.36 DD 8.36 DD 8.37 DD 8.35 DD 8.35 DD 8.36 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.56 DD 8.57 DD 8.57 DD 5.68 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10846 AAD 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) 10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 10857 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 10858 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 10859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 10859 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) 10850 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 10863 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 10864 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 10865 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 10866 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 10866 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 10867 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 10868 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 10869 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 10871 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 10872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2	DD 8.41 DD 8.34 DD 8.34 DD 8.36 DD 8.37 DD 8.35 DD 8.36 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.568 DD 5.68 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10854 AAD 5G NR (CP-OFDM, 100% RB, 10 MHz, OPSK, 60 kHz) 10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, OPSK, 60 kHz) 10856 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, OPSK, 60 kHz) 10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, OPSK, 60 kHz) 10858 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, OPSK, 60 kHz) 10859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, OPSK, 60 kHz) 10860 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, OPSK, 60 kHz) 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 10863 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 10863 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, OPSK, 60 kHz) 10865 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, OPSK, 60 kHz) 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 60 kHz) 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 60 kHz) 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 60 kHz) 10867 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 30 kHz) 10868 AAD 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 30 kHz) 10869 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 30 kHz) 10871 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10874 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10874 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10876 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10877 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10878 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10879 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10871 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10876 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10877 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10878 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 10879 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz)	DD 8.34 DD 8.36 DD 8.37 DD 8.35 DD 8.36 DD 8.36 DD 8.41 DD 8.40 DD 8.41 DD 8.41 DD 8.57 DD 8.58 DD 5.68 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10855 AAD 5G NR (CP-OFDM, 100% RB, 15 MHz, OPSK, 60 kHz) 5G NR FR1 10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10857 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, OPSK, 60 kHz) 5G NR FR1 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, OPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, OPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR1 10869 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR1 10870 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10871 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10874 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10875 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10876 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10877 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10878 AAE	DD 8.36 DD 8.37 DD 8.36 DD 8.36 DD 8.36 DD 8.36 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 5.68 DD 5.75 DD 5.85	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10856 AAD 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) 5G NR FR1 10857 AAD 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR FR1 10859 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR1 10870 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10871 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10872 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 160AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 640AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 160AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 640AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 640AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 640AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 640AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTS-OFDM	DD 8.37 DD 8.35 DD 8.36 DD 8.34 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 8.57 DD 8.57 DD 5.68 DD 5.75 DD 5.85 DD 5.85 DD 5.85	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10857 AAD 5G NR (CP-OFDM, 100% RB, 25MHz, QPSK, 60 kHz) 5G NR FR1 10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10871 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10871 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 5G NR FR2 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 640 AM, 120 kH	DD 8.35 DD 8.36 DD 8.34 DD 8.41 DD 8.41 DD 8.41 DD 8.41 DD 5.68 DD 5.75 DD 5.86 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10858 AAD 5G NR (CP-OFDM, 100% RB, 30 MHz, OPSK, 60 kHz) 5G NR FR1 10869 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, OPSK, 60 kHz) 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, OPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, OPSK, 30 kHz) 5G NR FR2 10870 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10871 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10872 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 5G NR (DFTs-OFDM, 100% RB, 100 MHz, 160 AM, 120 kHz) 5G NR FR2 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 640 AM, 120 kHz) 5G NR FR2 5G NR (DFTS-OFDM, 1 RB, 100 M	DD 8.36 DD 8.34 DD 8.41 DD 8.40 DD 8.41 DD 8.41 DD 8.37 DD 8.41 DD 5.68 DD 5.75 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10859 AAD 5G NR (CP-OFDM, 100% RB, 40 MHz, OPSK, 60 kHz) 5G NR FR1 10860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, OPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, OPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, OPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, OPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, OPSK, 30 kHz) 5G NR FR1 10870 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, OPSK, 120 kHz) 5G NR FR1 10871 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10872 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, OPSK, 120 kHz) 5G NR FR2 10874 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 10875 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10874 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10875 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2	DD 8.34 DD 8.41 DD 8.40 DD 8.41 DD 8.41 DD 8.37 DD 8.41 DD 5.68 DD 5.75 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR1 10870 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10871 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 10874 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10875 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10876 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10876 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10876 AAE 5G NR (DFT-S-OFDM, 100 MRZ, 64QAM, 120 kHz) 5G NR FR2 10876 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10877 AAE 5G NR (DFT-S-OFDM, 100 MRZ, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHZ, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHZ, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHZ, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHZ, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHZ, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MZ, 64QAM, 120 kH	DD 8.34 DD 8.41 DD 8.40 DD 8.41 DD 8.41 DD 8.37 DD 8.41 DD 5.68 DD 5.75 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10860 AAD 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) 5G NR FR1 10861 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10870 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10871 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 10874 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10875 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10876 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10877 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 1	0D 8.41 0D 8.40 0D 8.41 0D 8.37 0D 8.41 0D 5.68 0D 5.75 0D 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10861 AAD 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) 5G NR FR1 10863 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10868 AAD 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR2 10870 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10871 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10872 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 10874 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 10875 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10876 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10877 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 100 MFZ, QPSK, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 100 MFZ, QPSK, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 100 MFZ, QPSK, 120 kHz) 5G NR GPS 10879 AAE 5G NR (DFT-S-OFDM, 100 MFZ, QPSK, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 100 MFZ, QPSK, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 100 MFZ, QPSK, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 100 MFZ, QPSK, 120 kHz) 5G NR FR2	0D 8.40 0D 8.41 0D 8.37 0D 8.41 0D 5.68 0D 5.89 0D 5.75 0D 5.86 0D 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10863 AAD 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) 5G NR FR1 10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1 10865 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10870 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10871 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 100 MHz, 100 MHz) 10872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 160 MHz, 160 MHz) 5G NR FR2 10873 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 160 MHz) 5G NR FR2 10874 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 160 MHz) 5G NR FR2 10874 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10875 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10876 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10877 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 640 MM, 120 kHz) 5G NR FR2	0D 8.41 0D 8.37 0D 8.41 0D 5.68 0D 5.89 0D 5.75 0D 5.86 0D 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10864 AAD 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) 5G NR FR1* 10865 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1* 10866 AAD 5G NR (DFT-S-OFDM, 118, 100 MHz, QPSK, 30 kHz) 5G NR FR1* 10868 AAD 5G NR (DFT-S-OFDM, 1100 MB, 100 MHz, QPSK, 30 kHz) 5G NR FR1* 10869 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2* 10870 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2* 10871 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2* 10872 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2* 10873 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2* 10874 AAE 5G NR (DFT-S-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2* 10875 AAE 5G NR (DFT-S-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2*	0D 8.37 0D 8.41 0D 5.68 0D 5.89 0D 5.75 0D 5.86 0D 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10865 AAD 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) 5G NR FR1 10866 AAD 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10868 AAD 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1 10869 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10870 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2 10871 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 10872 AAE 5G NR (DFTs-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2 10873 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10874 AAE 5G NR (DFTS-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10875 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10876 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10877 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10879 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10878 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10879 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10879 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2 10879 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64DAM, 120 kHz) 5G NR FR2 10879 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64DAM, 120 kHz) 5G NR FR2 10879 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64DAM, 120 kHz) 5G NR FR2 10879 AAE 5G NR (DFTS-OFDM, 1 RB, 100 MHz, 64DAM, 120 kHz) 5G NR FR2	DD 8.41 DD 5.68 DD 5.89 DD 5.75 DD 5.86 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10866 AAD 5G NR (DFTs-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1	DD 5.68 DD 5.89 DD 5.75 DD 5.86 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6 ±9.6
10868 AAD 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) 5G NR FR1	DD 5.89 DD 5.75 DD 5.86 DD 5.75	±9.6 ±9.6 ±9.6 ±9.6
10869 AAE 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2* 10870 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2* 10871 AAE 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 16OAM, 120 kHz) 5G NR FR2* 10872 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16OAM, 120 kHz) 5G NR FR2* 10873 AAE 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64OAM, 120 kHz) 5G NR FR2* 10874 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64OAM, 120 kHz) 5G NR FR2* 10875 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2*	DD 5.75 DD 5.86 DD 5.75	±9.6 ±9.6 ±9.6
10870 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 Hz) 5G NR FH2	DD 5.86 DD 5.75	±9.6 ±9.6
10871 AAE 5G NR (DFTs-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2	DD 5.75	±9.6
10872 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16OAM, 120 kHz) 5G NR FR2* 10873 AAE 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64OAM, 120 kHz) 5G NR FR2* 10874 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64OAM, 120 kHz) 5G NR FR2* 10875 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2*		
10873 AAE 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2* 10874 AAE 5G NR (DFT-s-OFDM, 100 MHz, 64QAM, 120 kHz) 5G NR FR2* 10875 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2*	DD 6.52	
10874 AAE 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2* 10875 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2*		±9.6
10875 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2	DD 6.61	±9.6
10875 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2	DD 6.65	±9.6
		±9.6
10876 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) 5G NR FR2		±9.6
10877 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10878 AAE 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) 5G NR FR2		
10879 AAE 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) 5G NR FR2		±9.6
40000 445 50 115 (05 055) 100 155		±9.6
took last course of the course		±9.6
DO NITTIE		±9.6
10882 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2		±9.6
10883 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10884 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2	DD 6.53	±9.6
10885 AAE 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2	DD 6.61	±9.6
10886 AAE 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2	DD 6.65	±9.6
10887 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2		±9.6
10888 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) 5G NR FR2	DD 8.35	±9.6
10889 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10890 AAE 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) 5G NR FR2		±9.6
10891 AAE 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2		±9.6
10892 AAE 5G NR (CP-OFDM, 1100% RB, 50 MHz, 64QAM, 120 kHz) 5G NR FR2		
The state of the s		±9.6
		±9.6
The state of the s		±9.6
10899 AAB 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10900 AAB 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10901 AAB 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10902 AAB 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) 5G NR FR1	DD 5.68	±9.6
10903 AAB 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) 5G NR FR1	DD 5.68	±9.6
10904 AAB 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10905 AAB 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10906 AAB 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
10907 AAC 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
The state of the s		±9.6
10908 AAB 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) 5G NR FR1		±9.6
	DD 5.96	±9.6

Page 21 of 23

EX3DV4 - SN:3759

December 15, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	UncE k = 2
10911	AAB	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.93	±9.6
10912	AAB	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10913	AAB	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10914	AAB	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.85	±9.6
10915	AAB	5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.83	±9.6
10916	AAB	5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10917	AAB	5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10918	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10919	AAB	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.86	±9.6
10920	AAB	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.87	±9.6
10921	AAB	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10922	AAB	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.82	±9.6
10923	AAB	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10924	AAB	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10925	AAB	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.95	±9.6
10926	AAB	5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.84	±9.6
10927	AAB	5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	5.94	±9.6
10928	AAC	5G NR (DFT-s-OFDM, 1 RB, 5MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10929	AAC	5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10930	AAC	5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.52	±9.6
10931	AAC	5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10932	AAC	5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10933	AAC	5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10934	AAC	5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10935	AAD	5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.51	±9.6
10936	AAC	5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10937	AAC	5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.77	±9.6
10938	AAC	5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.90	±9.6
10939	AAC	5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.82	±9.6
10940	AAC	5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.89	±9.6
10941	AAC	5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10942	AAC	5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10943	AAD	5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.95	±9.6
10944	AAC	5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.81	±9.6
10945	AAC	5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.85	±9.6
10946	AAC	5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.83	±9.6
10947	AAC	5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10948	AAC	5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10949	AAC	5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.87	±9.6
10950	AAC	5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.94	±9.6
10951	AAD	5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz)	5G NR FR1 FDD	5.92	±9.6
10952	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.25	±9.6
10953	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.15	±9.6
10954	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.23	±9.6
10955	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 FDD	8.42	±9.6
10956	AAA	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.14	±9.6
10957	AAA	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.31	±9.6
10958	AAA	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.61	±9.6
10959	AAA	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 FDD	8.33	±9.6
10960	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.32	±9.6
10961	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.36	±9.6
10962	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.40	±9.6
10963	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.55	±9.6
10964	AAC	5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.29	±9.6
10965	AAB	5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.37	±9.6
10966	AAB	5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.55	±9.6
10967	AAB	5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.42	±9.6
10968	AAB	5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.49	±9.6
10972	AAB	5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz)	5G NR FR1 TDD	11.59	±9.6
10973	AAB	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	5G NR FR1 TDD	9.06	±9.6
10974	AAB	5G NR (CP-OFDM, 100% RB, 100 MHz, 256-QAM, 30 kHz)	5G NR FR1 TDD	10.28	±9.6
10978	AAA	ULLA BDR	ULLA	1.16	±9.6
10979	AAA	ULLA HDR4	ULLA	8.58	±9.6
10980	AAA	ULLA HDR8	ULLA	10.32	±9.6
10981	AAA	ULLA HDRp4 ULLA HDRp8	ULLA	3.19	±9.6
10982			ULLA	3.43	±9.6

Certificate No: EX-3759_Dec22

Page 22 of 23

EX3DV4 - SN:3759

December 15, 2022

UID	Rev	Communication System Name	Group	PAR (dB)	UncE k = 2
10983	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.31	±9.6
10984	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 15 kHz)	5G NR FR1 TDD	9.42	±9.6
10985	AAA	5G NR DL (CP-OFDM, TM 3.1, 40 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.54	±9.6
10986	AAA	5G NR DL (CP-OFDM, TM 3.1, 50 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.50	±9.6
10987	AAA	5G NR DL (CP-OFDM, TM 3.1, 60 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.53	±9.6
10988	AAA	5G NR DL (CP-OFDM, TM 3.1, 70 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.38	±9.6
10989	AAA	5G NR DL (CP-OFDM, TM 3.1, 80 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.33	±9.6
10990	AAA	5G NR DL (CP-OFDM, TM 3.1, 90 MHz, 64-QAM, 30 kHz)	5G NR FR1 TDD	9.52	±9.6

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Calibration Laboratory of Schmid & Partner Engineering AG

- S Schweizerischer Kalibrierdienst
 C Service suisse d'étalonnage
 Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client

TÜV SÜD UK

Certificate No

EX-7536_Jun22

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:7536

Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5,

QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date June 17, 2022

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) ℃ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-22 (No. 217-03525/03524)	Apr-23
Power sensor NRP-Z91	SN: 103244	04-Apr-22 (No. 217-03524)	Apr-23
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-21 (OCP-DAK3.5-1249_Oct21)	Oct-22
OCP DAK-12	SN: 1016	20-Oct-21 (OCP-DAK12-1016_Oct21)	Oct-22
Reference 20 dB Attenuator	SN: CC2552 (20x)	04-Apr-22 (No. 217-03527)	Apr-23
DAE4	SN: 660	13-Oct-21 (No. DAE4-660_Oct21)	Oct-22
Reference Probe ES3DV2	SN: 3013	27-Dec-21 (No. ES3-3013_Dec21)	Dec-22

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-20)	In house check: Jun-22
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-20)	In house check: Jun-22
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22

Name Function Signature

Calibrated by Jeton Kastrati Laboratory Technician Approved by Sven Kühn Technical Manager Substitution Signature

Issued: June 17, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX-7536_Jun22

Page 1 of 23

Calibration Laboratory of

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

IAC MRA

- S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Accreditation No.: SCS 0108

Glossary

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters

Multilateral Agreement for the recognition of calibration certificates

Polarization φ φ rotation around probe axis

Polarization θ or oration around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is

normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum
 calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50 MHz to ±100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis).
 No tolerance required.
- · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX-7536_Jun22 Page 2 of 23

EX3DV4 - SN:7536 June 17, 2022

Parameters of Probe: EX3DV4 - SN:7536

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k=2)$
Norm $(\mu V/(V/m)^2)^A$	0.55	0.62	0.65	±10.1%
DCP (mV) B	96.6	97.5	98.3	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	$_{ extsf{dB}\sqrt{\mu V}}^{ extsf{B}}$	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	177.5	±3.0%	±4.7%
		Y	0.00	0.00	1.00		161.0		
		Z	0.00	0.00	1.00		167.8		
10352	Pulse Waveform (200Hz, 10%)	X	20.00	89.13	19.58	10.00	60.0	±3.4%	±9.6%
		Y	84.00	108.00	25.00		60.0		
		Z	7.93	77.68	15.31		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	89.91	19.09	6.99	80.0	±2.1%	±9.6%
		Y	20.00	93.42	20.88		80.0		
		Z	20.00	86.65	17.03		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	91.36	18.65	3.98	95.0	±0.8% ±	±9.6%
		Y	20.00	97.15	21.37		95.0		
		Z	20.00	87.63	16.43		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	94.66	19.11	2.22	120.0	±0.9%	±9.6%
		Y	20.00	100.31	21.52		120.0		
		Z	20.00	89.50	16.30		120.0	0	
10387	QPSK Waveform, 1 MHz	X	1.81	66.46	15.44	1.00	150.0	±2.3%	±9.6%
		Y	1.57	64.27	13.92		150.0		2-1711-16
		Z	1.70	65.92	14.95		150.0		
10388	QPSK Waveform, 10 MHz	X	2.43	68.84	16.16	0.00	150.0	±0.9%	±9.6%
		Y	2.04	66.10	14.58		150.0		
		Z	2.27	68.04	15.70		150.0		
10396	64-QAM Waveform, 100 kHz	X	2.74	68.71	18.08	3.01	150.0	±0.8%	±9.6%
		Y	2.95	70.19	18.64		150.0		
		Z	3.01	70.81	19.05		150.0		
10399	64-QAM Waveform, 40 MHz	X	3.68	67.62	16.10	0.00	150.0	±1.8%	±9.6%
		Y	3.39	66.21	15.20	1	150.0		20.070
		Z	3.56	67.16	15.80		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.89	65.31	15.45	0.00	150.0	±3.5%	±9.6%
		Y	4.81	65.11	15.20		150.0		
		Z	4.94	65.71	15.60	1	150.0	1	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 to 7).

B Linearization parameter uncertainty for maximum specified field strength.

C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4 - SN:7536 June 17, 2022

Parameters of Probe: EX3DV4 - SN:7536

Sensor Model Parameters

	C1 fF	C2 fF	V^{-1}	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
X	53.8	409.78	36.77	21.66	0.00	5.07	0.00	0.45	1.01
у	50.0	378.42	36.24	17.10	0.00	5.10	1.41	0.25	1.01
Z	49.5	374.34	36.28	19.68	0.00	5.04	1.03	0.30	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-160.1°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

EX3DV4 - SN:7536 June 17, 2022

Parameters of Probe: EX3DV4 - SN:7536

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
128	52.8	0.76	15.30	15.30	15.30	0.00	1.00	±13.3%
450	43.5	0.87	11.97	11.97	11.97	0.16	1.30	±13.3%
750	41.9	0.89	11.27	11.27	11.27	0.54	0.80	±12.0%
835	41.5	0.9	10.87	10.87	10.87	0.49	0.81	±12.0%
900	41.5	0.97	10.53	10.53	10.53	0.30	1.09	±12.0%
1300	40.8	1.14	9.53	9.53	9.53	0.36	0.97	±12.0%
1450	40.5	1.2	9.22	9.22	9.22	0.40	0.80	±12.0%
1640	40.2	1.31	9.08	9.08	9.08	0.29	0.86	±12.0%
1750	40.1	1.37	9.04	9.04	9.04	0.34	0.86	±12.0%
1810	40.0	1.4	8.81	8.81	8.81	0.36	0.86	±12.0%
1900	40.0	1.4	8.64	8.64	8.64	0.36	0.86	±12.0%
2000	40.0	1.4	8.57	8.57	8.57	0.34	0.86	±12.0%
2100	39.8	1.49	8.48	8.48	8.48	0.33	0.86	±12.0%
2300	39.5	1.67	8.16	8.16	8.16	0.31	0.90	±12.0%
2450	39.2	1.8	7.94	7.94	7.94	0.23	0.90	±12.09
2600	39.0	1.96	7.61	7.61	7.61	0.31	0.90	±12.0%
3300	38.2	2.71	7.10	7.10	7.10	0.30	1.35	±13.19
3500	37.9	2.91	6.97	6.97	6.97	0.30	1.35	±13.1%
3700	37.7	3.12	6.63	6.63	6.63	0.30	1.35	±13.1%
4100	37.2	3.53	6.49	6.49	6.49	0.40	1.60	±13.1%
5200	36.0	4.66	5.50	5.50	5.50	0.40	1.80	±13.19
5300	35.9	4.76	5.45	5.45	5.45	0.40	1.80	±13.19
5500	35.6	4.96	4.90	4.90	4.90	0.40	1.80	±13.1%
5600	35.5	5.07	4.85	4.85	4.85	0.40	1.80	±13.19
5800	35.3	5.27	4.85	4.85	4.85	0.40	1.80	±13.19

C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated tarnet tissue parameters.

The deficiency across a constraint of the value of the same parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less.

than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4 - SN:7536 June 17, 2022

Parameters of Probe: EX3DV4 - SN:7536

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
450	56.7	0.94	12.15	12.15	12.15	0.11	1.20	±13.3%
750	55.5	0.96	10.93	10.93	10.93	0.34	0.96	±12.0%
835	55.2	0.97	10.67	10.67	10.67	0.41	0.80	±12.0%
900	55.0	1.05	10.40	10.40	10.40	0.47	0.80	±12.0%
1300	54.3	1.23	9.26	9.26	9.26	0.20	1.72	±12.0%
1450	54.0	1.3	8.87	8.87	8.87	0.38	0.80	±12.0%
1640	53.7	1.42	8.81	8.81	8.81	0.35	0.86	±12.0%
1750	53.4	1.49	8.76	8.76	8.76	0.45	0.86	±12.0%
1810	53.3	1.52	8.61	8.61	8.61	0.40	0.86	±12.0%
1900	53.3	1.52	8.44	8.44	8.44	0.37	0.86	±12.0%
2000	53.3	1.52	8.37	8.37	8.37	0.37	0.86	±12.0%
2100	53.2	1.62	8.34	8.34	8.34	0.35	0.86	±12.0%
2300	52.9	1.81	8.10	8.10	8.10	0.36	0.90	±12.0%
2450	52.7	1.95	7.78	7.78	7.78	0.32	0.90	±12.0%
2600	52.5	2.16	7.63	7.63	7.63	0.27	0.90	±12.09
3300	51.6	3.08	6.90	6.90	6.90	0.40	1.35	±13.19
3500	51.3	3.31	6.70	6.70	6.70	0.40	1.35	±13.19
3700	51.0	3.55	6.50	6.50	6.50	0.40	1.35	±13.19
4100	50.5	4.01	6.12	6.12	6.12	0.40	1.70	±13.19
5200	49.0	5.3	5.00	5.00	5.00	0.50	1.90	±13.19
5300	48.9	5.42	4.90	4.90	4.90	0.50	1.90	±13.19
5500	48.6	5.65	4.55	4.55	4.55	0.50	1.90	±13.19
5600	48.5	5.77	4.41	4.41	4.41	0.50	1.90	±13.19
5800	48.2	6	4.45	4.45	4.45	0.50	1.90	±13.19

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less $than \pm 1\% \ for \ frequencies \ below \ 3\ GHz \ and \ below \ \pm 2\% \ for \ frequencies \ between \ 3-6\ GHz \ at \ any \ distance \ larger \ than \ half \ the \ probe \ tip \ diameter \ from \ the \ diameter \ from \ diameter \ diameter$ boundary.

EX3DV4 - SN:7536 June 17, 2022

Parameters of Probe: EX3DV4 - SN:7536

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.40	5.40	5.40	0.20	2.50	±18.6%

C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

At frequencies 6–10 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.