承认书

SPECIFICATION FOR APPROVAL

客户名称

CUSTOMER NAME: Empowerment Technologies Inc

产品名称

PRODUCT NAME: 2.4/5.8G W58 白色天线 L=298mm+端子

客户料号

CUSTOMER P/N: 1.1.03.04.15024

比邻电子料号

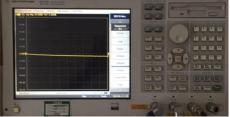
BL P/N: BL02C388W3D2104A REV: B

	MANUFACTURER	CUSTOMER
	SIGNATURE	SIGNATURE
CHECKED BY:	熊文强	
APPROVED BY:	张云飞	
DATE:	2022/11/20	

Contents

ltem	Description
1	
2	测试项目及设备
3	成品图
4	测试报告
5	可靠性测试报告

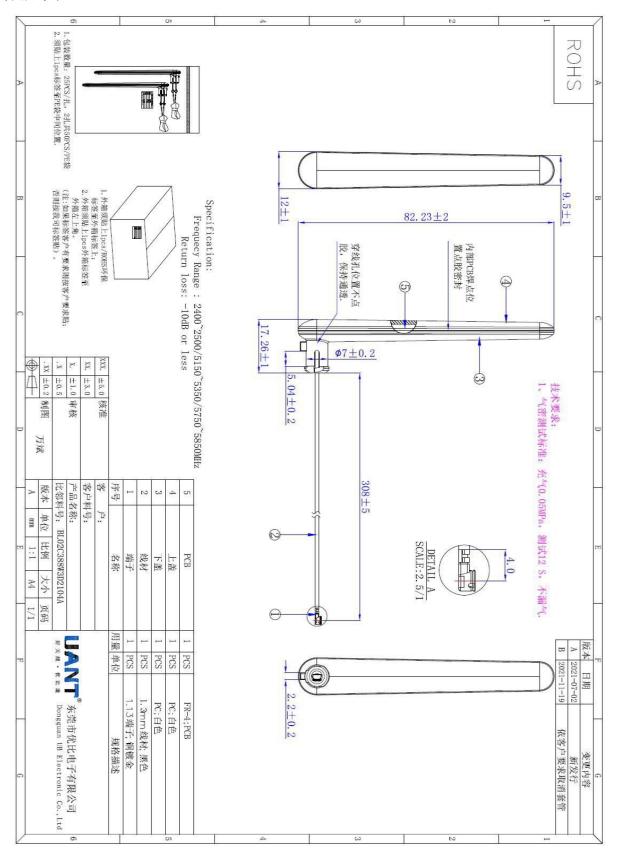
1. 规格表 Specification Form:


产品主要技术参数 Product main technical parameters

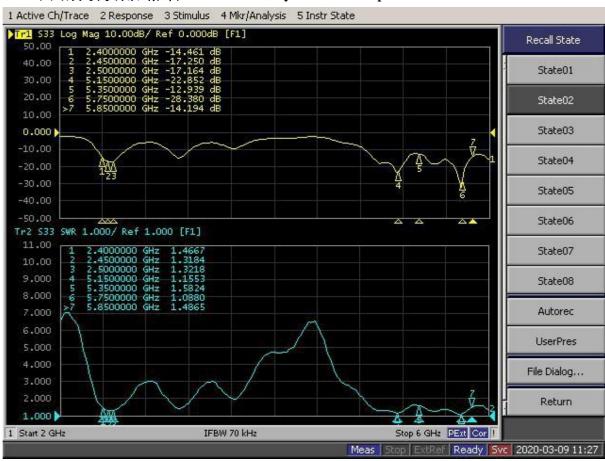
主要技术指标		Main technical specifications		
频率范围 (MHZ)	2400-2500 5150-5850	Frequency Range (MHZ)	2400-2500 5150-5850	
特性阻抗(Ω)	50	$Impedance(\Omega)$	50	
增益(dBi)	>1	Gain(dBi)	>1	
天线类型	外置全向	Antenna Type:	External omnidirectional	
天线效率/%	>50%	Antenna Efficiency/%	>50%	
输出电压 驻波比	≤1.92	VSWR	≤1.92	
辐射方向	全向	Radiation Pattern	Omnidirectional	
最大功率	1 W	Admitted Power	1W	
极化方式	线极化	Polarization	Line, Vertical	
连接方式	同轴线+1.13 端子	Connector Type	RF Cable+1.13 端子	
介质耐压	/	Dielectric Strength / Contact impedance /		
接触阻抗	/			
物理性能		Physical Properties		
天线本体材料	PC	Antenna Base PC		
工作温度	-20°C~+60°C	Operating Temp	-20°C~+60°C	
保存温度	-20°C~+60°C	Storage Temp	-20°C~+60°C	

2. 测试项目及设备 test items and equipment

	Test items	Test equipment
S Parameter	1.Return Loss 2.VSWR	Network analyzer (Agilent E5071B)
The whole machine of Passive parameters	1.Frequency 2.Gain 3.Radiation Pattern	1.3D microwave darkroom (5m*5m*5m) 2.Network analyzer (Agilent E5071B)
The whole machine of Active parameters	1.TRP 2.TIS	1.3D microwave darkroom (5m*5m*5m) 2.Comprehensive test instrument (CMW500)



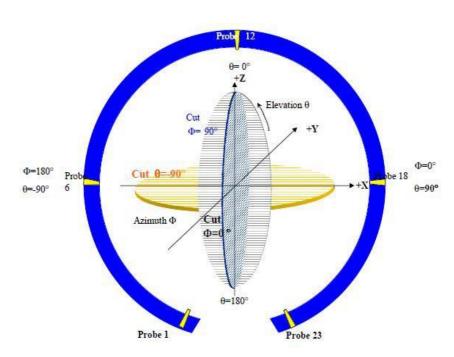
通过多探头采集DUT 球面近场数据,再通过严格的数学近远场转换计算出 DUT 的方向图,依据方向图上的方向性系数计算出无源的增益效率.

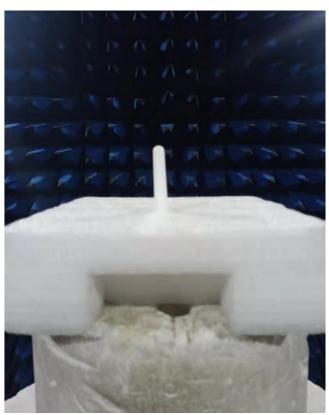

The DUT spherical near-field data is collected by multiple probes, and the DUT's directional pattern is calculated by strict mathematical near-field conversion. The passive gain efficiency is calculated according to the directivity coefficient on the directional pattern

3. 成品图 Antenna Photo:

4. 测试报告 Test Report

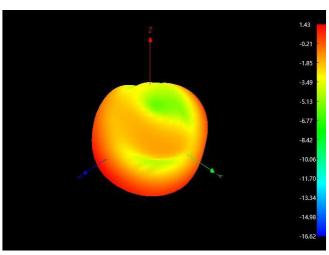
3.1: 网络分析仪测试报告 Network analyzer test report

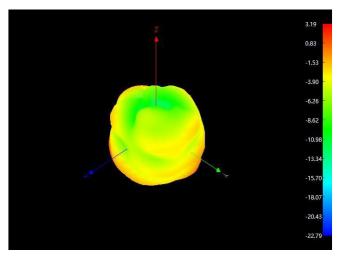



4.2: Chamber 2D、3DRaditation Pattern (整机数据)

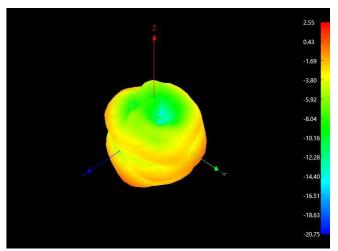
4.2.1 效率及增益 Gain & Efficiency

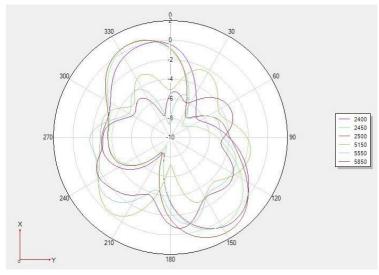
Frequency / MHz	Efficiency / dB	Efficiency / %	Gain/ dB
2400	-1.88	64.89	1.39
2450	-1.85	65.28	1.43
2500	-1.82	65.81	1.79
5150	-2.45	56.88	1.96
5350	-2.51	56.05	2.37
5550	-2.50	56.29	3.19
5700	-2.55	55.58	2.64
5850	-2.30	58.83	2.55

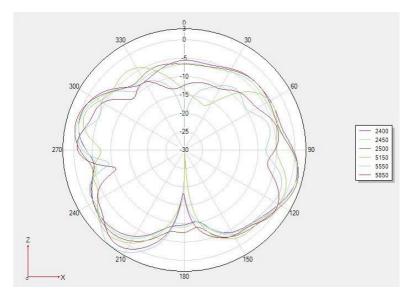

暗室坐标



4.2.2 2D/3D 场型图


ANT 3D Radiation with MaxGain


2450MHz


5550MHz


5850MHz

Theta 90 2D 图

Phi 0 2D 图

Phi 90 2D 图

4.2.3 测试方法及标准 test method and standard

Name	Parameter	Method	Standard no.	
Antenna performance	Radiation efficiency	IEEE Standard Test Procedures for Antennas	ANSI/IEEE Std 149- 2021	

5. 可靠性测试报告

测试内容

测试项目	测试条件	判定标准	试验数	判定
1、高温试验	60C° ±2C° 环境中放置 4H	常温下放置 2H 后,各尺寸符合正常要求,且外观无变形、翘曲、脱胶等异常现象,性能正常.	5pcs	合格
2、低温试验	-20C° ±2C° 环境中放置 4H	常温下放置 2H 后,各尺寸符合正常要求,且外观无变形、翘曲、脱胶等异常现象,性能正常.	5pcs	合格
3、温度循环试验	在 60C° ±2C° 环境中放置 30 分钟,取出在常温下放置 5 分钟,-20C° ±2C° 环境中放置 30 分钟,取出在常温下放置 5 分钟;	经过如此 5 个循环后,各 尺寸符合正常要求,且外 观无变形、翘曲、脱胶等	5pcs	合格
4、耐温热	满足温度 40C° ±2C°, 湿度 93 ±2%RH 环境放置 XXH	常温下放置 4H 后,各尺寸符合正常要求,且外观无变形、翘曲、脱胶等异常现象,性能正常.	5pcs	合格
5、盐雾试验	10-55 度 盐溶量: 500 ml/hr 盐水溶液浓度: 5+/-1% 试验时间: 48H	表面无氧化、生锈	5pcs	合格
6、气密测试	气压 0.05M PA, 充气 12S	把整个产品泡在水里,充气 12S 无水泡冒出	5PCS	合格
最终结论	■ 合格	□不合格		