

FCC Test Report

Report No.: HK2410286324-2E

Test Report
On Behalf of
Shenzhen Ningyuanda Technology Co., Ltd
For
WIFI CAMERA

Model No.: F2, F1, F3, F4, F5, F6, F7, F8, F9, N1, N2, N3, N4, N5, N6, N7, N8, N9, J1, J2, J3, J4, J5, J6, J7

FCC ID: 2BEXJ-F2

Prepared For: Shenzhen Ningyuanda Technology Co., Ltd

402 Kaiteng Building, Bantian Street, Longgang District, Shenzhen, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Oct. 28, 2024 ~ Nov. 14, 2024

Date of Report: Nov. 14, 2024

Report Number: HK2410286324-2E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Result Certification

Report No.: HK2410286324-2E

Applicant's Name...... Shenzhen Ningyuanda Technology Co., Ltd

402 Kaiteng Building, Bantian Street, Longgang District,

Shenzhen, China

Manufacturer's Name: Shenzhen Ningyuanda Technology Co., Ltd

402 Kaiteng Building, Bantian Street, Longgang District,

Shenzhen, China

Product Description

Trade Mark N/A

Product Name.....: WIFI CAMERA

Model and/or Type Reference : F2, F1, F3, F4, F5, F6, F7, F8, F9, N1, N2, N3, N4, N5, N6, N7,

N8, N9, J1, J2, J3, J4, J5, J6, J7

Standards FCC Rules and Regulations Part 15 Subpart E Section 15.407

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test

Date (s) of Performance of Tests Oct. 28, 2024 ~ Nov. 14, 2024

Date of Issue...... Nov. 14, 2024

Test Result..... Pass

Testing Engineer :

(Len Liao)

Technical Manager :

(Sliver Wan)

Authorized Signatory:

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Table of Contents

1.	Test Result Summary				
	1.1	Test Procedures and Results			
	1.2	Information of the Test Laboratory	HILAK .	5	
	1.3	Measurement Uncertainty		6	
2.	EU	IT Description			
	2.1	General Description of EUT			
	2.2	Operation Frequency Each of Channel	THE INC	8	
	2.3	Operation of EUT during Testing	HUAN	8	
	2.4	Description of Test Setup		9	
	2.5	Description of Support Units	(I)	10	
3.	Ge	nera Information			
	3.1	Test environment and mode	MATES TIME	11	
4.	Te	st Results and Measurement Data	Ø _{ko}	14	
	4.1	Conducted Emission			
	4.2	Maximum Conducted Output Power	Hillor .	18	
	4.3	6dB Emission Bandwidth			
	4.4	26dB Bandwidth and 99% Occupied Bandwidth	THE THE	22	
	4.5	Power Spectral Density	N. C.	29	
	4.6	Band Edge	The state of the s	36	
	4.7	Spurious Emission	·····	49	
	4.8	Frequency Stability Measurement		67	
	4.9	Antenna Requirement	THE STATE STATES	69	
5.	Ph	Antenna Requirementotographs of Test Setup	0 ***	70	
C MV		otop of the EUT		70	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

** Modified History **

Report No.: HK2410286324-2E

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Nov. 14, 2024	Jason Zhou
			(9)
TOG	TNG	-m/G	_

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1. Test Result Summary

1.1 Test Procedures and Results

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
Ac Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6db Emission Bandwidth	§15.407(e)	N/A
26db Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Band Edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS
A .		

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2 Information of the Test Laboratory

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
₁ G 1	Conducted Emission	±0.37dB
2	Rf Power, Conducted	±3.35dB
3	Spurious Emissions, Conducted	±2.20dB
4	All Emissions, Radiated(<1g)	±3.90dB
5 7710	All Emissions, Radiated(>1g)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2. EUT Description

2.1 General Description of EUT

Equipment	WIFI CAMERA	AK TESTING	
Model Name	F2	1 House	(1) HOW
Serial Model	F1, F3, F4, F5, F6, F7, F8, F9, N1, N2, N3, N9, J1, J2, J3, J4, J5, J6, J7	3, N4, N5, N6, I	N7, N8,
Model Difference	All model's the function, software and electronly with product model named different.		-
Trade Mark	N/A MAKTESTING WHATESTING W	HANTESTING	HUAKTES
FCC ID	2BEXJ-F2		
Operation Frequency:	IEEE 802.11a/n/ac 5.180GHz-5.240GHz IEEE 802.11n/ac 5.190GHz-5.230GHz	JAKTESTING	. last T
Modulation Technology:	IEEE 802.11a/n/ac/ax	0	0
Modulation Type	1024QAM, 256QAM, 64QAM,16QAM, QF	PSK, BPSK for	OFDM
Antenna Type	External Antenna		HUAK
Antenna Gain	1.98dBi	ESTIT	
Power Source	DC5V from Type-C	HUAKTESTING	HUAKTES
Power Supply:	DC5V from Type-C		
Hardware Version	AK3918EV300L_V296P_WIFI	W TESTING	. v.T
Software Version	4.9.76.573041	MINAR.	O HUAN

Note:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- 2. Antenna gain Refer to the antenna specifications.
- 3. The cable loss data is obtained from the supplier.
- 4. The test results in the report only apply to the tested sample.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.2 Operation Frequency Each of Channel

	02.11n(HT20)/ lac(HT20)	802.11n(HT40)/ 802.11ac(HT40)		
Channel	Channel Frequency		Frequency	
36	5180	38	5190	
40	5200	46	5230	
<u>44</u>	5220	TING	WAKTEST	
48	5240	AK TES	(i)	

Note:

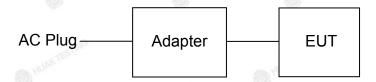
In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3 Operation of EUT during Testing

For 802.11a/n (HT20)/ac(HT20)

740(11120)	VI.	- (All		
Band I (5150 - 5250 MHz)				
Channel Number	Channel	Frequency (MHz)		
36	Low	5180		
40	Mid	5200		
48	High	5240		

For 802.11n (HT40)/ ac(HT40)


45(11116)				
Band I (5150 - 5250 MHz)				
Channel Number	Channel	Frequency (MHz)		
38	Low	5190		
46	_≪ High	5230		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4 Description of Test Setup

Operation of EUT during Conducted and Radiation testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.5 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Trade Mark	Model/Type No.	Specification	Remark
1	WIFI CAMERA	N/A	F2 TESTING	N/A	TING EUT
2	Adapter	N/A	MDY-10-EH	Input: AC100-240V, 50/60Hz, 0.7A Output: DC5V/3A, 9V/3A, 12V/2.25A, 20V/1.35A	Peripheral
MUAK T	HUAKTE		HUAKTES. HUAKTE	MAKTES. OHL	Media
	ß	JG	-miG	THE THE	TING
HUAKTES	HUAKTES	O 4	JAKTES! HURKTE	HUAKTES.	MAKTES

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 26db Bandwidth and 99% Occupied Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

3. Genera Information

3.1 Test environment and mode

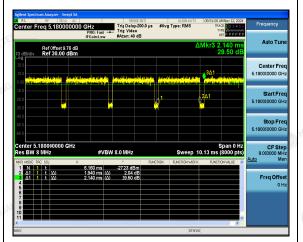
Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Mode:	
Engineering Mode:	Keep the EUT in continuous transmitting by select channel and modulations
. W. 101-1	L DA

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

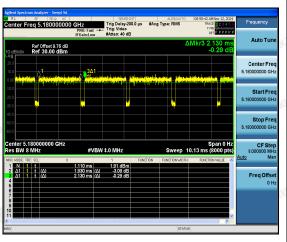
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

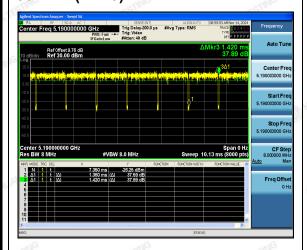
-G	Mode	. JG	Data Rate	
TESTIN	802.11a	HUAKTESTI	6 Mbps	HUAK TESTI
A)G	802.11n(HT20)	9	MCS0	
	802.11n(HT40)	TESTING	MCS0	TESTING
0	802.11ac(HT20)/ac(HT40)	Marca	MCS0	HUDIN
Final T	est Mode:			
WAKTESTING	Operation Mode:	Keep the El	UT in continuous tra	ansmitting

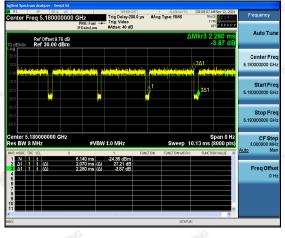

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

Mode Test Duty Cycle:


HUANA	HAK TEN THE HURING	" (DIX FEE
Mode	Duty Cycle	Duty Cycle Factor (dB)
802.11a	0.91	-0.41
802.11n(HT20)	0.91	-0.41
802.11n(HT40)	0.96	-0.18
802.11ac(HT20)	0.91	-0.41
802.11ac(HT40)	0.96	-0.18

Test plots as follows:




802.11n(HT20)

802.11n(HT40)

802.11ac(HT20)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

	, ak i	0.2		101	
802.11a	c(HT40)	(00:00:044 AMN2rv 14, 2024			
Center Freq 5.19000 Ref 0ffset 9.7 Ref 30.00 c	DOOOO GHZ PRO: Fast	TRE CONTROL OF TREQUENCY PREPARENT P	HUAN TESTING		White Tes
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Start Freq 5.190000000 GHz	ok TESTING		ok TESTING
Center 5.190000000 G Res BW 8 MHz MKR MODE TRU SQL	#VBW 8.0 MHz Sweep *	Span 0 Hz 10.13 ms (8000 pts) FUNCTION WALLE Auto Man	HOM		HUAKTESTIN
2 A1 1 t (A) 3 A1 1 t (A) 4 5 6 6 9 9 10 11	580 ms (Δ) 250 dBm (1) 150 ms (Δ) 42 Δd dB (1) 42 Δd dB (1) 42 Δd dB (1) 42 Δd dB (1) 40 Sd dB	Freq Offset 0 Hz	WINTESTING (WAX TESTIN
MSG	STATL	3 3 5			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4. Test Results and Measurement Data

4.1 Conducted Emission

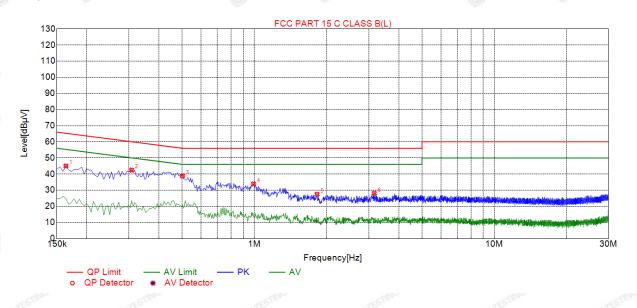
4.1.1 Test Specification

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz	HUAKTESTING	-ESTING		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto		
	Frequency range	Limit (c	11.0		
Limits:	(MHz) 0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*		
	0.5-5 5-30	56 60	46 50		
	Reference Plane				
Test Setup:	Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN Line Impedence Stabilization N Test table height=0.8m	Filter — A	AC power		
Test Mode:	Tx Mode				
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 				
Test Result:	Pass	MINN.	O HUM		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.1.2 Test Instruments

ATTING YET DESTRU	A *	ATTEN PROPERTY.	TRANSFER .	ADD 400 BB	10.7		
Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Receiver	R&S	ESR	HKE-005	Feb. 20, 2024	Feb. 19, 2025		
LISN	R&S	ENV216	HKE-002	Feb. 20, 2024	Feb. 19, 2025		
LISN	R&S	ENV216	HKE-059	Feb. 20, 2024	Feb. 19, 2025		
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 20, 2024	Feb. 19, 2025		
EMI Test Software	Tonscend	JS32-CE 2.5.0.6	HKE-081	N/A	N/A		
10dB Attenuator	Schwarzbeck	VTSD9561F	HKE-153	Feb. 20, 2024	Feb. 19, 2025		

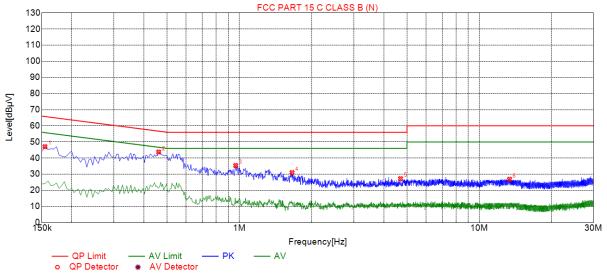

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.1.3 Test data

Test Specification: Line:

Sus	Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре	
1	0.1635	45.02	19.78	65.28	20.26	25.24	PK	L	
2	0.3075	42.47	19.85	60.04	17.57	22.62	PK	L	
3	0.5010	38.88	19.84	56.00	17.12	19.04	PK	L	
4	0.9915	33.88	19.87	56.00	22.12	14.01	PK	L	
5	1.8240	27.47	19.96	56.00	28.53	7.51	PK	L	
6	3.1605	28.07	20.06	56.00	27.93	8.01	PK	L	


Remark: Margin = Limit - Level

Correction factor = Cable lose + ISN insertion loss

Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Sus	Suspected List								
NO.	Freq. [MHz]	Level [dBµV]	Factor [dB]	Limit [dBµV]	Margin [dB]	Reading [dBµV]	Detector	Туре	
1	0.1545	47.06	19.73	65.75	18.69	27.33	PK	N	
2	0.4605	43.76	19.73	56.68	12.92	24.03	PK	N	
3	0.9645	35.37	19.74	56.00	20.63	15.63	PK	N	
4	1.6575	30.98	19.81	56.00	25.02	11.17	PK	N	
5	4.6995	27.23	19.99	56.00	28.77	7.24	PK	N	
6	13.3845	26.85	19.79	60.00	33.15	7.06	PK	N	

Remark: Margin = Limit - Level

Correction factor = Cable lose + ISN insertion loss

Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2 Maximum Conducted Output Power

4.2.1 Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)				
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E				
Limit:	Frequency Band (MHz)				
	5150-5250 250mW for client devices				
Test Setup:	Power meter EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 				
Test Result:	PASS OF THE PASS				
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power				

0

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2.2 Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025		
Power meter	Agilent	E4419B	HKE-085	Feb. 20, 2024	Feb. 19, 2025		
Power Sensor	Agilent	E9300A	HKE-086	Feb. 20, 2024	Feb. 19, 2025		
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025		
RF Test Software	Tonscend	JS1120-3 Version 3.3.23	HKE-083	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2.3 Test Data

Configuration Band I (5150 - 5250 MHz)							
Mode	Test channel	Maximum Conducted Output Power (dBm)	FCC Limit (dBm)	Result			
802.11a	CH36	7.05	24	PASS			
802.11a	CH40	6.32	24	PASS			
802.11a	CH48	6.13	24	PASS			
802.11n(HT20)	CH36	6.34	24	PASS			
802.11n(HT20)	CH40	6.41	24	PASS			
802.11n(HT20)	CH48	6.22	24	PASS			
802.11n(HT40)	CH38	7.07	24	PASS			
802.11n(HT40)	CH46	5.87	24	PASS			
802.11ac(HT20)	CH36	5.52	24	PASS			
802.11ac(HT20)	CH40	5.89	24	PASS			
802.11ac(HT20)	CH48	5.88	24	PASS			
802.11ac(HT40)	CH38	5.95	24	PASS			
802.11ac(HT40)	CH46	5.94	24	PASS			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.3 6dB Emission Bandwidth

4.3.1 Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C					
Limit:	>500kHz					
Test Setup:	Spectrum Analyzer CUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
Test Result:	N/A where the harm to have the harm to h					

4.3.2 Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025		
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025		
RF Test Software	Tonscend	JS1120-3 Version 3.3.23	HKE-083	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.3.3 Test Data

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.4 26dB Bandwidth and 99% Occupied Bandwidth

4.4.1 Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C
Limit:	No restriction limits
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report.
Test Result:	PASS COMPANY OF THE PASS C

4.4.2 Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025		
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025		
RF Test Software	Tonscend	JS1120-3 Version 3.3.23	HKE-083	N/A	N/A		

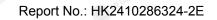
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.4.3 Test data

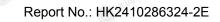
Test channel	Frequency (MHz)	26 dB Bandwidth (MHz)	Verdict
CH36	5180	25.560	PASS
CH40	5200	25.600	PASS
CH48	5240	25.640	PASS
CH36	5180	25.840	PASS
CH40	5200	25.480	PASS
CH48	5240	26.480	PASS
CH38	5190	45.520	PASS
CH46	5230	47.520	PASS
CH36	5180	27.320	PASS
CH40	5200	26.480	PASS
CH48	5240	26.080	PASS
CH38	5190	47.440	PASS
CH46	5230	46.720	PASS
	CH36 CH40 CH48 CH36 CH40 CH48 CH38 CH46 CH36 CH40 CH48 CH36 CH40 CH48 CH38	CH36 5180 CH40 5200 CH48 5240 CH36 5180 CH40 5200 CH48 5240 CH40 5200 CH48 5240 CH38 5190 CH46 5230 CH36 5180 CH40 5200 CH48 5240 CH38 5190 CH48 5240 CH38 5190	Test channel Frequency (MHz) Bandwidth (MHz) CH36 5180 25.560 CH40 5200 25.600 CH48 5240 25.640 CH36 5180 25.840 CH40 5200 25.480 CH48 5240 26.480 CH38 5190 45.520 CH46 5230 47.520 CH36 5180 27.320 CH40 5200 26.480 CH48 5240 26.080 CH48 5240 26.080 CH38 5190 47.440

Test plots as follows:


•

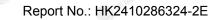
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEICATION.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5 Power Spectral Density

4.5.1 Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)		
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F		
Limit:	≤11.00dBm/MHz for Band I 5150MHz-5250MHz		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment. 		
Test Result:	PASS		

4.5.2 Test Instruments

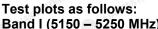
RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025
RF Test Software	Tonscend	JS1120-3 Version 3.3.23	HKE-083	N/A	N/A

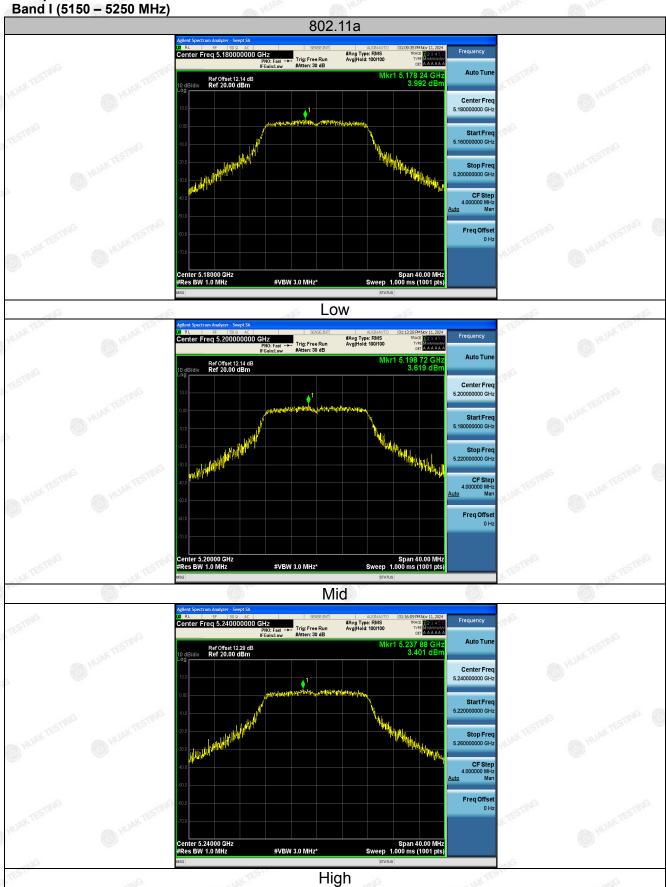
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

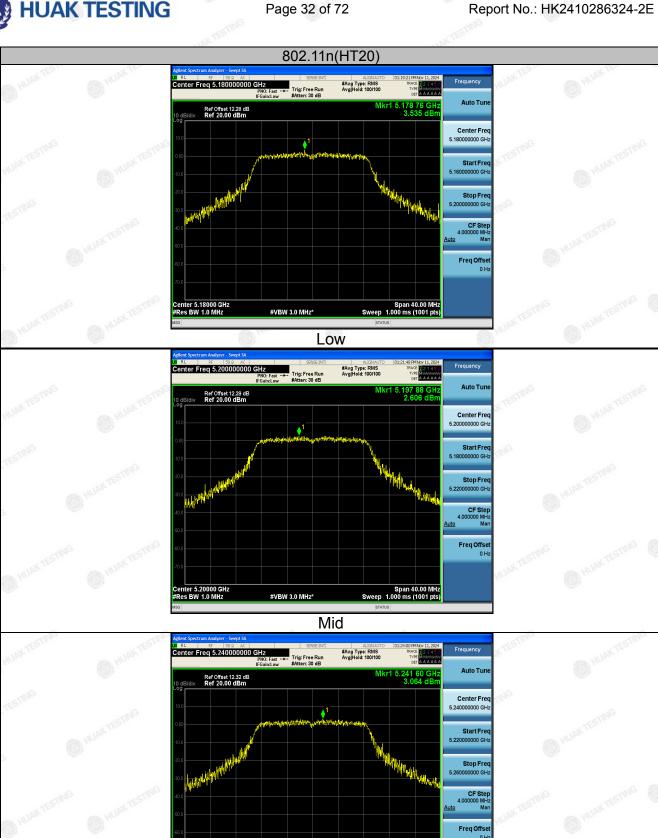
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Report No.: HK2410286324-2E

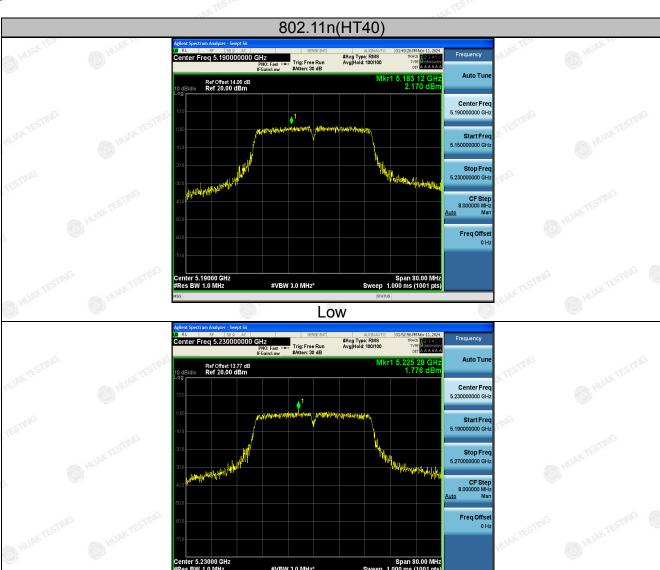



4.5.3 Test Data

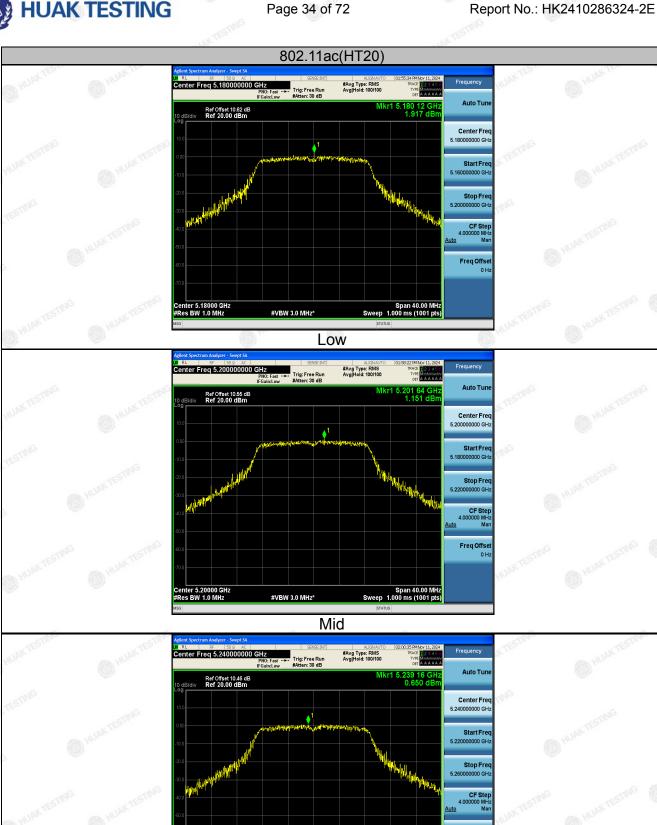
	ACCOR. 1500	D10000	All 1977	
Mode	Test channel	Level [dBm/MHz]	Limit (dBm/MHz)	Result
802.11a	CH36	3.99	11	PASS
802.11a	CH40	3.62	11	PASS
802.11a	CH48	3.4	11, 115	PASS
802.11n(HT20)	CH36	3.54	11	PASS
802.11n(HT20)	CH40	2.61	11,00	PASS
802.11n(HT20)	CH48	3.06	11	PASS
802.11n(HT40)	CH38	2.17	11	PASS
802.11n(HT40)	CH46	1.78	11	PASS
802.11ac(HT20)	CH36	1.92	11	PASS
802.11ac(HT20)	CH40	1.15	11	PASS
802.11ac(HT20)	CH48	0.65	11	PASS
802.11ac(HT40)	CH38	-1.32	11	PASS
802.11ac(HT40)	CH46	-1.11	11	PASS


Note: Instrument attenuation and cable loss See test diagram

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

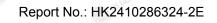

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

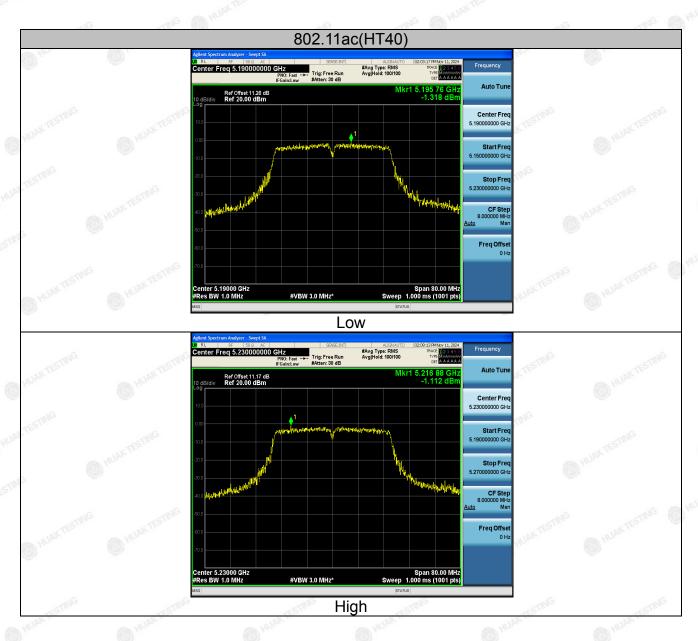
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


High

Center 5.24000 GHz Res BW 1.0 MHz

High


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

High

#VBW 3.0 MHz*

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.6 Band Edge

4.6.1 Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407		
Test Method:	ANSI C63.10 2013		
Limit:	For band I&II&III: E[dBμV/m] = EIRP[dBm] + 95.2=68.2 dBμV/m, for EIRP(dBm)= -27dBm For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. For band IV(5715-5725MHz&5850-5860MHz): E[dBμV/m] = EIRP[dBm] + 95.2=78.2 dBμV/m, for EIRP(dBm)= -27dBm; For band IV(other un-restricted band):E[dBμV/m] = EIRP[dBm] +		
Test Setup:	95.2=68.2 dBµV/m, for EIRP(dBm)= -27dBm Ant. feed point Ground Plane Receiver Amp.		
Test Mode:	Transmitting mode with modulation		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Procedure:	1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	Function and Specified Bandwidth with Maximum Hold
Test Result:	10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet. PASS

4.6.2 Test Instruments

	Ra	diated Emission	Test Site (96	6)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-025	Feb. 20, 2024	Feb. 19, 2025	
Spectrum analyzer	R&S	FSV3044	HKE-126	Feb. 20, 2024	Feb. 19, 2025	
Preamplifier	EMCI	EMC051845S	HKE-006	Feb. 20, 2024	Feb. 19, 2025	
Preamplifier	Schwarzbeck	BBV 9743	HKE-016	Feb. 20, 2024	Feb. 19, 2025	
Preamplifier	A.H. Systems	SAS-574	HKE-182	Feb. 20, 2024	Feb. 19, 2025	
6dB Attenuator	Pasternack	6db	HKE-184	Feb. 20, 2024	Feb. 19, 2025	
EMI Test Receiver	Rohde & Schwarz	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025	
Broadband Antenna	Schwarzbeck	VULB9168	HKE-167	Feb. 21, 2024	Feb. 20, 2026	
Loop Antenna	COM-POWER	AL-130R	HKE-014	Feb. 21, 2024	Feb. 20, 2026	
Horn Antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026	
EMI Test Software	Tonscend	JS32-RE 5.0.0	HKE-082	N/A	N/A	
RSE Test Software	Tonscend	JS36-RSE 5.0.0	HKE-184	N/A	N/A	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.6.3 Test Data

Operation Mode: 802.11a Mode with 5.2G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5150	55.87	-2.49	53.38	74	-20.62	peak
5150	1	-2.49	1 HUNKING	54	1	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5150	52.06	-2.49	49.57	74	-24.43	peak
5150	1	-2.49	1	54	TESTING /	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.2G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5350	53.14	-2.11	51.03	74	-22.97	peak
5350	miG I	-2.11	I MG	54	K TESTING	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5350	51.98	-2.11	49.87	74	-24.13	peak
5350	HUAK	-2.11	HUAK	54	HUAK	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11n20 Mode with 5.2G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tynol
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5150	53.23	-2.49	50.74	74	-23.26	peak
5150	ESTING /	-2.49	/ FSTING	54	KTESIN /	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5150	51.77	-2.49	49.28	50 ¹⁶ 74	-24.72	peak
5150	M HUMA	-2.49	10 HUM	54	AHUM /	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.2G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5350	54.92	-2.11	52.81	74	-21.19	peak
5350	I I	-2.11	1	54	ESTING /	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotoctor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5350	51.17	-2.11	49.06	74	-24.94	peak
5350	OKTESTING	-2.11	I NKTEST	54	N. TESTING	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11 n40 Mode with 5.2G TX CH Low

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tyria
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5150	54.42	-2.49	51.93	74	-22.07	peak
5150	STING /	-2.49	TESTING	54	(ES)	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5150	52.85	-2.49	50.36	57mic 74	-23.64	peak
5150	MILAK I	-2.49	1 HUAK	54	HUAK	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: TX CH High with 5.2G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5350	54.69	-2.11	52.58	74	-21.42	peak
5350	I I	-2.11	1	54	ESTING /	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency Meter Reading		Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5350	5350 51.69 -2.11		49.58 74		-24.42	peak
5350	N TESTING	-2.11	1 NKTEST	54	NY TESTING	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Operation Mode: 802.11 ac20 Mode with 5.2G TX CH Low

Horizontal:

Frequency	Frequency Meter Reading		Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5150	54.54	-2.49	52.05	74	-21.95	peak
5150	STING /	-2.49	TESTING	54	l l	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	43.5		* AXX			6377
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	') (dB) (dBμV/m) (dBμV/m)		(dB)	Detector Type	
5150	52.36	-2.49	49.87	· 74	-24.13	peak
5150	AND I	-2.49	N HOM	54	I	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.2G

Horizontal:

Frequency	Frequency Meter Reading		Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5350	53.47	-2.11	51.36	74	-22.64	peak
5350	I I	-2.11	1 mg	54	ESTING /	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency Meter Reading (MHz) (dBµV)		Factor	Emission Level	Limits	Margin	Detector Type
		(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5350	51.06	-2.11	48.95	74	-25.05	peak
5350	NK TESTING	-2.11	1 UKTEST	54	OKTESTING	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: 802.11 ac40 Mode with 5.2G TX CH Low

Horizontal:

Frequency	Frequency Meter Reading		Emission Level	Limits	Margin	Datastar Tyna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	- Detector Type
5150	53.98	-2.49	51.49	74	-22.51	peak
5150	ETING /	-2.49	I TESTING	54	l l	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	400					-611		
Frequency Meter Readin		Factor	Emission Level	Limits	Margin	- Detector Type		
(MHz)	(MHz) (dBµV)		(dBµV/m)	(dBµV/m)	(dB)	Detector Type		
5150	5150 51.09 -		.49 48.6 74		74 -25.4			
5150	MHUAIN /	-2.49	1 HUAR	54	MAN /	AVG		

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High with 5.2G

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotoctor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5350	53.89	-2.11	51.78	74	-22.22	peak
5350	THE I	-2.11	1	54	ESTING /	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

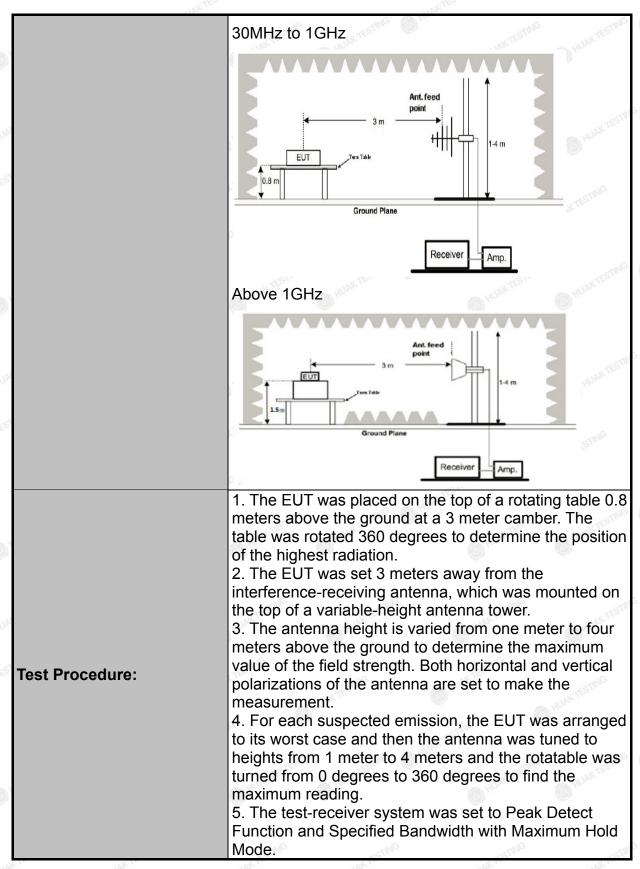
Vertical:

Frequency	Frequency Meter Reading		Emission Level	Limits	Margin	Dotoctor Typo
(MHz) (dBµV)		(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5350	5350 52.92 -2.11		50.81	74	-23.19	peak
5350	W TESTIVE	-2.11	1 XTEST	54	W TESTY'S	AVG

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.



4.7 Spurious Emission

4.7.1 Test Specification

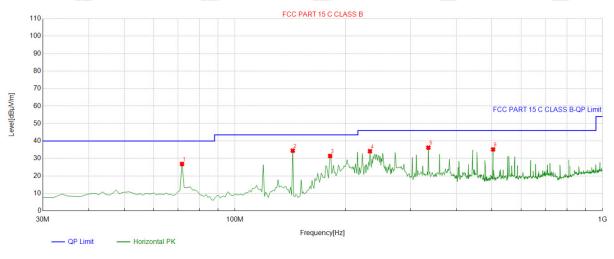
Test Requirement:	FCC CFR47 Part 15 Section 15.407								
Test Method:	KDB 789033	D02 v02r0)1	HUAR	HUAN				
Frequency Range:	9kHz to 40G	Hz		STNG					
Measurement Distance:	3 m	N TESTING	W H	JVK .	OK TESTING				
Antenna Polarization:	Horizontal &	Vertical		.16	O HUN				
Operation Mode:	Transmitting	mode with	modulat	tion					
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz	Detector Quasi-peak Quasi-peak Quasi-peak	RBW 200Hz 9kHz 120KHz	VBW 1kHz 30kHz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value				
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz	Peak Value Average Value				
Limit:	shall not exc (i) All emission dBm/MHz at edge increas above or below the or below the 15.6 dBm/MI and from 5 No increasing line	issions outseed an e.i.rons shall be 75 MHz or sing linearly ow the ban band edge Hz at 5 MHz above nearly to a lequency b	side of the control o	ne 5.15-5 7 dBm/N to a leve bove or b Bm/MHz and from ing linea or below the ban 7 dBm/N	5.35 GHz band MHz. bel of -27 below the band at 25 MHz a 25 MHz above rly to a level of the band edge,				
Test Setup:	For radiated	emissions 3 m Ground Pi		RX Antenna	TESTING ATESTING				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Test Results:

PASS

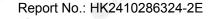

4.7.2 Test Data

All the test modes completed for test. Only the worst result of (802.11a at 5180MHz) was reported

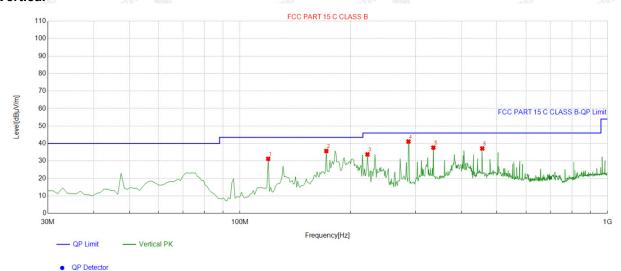
Report No.: HK2410286324-2E

Below 1GHz

Horizontal



QP Detector


Suspe	Suspected List									
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle		
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	71.751752	-17.38	44.26	26.88	40.00	13.12	100	196	Horizontal	
2	143.60360	-18.35	52.82	34.47	43.50	9.03	100	62	Horizontal	
3	181.47147	-16.13	47.57	31.44	43.50	12.06	100	109	Horizontal	
4	232.93293	-13.89	48.06	34.17	46.00	11.83	100	148	Horizontal	
5	335.85585	-10.57	46.77	36.20	46.00	9.80	100	201	Horizontal	
6	503.83383	-8.20	43.41	35.21	46.00	10.79	100	165	Horizontal	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit –Level

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Vertical

Suspected List Factor Freq. Reading Level Limit Margin Height Angle NO. Polarity [MHz] [dB] [dBµV/m] [dBµV/m] [dBµV/m] [dB] [cm] [°] 119.32932 -15.94 47.19 31.25 43.50 12.25 100 Vertical 171.76176 -16.84 52.56 35.72 43.50 7.78 100 164 Vertical -14.27 222.25225 48.04 33.77 46.00 12.23 100 201 Vertical 287.30730 -12.2853.41 41.13 46.00 4.87 100 Vertical 25 335.85585 -10.57 48.22 37.65 46.00 8.35 100 348 Vertical 456.25625 -8.87 46.04 37.17 46.00 8.83 100 Vertical

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Limit – Level

Harmonics and Spurious Emissions Frequency Range (9kHz-30MHz)

3	Frequency (MHz)	Level@3n	n (dBµV/m)	Limit@3m (dBµV/m)		
	(i) '	9			🔘 ``	
CNG		TING		MAG		
	-n G	AKTES	myG	MAKTES.		
	MAKTES.		WAK TES.	.	WAKTES	

Note:1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5.2G 802.11a Mode

LOW CH 36 (802.11 a Mode with 5.2G)/5180

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	DateWTESTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	57.05	-4.59	52.46	74	-21.54	peak
3647	45.61	-4.59	41.02	54	-12.98	AVG
10360	51.71	3.74	55.45	68.2	-12.75	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	^{(β} (dBμV/m)	(dB)	Detector Type
3647	57.3	-4.59	52.71	74	-21.29	peak
3647	42.25	-4.59	37.66	54	-16.34	AVG
10360	49.36	3.74	53.1	68.2	-15.1	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

MID CH40 (802.11 a Mode with 5.2G)/5200

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	55.93	-4.59	51.34	74	-22.66	peak
3647	41.75	-4.59	37.16	54	-16.84	AVG
10400	52.09	3.74	55.83	68.2	-12.37	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

4. 1	. 100	- 1	1. 170		- 14	1,00
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	56	-4.59	51.41	5 ⁷¹¹⁶ 74	-22.59	peak
3647	42.78	-4.59	38.19	54	-15.81	AVG
10400	51.58	3.74	55.32	68.2	-12.88	peak
		1135-			to the second se	

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH 48 (802.11a Mode with 5.2G)/5240

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	56.39	-4.59	51.8	74	-22.2	peak
3647	41.05	-4.59	36.46	54	-17.54	AVG
10480	52.02	3.75	55.77	68.2	-12.43	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

			. 100			
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	56.99	-4.59	52.4	57 ^{MG} 74	-21.6	peak
3647	45.31	-4.59	40.72	54	-13.28	AVG
10480	50.63	3.75	54.38	68.2	-13.82	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.2G 802.11n20 Mode

LOW CH 36 (802.11n20 Mode with 5.2G)/5180

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	58.4	-4.59	53.81	74	-20.19	peak
3647	43.15	-4.59	38.56	54	-15.44	AVG
10360	54.6	3.74	58.34	68.2	-9.86	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	⁶ (dBμV/m)	(dB)	Detector Type
3647	58.24	-4.59	53.65	74	-20.35	peak
3647	46.18	-4.59	41.59	54	-12.41	AVG
10360	52.32	3.74	56.06	68.2	-12.14	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

STING

Report No.: HK2410286324-2E

MID CH40 (802.11n20 Mode with 5.2G)/5200

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	57.39	-4.59	52.8	74	-21.2	peak
3647	43.6	-4.59	39.01	54	-14.99	AVG
10400	52.66	3.74	56.4	68.2	-11.8	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

	1.00	The second secon	7		- M N	1,100
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	56.84	-4.59	52.25	,5 ¹⁰⁶ 74	-21.75	peak
3647	45.81	-4.59	41.22	54	-12.78	AVG
10400	49.08	3.74	52.82	68.2	-15.38	peak
	-300	1 1/2-	- 2/1/2		1000	- 2/03

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH 48 (802.11n20 Mode with 5.2G)/5240

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	59.71	-4.59	55.12	74	-18.88	peak
3647	44.38	-4.59	39.79	54	-14.21	AVG
10480	51.05	3.75	54.8	68.2	-13.4	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

444		- 6			687	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	60.25	-4.59	55.66	74	-18.34	peak
3647	45.76	-4.59	41.17	54	-12.83	AVG
10480	50.33	3.75	54.08	68.2	-14.12	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

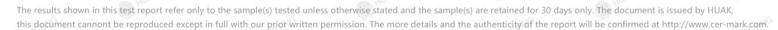
Remark:

- Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.2G 802.11n40 Mode

LOW CH 38 (802.11n40 Mode with 5.2G)/5190

Horizontal:


Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	59.57	-4.59	54.98	74	-19.02	peak
3647	45.9	-4.59	41.31	54	-12.69	AVG
10360	52.16	3.74	55.9	68.2	-12.3	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotoctor Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	⁶ (dBμV/m)	(dB)	Detector Type
3647	59.71	-4.59	55.12	74	-18.88	peak
3647	43.95	-4.59	39.36	54	-14.64	AVG
10360	50.49	3.74	54.23	68.2	-13.97	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

HIGH CH 46 (802.11n40 Mode with 5.2G)/5230

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	56.25	-4.59	51.66	74	-22.34	peak
3647	42.52	-4.59	37.93	54	-16.07	AVG
10480	50.61	3.75	54.36	68.2	-13.84	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4.75	. 1			. 7.7	4/4
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	59.98	-4.59	55.39	74	-18.61	peak
3647	44.71	-4.59	40.12	54	-13.88	AVG
10480	50.34	3.75	54.09	68.2	-14.11	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.2G 802.11ac20 Mode

LOW CH 36 (802.11ac20 Mode with 5.2G)/5180

Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
60.27	-4.59	55.68	74	-18.32	peak
43.57	-4.59	38.98	54	-15.02	AVG
52.76	3.74	56.5	68.2	-11.7	peak
	(dBμV) 60.27 43.57	(dBµV) (dB) 60.27 -4.59 43.57 -4.59	(dBμV) (dB) (dBμV/m) 60.27 -4.59 55.68 43.57 -4.59 38.98	(dBμV) (dB) (dBμV/m) (dBμV/m) 60.27 -4.59 55.68 74 43.57 -4.59 38.98 54	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 60.27 -4.59 55.68 74 -18.32 43.57 -4.59 38.98 54 -15.02

Level-Limit

Vertical:

		E320063	W257	1363	90	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	్ర (dBμV/m)	(dB)	Detector Type
3647	59.61	-4.59	55.02	74	-18.98	peak
3647	42.86	-4.59	38.27	54	-15.73	AVG
10360	50.2	3.74	53.94	68.2	-14.26	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin =

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH40 (802.11ac20 Mode with 5.2G)/5200

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	59.36	-4.59	54.77	74	-19.23	peak
3647	44.25	-4.59	39.66	54	-14.34	AVG
10400	52.18	3.74	55.92	68.2	-12.28	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
60.07	-4.59	55.48	74	-18.52	peak
45.46	-4.59	40.87	54	-13.13	AVG
53.29	3.74	57.03	68.2	-11.17	peak
	(dBµV) 60.07 45.46	(dBµV) (dB) 60.07 -4.59 45.46 -4.59	(dBμV) (dB) (dBμV/m) 60.07 -4.59 55.48 45.46 -4.59 40.87	(dBμV) (dB) (dBμV/m) (dBμV/m) 60.07 -4.59 55.48 74 45.46 -4.59 40.87 54	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 60.07 -4.59 55.48 74 -18.52 45.46 -4.59 40.87 54 -13.13

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = I evel-I imit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH 48 (802.11ac20 Mode with 5.2G)/5240

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	58.63	-4.59	54.04	74	-19.96	peak
3647	43.27	-4.59	38.68	54	-15.32	AVG
10480	52.51	3.75	56.26	68.2	-11.94	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	55.68	-4.59	51.09	74	-22.91	peak
3647	44.95	-4.59	40.36	54	-13.64	AVG
10480	52.27	3.75	56.02	68.2	-12.18	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.2G 802.11ac40 Mode

LOW CH 38 (802.11ac40 Mode with 5.2G)/5190

Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
64.09	-4.59	59.5	74	-14.5	peak
47.8	-4.59	43.21	54	-10.79	AVG
51.47	3.74	55.21	68.2	-12.99	peak
	(dBµV) 64.09 47.8	(dBµV) (dB) 64.09 -4.59 47.8 -4.59	(dBμV) (dB) (dBμV/m) 64.09 -4.59 59.5 47.8 -4.59 43.21	(dBμV) (dB) (dBμV/m) (dBμV/m) 64.09 -4.59 59.5 74 47.8 -4.59 43.21 54	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 64.09 -4.59 59.5 74 -14.5 47.8 -4.59 43.21 54 -10.79

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	ြ (dΒμV/m)	(dB)	Detector Type
3647	61.92	-4.59	57.33	74	-16.67	peak
3647	44.05	-4.59	39.46	54	-14.54	AVG
10360	51.87	3.74	55.61	68.2	-12.59	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = I evel-I imit

HIGH CH 46 (802.11ac40 Mode with 5.2G)/5230

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	57.01	-4.59	52.42	74	-21.58	peak
3647	42.51	-4.59	37.92	54	-16.08	AVG
10480	51.04	3.75	54.79	68.2	-13.41	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3647	57.45	-4.59	52.86	74	-21.14	peak
3647	44.07	-4.59	39.48	54	-14.52	AVG
10480	51.66	3.75	55.41	68.2	-12.79	peak

Remark: Factor = Cable loss + Antenna factor + Attenuator – Preamplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3)* denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

4.8 Frequency Stability Measurement

4.8.1 Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)				
Test Method:	ANSI C63.10: 2013				
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.				
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply				
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.				
Test Result:	PASS HUM TESTING WHUM TESTING WHUM TESTING WHUM TESTING				
Remark:	N/A				

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Result as follows:

Mode	Voltage (V)	FHL (5180MHz)	Deviation (KHz)	FHH (5240MHz)	Deviation (KHz)
5.2G Band	4.5V	5179.969	-31	5239.973	-27
	5.0V	5179.976	-24	5240.015	15
	5.5V	5179.996	[™] -4	5239.987	-13

Mode	Temperature (°C)	FHL (5180MHz)	Deviation (KHz)	FHH (5240MHz)	Deviation (KHz)
	-30	5179.983	-17	5239.967	-33
3	-20	5180.023	23	5240.013	13
HUAKTES	-10	5179.988	-12	5239.969	-31
	0	5180.021	21	5239.977	-23
5.2G Band	10 HUMA	5179.975	-25	5239.993	-7
MINAK I	20	5179.994	-6	5240.022	22
	30	5180.020	20	5239.988	-12
	40	5179.977	-23	5239.996	^{MG} -4
(a) HOLE	50	5179.966	-34	5240.017	17

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.9 Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Report No.: HK2410286324-2E

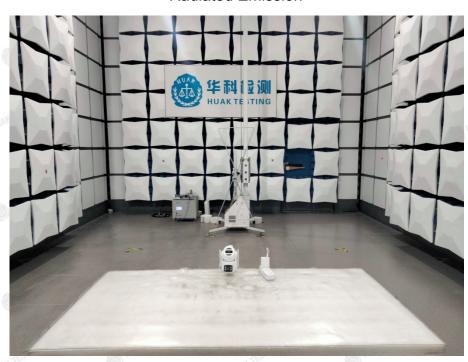
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is an External Antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 1.98dBi.

WIFI Antenna


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. Photographs of Test Setup

Radiated Emission

Report No.: HK2410286324-2E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

Report No.: HK2410286324-2E

End of test report-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.