198 Kezhu Road, Scientech Park, Guangzhou Economic & Technological Development District, Guangzhou, China 510663 Telephone: +86 (0) 20 82155555 Report No.: GZEM181000124401 Fax: +86 (0) 20 82075059 Page: 1 of 83 Email: ee.guangzhou@sgs.com FCC ID: 2ADZHHA-FX35BT ## TEST REPORT Application No.: GZEM1810001244CR **Applicant:** Dongguan Siyoto Electronics Co., Ltd. Address of Applicant: No.15,16,17, Seven street of north Qiaodong, Dongjiang Village, Qiaotou Tow, DongGuan, Guangdong, China Manufacturer:The same as applicantAddress of Manufacturer:The same as applicantFactory:The same as applicantAddress of Factory:The same as applicant Equipment Under Test (EUT): FCC ID: 2ADZHHA-FX35BT **EUT Name:** WIRELESS HEADPHONES **Model No.:** HA-FX35BT, HA-FX45BT. ¤ Please refer to section 2 of this report which indicates which model was actually tested and which were electrically identical. Trade Mark: JVC Standard(s): 47 CFR Part 15, Subpart C 15.247 **Date of Receipt:** 2018-10-15 **Date of Test:** 2018-11-08 to 2018-11-13 **Date of Issue:** 2018-11-15 Test Result: Pass* Kobe Jian Lab Manager The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing. This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. ^{*} In the configuration tested, the EUT complied with the standards specified above. Report No.: GZEM181000124401 Page: 2 of 83 | | Revision Record | | | | | | | | |--------------------------------------|-----------------|------------|--|----------|--|--|--|--| | Version Chapter Date Modifier Remark | | | | | | | | | | 01 | | 2018-11-15 | | Original | Authorized for issue by: | | | |--------------------------|-------------------------------|--------------------------| | Tested By | Kevin zhang | 2018-11-08 to 2018-11-13 | | | Kevin_Zhang /Project Engineer | Date | | Checked By | Riday Liu | 2018-11-15 | | | Ricky_Liu /Reviewer | Date | Report No.: GZEM181000124401 Page: 3 of 83 ## 2 Test Summary | Radio Spectrum Technical Requirement | | | | | | | | |--|-------------------------------------|--------|--|--------|--|--|--| | Item | Standard | Method | Requirement | Result | | | | | Antenna
Requirement | 47 CFR Part 15,
Subpart C 15.247 | N/A | 47 CFR Part 15,
Subpart C 15.203 &
15.247(c) | Pass | | | | | Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence | 47 CFR Part 15,
Subpart C 15.247 | N/A | 47 CFR Part 15,
Subpart C
15.247(a)(1),(g),(h) | Pass | | | | | Radio Spectrum Matter Part | | | | | | | | |---|-------------------------------------|---|---|--------|--|--|--| | Item | Standard | Method | Requirement | Result | | | | | Conducted Peak
Output Power | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.5 | 47 CFR Part 15,
Subpart C
15.247(b)(1) | Pass | | | | | 20dB Bandwidth | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.7 | 47 CFR Part 15,
Subpart C
15.247(a)(1) | Pass | | | | | Carrier Frequencies Separation | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.2 | 47 CFR Part 15,
Subpart C 15.247a(1) | Pass | | | | | Hopping Channel
Number | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.3 | 47 CFR Part 15,
Subpart C
15.247a(1)(iii) | Pass | | | | | Dwell Time | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.4 | 47 CFR Part 15,
Subpart C
15.247a(1)(iii) | Pass | | | | | Conducted Band
Edges Measurement | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.6 | 47 CFR Part 15,
Subpart C 15.247(d) | Pass | | | | | Conducted Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 7.8.8 | 47 CFR Part 15,
Subpart C 15.247(d) | Pass | | | | | Radiated Emissions
which fall in the
restricted bands | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.10.5 | 47 CFR Part 15,
Subpart C 15.205 &
15.209 | Pass | | | | | Radiated Spurious
Emissions | 47 CFR Part 15,
Subpart C 15.247 | ANSI C63.10 (2013)
Section 6.4,6.5,6.6 | 47 CFR Part 15,
Subpart C 15.205 &
15.209 | Pass | | | | ### **¤** Declaration of EUT Family Grouping: Model No.: HA-FX35BT, HA-FX45BT According to the declaration from the applicant, the electrical circuit design, layout, components used and internal wiring were identical for all models, with only difference on the outer decoration. Therefore only one model HA-FX35BT was tested in this report. Report No.: GZEM181000124401 Page: 4 of 83 ## 3 Contents | | | | Page | |---|----------------|---|------| | 1 | Cove | r Page | 1 | | 2 | Test S | Summary | | | 3 | Conte | ents | 4 | | | | | | | 4 | | ral Information | | | | | Details of E.U.T | | | | | Description of Support Units | | | | | Measurement Uncertainty | | | | | Test Location | | | | | Test Facility | | | | | Deviation from Standards | | | | | Abnormalities from Standard Conditions | | | 5 | Equip | oment List | 10 | | 6 | Padio | Spectrum Technical Requirement | 1, | | U | | | | | | | Antenna Requirement | | | | 6.1.1
6.1.2 | Test Requirement: | | | | - | ConclusionOther requirements Frequency Hopping Spread Spectrum System Hopping Sequence | | | | 6.2.1 | Other requirements Frequency hopping Spread Spectrum System hopping Sequence Test Requirement: | | | | 6.2.2 | Conclusion | | | 7 | - | Spectrum Matter Test Results | | | ' | | • | | | | | Conducted Peak Output Power | | | | 7.1.1 | E.U.T. Operation | | | | 7.1.2 | Test Setup Diagram | | | | 7.1.3
7.2 | Measurement Procedure and Data | | | | 7.2.1 | 20dB Bandwidth
E.U.T. Operation | | | | 7.2.1 | Test Setup Diagram | | | | 7.2.3 | Measurement Procedure and Data | | | | | Carrier Frequencies Separation | | | | | E.U.T. Operation | | | | 7.3.2 | Test Setup Diagram | 19 | | | 7.3.3 | Measurement Procedure and Data | 19 | | | 7.4 I | Hopping Channel Number | 20 | | | 7.4.1 | E.U.T. Operation | | | | 7.4.2 | Test Setup Diagram | | | | 7.4.3 | Measurement Procedure and Data | | | | | Dwell Time | | | | 7.5.1 | E.U.T. Operation | | | | 7.5.2 | Test Setup Diagram | | | | 7.5.3 | Measurement Procedure and Data | | | | | Conducted Band Edges Measurement | | | | 7.6.1
7.6.2 | E.U.T. Operation Test Setup Diagram | | | | 1.0.2 | rost octup Diagram | ∠、 | Report No.: GZEM181000124401 Page: 5 of 83 | 7.6.3 Measurement Procedure and Data | 23 | |---|----| | 7.7 Conducted Spurious Emissions | 24 | | 7.7.1 E.U.T. Operation | 24 | | 7.7.2 Test Setup Diagram | 24 | | 7.7.3 Measurement Procedure and Data | 24 | | 7.8 Radiated Emissions which fall in the restricted bands | 25 | | 7.8.1 E.U.T. Operation | 26 | | 7.8.2 Test Setup Diagram | 26 | | 7.8.3 Measurement Procedure and Data | 27 | | 7.9 Radiated Spurious Emissions | 30 | | 7.9.1 E.U.T. Operation | 31 | | 7.9.2 Test Setup Diagram | 31 | | 7.9.3 Measurement Procedure and Data | 32 | | 8 Appendix | 37 | | 8.1 Appendix 15.247 | 37 | Report No.: GZEM181000124401 Page: 6 of 83 ## 4 General Information ### 4.1 Details of E.U.T. Power Supply: DC 5.0V supplied by USB port for battery charging. DC 3.7V 130mAh built-in battery for normal working. Test Voltage: DC 3.7V Port: Micro USB port Cable: N/A Antenna Gain 2 dBi Antenna Type Integrated Antenna Versions: Bluetooth 4.1+ EDR classic only Channel Spacing 1MHz Modulation Type GFSK, $\pi/4$ DQPSK, 8DPSK Number of Channels 79 Operation Frequency 2402MHz to 2480MHz Spectrum Spread Frequency Hopping Spread Spectrum(FHSS) Technology ## 4.2 Description of Support Units | Description | Manufacturer | Model No. | Serial No. | |-------------|--------------|-----------|-----------------
 | Laptop | Lenovo | T430u | REF. No.SEA1800 | Report No.: GZEM181000124401 Page: 7 of 83 ## 4.3 Measurement Uncertainty | No. | Item | Measurement Uncertainty | |-----|---------------------------------|-------------------------| | 1 | Radio Frequency | ±5.5 x 10-8 | | 2 | Duty cycle | ±0.57% | | 3 | Occupied Bandwidth | ±3% | | 4 | RF Conducted power | ±0.68dB | | 5 | RF Power Density | ±1.50dB | | 6 | Conducted Spurious Emissions | ±1.04dB | | 7 | RF Radiated Power | ±4.5dB (below 1GHz) | | / | RF Radiated Fower | ±4.8dB (above 1GHz) | | 8 | Padiated Spurious Emission Test | ±4.5dB (30MHz-1GHz) | | 0 | Radiated Spurious Emission Test | ±4.8dB (1GHz-18GHz) | | 9 | Temperature | ±0.4°C | | 10 | Humidity | ±1.3% | | 11 | Supply Voltages | ±1.5% | | 12 | Time | ±3% | ### 4.4 Test Location All tests were performed at: SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou Branch EMC Laboratory, 198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District, Guangzhou, China 510663 Tel: +86 20 82155555 Fax: +86 20 82075059 No tests were sub-contracted. Report No.: GZEM181000124401 Page: 8 of 83 ### 4.5 Test Facility The test facility is recognized, certified, or accredited by the following organizations: ### ● NVLAP (Lab Code: 200611-0) SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government. #### ACMA SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation. ### ● SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES. #### ● CNAS (Lab Code: L0167) SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories. ### ● FCC Recognized 2.948 Listed Test Firm(Registration No.: 282399) SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002. #### ◆FCC Recognized Accredited Test Firm(Registration No.: 486818) SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been accredited and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Designation Number: CN5016, Test Firm Registration Number: 486818, Jul 13, 2017. ### ● Industry Canada (Registration No.: 4620B-1) The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd., has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1. ### ● VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179) The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively. ### ● CBTL (Lab Code: TL129) SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01 and Rules of procedure IECEE 02, and the relevant IECEE CB-Scheme Operational documents. Report No.: GZEM181000124401 Page: 9 of 83 4.6 Deviation from Standards None 4.7 Abnormalities from Standard Conditions None Report No.: GZEM181000124401 Page: 10 of 83 ## 5 Equipment List | Conducted Peak Output Power | | | | | | | | |-----------------------------|---------------------|----------|-----------------|------------|--------------|--|--| | Equipment | Manufacturer | Model No | Inventory
No | Cal Date | Cal Due Date | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | 20dB Bandwidth | | | | | | | | |------------------------|---------------------|----------|-----------------|------------|--------------|--|--| | Equipment | Manufacturer | Model No | Inventory
No | Cal Date | Cal Due Date | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | Carrier Frequencies Separation | | | | | | | | |--------------------------------|---------------------|----------|-----------------|------------|--------------|--|--| | Equipment | Manufacturer | Model No | Inventory
No | Cal Date | Cal Due Date | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | Hopping Channel Number | | | | | | | | |------------------------|---------------------|----------|-----------------|------------|--------------|--|--| | Equipment | Manufacturer | Model No | Inventory
No | Cal Date | Cal Due Date | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | Dwell Time | | | | | | | | | | |--|--------------|----------|-----------------|------------|--------------|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory
No | Cal Date | Cal Due Date | | | | | | EXA Signal Analzer AgilentTechnologies | | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | | | 6dB Attenuator HP | | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | | Report No.: GZEM181000124401 Page: 11 of 83 | Conducted Band Edges Measurement | | | | | | | | | | |----------------------------------|---------------------|-------------|-----------------|------------|--------------|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory
No | Cal Date | Cal Due Date | | | | | | MXA Signal Analyzer | AgilentTechnologies | N9020A | SEM004-10 | 2018-03-10 | 2019-03-09 | | | | | | ESG Vector Signal
Generator | Keysight | E4438C | SEM006-03 | 2018-04-10 | 2019-04-10 | | | | | | EXG Analog Signal
Generator | AgilentTechnologies | N5171B | SEM006-04 | 2017-07-26 | 2020-07-25 | | | | | | Power Meter | AgilentTechnologies | U2021XA_Ch2 | SEM009-02 | 2018-09-20 | 2019-09-19 | | | | | | Power Meter | AgilentTechnologies | U2021XA_Ch3 | SEM009-03 | 2018-09-20 | 2019-09-19 | | | | | | EXA Signal Analzer | AgilentTechnologies | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | | | Conducted Spurious Emissions | | | | | | | | | | |------------------------------|---------------------------------------|----------|-----------------|------------|--------------|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory
No | Cal Date | Cal Due Date | | | | | | EXA Signal Analzer | XA Signal Analzer AgilentTechnologies | | EMC2138 | 2017-11-15 | 2018-11-14 | | | | | | 6dB Attenuator | HP | 8491A | EMC2062 | 2018-04-04 | 2020-04-03 | | | | | | Test Software JS1120-3 | HangTianXing | V2.6 | GZE100-69 | N/A | N/A | | | | | Report No.: GZEM181000124401 Page: 12 of 83 | Equipment | Manufacturer | Model No | Inventory
No | Cal Date | Cal Due Date | |---|--------------------------------|--------------------|-----------------|------------|--------------| | EMI Test Receiver | Rohde & Schwarz | ESIB26 | EMC0522 | 2018-01-19 | 2019-01-18 | | EMI Test Receiver | Rohde & Schwarz | ESCI | EMC0056 | 2018-01-19 | 2019-01-18 | | Chamber cable | HangTianXing | N/A | EMC0542 | 2017-06-30 | 2019-06-30 | | Trilog Broadband
Antenna 30MHz-1GHz | SCHWARZBECKME
SS-ELEKTRONIK | VULB 9160 | EMC2025 | 2016-09-08 | 2019-09-07 | | Bi-log Type Antenna | Schaffner -Chase | CBL6112B | EMC0524 | 2016-09-08 | 2019-09-07 | | Bi-log Type Antenna | Schaffner -Chase | CBL6143 | EMC0519 | 2017-05-04 | 2020-05-03 | | Horn Antenna 1GHz-
18GHz | SCHWARZBECK
MESS-ELEKTRONIK | BBHA 9120D EMC2026 | | 2016-09-09 | 2019-09-08 | | 1GHz-26.5 GHz Pre-
Amplifier Agilent | | 8449B | EMC0521 | 2018-01-08 | 2019-01-07 | | Amplifier | HP | 8447F | EMC2065 | 2018-06-01 | 2019-05-31 | | Pre-Amplifier MH648A | ANRITSU CORP | MH648A | EMC2086 | 2017-11-20 | 2018-11-19 | | Active Loop Antenna | EMCO | 6502 | EMC0523 | 2018-02-24 | 2019-02-23 | | High Pass
Filter(915MHz) | FSY MICROWAVE | HM1465-9SS | EMC2079 | 2018-01-19 | 2019-01-18 | | 2.4GHz Filter | Micro-Tronics | BRM 50702 | EMC2069 | 2018-01-08 | 2019-01-07 | | 10m Semi-Anechoic
Chamber | ETS | N/A | EMC0530 | 2017-06-18 | 2019-06-18 | | 966 Anechoic Chamber | C.R.T | 9m x 6m x 6m | EMC2142 | 2017-11-29 | 2018-11-28 | | MXE EMI Receiver | Keysight | N9038A | EMC2139 | 2017-11-15 | 2018-11-14 | | EXA Signal Analyzer | Keysight | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | Trilog Broadband
Antenna 30MHz-1GHz | | | SEM003-18 |
2016-06-29 | 2019-06-28 | | Test Software E3 Audix | | Ver.6.120110a | GZE100-61 | N/A | N/A | Report No.: GZEM181000124401 Page: 13 of 83 | Radiated Spurious Emissions | | | | | | | | | |---|--------------------------------|---------------|-----------------|------------|--------------|--|--|--| | Equipment | Manufacturer | Model No | Inventory
No | Cal Date | Cal Due Date | | | | | EMI Test Receiver | Rohde & Schwarz | ESIB26 | EMC0522 | 2018-01-19 | 2019-01-18 | | | | | EMI Test Receiver | Rohde & Schwarz | ESCI | EMC0056 | 2018-01-19 | 2019-01-18 | | | | | Chamber cable | HangTianXing | N/A | EMC0542 | 2017-06-30 | 2019-06-30 | | | | | Trilog Broadband
Antenna 30MHz-1GHz | SCHWARZBECKME
SS-ELEKTRONIK | VULB 9160 | EMC2025 | 2016-09-08 | 2019-09-07 | | | | | Bi-log Type Antenna | Schaffner -Chase | CBL6112B | EMC0524 | 2016-09-08 | 2019-09-07 | | | | | Bi-log Type Antenna | Schaffner -Chase | CBL6143 | EMC0519 | 2017-05-04 | 2020-05-03 | | | | | Horn Antenna 1GHz-
18GHz | | | EMC2026 | 2016-09-09 | 2019-09-08 | | | | | 1GHz-26.5 GHz Pre-
Amplifier Agilent | | 8449B | EMC0521 | 2018-01-08 | 2019-01-07 | | | | | Amplifier | HP | 8447F | EMC2065 | 2018-06-01 | 2019-05-31 | | | | | Pre-Amplifier MH648A | ANRITSU CORP | MH648A | EMC2086 | 2017-11-20 | 2018-11-19 | | | | | Active Loop Antenna | EMCO | 6502 | EMC0523 | 2018-02-24 | 2019-02-23 | | | | | High Pass
Filter(915MHz) | FSY MICROWAVE | HM1465-9SS | EMC2079 | 2018-01-19 | 2019-01-18 | | | | | 2.4GHz Filter | Micro-Tronics | BRM 50702 | EMC2069 | 2018-01-08 | 2019-01-07 | | | | | 10m Semi-Anechoic
Chamber | ETS | N/A | EMC0530 | 2017-06-18 | 2019-06-18 | | | | | 966 Anechoic Chamber | C.R.T | 9m x 6m x 6m | EMC2142 | 2017-11-29 | 2018-11-28 | | | | | MXE EMI Receiver | Keysight | N9038A | EMC2139 | 2017-11-15 | 2018-11-14 | | | | | EXA Signal Analyzer | Keysight | N9010A | EMC2138 | 2017-11-15 | 2018-11-14 | | | | | Trilog Broadband
Antenna 30MHz-1GHz | SCHWARZBECKME
SS-ELEKTRONIK | VULB 9168 | SEM003-18 | 2016-06-29 | 2019-06-28 | | | | | Test Software E3 Audix | | Ver.6.120110a | GZE100-61 | N/A | N/A | | | | | General used equipment | | | | | | | | | | |------------------------|--------------|----------|-----------------|------------|--------------|--|--|--|--| | Equipment | Manufacturer | Model No | Inventory
No | Cal Date | Cal Due Date | | | | | | DMM | Fluke | 73 | EMC0006 | 2018-07-20 | 2019-07-19 | | | | | | DMM | Fluke | 73 | EMC0007 | 2018-07-19 | 2019-07-18 | | | | | Report No.: GZEM181000124401 Page: 14 of 83 ## 6 Radio Spectrum Technical Requirement ### 6.1 Antenna Requirement ### 6.1.1 Test Requirement: 47 CFR Part 15, Subpart C 15.203 & 15.247(c) #### 6.1.2 Conclusion Standard Requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. ### 15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi. ### **EUT Antenna:** The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi. Report No.: GZEM181000124401 Page: 15 of 83 ## 6.2 Other requirements Frequency Hopping Spread Spectrum System Hopping Sequence #### 6.2.1 Test Requirement: 47 CFR Part 15, Subpart C 15.247(a)(1),(g),(h) #### 6.2.2 Conclusion Standard Requirement: The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted. Compliance for section 15.247(a)(1): According to Technical Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones. - > Number of shift register stages: 9 - > Length of pseudo-random sequence: 29 -1 = 511 bits - > Longest sequence of zeros: 8 (non-inverted signal) Linear Feedback Shift Register for Generation of the PRBS sequence An example of Pseudorandom Frequency Hopping Sequence as follow: Each frequency used equally on the average by each transmitter. According to Technical Specification, the receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any transmitters and shift frequencies in synchronization with the transmitted signals. Compliance for section 15.247(g): According to Technical Specification, the system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom hopping frequency system. Compliance for section 15.247(h): According to Technical specification, the system incorporates with an adaptive system to detect other user within the spectrum bands Report No.: GZEM181000124401 Page: 16 of 83 ## 7 Radio Spectrum Matter Test Results ## 7.1 Conducted Peak Output Power Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(1) Test Method: ANSI C63.10 (2013) Section 7.8.5 Limit: | Frequency range(MHz) | Output power of the intentional radiator(watt) | |----------------------|--| | | 1 for ≥50 hopping channels | | 902-928 | 0.25 for 25≤ hopping channels <50 | | | 1 for digital modulation | | | 1 for ≥75 non-overlapping hopping channels | | 2400-2483.5 | 0.125 for all other frequency hopping systems | | | 1 for digital modulation | | 5725-5850 | 1 for frequency hopping systems and digital modulation | Report No.: GZEM181000124401 Page: 17 of 83 ### 7.1.1 E.U.T. Operation Operating Environment: Temperature: 24.6 °C Humidity: 55.3 % RH Atmospheric Pressure: 1020 mbar Test mode b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.1.2 Test Setup Diagram ## Ground Reference Plane #### 7.1.3 Measurement Procedure and Data Report No.: GZEM181000124401 Page: 18 of 83 ### 7.2 20dB Bandwidth Test Requirement 47 CFR Part 15, Subpart C 15.247(a)(1) Test Method: ANSI C63.10 (2013) Section 7.8.7 #### 7.2.1 E.U.T. Operation Operating Environment: Temperature: 24.6 °C Humidity: 55.4 % RH Atmospheric Pressure: 1020 mbar Test mode b:TX non-Hop mode Keep the EUT in continuously transmitting mode with GFSK b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.2.2 Test Setup Diagram ### Ground Reference Plane #### 7.2.3 Measurement Procedure and Data Report No.: GZEM181000124401 Page: 19 of 83 ### 7.3 Carrier Frequencies Separation Test Requirement 47 CFR Part 15, Subpart C 15.247a(1) Test Method: ANSI C63.10 (2013) Section 7.8.2 Limit: 2/3 of the 20dB bandwidth base on the transmission power is less than 0.125W ### 7.3.1 E.U.T. Operation Operating Environment: Temperature: 24.6 °C Humidity: 55.3 % RH Atmospheric Pressure: 1020 mbar Test mode a:TX Hop mode Keep the EUT in frequency hopping mode with GFSK modulation, $\pi/4$ DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ## 7.3.2 Test Setup Diagram ## Ground Reference Plane #### 7.3.3 Measurement Procedure and Data Report No.: GZEM181000124401 Page: 20 of 83 ### 7.4 Hopping Channel Number Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii) Test Method: ANSI C63.10 (2013) Section 7.8.3 Limit: | Frequency range(MHz) | Number of hopping channels (minimum) | | | | | |----------------------
--------------------------------------|--|--|--|--| | 902-928 | 50 for 20dB bandwidth <250kHz | | | | | | 902-928 | 25 for 20dB bandwidth ≥250kHz | | | | | | 2400-2483.5 | 15 | | | | | | 5725-5850 | 75 | | | | | ### 7.4.1 E.U.T. Operation Operating Environment: Temperature: 24.6 °C Humidity: 55.2 % RH Atmospheric Pressure: 1020 mbar Test mode a:TX Hop mode Keep the EUT in frequency hopping mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.4.2 Test Setup Diagram ## Ground Reference Plane ### 7.4.3 Measurement Procedure and Data Report No.: GZEM181000124401 Page: 21 of 83 ### 7.5 Dwell Time Test Requirement 47 CFR Part 15, Subpart C 15.247a(1)(iii) Test Method: ANSI C63.10 (2013) Section 7.8.4 Limit: | Frequency(MHz) | Limit | |----------------|---| | 002.028 | 0.4S within a 20S period(20dB bandwidth<250kHz) | | 902-928 | 0.4S within a 10S period(20dB bandwidth≥250kHz) | | 2400 2492 5 | 0.4S within a period of 0.4S multiplied by the number | | 2400-2483.5 | of hopping channels | | 5725-5850 | 0.4S within a 30S period | ### 7.5.1 E.U.T. Operation Operating Environment: Temperature: 24.6 °C Humidity: 55.2 % RH Atmospheric Pressure: 1020 mbar Test mode a:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, π /4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.5.2 Test Setup Diagram ### Ground Reference Plane #### 7.5.3 Measurement Procedure and Data Report No.: GZEM181000124401 Page: 22 of 83 ### 7.6 Conducted Band Edges Measurement Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 7.8.6 Limit: In any 100 kHz bandwidth outside the fr §15.209(a) (see §15.205(c) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in Report No.: GZEM181000124401 Page: 23 of 83 ### 7.6.1 E.U.T. Operation **Operating Environment:** Temperature: 24.6 °C Humidity: 55.1 % RH Atmospheric Pressure: 1020 mbar Pretest these a:TX_Hop mode_Keep the EUT in frequency hopping mode with GFSK modulation, modes to find $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been tested and only modes to find the worst case: the data of worst case is recorded in the report. b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, $\pi/4DQPSK$ modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.6.2 Test Setup Diagram ## Ground Reference Plane ### 7.6.3 Measurement Procedure and Data Report No.: GZEM181000124401 Page: 24 of 83 ### 7.7 Conducted Spurious Emissions Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 7.8.8 Limit: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c) ### 7.7.1 E.U.T. Operation **Operating Environment:** Temperature: 24.6 °C Humidity: 55.1 % RH Atmospheric Pressure: 1020 mbar Test mode b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.7.2 Test Setup Diagram ## Ground Reference Plane #### 7.7.3 Measurement Procedure and Data The detailed test data see: Appendix 15.247 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only. Report No.: GZEM181000124401 Page: 25 of 83 ### 7.8 Radiated Emissions which fall in the restricted bands Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209 Test Method: ANSI C63.10 (2013) Section 6.10.5 Measurement Distance: 3m Limit: | Frequency(MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | | | |----------------|-----------------------------------|-------------------------------|--|--| | 0.009-0.490 | 2400/F(kHz) | 300 | | | | 0.490-1.705 | 24000/F(kHz) | 30 | | | | 1.705-30.0 | 30 | 30 | | | | 30-88 | 100 | 3 | | | | 88-216 | 150 | 3 | | | | 216-960 | 200 | 3 | | | | Above 960 | 500 | 3 | | | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Report No.: GZEM181000124401 Page: 26 of 83 ### 7.8.1 E.U.T. Operation **Operating Environment:** Temperature: 24.9 °C Humidity: 68.9 % RH Atmospheric Pressure: 1020 mbar Test mode b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.8.2 Test Setup Diagram #### 9kHz to 30MHz 30MHz to 1GHz Report No.: GZEM181000124401 Page: 27 of 83 Above 1GHz #### 7.8.3 Measurement Procedure and Data - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - h. Test the EUT in the lowest channel, the middle channel, the
Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. - Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. Level=Read Level + Antenna Factor + Cable Loss - Preamp Factor Report No.: GZEM181000124401 Page: 28 of 83 Mode:b; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low | | | ReadA | Antenna | Cable | Preamp | | Limit | 0ver | | | |---|----------|-------|---------|-------|--------|--------|--------|--------|------------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | - | | 1 | 2310.000 | 31.79 | 26.25 | 5.03 | 37.44 | 25.63 | 54.00 | -28.37 | HORIZONTAL | Average | | 2 | 2310.000 | 46.53 | 26.25 | 5.03 | 37.44 | 40.37 | 74.00 | -33.63 | HORIZONTAL | Peak | | 3 | 2390.000 | 32.73 | 26.43 | 4.88 | 37.42 | 26.62 | 54.00 | -27.38 | HORIZONTAL | Average | | 4 | 2390.000 | 46.74 | 26.43 | 4.88 | 37.42 | 40.63 | 74.00 | -33.37 | HORIZONTAL | Peak | | 5 | 2483.500 | 32.74 | 26.58 | 5.23 | 37.40 | 27.15 | 54.00 | -26.85 | HORIZONTAL | Average | | 6 | 2483.500 | 45.46 | 26.58 | 5.23 | 37.40 | 39.87 | 74.00 | -34.13 | HORIZONTAL | Peak | | 7 | 2500.000 | 31.41 | 26.60 | 4.95 | 37.39 | 25.57 | 54.00 | -28.43 | HORIZONTAL | Average | | 8 | 2500.000 | 46.12 | 26.60 | 4.95 | 37.39 | 40.28 | 74.00 | -33.72 | HORIZONTAL | Peak | Mode:b; Polarization:Vertical; Modulation:GFSK; ; Channel:Low | | | Read | Antenna | Cable | Preamp | | Limit | Over | | | |---|----------|-------|---------|-------|--------|--------|--------|--------|-----------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | | | 1 | 2310.000 | 32.70 | 26.25 | 5.03 | 37.44 | 26.54 | 54.00 | -27.46 | VERTICAL | Average | | 2 | 2310.000 | 46.12 | 26.25 | 5.03 | 37.44 | 39.96 | 74.00 | -34.04 | VERTICAL | Peak | | 3 | 2390.000 | 31.90 | 26.43 | 4.88 | 37.42 | 25.79 | 54.00 | -28.21 | VERTICAL | Average | | 4 | 2390.000 | 46.26 | 26.43 | 4.88 | 37.42 | 40.15 | 74.00 | -33.85 | VERTICAL | Peak | | 5 | 2483.500 | 31.78 | 26.58 | 5.23 | 37.40 | 26.19 | 54.00 | -27.81 | VERTICAL | Average | | 6 | 2483.500 | 45.51 | 26.58 | 5.23 | 37.40 | 39.92 | 74.00 | -34.08 | VERTICAL | Peak | | 7 | 2500.000 | 32.92 | 26.60 | 4.95 | 37.39 | 27.08 | 54.00 | -26.92 | VERTICAL | Average | | 8 | 2500.000 | 47.18 | 26.60 | 4.95 | 37.39 | 41.34 | 74.00 | -32.66 | VERTICAL | Peak | Report No.: GZEM181000124401 Page: 29 of 83 Mode:b; Polarization:Horizontal; Modulation:GFSK; ; Channel:High | | | ReadAntenna | | Cable | Preamp | | Limit | 0ver | | | |---|----------|-------------|--------|-------|--------|--------|--------|--------|------------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | - | | 1 | 2310.000 | 31.00 | 26.25 | 5.03 | 37.44 | 24.84 | 54.00 | -29.16 | HORIZONTAL | Average | | 2 | 2310.000 | 45.75 | 26.25 | 5.03 | 37.44 | 39.59 | 74.00 | -34.41 | HORIZONTAL | Peak | | 3 | 2390.000 | 30.47 | 26.43 | 4.88 | 37.42 | 24.36 | 54.00 | -29.64 | HORIZONTAL | Average | | 4 | 2390.000 | 45.15 | 26.43 | 4.88 | 37.42 | 39.04 | 74.00 | -34.96 | HORIZONTAL | Peak | | 5 | 2483.500 | 33.27 | 26.58 | 5.23 | 37.40 | 27.68 | 54.00 | -26.32 | HORIZONTAL | Average | | 6 | 2483.500 | 45.51 | 26.58 | 5.23 | 37.40 | 39.92 | 74.00 | -34.08 | HORIZONTAL | Peak | | 7 | 2500.000 | 31.38 | 26.60 | 4.95 | 37.39 | 25.54 | 54.00 | -28.46 | HORIZONTAL | Average | | 8 | 2500.000 | 45.62 | 26.60 | 4.95 | 37.39 | 39.78 | 74.00 | -34.22 | HORIZONTAL | Peak | Mode:b; Polarization:Vertical; Modulation:GFSK; ; Channel:High | | | Read | Antenna | Cable | Preamp | | Limit | Over | | | |---|----------|-------|---------|-------|--------|--------|--------|--------|-----------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | | | 1 | 2310.000 | 30.08 | 26.25 | 5.03 | 37.44 | 23.92 | 54.00 | -30.08 | VERTICAL | Average | | 2 | 2310.000 | 45.46 | 26.25 | 5.03 | 37.44 | 39.30 | 74.00 | -34.70 | VERTICAL | Peak | | 3 | 2390.000 | 31.33 | 26.43 | 4.88 | 37.42 | 25.22 | 54.00 | -28.78 | VERTICAL | Average | | 4 | 2390.000 | 45.69 | 26.43 | 4.88 | 37.42 | 39.58 | 74.00 | -34.42 | VERTICAL | Peak | | 5 | 2483.500 | 29.38 | 26.58 | 5.23 | 37.40 | 23.79 | 54.00 | -30.21 | VERTICAL | Average | | 6 | 2483.500 | 46.03 | 26.58 | 5.23 | 37.40 | 40.44 | 74.00 | -33.56 | VERTICAL | Peak | | 7 | 2500.000 | 30.05 | 26.60 | 4.95 | 37.39 | 24.21 | 54.00 | -29.79 | VERTICAL | Average | | 8 | 2500.000 | 45.77 | 26.60 | 4.95 | 37.39 | 39.93 | 74.00 | -34.07 | VERTICAL | Peak | Report No.: GZEM181000124401 Page: 30 of 83 ### 7.9 Radiated Spurious Emissions Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209 Test Method: ANSI C63.10 (2013) Section 6.4,6.5,6.6 Measurement Distance: 3m Limit: | Frequency(MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | |----------------|-----------------------------------|-------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100 | 3 | | 88-216 | 150 | 3 | | 216-960 | 200 | 3 | | Above 960 | 500 | 3 | Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Report No.: GZEM181000124401 Page: 31 of 83 ### 7.9.1 E.U.T. Operation **Operating Environment:** Temperature: 24.9 °C Humidity: 68.9 % RH Atmospheric Pressure: 1020 mbar Test mode b:TX_non-Hop mode_Keep the EUT in continuously transmitting mode with GFSK modulation, π/4DQPSK modulation, 8DPSK modulation. All modes have been tested and only the data of worst case is recorded in the report. ### 7.9.2 Test Setup Diagram ### 30MHz to 1GHz Above 1GHz Report No.: GZEM181000124401 Page: 32 of 83 #### 7.9.3 Measurement Procedure and Data - a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. - h. Test the EUT in the lowest channel, the middle channel, the Highest channel. - i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. - j. Repeat above procedures until all frequencies measured was complete. #### Remark: - 1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report. - 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor - 3) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. - 4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown Report No.: GZEM181000124401 Page: 33 of 83 Mode:b;
Polarization:Horizontal; Modulation:GFSK; ; Channel:Low | | Freq | | Antenna
Factor | | | | | | Pol/Phase | Remark | |---|---------|-------|-------------------|------|-------|--------|--------|--------|------------|--------| | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | - | | 1 | 40.702 | 22.28 | 12.62 | 0.62 | 23.76 | 11.76 | 40.00 | -28.24 | HORIZONTAL | QP | | 2 | 65.803 | 25.12 | 11.30 | 0.67 | 25.42 | 11.67 | 40.00 | -28.33 | HORIZONTAL | QP | | 3 | 132.685 | 27.04 | 12.66 | 0.98 | 28.17 | 12.51 | 43.50 | -30.99 | HORIZONTAL | QP | | 4 | 167.824 | 27.39 | 13.14 | 1.30 | 28.09 | 13.74 | 43.50 | -29.76 | HORIZONTAL | QP | | 5 | 750.108 | 28.90 | 22.11 | 3.01 | 29.10 | 24.92 | 46.00 | -21.08 | HORIZONTAL | QP | | 6 | 919.287 | 28.03 | 24.16 | 3.74 | 28.43 | 27.50 | 46.00 | -18.50 | HORIZONTAL | QP | Mode:b; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low | | | ReadAntenna | | Cable Pream | Preamp | р | Limit | 0ver | | | |----|-----------|-------------|--------|-------------|--------|--------|--------|--------|------------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | - | | 1 | 3779.422 | 26.94 | 28.92 | 7.78 | 36.92 | 26.72 | 54.00 | -27.28 | HORIZONTAL | Average | | 2 | 3779.422 | 44.78 | 28.92 | 7.78 | 36.92 | 44.56 | 74.00 | -29.44 | HORIZONTAL | Peak | | 3 | 4804.110 | 32.01 | 30.79 | 5.87 | 36.94 | 31.73 | 54.00 | -22.27 | HORIZONTAL | Average | | 4 | 4804.110 | 47.88 | 30.79 | 5.87 | 36.94 | 47.60 | 74.00 | -26.40 | HORIZONTAL | Peak | | 5 | 7206.474 | 30.67 | 35.45 | 7.34 | 36.93 | 36.53 | 54.00 | -17.47 | HORIZONTAL | Average | | 6 | 7206.474 | 43.89 | 35.45 | 7.34 | 36.93 | 49.75 | 74.00 | -24.25 | HORIZONTAL | Peak | | 7 | 9047.272 | 28.70 | 36.57 | 8.29 | 37.02 | 36.54 | 54.00 | -17.46 | HORIZONTAL | Average | | 8 | 9047.272 | 42.92 | 36.57 | 8.29 | 37.02 | 50.76 | 74.00 | -23.24 | HORIZONTAL | Peak | | 9 | 9608.600 | 27.73 | 37.51 | 8.15 | 37.08 | 36.31 | 54.00 | -17.69 | HORIZONTAL | Average | | 10 | 9608.600 | 42.60 | 37.51 | 8.15 | 37.08 | 51.18 | 74.00 | -22.82 | HORIZONTAL | Peak | | 11 | 12010.850 | 25.30 | 39.50 | 10.67 | 37.20 | 38.27 | 54.00 | -15.73 | HORIZONTAL | Average | | 12 | 12010.850 | 39.98 | 39.50 | 10.67 | 37.20 | 52.95 | 74.00 | -21.05 | HORIZONTAL | Peak | Report No.: GZEM181000124401 Page: 34 of 83 Mode:b; Polarization:Vertical; Modulation:GFSK; ; Channel:Low | | Freq | | | | Table Preamp
Loss Factor | | L Line | | | Re | mark | |-----|---------|-------|-------|------|-----------------------------|--------|--------|--------|----------|----|-------| | -54 | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | | | | 1 | 38.752 | 22.81 | 12.58 | 0.54 | 23.51 | 12.42 | 40.00 | -27.58 | VERTICAL | QP | Ĕ. | | 2 | 49.359 | 22.53 | 12.99 | 0.61 | 24.83 | 11.30 | 40.00 | -28.70 | VERTICAL | QP | le le | | 3 | 64.887 | 24.58 | 11.50 | 0.65 | 25.38 | 11.35 | 40.00 | -28.65 | VERTICAL | QP | ě | | 4 | 120.277 | 27.54 | 11.52 | 0.92 | 28.19 | 11.79 | 43.50 | -31.71 | VERTICAL | QP | ě | | 5 | 153.200 | 28.02 | 13.32 | 1.22 | 28.11 | 14.45 | 43.50 | -29.05 | VERTICAL | QP | ř. | | 6 | 925.756 | 28.13 | 24.23 | 3.70 | 28.37 | 27.69 | 46.00 | -18.31 | VERTICAL | QP | 8 | Mode:b; Polarization:Vertical; Modulation:GFSK; ; Channel:Low | | | Read/ | Antenna | Cable | Preamp | | Limit | 0ver | | | |----|-----------|-------|---------|-------|--------|--------|--------|--------|-----------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | - | | | 1 | 4804.041 | 31.40 | 30.79 | 5.87 | 36.94 | 31.12 | 54.00 | -22.88 | VERTICAL | Average | | 2 | 4804.041 | 46.84 | 30.79 | 5.87 | 36.94 | 46.56 | 74.00 | -27.44 | VERTICAL | Peak | | 3 | 6377.195 | 27.97 | 33.91 | 6.99 | 36.99 | 31.88 | 54.00 | -22.12 | VERTICAL | Average | | 4 | 6377.195 | 43.15 | 33.91 | 6.99 | 36.99 | 47.06 | 74.00 | -26.94 | VERTICAL | Peak | | 5 | 7206.474 | 29.61 | 35.45 | 7.34 | 36.93 | 35.47 | 54.00 | -18.53 | VERTICAL | Average | | 6 | 7206.474 | 44.20 | 35.45 | 7.34 | 36.93 | 50.06 | 74.00 | -23.94 | VERTICAL | Peak | | 7 | 8917.462 | 27.98 | 36.45 | 8.14 | 37.00 | 35.57 | 54.00 | -18.43 | VERTICAL | Average | | 8 | 8917.462 | 42.90 | 36.45 | 8.14 | 37.00 | 50.49 | 74.00 | -23.51 | VERTICAL | Peak | | 9 | 9608.789 | 25.89 | 37.51 | 8.15 | 37.08 | 34.47 | 54.00 | -19.53 | VERTICAL | Average | | 10 | 9608.789 | 41.96 | 37.51 | 8.15 | 37.08 | 50.54 | 74.00 | -23.46 | VERTICAL | Peak | | 11 | 12010.390 | 24.14 | 39.50 | 10.67 | 37.20 | 37.11 | 54.00 | -16.89 | VERTICAL | Average | | 12 | 12010.390 | 40.22 | 39.50 | 10.67 | 37.20 | 53.19 | 74.00 | -20.81 | VERTICAL | Peak | Report No.: GZEM181000124401 Page: 35 of 83 Mode:b; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle | | Read | Antenna | Cable | Preamp | | Limit | 0ver | | | |-----------|---|---|---|--|---|---|---
--|---| | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | MHz | dBuV | dB/m | dВ | dB | dBuV/m | dBuV/m | dB | | 140 | | 3823.371 | 27.47 | 29.08 | 7.83 | 36.91 | 27.47 | 54.00 | -26.53 | HORIZONTAL | Average | | 3823.371 | 44.67 | 29.08 | 7.83 | 36.91 | 44.67 | 74.00 | -29.33 | HORIZONTAL | Peak | | 4882.043 | 31.37 | 30.95 | 6.86 | 36.95 | 32.23 | 54.00 | -21.77 | HORIZONTAL | Average | | 4882.043 | 45.15 | 30.95 | 6.86 | 36.95 | 46.01 | 74.00 | -27.99 | HORIZONTAL | Peak | | 7323.778 | 28.91 | 35.74 | 7.39 | 36.92 | 35.12 | 54.00 | -18.88 | HORIZONTAL | Average | | 7323.778 | 42.69 | 35.74 | 7.39 | 36.92 | 48.90 | 74.00 | -25.10 | HORIZONTAL | Peak | | 8368.069 | 27.38 | 36.18 | 8.11 | 36.93 | 34.74 | 54.00 | -19.26 | HORIZONTAL | Average | | 8368.069 | 42.85 | 36.18 | 8.11 | 36.93 | 50.21 | 74.00 | -23.79 | HORIZONTAL | Peak | | 9764.880 | 28.27 | 37.70 | 8.33 | 37.09 | 37.21 | 54.00 | -16.79 | HORIZONTAL | Average | | 9764.880 | 41.82 | 37.70 | 8.33 | 37.09 | 50.76 | 74.00 | -23.24 | HORIZONTAL | Peak | | 12205.930 | 26.33 | 39.21 | 10.98 | 37.06 | 39.46 | 54.00 | -14.54 | HORIZONTAL | Average | | 12205.930 | 39.22 | 39.21 | 10.98 | 37.06 | 52.35 | 74.00 | -21.65 | HORIZONTAL | Peak | | | 3823.371
3823.371
4882.043
4882.043
7323.778
7323.778
8368.069
8368.069
9764.880
9764.880
12205.930 | MHz dBuV 3823.371 27.47 3823.371 44.67 4882.043 31.37 4882.043 45.15 7323.778 28.91 7323.778 42.69 8368.069 27.38 8368.069 42.85 9764.880 28.27 9764.880 41.82 12205.930 26.33 | Freq Level Factor MHz dBuV dB/m 3823.371 27.47 29.08 3823.371 44.67 29.08 4882.043 31.37 30.95 4882.043 45.15 30.95 7323.778 28.91 35.74 7323.778 42.69 35.74 8368.069 27.38 36.18 8368.069 42.85 36.18 9764.880 28.27 37.70 9764.880 41.82 37.70 12205.930 26.33 39.21 | MHz dBuV dB/m dB 3823.371 27.47 29.08 7.83 3823.371 44.67 29.08 7.83 4882.043 31.37 30.95 6.86 4882.043 45.15 30.95 6.86 7323.778 28.91 35.74 7.39 7323.778 42.69 35.74 7.39 8368.069 27.38 36.18 8.11 8764.880 42.85 36.18 8.11 9764.880 41.82 37.70 8.33 12205.930 26.33 39.21 10.98 | MHz dBuV dB/m dB dB 3823.371 27.47 29.08 7.83 36.91 3823.371 44.67 29.08 7.83 36.91 4882.043 31.37 30.95 6.86 36.95 4882.043 45.15 30.95 6.86 36.95 7323.778 28.91 35.74 7.39 36.92 7323.778 42.69 35.74 7.39 36.92 8368.069 27.38 36.18 8.11 36.93 8368.069 42.85 36.18 8.11 36.93 9764.880 28.27 37.70 8.33 37.09 9764.880 41.82 37.70 8.33 37.09 12205.930 26.33 39.21 10.98 37.06 | MHz dBuV dB/m dB dB dBuV/m 3823.371 27.47 29.08 7.83 36.91 27.47 3823.371 44.67 29.08 7.83 36.91 44.67 4882.043 31.37 30.95 6.86 36.95 32.23 4882.043 45.15 30.95 6.86 36.95 46.01 7323.778 28.91 35.74 7.39 36.92 35.12 7323.778 42.69 35.74 7.39 36.92 48.90 8368.069 27.38 36.18 8.11 36.93 34.74 8368.069 42.85 36.18 8.11 36.93 50.21 9764.880 28.27 37.70 8.33 37.09 37.21 9764.880 41.82 37.70 8.33 37.09 50.76 12205.930 26.33 39.21 10.98 37.06 39.46 | Freq Level Factor Loss Factor Level Line MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 3823.371 27.47 29.08 7.83 36.91 27.47 54.00 3823.371 44.67 29.08 7.83 36.91 44.67 74.00 4882.043 31.37 30.95 6.86 36.95 32.23 54.00 4882.043 45.15 30.95 6.86 36.95 46.01 74.00 7323.778 28.91 35.74 7.39 36.92 35.12 54.00 7323.778 42.69 35.74 7.39 36.92 48.90 74.00 8368.069 27.38 36.18 8.11 36.93 34.74 54.00 9764.880 28.27 37.70 8.33 37.09 37.21 54.00 9764.880 41.82 37.70 8.33 37.09 50.76 74.00 12205.930 | Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m dB 3823.371 27.47 29.08 7.83 36.91 27.47 54.00 -26.53 3823.371 44.67 29.08 7.83 36.91 44.67 74.00 -29.33 4882.043 31.37 30.95 6.86 36.95 32.23 54.00 -21.77 4882.043 45.15 30.95 6.86 36.95 46.01 74.00 -27.99 7323.778 28.91 35.74 7.39 36.92 35.12 54.00 -18.88 7323.778 42.69 35.74 7.39 36.92 48.90 74.00 -25.10 8368.069 27.38 36.18 8.11 36.93 34.74 54.00 -19.26 8368.069 42.85 36.18 8.11 36.93 50.21 74.00 -23.79 < | Freq Level Factor Loss Factor Level Line Limit Pol/Phase MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 3823.371 27.47 29.08 7.83 36.91 27.47 54.00 -26.53 HORIZONTAL 3823.371 44.67 29.08 7.83 36.91 44.67 74.00 -29.33 HORIZONTAL 4882.043 31.37 30.95 6.86 36.95 32.23 54.00 -21.77 HORIZONTAL 4882.043 45.15 30.95 6.86 36.95 32.23 54.00 -27.99 HORIZONTAL 4882.043 45.15 30.95 6.86 36.95 35.12 54.00 -27.99 HORIZONTAL 7323.778 28.91 35.74 7.39 36.92 35.12 54.00 -18.88 HORIZONTAL 8368.069 27.38 36.18 8.11 36.93 34.74 54.00 -19.26 HORIZONTAL 8764.880 28.27< | Mode:b; Polarization:Vertical; Modulation:GFSK; ; Channel:middle | | | Read | Antenna | | le Preamp | 13. 15. 15. 15. | Limit | 0ver | | | |----|-----------|-------|---------|-------|-----------|-----------------|--------|--------|-----------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dВ | dB | dBuV/m | dBuV/m | dB | | | | 1 | 3901.516 | 33.39 | 29.30 | 7.56 | 36.91 | 33.34 | 54.00 | -20.66 | VERTICAL | Average | | 2 | 3901.516 | 45.16 | 29.30 | 7.56 | 36.91 | 45.11 | 74.00 | -28.89 | VERTICAL | Peak | | 3 | 4882.662 | 32.04 | 30.95 | 6.86 | 36.95 | 32.90 | 54.00 | -21.10 | VERTICAL | Average | | 4 | 4882.662 | 46.82 | 30.95 | 6.86 | 36.95 | 47.68 | 74.00 | -26.32 | VERTICAL | Peak | | 5 | 7323.542 | 28.92 | 35.74 | 7.39 | 36.92 | 35.13 | 54.00 | -18.87 | VERTICAL | Average | | 6 | 7323.542 | 42.84 | 35.74 | 7.39 | 36.92 | 49.05 | 74.00 | -24.95 | VERTICAL | Peak | | 7 | 8539.102 | 27.41 | 36.13 | 8.00 | 36.94 | 34.60 | 54.00 | -19.40 | VERTICAL | Average | | 8 | 8539.102 | 42.83 | 36.13 | 8.00 | 36.94 | 50.02 | 74.00 | -23.98 | VERTICAL | Peak | | 9 | 9764.991 | 28.62 | 37.70 | 8.33 | 37.09 | 37.56 | 54.00 | -16.44 | VERTICAL | Average | | 10 | 9764.991 | 41.79 | 37.70 | 8.33 | 37.09 | 50.73 | 74.00 | -23.27 | VERTICAL | Peak | | 11 | 12205.270 | 26.30 | 39.21 | 10.98 | 37.06 | 39.43 | 54.00 | -14.57 | VERTICAL | Average | | 12 | 12205.270 | 39.62 | 39.21 | 10.98 | 37.06 | 52.75 | 74.00 | -21.25 | VERTICAL | Peak | Report No.: GZEM181000124401 Page: 36 of 83 Mode:b; Polarization:Horizontal; Modulation:GFSK; ; Channel:High | | | ReadAntenna | | Cable Prea | Preamp | Limit | | | 2 | | |----|-----------|-------------|--------|------------|--------|--------|--------|--------|------------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | - | | 1 | 3969.767 | 32.18 | 29.44 | 7.32 | 36.90 | 32.04 | 54.00 | -21.96 | HORIZONTAL | Average | | 2 | 3969.767 | 44.47 | 29.44 | 7.32 | 36.90 | 44.33 | 74.00 | -29.67 | HORIZONTAL | Peak | | 3 | 4960.721 | 29.02 | 31.05 | 7.84 | 36.96 | 30.95 | 54.00 | -23.05 | HORIZONTAL | Average | | 4 | 4960.721 | 43.18 | 31.05 | 7.84 | 36.96 | 45.11 | 74.00 | -28.89 | HORIZONTAL | Peak | | 5 | 7440.527 | 30.91 | 35.92 | 7.43 | 36.92 | 37.34 | 54.00 | -16.66 | HORIZONTAL | Average | | 6 | 7440.527 | 43.67 | 35.92 | 7.43 | 36.92 | 50.10 | 74.00 | -23.90 | HORIZONTAL | Peak | | 7 | 8764.146 | 29.53 | 36.33 | 8.00 | 36.97 | 36.89 | 54.00 | -17.11 | HORIZONTAL | Average | | 8 | 8764.146 | 42.24 | 36.33 | 8.00 | 36.97 | 49.60 | 74.00 | -24.40 | HORIZONTAL | Peak | | 9 | 9920.221 | 28.75 | 37.92 | 8.63 | 37.10 | 38.20 | 54.00 | -15.80 | HORIZONTAL | Average | | 10 | 9920.221 | 42.45 | 37.92 | 8.63 | 37.10 | 51.90 | 74.00 | -22.10 | HORIZONTAL | Peak | | 11 | 12400.100 | 26.09 | 38.93 | 11.17 | 36.90 | 39.29 | 54.00 | -14.71 | HORIZONTAL | Average | | 12 | 12400.100 | 40.27 | 38.93 | 11.17 | 36.90 | 53.47 | 74.00 | -20.53 | HORIZONTAL | Peak | Mode:b; Polarization:Vertical; Modulation:GFSK; ; Channel:High | | | Read | Antenna | Cable | Preamp
 | Limit | 0ver | | | |----|-----------|-------|---------|-------|--------|--------|--------|--------|-----------|---------| | | Freq | Level | Factor | Loss | Factor | Level | Line | Limit | Pol/Phase | Remark | | | MHz | dBuV | dB/m | dB | dB | dBuV/m | dBuV/m | dB | | | | 1 | 3867.831 | 31.11 | 29.22 | 7.69 | 36.91 | 31.11 | 54.00 | -22.89 | VERTICAL | Average | | 2 | 3867.831 | 44.23 | 29.22 | 7.69 | 36.91 | 44.23 | 74.00 | -29.77 | VERTICAL | Peak | | 3 | 4960.662 | 30.33 | 31.05 | 7.84 | 36.96 | 32.26 | 54.00 | -21.74 | VERTICAL | Average | | 4 | 4960.662 | 45.29 | 31.05 | 7.84 | 36.96 | 47.22 | 74.00 | -26.78 | VERTICAL | Peak | | 5 | 7440.150 | 28.96 | 35.92 | 7.43 | 36.92 | 35.39 | 54.00 | -18.61 | VERTICAL | Average | | 6 | 7440.150 | 43.41 | 35.92 | 7.43 | 36.92 | 49.84 | 74.00 | -24.16 | VERTICAL | Peak | | 7 | 8563.818 | 27.41 | 36.15 | 7.99 | 36.94 | 34.61 | 54.00 | -19.39 | VERTICAL | Average | | 8 | 8563.818 | 42.46 | 36.15 | 7.99 | 36.94 | 49.66 | 74.00 | -24.34 | VERTICAL | Peak | | 9 | 9920.717 | 27.89 | 37.92 | 8.63 | 37.10 | 37.34 | 54.00 | -16.66 | VERTICAL | Average | | 10 | 9920.717 | 42.56 | 37.92 | 8.63 | 37.10 | 52.01 | 74.00 | -21.99 | VERTICAL | Peak | | 11 | 12400.700 | 26.99 | 38.93 | 11.17 | 36.90 | 40.19 | 54.00 | -13.81 | VERTICAL | Average | | 12 | 12400.700 | 40.36 | 38.93 | 11.17 | 36.90 | 53.56 | 74.00 | -20.44 | VERTICAL | Peak | Report No.: GZEM181000124401 Page: 37 of 83 #### 8 Appendix #### 8.1 Appendix 15.247 #### 1.20 dB Bandwidth | Test Mode | Test Channel | OBW[MHz] | EBW[MHz] | 2/3 EBW[MHz] | Limit[MHz] | Verdict | |-----------|--------------|----------|----------|--------------|------------|---------| | DH5 | 2402 | 0.8762 | 0.9988 | 0.6659 | | PASS | | DH5 | 2441 | 0.8776 | 0.9862 | 0.6575 | | PASS | | DH5 | 2480 | 0.8811 | 0.9850 | 0.6567 | | PASS | | 2DH5 | 2402 | 1.2287 | 1.328 | 0.8853 | | PASS | | 2DH5 | 2441 | 1.2115 | 1.324 | 0.8827 | | PASS | | 2DH5 | 2480 | 1.1815 | 1.301 | 0.8673 | | PASS | | 3DH5 | 2402 | 1.2201 | 1.321 | 0.8807 | | PASS | | 3DH5 | 2441 | 1.2034 | 1.317 | 0.8780 | | PASS | | 3DH5 | 2480 | 1.1765 | 1.306 | 0.8707 | | PASS | Report No.: GZEM181000124401 Page: 38 of 83 Report No.: GZEM181000124401 Report No.: GZEM181000124401 Report No.: GZEM181000124401 Report No.: GZEM181000124401 Page: 42 of 83 Report No.: GZEM181000124401 Page: 43 of 83 #### 2.Conducted Peak Output Power | Test Mode | Test Channel | Power[dBm] | Limit[dBm] | Verdict | |-----------|--------------|------------|------------|---------| | DH5 | 2402 | 0.561 | 21 | PASS | | DH5 | 2441 | -0.417 | 21 | PASS | | DH5 | 2480 | -1.548 | 21 | PASS | | 2DH5 | 2402 | 0.597 | 21 | PASS | | 2DH5 | 2441 | -0.391 | 21 | PASS | | 2DH5 | 2480 | -1.474 | 21 | PASS | | 3DH5 | 2402 | 0.658 | 21 | PASS | | 3DH5 | 2441 | -0.306 | 21 | PASS | | 3DH5 | 2480 | -1.419 | 21 | PASS | Report No.: GZEM181000124401 Report No.: GZEM181000124401 45 of 83 Page: Report No.: GZEM181000124401 Report No.: GZEM181000124401 Report No.: GZEM181000124401 Page: 48 of 83 #### 3. Carrier Frequency Separation | Test Mode | Test Channel | Result[MHz] | Limit[MHz] | Verdict | |-----------|--------------|-------------|------------|---------| | DH5 | 2402 | 1.006 | 0.6659 | PASS | | DH5 | 2441 | 0.969 | 0.6575 | PASS | | DH5 | 2480 | 0.999 | 0.6567 | PASS | Report No.: GZEM181000124401 Page: 49 of 83 Report No.: GZEM181000124401 Page: 50 of 83 #### 4.Dwell Time | Test
Mode | Test
Channel | Burst
Width[ms/hop/ch] | Total
Hops[hop*ch] | Dwell
Time[s] | Limit[s] | Verdict | |--------------|-----------------|---------------------------|-----------------------|------------------|----------|---------| | DH5 | 2402 | 2.91 | 60 | 0.17 | 0.4 | PASS | | DH5 | 2441 | 2.91 | 70 | 0.20 | 0.4 | PASS | | DH5 | 2480 | 2.91 | 60 | 0.17 | 0.4 | PASS | | 2DH5 | 2402 | 2.91 | 80 | 0.23 | 0.4 | PASS | | 2DH5 | 2441 | 2.91 | 80 | 0.23 | 0.4 | PASS | | 2DH5 | 2480 | 2.92 | 80 | 0.23 | 0.4 | PASS | | 3DH5 | 2402 | 2.92 | 70 | 0.20 | 0.4 | PASS | | 3DH5 | 2441 | 2.92 | 70 | 0.20 | 0.4 | PASS | | 3DH5 | 2480 | 2.92 | 70 | 0.20 | 0.4 | PASS | Report No.: GZEM181000124401 Report No.: GZEM181000124401 Page: 52 of 83 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms Report No.: GZEM181000124401 Page: 53 of 83 Report No.: GZEM181000124401 Page: 54 of 83 Report No.: GZEM181000124401 Page: 55 of 83 Report No.: GZEM181000124401 Page: 56 of 83 Report No.: GZEM181000124401 Page: 57 of 83 Report No.: GZEM181000124401 Page: 58 of 83 Report No.: GZEM181000124401 Page: 59 of 83 Report No.: GZEM181000124401 Page: 60 of 83 #### 5. Hopping Channel Number | Test Mode | Number of Hopping Channel[N] | Limit[N] | Verdict | |-----------|------------------------------|----------|---------| | DH5 | 79 | >=15 | PASS | | 2DH5 | 79 | >=15 | PASS | | 3DH5 | 79 | >=15 | PASS | Report No.: GZEM181000124401 Page: 61 of 83 Report No.: GZEM181000124401 Page: 62 of 83 #### 6.Band-edge for RF Conducted Emissions | Test
Mode | Test
Channel | Hopping | Carrier
Power[dBm] | Max. Spurious Level
[dBm] | Limit[dBm] | Verdict | |--------------|-----------------|---------|-----------------------|------------------------------|------------|---------| | DH5 | 2402 | On | 0.360 | -47.521 | -19.64 | PASS | | DH5 | 2402 | Off | 0.370 | -48.947 | -19.63 | PASS | | DH5 | 2480 | On | -1.422 | -48.346 | -21.42 | PASS | | DH5 | 2480 | Off | -1.791 | -48.289 | -21.79 | PASS | | 2DH5 | 2402 | On | 0.399 | -47.562 | -19.6 | PASS | | 2DH5 | 2402 | Off | 0.352 | -48.134 | -19.65 | PASS | | 2DH5 | 2480 | On | -1.394 | -48.166 | -21.39 | PASS | | 2DH5 | 2480 | Off | -1.822 | -48.522 | -21.82 | PASS | | 3DH5 | 2402 | On | 0.278 | -47.811 | -19.72 | PASS | | 3DH5 | 2402 | Off | 0.394 | -49.004 | -19.61 | PASS | | 3DH5 | 2480 | On | -1.393 | -47.637 | -21.39 | PASS | | 3DH5 | 2480 | Off | -1.787 | -48.155 | -21.79 | PASS | Report No.: GZEM181000124401 Page: 63 of 83 Report No.: GZEM181000124401 64 of 83 Report No.: GZEM181000124401 Page: 69 of 83 #### 7.RF Conducted Spurious Emissions | Test Mode | Test
Channel | StartFre
[MHz] | StopFre
[MHz] | RBW
[kHz] | VBW
[kHz] | Pref[dBm] | Max.
Level
[dBm] | Limit
[dBm] | Verdict | |-----------|-----------------|-------------------|------------------|--------------|--------------|-----------|------------------------|----------------|---------| | DH5 | 2402 | 30 | 10000 | 100 | 300 | 0.405 | -54.127 | <-19.595 | PASS | | DH5 | 2402 | 10000 | 26000 | 100 | 300 | 0.405 | -51.967 | <-19.595 | PASS | | DH5 | 2441 | 30 | 10000 | 100 | 300 | -0.604 | -54.694 | <-20.604 | PASS | | DH5 | 2441 | 10000 | 26000 | 100 | 300 | -0.604 | -51.830 | <-20.604 | PASS | | DH5 | 2480 | 30 | 10000 | 100 | 300 | -1.826 | -54.149 | <-21.826 | PASS | | DH5 | 2480 | 10000 | 26000 | 100 | 300 | -1.826 | -51.574 | <-21.826 | PASS | | 2DH5 | 2402 | 30 | 10000 | 100 | 300 | 0.391 | -54.642 | <-19.609 | PASS | | 2DH5 | 2402 | 10000 | 26000 | 100 | 300 | 0.391 | -51.507 | <-19.609 | PASS | | 2DH5 | 2441 | 30 | 10000 | 100 | 300 | -0.616 | -49.299 | <-20.616 | PASS | | 2DH5 | 2441 | 10000 | 26000 | 100 | 300 | -0.616 | -51.737 | <-20.616 | PASS | | 2DH5 | 2480 | 30 | 10000 | 100 | 300 | -1.784 | -54.424 | <-21.784 | PASS | | 2DH5 | 2480 | 10000 | 26000 | 100 | 300 | -1.784 | -51.645 | <-21.784 | PASS | | 3DH5 | 2402 | 30 | 10000 | 100 | 300 | 0.422 | -53.440 | <-19.578 | PASS | | 3DH5 | 2402 | 10000 | 26000 | 100 | 300 | 0.422 | -51.070 | <-19.578 | PASS | | 3DH5 | 2441 | 30 | 10000 | 100 | 300 | -0.581 | -54.755 | <-20.581 | PASS | | 3DH5 | 2441 | 10000 | 26000 | 100 | 300 | -0.581 | -51.589 | <-20.581 | PASS | | 3DH5 | 2480 | 30 | 10000 | 100 | 300 | -1.758 | -54.199 | <-21.758 | PASS | | 3DH5 | 2480 | 10000 | 26000 | 100 | 300 | -1.758 | -51.045 | <-21.758 | PASS | Report No.: GZEM181000124401 Page: 70 of 83 Report No.: GZEM181000124401 Page: 71 of 83 #### RF Conducted Spurious Emissions_DH5_2441 Report No.: GZEM181000124401 Page: 72 of 83 Report No.: GZEM181000124401 Page: 73 of 83
Pref # SGS-CSTC Standards Technical Services Co., Ltd. Guangzhou Branch Report No.: GZEM181000124401 Page: 74 of 83 #### RF Conducted Spurious Emissions_2DH5_2402 Report No.: GZEM181000124401 Page: 75 of 83 Report No.: GZEM181000124401 Page: 76 of 83 Report No.: GZEM181000124401 Page: 77 of 83 #### RF Conducted Spurious Emissions_2DH5_2480 Report No.: GZEM181000124401 Page: 78 of 83 Report No.: GZEM181000124401 Page: 79 of 83 Report No.: GZEM181000124401 Page: 80 of 83 #### RF Conducted Spurious Emissions_3DH5_2441 Report No.: GZEM181000124401 Page: 81 of 83 Report No.: GZEM181000124401 Page: 82 of 83 Report No.: GZEM181000124401 Page: 83 of 83 -- End of Report —