FCC PART 15 Subpart C

EMI MEASUREMENT AND TEST REPORT FOR

LG ELECTRONICS, INC.

LG Kangseo B/D, 36, Munlae-Dong, 6-Ga, Youngdungpo-Gu, Seoul, 150-096, Korea

FCC ID: FFMGT-8320C

October 30, 2000

This Report Concerns:		Equipment Type:
🔀 Original Repo	rt	Digital Spread Spectrum Cordless Phone – Household Appliances
Test Engineer:	Hien Pham	
Test Date:	October 12, 2000	
Reviewed By:	John Y. Chan – En	gineering Manager
Prepared By:	Bay Area Compliance Laboratory Corporation 230 Commercial Street, Suite 2	
	Sunnyvale, CA 94086 Tel: (408) 732-9162 Fax: (408) 732-9164	

Note: This report may not be duplicated without prior written consent of Bay Area Compliance Laboratory Corporation. This report **must not** be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

TABLE OF CONTENTS

1 - GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
1.2 OBJECTIVE	
1.3 Related Submittal(s)/Grant(s)	3
1.4 TEST METHODOLOGY	
1.5 TEST FACILITY	
1.6 TEST EQUIPMENT LIST	4
1.7 Equipment Under Test (EUT)	5
1.8 EUT CONFIGURATION DETAILS AND LIST	
1.9 External I/O Cabling	5
2 - SYSTEM TEST CONFIGURATION	6
2.1 JUSTIFICATION	6
2.2 BLOCK DIAGRAM	
2.3 TEST SETUP BLOCK DIAGRAM	
2.4 Equipment Modifications	8
3.0 SUMMARY OF TEST RESULTS	9
3.1.0 PEAK OUTPUT POWER	9
3.2.0 6DB BANDWIDTH	
3.3.0 POWER DENSITY	
3.4.0 BAND EDGES TESTING	
3.5.0 Spurious Emissions	
3.6.0 FIELD STRENGTH OF SPURIOUS RADIATION (30 MHz-90000MHz)	
3.7.0 PROCESSING GAIN	
4 - CONDUCTED EMISSIONS TES T DATA	
4.1 MEASUREMENT UNCERTAINTY	
4.2 EUT SETUP	
4.3 SPECTRUM ANALYZER SETUP	
4.4 TEST PROCEDURE	
4.5 SUMMARY OF TEST RESULTS.	
4.6 CONDUCTED EMISSIONS TEST DATA	
4.7 PLOT OF CONDUCTED EMISSIONS TEST DATA	
APPENDIX A – AGENT AUTHORIZATION LETTER	

1 - GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

The *LG Electronic, Inc.*, FCC ID *FFMGT-8320C or the* "EUT" as referred to in this report is a Digital Spread Spectrum Cordless Phone which has 20 channel possible in the 904-926 MHz Bandwidth, and the transmission range up to 1 Km in open sight (longer range than analog 900MHz cordless phone).

The EUT was composed of two parts: one is the handset which measures 9" L x 2.125" W x 1.675" H, the other is the base which measures 7" L x 5.5" W x 2.25" H.

1.2 Objective

This type approval report is prepared on behalf of *LG Electronics, Inc.*, in accordance with Part 2, Subpart J, Part 15, Subparts A and B of the Federal Communication Commissions rules.

The objective of the manufacturer is to demonstrate compliance with FCC rules for Output Power, 6 dB Bandwidth, Power Density, Band Edge, Spurious Emission, Processing Gain, Antenna Gain, and Conducted and Radiated Emission.

1.3 Related Submittal(s)/Grant(s)

No Related Submittals

1.4 Test Methodology

All measurements contained in this report were conducted with ANSI C63.4 –1992, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz. All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratory, Corp. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

1.5 Test Facility

The Open Area Test Site used by Bay Area Compliance Laboratory Corporation to collect radiated and conducted emission measurement data is located in the back parking lot of the building at 230 Commercial Street, Suite 2, Sunnyvale, California, USA.

Test site at Bay Area Compliance Laboratory Corporation has been fully described in reports submitted to the Federal Communication Commission (FCC) and Voluntary Control Council for Interference (VCCI). The details of these reports has been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on February 11 and December 10, 1997 and Article 8 of the VCCI regulations on December 25, 1997. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-1992.

The Federal Communications Commission and Voluntary Control Council for Interference has the reports on file and is listed under FCC file 31040/SIT 1300F2 and VCCI Registration No.: C-674 and R-657. The test site has been approved by the FCC and VCCI for public use and is listed in the FCC Public Access Link (PAL) database.

Additionally, Bay Area Compliance Laboratory Corporation is a National Institute of Standards and Technology (NIST) accredited laboratory, under the National Voluntary Laboratory Accredited Program (NVLAP). The scope of the accreditation covers the FCC Method - 47 CFR Part 15 - Digital Devices, IEC/CISPR 22: 1993, and AS/NZS 3548: Electromagnetic Interference - Limits and Methods of Measurement of Information Technology Equipment test methods under NVLAP Lab Code 200167-0.

Manufacturer	Description	Model	Serial Number	Cal. Due Data
HP	Spectrum	8566B	2610A02165	12/6/00
	Analyzer			
HP	Spectrum	8593B	2919A00242	12/20/00
	Analyzer			
HP	Amplifier	8349B	2644A02662	12/20/00
HP	Quasi-Peak	85650A	917059	12/6/00
	Adapter			
HP	Amplifier	8447E	1937A01046	12/6/00
A.H. System	Horn Antenna	SAS0200/571	261	12/27/00
Com-Power	Log Periodic	AL-100	16005	11/2/00
	Antenna			
Com-Power	Biconical	AB-100	14012	11/2/00
	Antenna			
Solar Electronics	LISN	8012-50-R-24-BNC	968447	12/28/00
Com-Power	LISN	LI-200	12208	12/20/00
Com-Power	LISN	LI-200	12005	12/20/00
BACL	Data Entry	DES1	0001	12/20/00
DACL	Software	DL	0001	12/20/00
Rohde & Schwarz	Signal Generator	SMIQ03B	1125.5555.03	7/10/2002
Rohde & Schwarz	I/Q Modulation Generator	AMIQ	1110.2003.02	8/10/2002

1.6 Test Equipment List

1.7 Equipment Under Test (EUT)

Manufacturer	Description	Model	Serial Number	FCC ID
LG Electronics, Inc.	Handset	GT-8320C	None	FFMGT-8320C
LG Electronics, Inc.	Base	GT-8320C	None	FFMGT-8320C

1.8 EUT Configuration Details and List

NOT APPLICABLE

1.9 External I/O Cabling

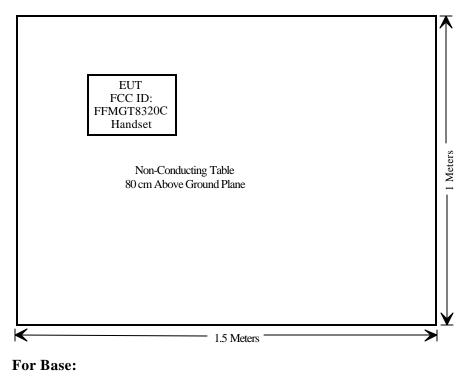
For Base:

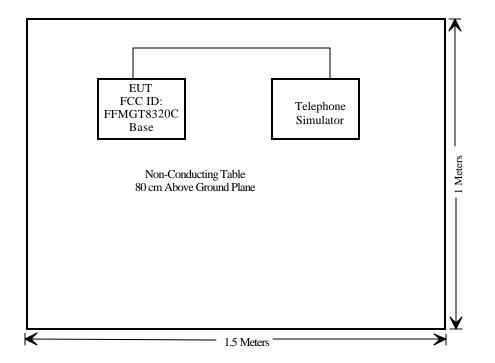
Cable Description	Length (M)	Port/From	То
Non-Shielded Phone Cable	2.0	RJ11 Port/EUT	Line1 RJ11 Port/ Telephone Simulator

2 - SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was configured for testing in a typical fashion (as normally used in a typical application).


The final qualification test was performed with the EUT operating at normal mode.


2.2 Block Diagram

Appendix A contains a copy of the EUT's block diagram as reference.

2.3 Test Setup Block Diagram

For Handset:

2.4 Equipment Modifications

No modifications were necessary for the EUT to comply.

3.0 Summary of Test Results

FCC RULE	DESCRIPTION OF TEST	RESULT
15.247 (b)	Peak Output Power	Pass
15.247 (a) (2)	6dB Bandwidth	Pass
15.247 (2) (d)	Power Density	Pass
15.247 (2) (c)	Band Edges Testing	Pass
15.247 (2) (c)	Spurious Emission	Pass
15.247, 15.205	Field Strength of Spurious Radiation	Pass
15.207	Conduction Emission	Pass
15.247 (e)	Processing Gain	Pass

3.1.0 Peak Output Power

Requirements: FCC Part 15.247 (b)

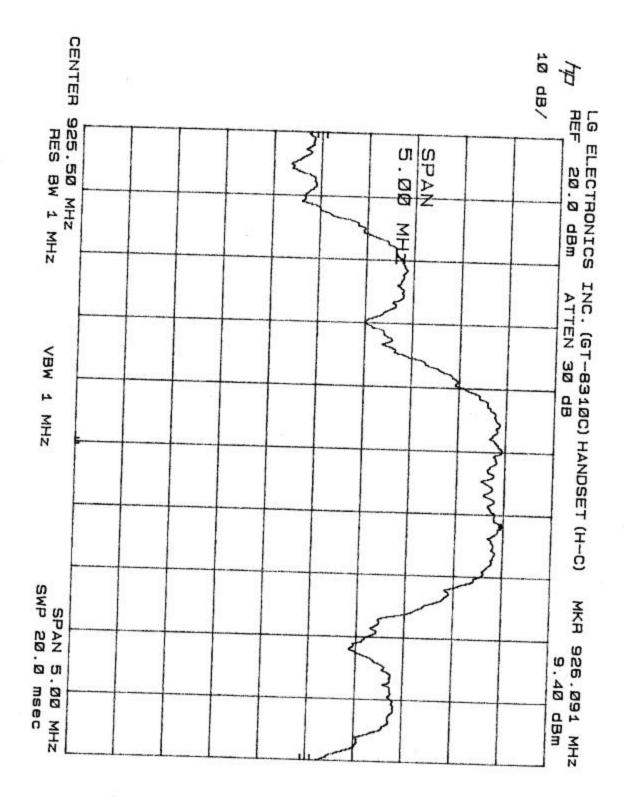
3.1.1 Test Procedure

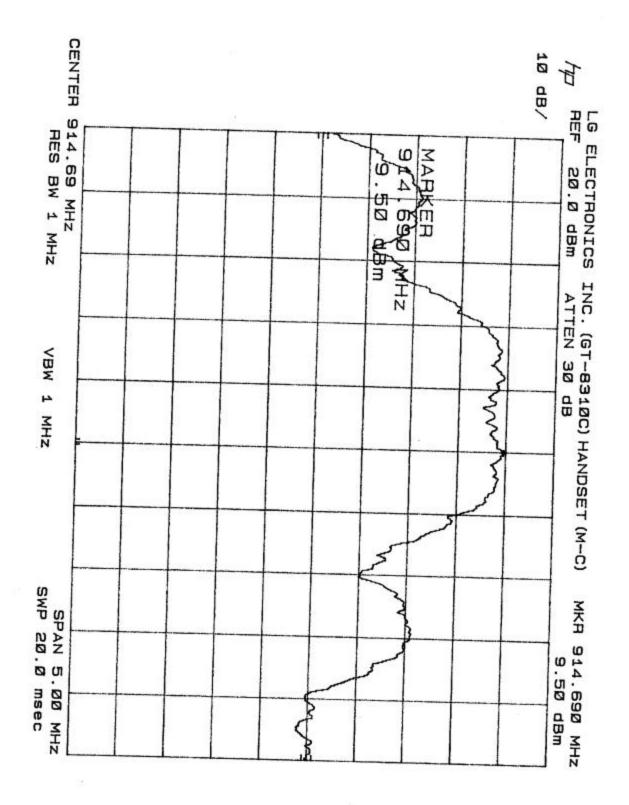
The antenna was removed and SMA connector was connected to the transmitter output. The transmitter output was connected to a calibrated coaxial attenuator (50 Ohm), the other end of which was connected to a spectrum analyzer. Transmitter output was read off the spectrum analyzer in dBm. The power output at the transmitter was determined by adding the value of the attenuator to the spectrum analyzer reading.

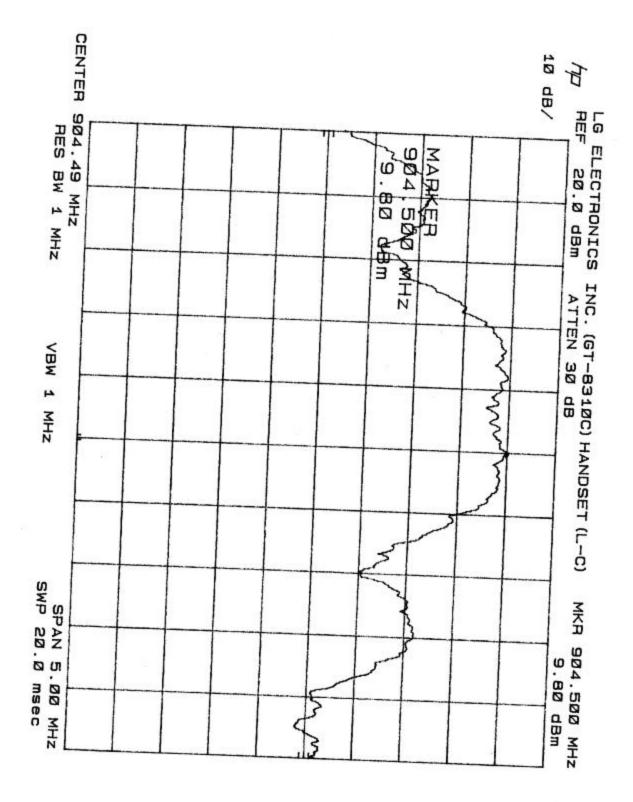
The test was performed at three frequencies (low, middle, and high channels) and on all power levels that can be setup on the transmitter.

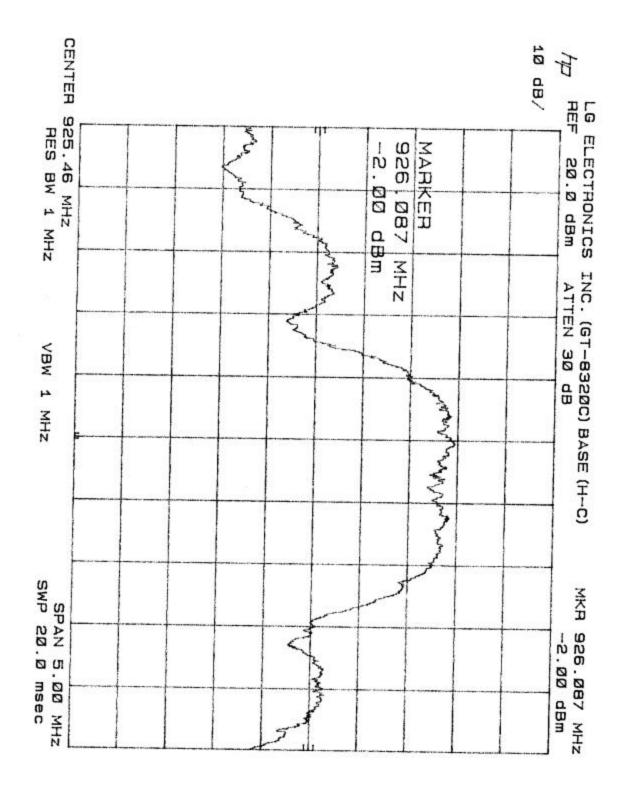
3.1.2 Test equipment

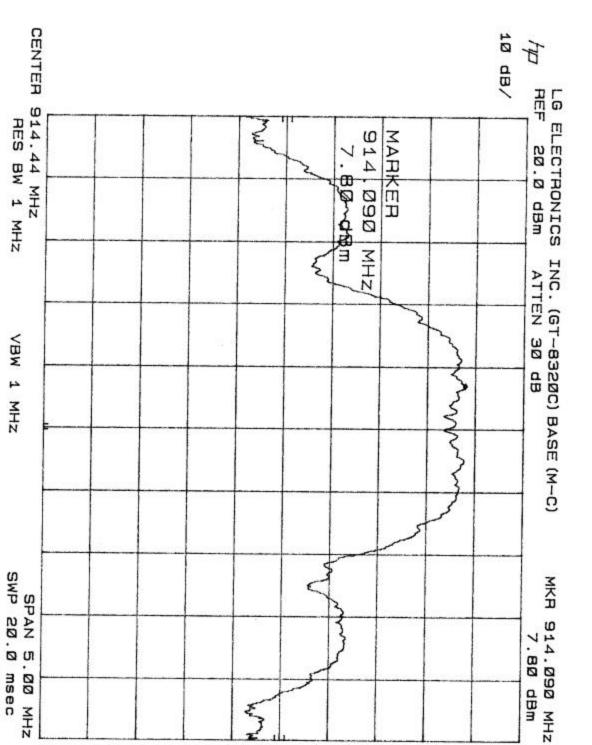
Hewlett Packard HP8566B Spectrum Analyzer Hewlett Packard HP 7470A Plotter

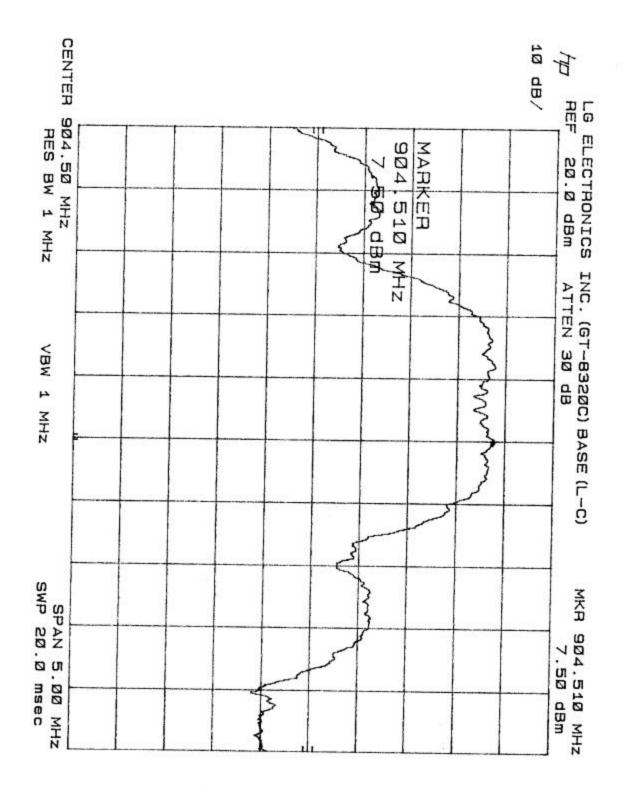

3.1.3 Test Results


Refer to the attached to the following plots:


BASE


Peak Output Power		
High Channel	Page 14	
Middle Channel	Page 15	
Low Channel	Page 16	


Peak Output Power		
High Channel Page 11		
Middle Channel	Page 12	
Low Channel	Page 13	



3.2.0 6dB Bandwidth

Requirement: FCC 15.247 (a)(2), the 6 dB Bandwidth shall not be less than 500 kHz.

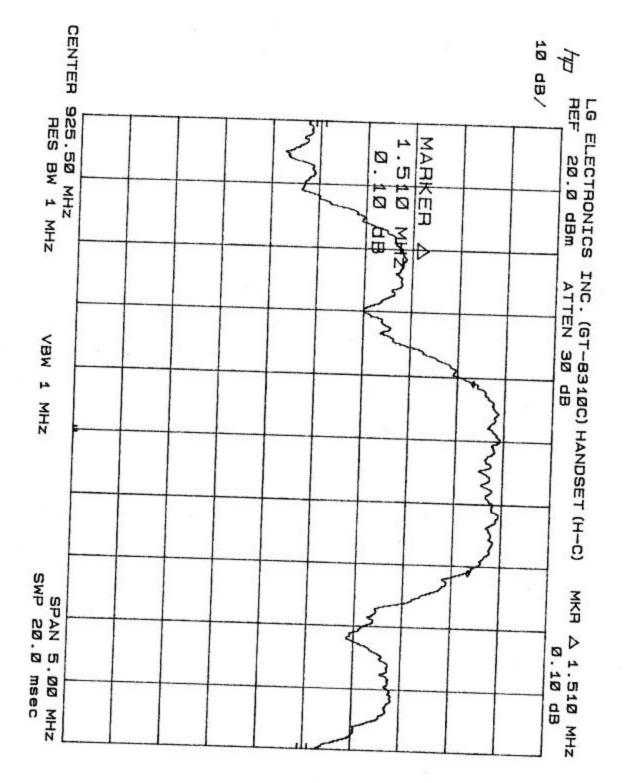
3.2.1 Test Procedure

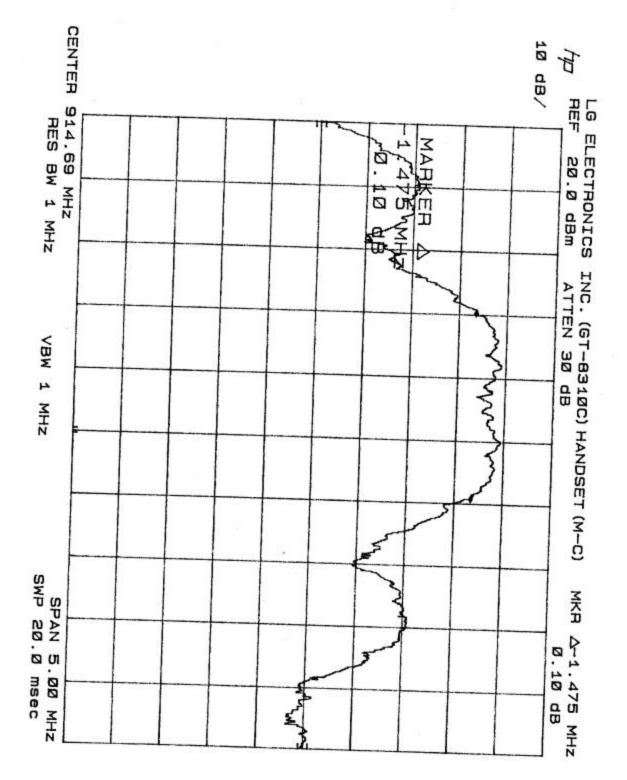
The antenna was removed and SMA connector was connected to the transmitter output. The transmitter output was connected to a calibrated coaxial attenuator (50 Ohm), the other end of which was connected to a spectrum analyzer with the VBW > RBW. Transmitter output was read off the spectrum analyzer in dBm. The power output at the transmitter was determined by adding the value of the attenuator to the spectrum analyzer reading.

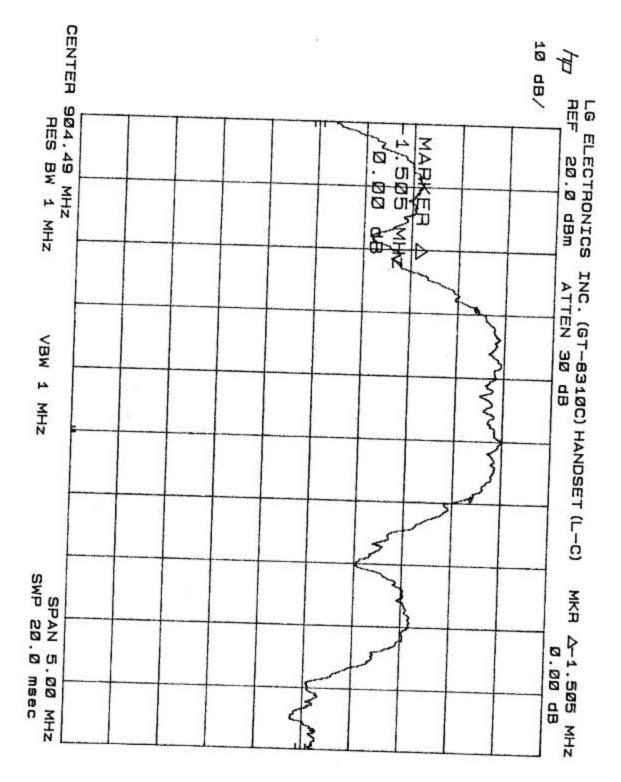
The test was performed at three frequencies (low, middle, and high channels) and on all power levels that can be setup on the transmitter.

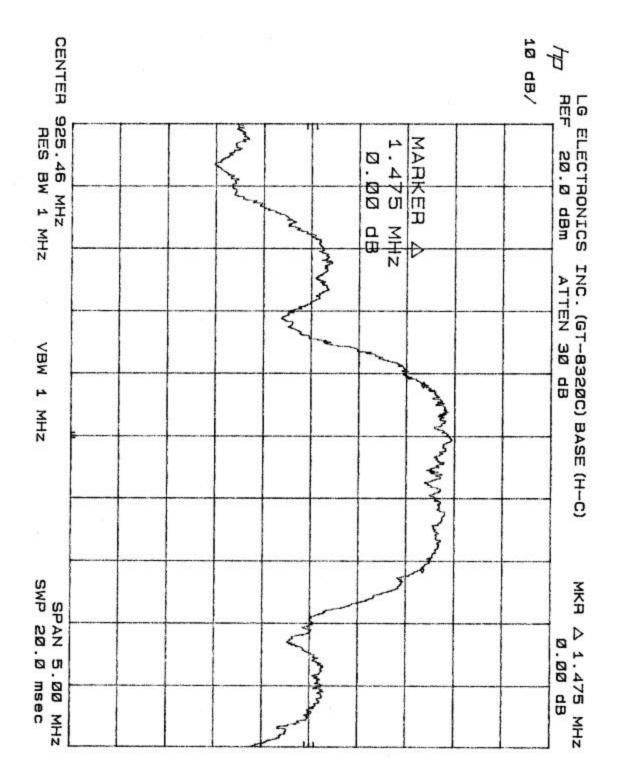
3.2.2 Test Equipment

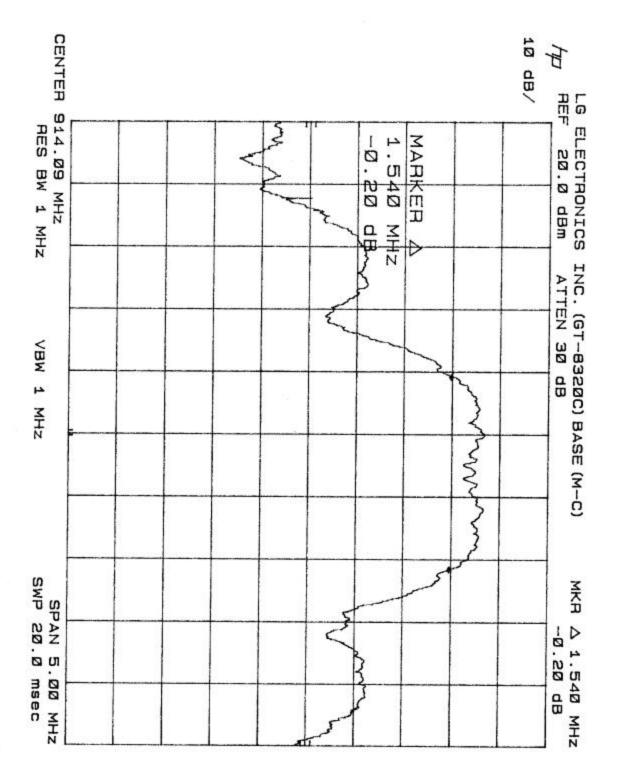
Hewlett Packard HP8566B Spectrum Analyzer Hewlett Packard HP 7470A Plotter

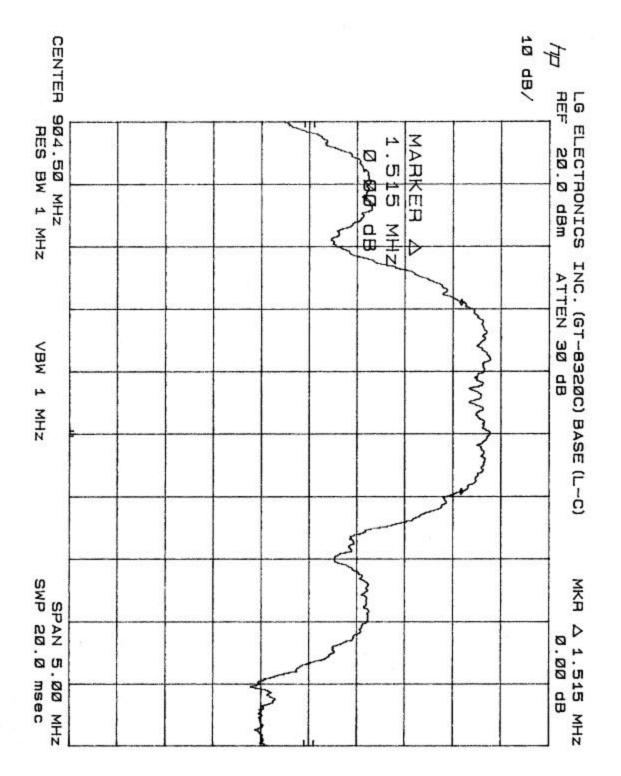

3.2.3 Test Results:


Included are plots of 6dB bandwidth for low, middle and high channel.


BASE


6dB bandwidth		
High Channel	Page 21	
Middle Channel	Page 22	
Low Channel	Page 23	


6dB bandwidth		
High Channel	Page 18	
Middle Channel	Page 19	
Low Channel	Page 20	



FCC Part 15 Subpart C Test Report

Page 23

3.3.0 Power Density

Requirements: FCC 15.247 (2) (d), the transmitted power density averaged over any 1 second interval shall not be greater than 8 dBMm in any 3 kHz bandwidth within these bands.

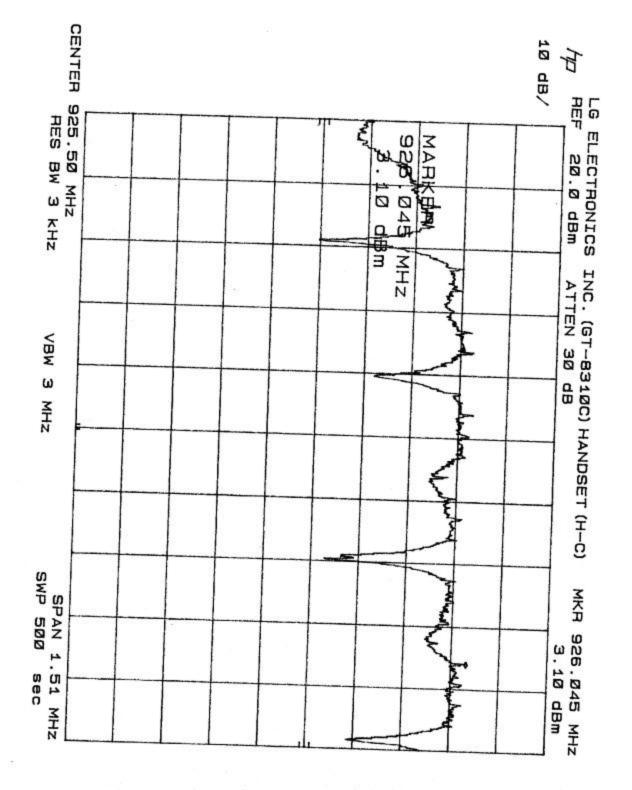
3.3.1 Test Procedure

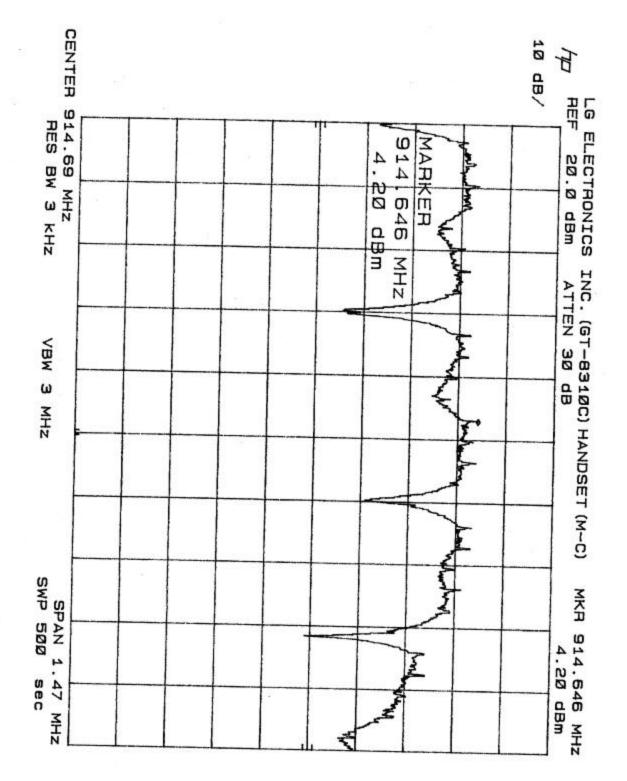
The antenna was removed and SMA connector was connected to the transmitter output. The transmitter output was connected to a calibrated coaxial attenuator (50 Ohm), the other end of which was connected to a spectrum analyzer with the RBW set to 3kHz and VBW > RBW. The start and stop frequencies of the Spectrum Analyzer should be set according to the maximum emission frequency range seen from the 6 dB bandwidth test. The sweep time of the spectrum analyzer should be set to the value that allows to observe each 3 kHz interval for at least 1 second.

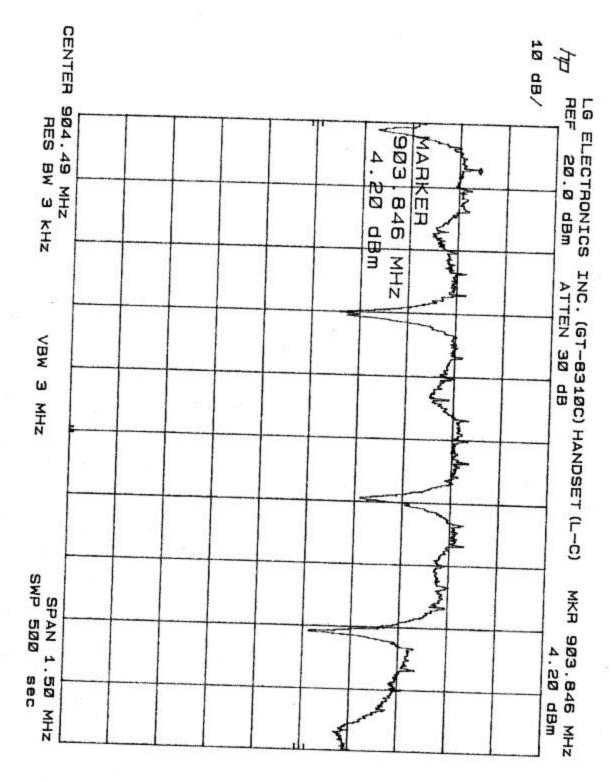
The test was performed at three frequencies (low, middle, and high channels) and on all power levels that can be setup on the transmitter.

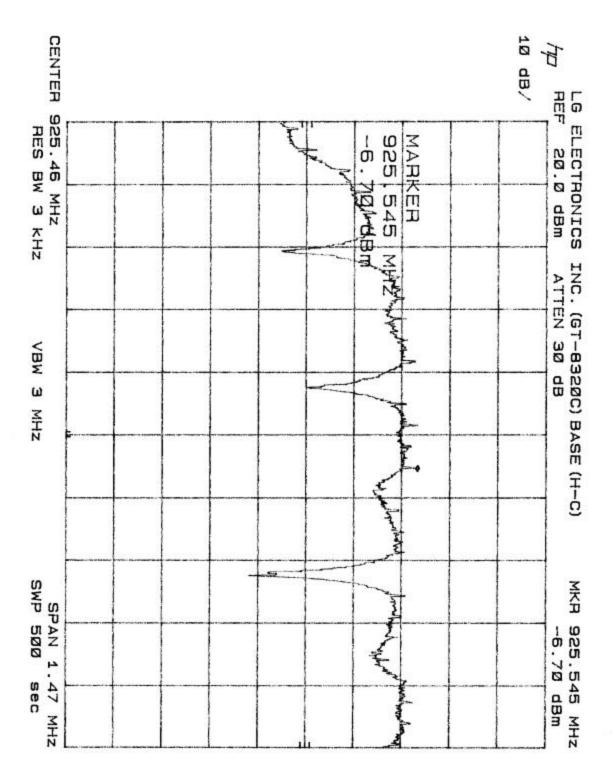
3.3.2 Test Equipment

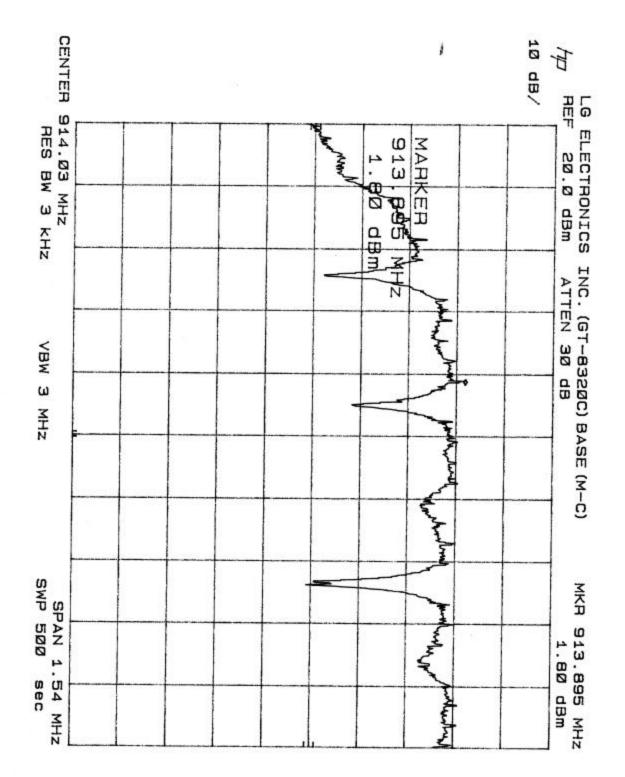
Hewlett Packard HP8566B Spectrum Analyzer Hewlett Packard HP 7470A Plotter

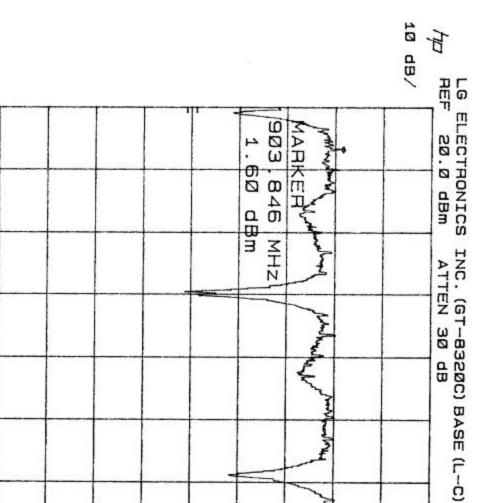

3.3.3 Test Results

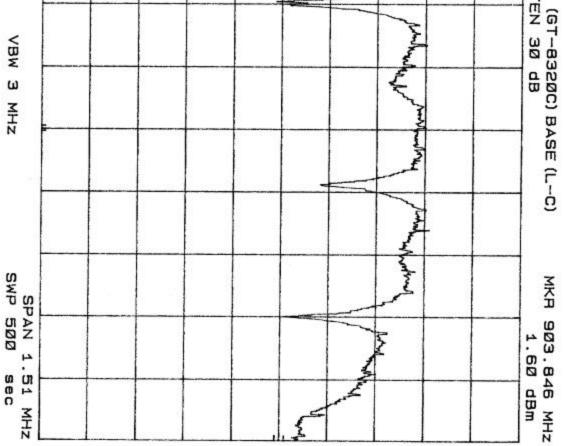

Refer to the attached Plots


BASE


Power Density		
High Channel	Page 28	
Middle Channel	Page 29	
Low Channel	Page 30	


Power Density		
High Channel	Page 25	
Middle Channel	Page 26	
Low Channel	Page 27	





904.50 MHz RES BW 3 KHz

3.4.0 Band Edges Testing

Requirements : FCC 15.247 (2) ©, the emission power at the START and STOP frequencies shall be at least 20 dB below than the peak of the EUT's emission inside the operation band.

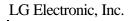
3.4.1 Test Procedure

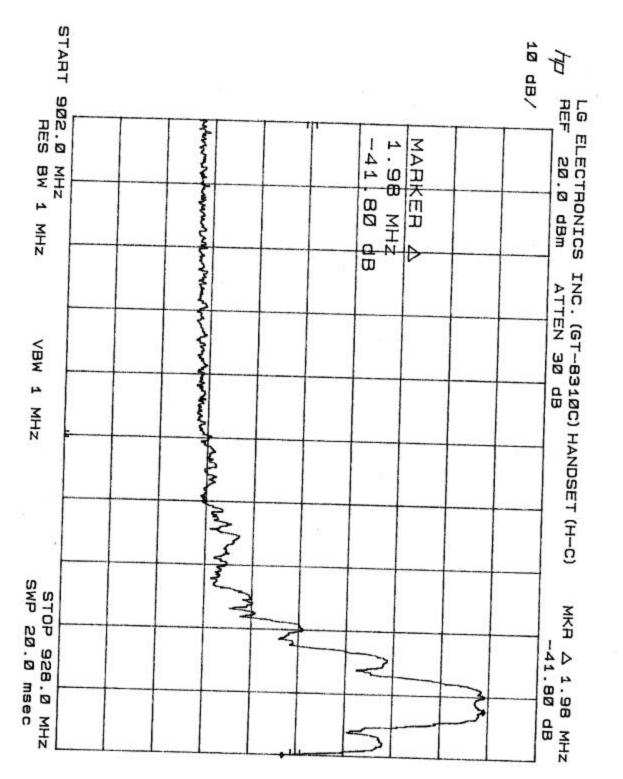
The antenna was removed and SMA connector was connected to the transmitter output. The transmitter output was connected to a calibrated coaxial attenuator (50 Ohm), the other end of which was connected to a spectrum analyzer with the START and STOP frequencies set to the operation band. Transmitter output was read off the spectrum analyzer in dBm. The power output at the transmitter was determined by adding the value of the attenuator to the spectrum analyzer reading.

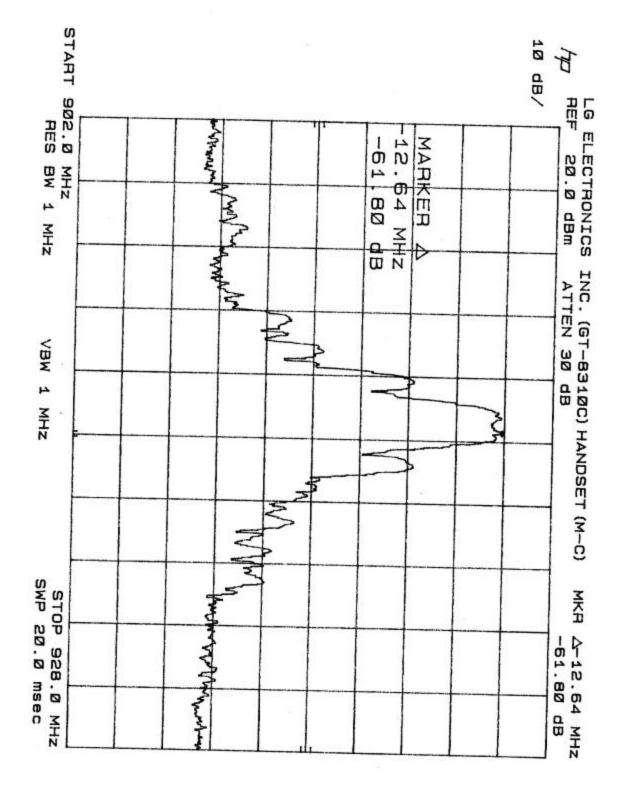
The test was performed at three frequencies (low, middle, and high channels) and on all power levels that can be setup on the transmitter.

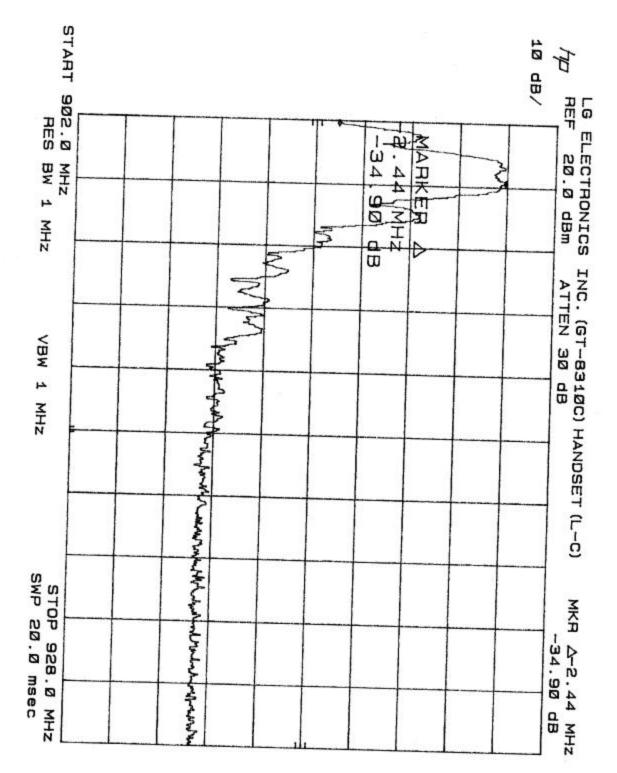
3.4.2 Test Equipment

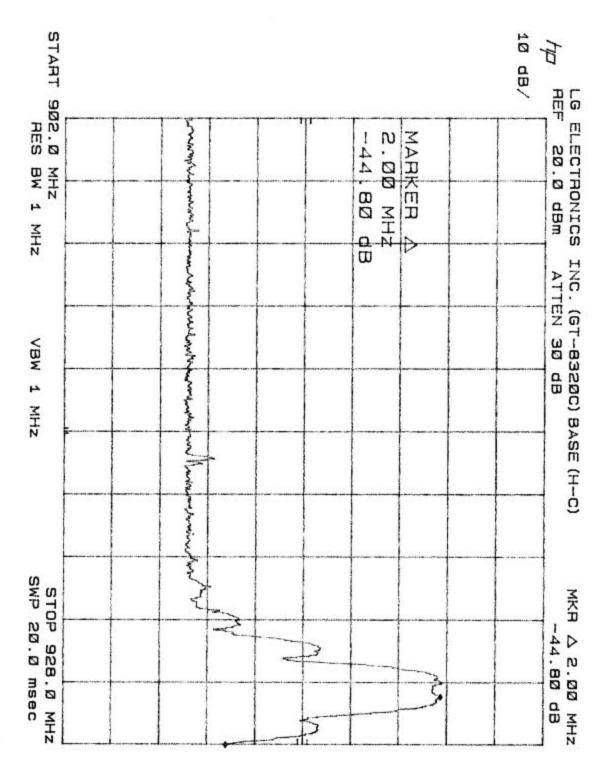
HP 8566B Spectrum Analyzer HP 7470A Plotter

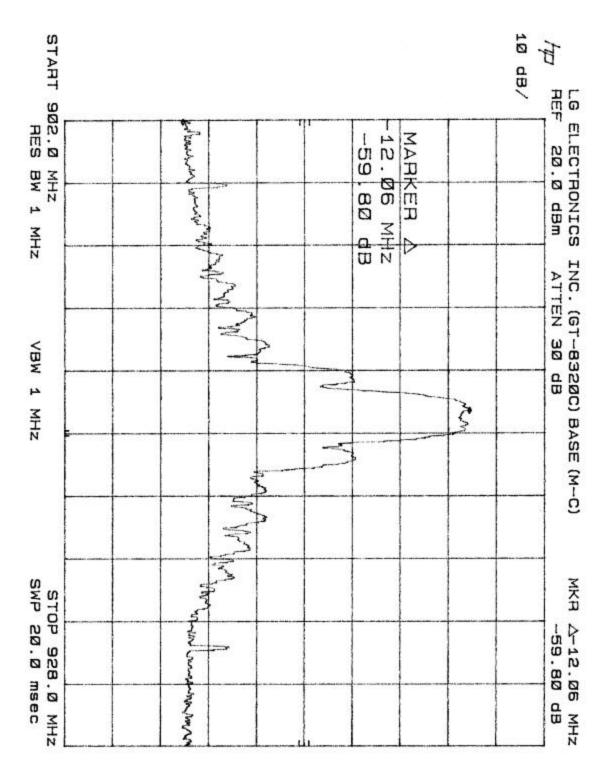

3.4.3 Test Results

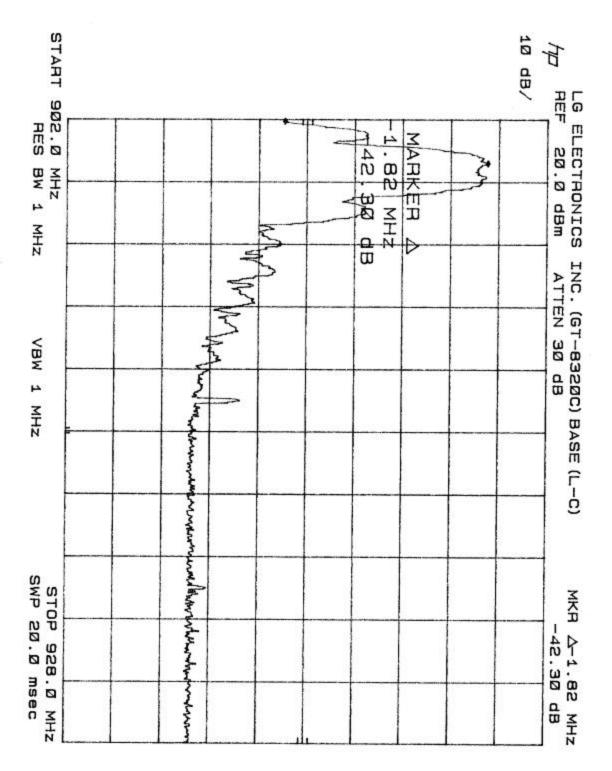

Refer to the attached plots.


BASE


Band Edge	
High Channel	Page 35
Middle Channel	Page 36
Low Channel	Page 37


Band Edge	
High Channel	Page 32
Middle Channel	Page 33
Low Channel	Page 34





FCC Part 15 Subpart C Test Report

Page 35

3.5.0 Spurious Emissions

Requirements: FCC 15.247 (2) © The harmonics and other signals must be at least 20 dB below than the highest emissions level within the operation band.

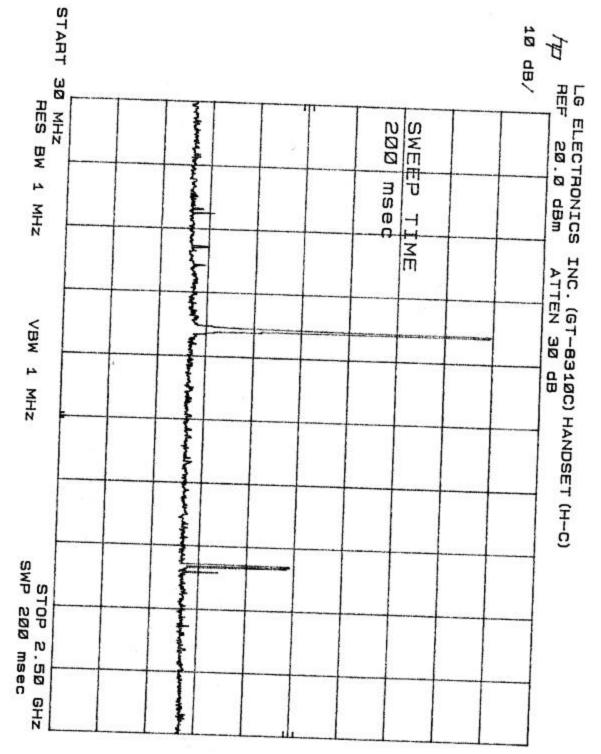
3.5.1 Test Procedure

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to $10^{\rm th}$ harmonic.

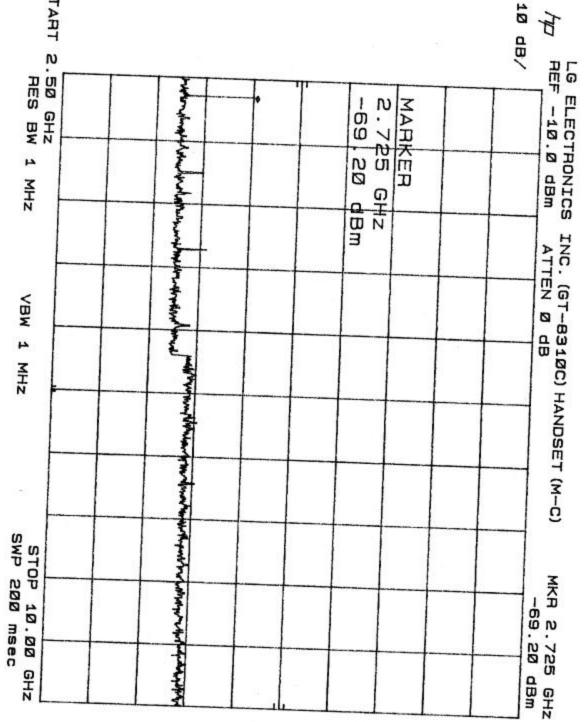
3.5.2 Test Equipment

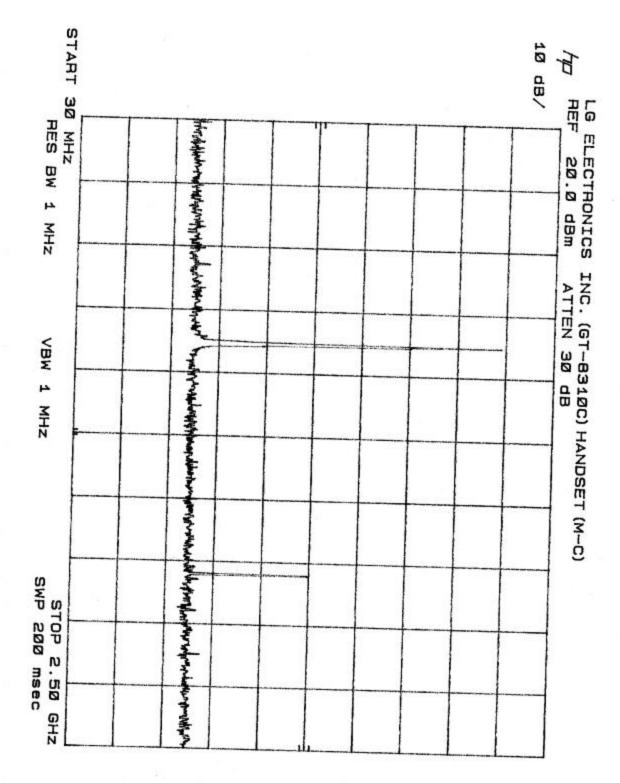
Hewlett Packard HP8566B Spectrum Analyzer Hewlett Packard HP 7470A Plotter

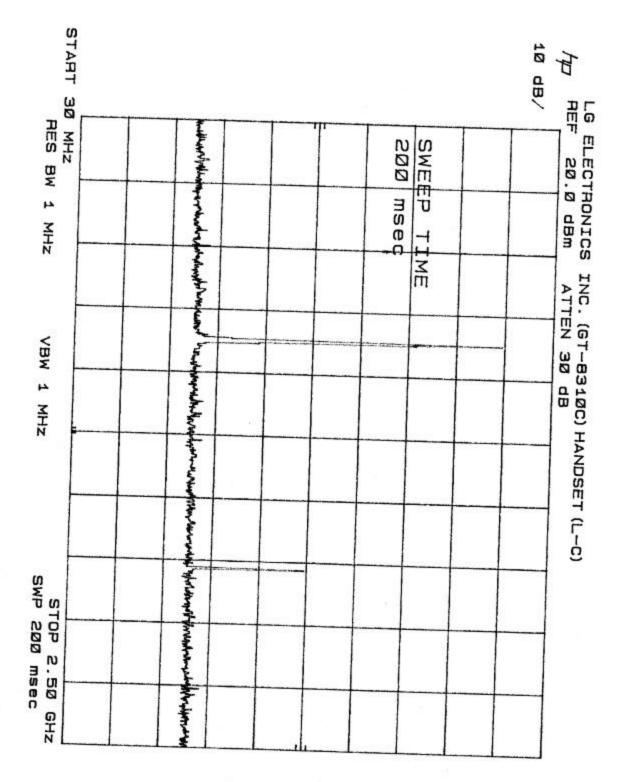
3.5.3 Test Results

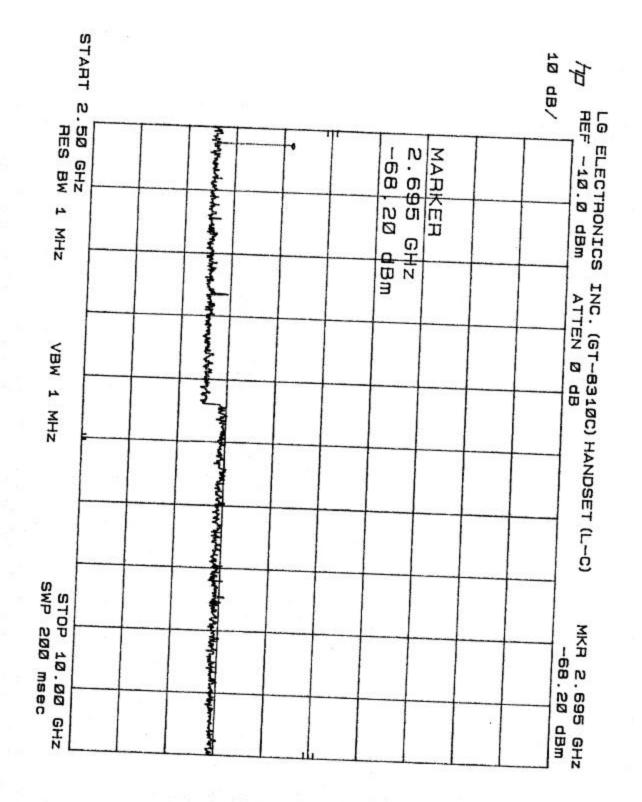

Refer to the attached plots.

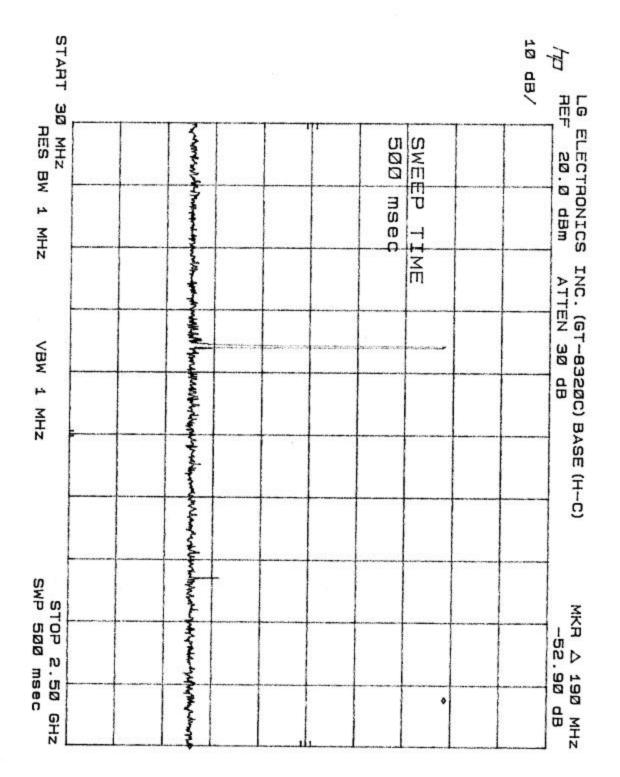
BASE

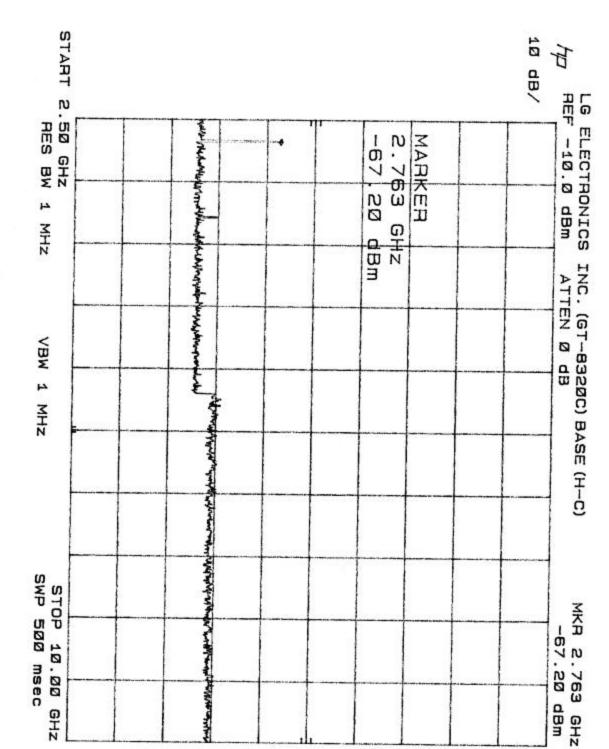

Spurious Emission						
High Channel	Page 45, 46					
Middle Channel	Page 47, 48					
Low Channel	Page 49, 50					

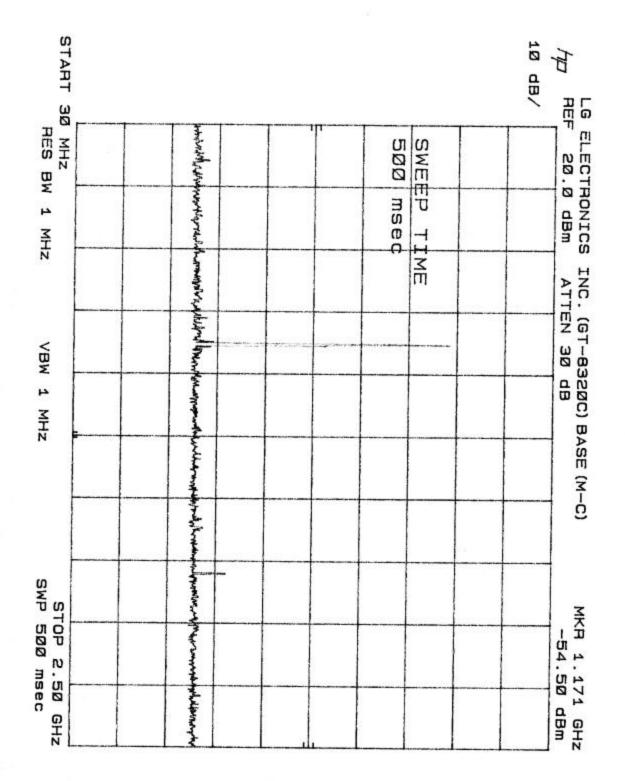

HANDSET

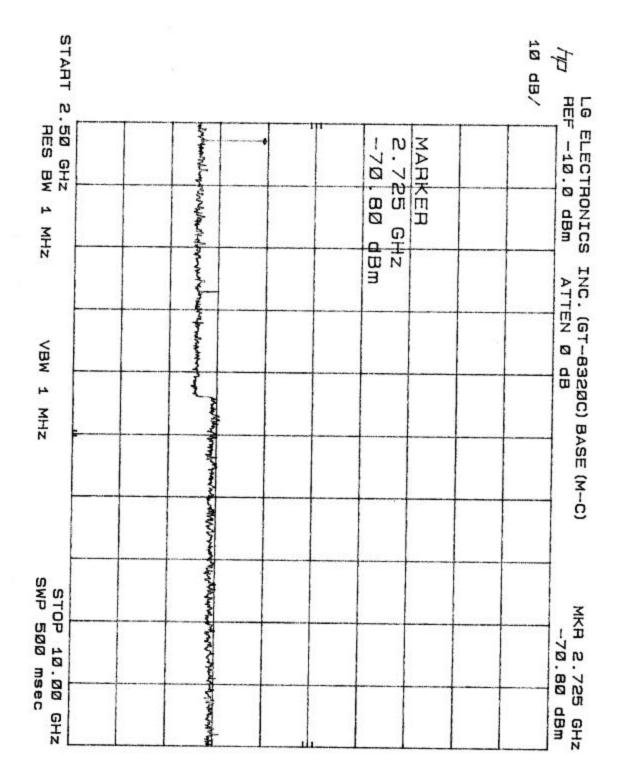

Spurious Emission							
High Channel	Page 39, 40						
Middle Channel	Page 41, 42						
Low Channel	Page 43, 44						

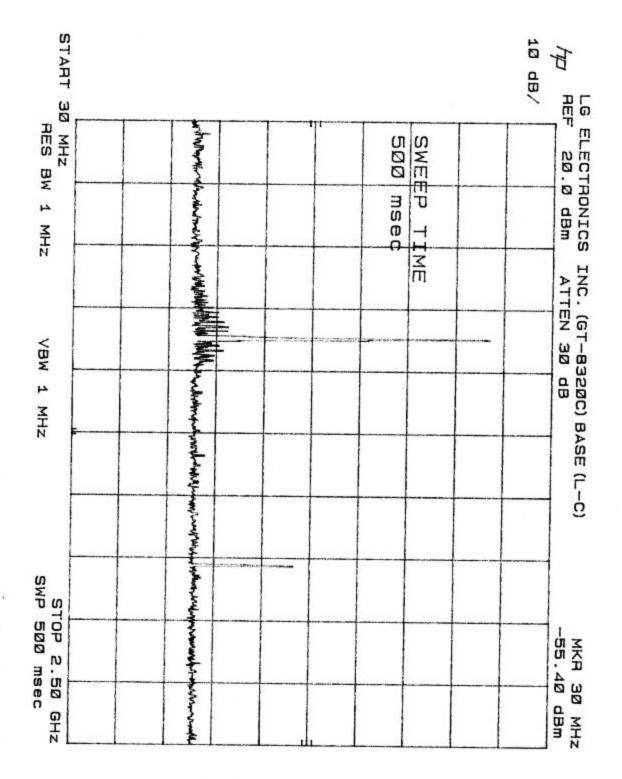


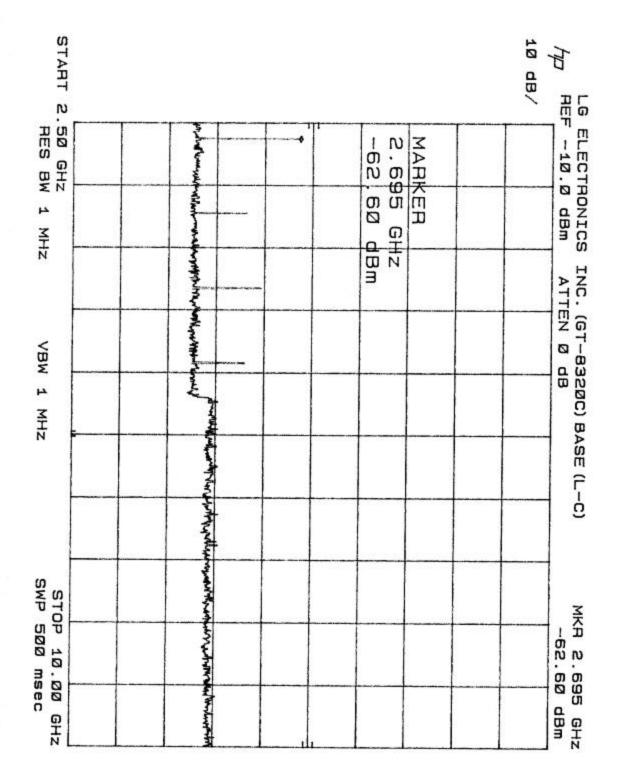







Page 45


Report #r0010092



Report #r0010092

Report #r0010092

3.6.0 Field Strength of Spurious Radiation (30 MHz-90000MHz)

Requirements: FCC15.247 (2) (c)

3.6.1 Test Procedure

The measurement antenna was placed at a distance of 3 meter from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT.

The frequency range up to tenth harmonics of each of the three fundamental frequencies (low, middle, and high channels) was investigated.

The spurious emissions attenuation was calculated as the difference between EIRP in dB (pW) at the fundamental frequency and at the spurious emissions frequency.

3.6.2 Test Equipment

A.H. System Horn Antenna

High Pass Filter

Preamplifier

Hewlett Packard HP8566B Spectrum Analyzer

Hewlett Packard HP 7470A Plotter

3.6.3 Test Results

Refer to the attached data sheets.

INDICA	ATED	TABLE	ANTI	ENNA	CORREC	CORRECTION FACTOR		CORRECTED AMPLITUDE	FC CLA	
Frequency	Ampl.	Angle	-leigh	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dB mì/ /m	Degree	Meter	H/ V	dB mi/ /m	dB	dB	dB mì/ /m	dB mi/ /m	dB
925.50	88.6	180	1.2	V	24.7	4.4	20.2	97.5		
925.50	80.4	180	1.4	Н	24.7	4.4	20.2	89.3		
1851.00	47.1	270	1.4	V	25.3	2.6	20.0	55.0	77.5	-22.5
1851.00	46.2	245	1.3	Н	25.3	2.6	20.0	54.1	77.5	-23.4
2777.00	37.9(P)	180	1.4	V	29.0	3.7	20.0	50.6	74.0	-23.4
2777.00	29.6(A)	180	1.4	V	29.0	3.7	20.0	42.3	54.0	-11.7
3703.00	37.6(P)	350	1.4	V	30.3	4.3	20.0	52.2	74.0	-21.8
3703.00	31.5(A)	350	1.4	V	30.3	4.3	20.0	46.1	54.0	-7.9
4629.00	36.5(P)	145	1.4	V	32.5	4.9	20.0	53.9	74.0	-20.1
4629.00	27.6(A)	145	1.4	V	32.5	4.9	20.0	45.0	54.0	-9.0
5554.00	28.4(P)	145	1.3	V	34.1	5.4	20.0	47.9	74.0	-26.1
5554.00	19.0(A)	145	1.3	V	34.1	5.4	20.0	38.5	54.0	-15.5
2777.00	37.6(P)	360	2.2	Н	29.0	3.7	20.0	50.3	74.0	-23.7
2777.00	27.8(A)	360	2.2	Н	29.0	3.7	20.0	40.5	54.0	-13.5
3703.00	34.9(P)	45	2.2	Н	30.3	4.3	20.0	49.5	74.0	-24.5
3703.00	27.5(A)	45	2.2	Н	30.3	4.3	20.0	42.1	54.0	-11.9
4629.00	31.3(P)	180	2.3	Н	32.5	4.9	20.0	48.7	74.0	-25.3
4629.00	23.3(A)	180	2.3	Н	32.5	4.9	20.0	40.7	54.0	-13.3
5554.00	32.8(P)	145	2.3	Н	34.1	5.4	20.0	52.3	74.0	-21.7
5554.00	23.2(A)	145	2.3	Н	34.1	5.4	20.0	42.7	54.0	-11.3

3.6.3.a Final Scan, Base, High Channel.

INDICA	ATED	TABLE	ANTI	ENNA	CORREC	CORRECTION FACTOR		CORRECTED AMPLITUDE	FC CLA	
Frequency	Ampl.	Angle	leigh	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dB mì/ /m	Degree	Meter	H/ V	dB mi/ /m	dB	dB	dB mì/ /m	dB mi/ /m	dB
914.10	89.2	180	1.2	V	24.6	4.2	19.8	98.2		
914.10	81.5	270	1.4	H3	24.6	4.2	19.8	90.5		
1828.00	47.6	15	1.6	H3	25.3	2.6	20.0	55.5	78.2	-22.7
1828.00	43.5	270	1.4	H3	25.3	2.6	20.0	51.4	78.2	-26.8
2742.00	35.9(P)	200	1.6	H3	29.0	3.7	20.0	48.6	74.0	-25.4
2742.00	26.0(A)	200	1.6	H3	29.0	3.7	20.0	38.7	54.0	-15.3
3657.00	35.4(P)	90	1.6	H3	30.3	4.3	20.0	50.0	74.0	-24.0
3657.00	27.1(A)	90	1.6	H3	30.3	4.3	20.0	41.7	54.0	-12.3
4571.00	32.6(P)	45	1.3	H3	32.5	4.9	20.0	50.0	74.0	-24.0
4571.00	26.0(A)	45	1.3	H3	32.5	4.9	20.0	43.4	54.0	-10.6
5486.00	31.9(P)	200	2.0	H3	33.9	5.2	20.0	51.0	74.0	-23.0
5486.00	24.5(A)	200	2.0	H3	33.9	5.2	20.0	43.6	54.0	-10.4
2742.00	35.7(P)	160	3.0	V	29.0	3.7	20.0	48.4	74.0	-25.6
2742.00	28.7(A)	160	1.4	V	29.0	3.7	20.0	41.4	54.0	-12.6
3657.00	37.4(P)	90	1.4	V	30.3	4.3	20.0	52.0	74.0	-22.0
3657.00	30.6(A)	90	1.4	V	30.3	4.3	20.0	45.2	54.0	-8.8
4571.00	27.9(P)	340	1.4	V	32.5	4.9	20.0	45.3	74.0	-28.7
4571.00	21.0(A)	340	1.4	V	32.5	4.9	20.0	38.4	54.0	-15.6
5486.00	28.4(P)	160	1.3	V	33.9	5.2	20.0	47.5	74.0	-26.5
5486.00	19.8(A)	160	1.3	V	33.9	5.2	20.0	38.9	54.0	-15.1

3.6.3.b Final Scan, Base, Middle Channel.

INDICA	ATED	TABLE	ANTI	ENNA	CORREC	CORRECTION FACTOR		CORRECTED AMPLITUDE	FC CLA	
Frequency	Ampl.	Angle	leigh	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dB mì/ /m	Degree	Meter	H/ V	dB mi/ /m	dB	dB	dB mi/ /m	dB mi/ /m	dB
904.50	85.2	250	1.2	V	24.8	3.0	19.8	93.2		
904.50	80.6	250	1.4	H3	24.8	3.0	19.8	88.6		
1808.00	44.5	250	1.3	V	25.3	2.6	20.0	52.4	73.2	-20.8
1808.00	44.0	145	3.2	H3	25.3	2.6	20.0	51.9	73.2	-21.3
2712.00	37.4(P)	180	2.2	V	29.0	3.7	20.0	50.1	74.0	-23.9
2712.00	28.3(A)	180	2.2	V	29.0	3.7	20.0	41.0	54.0	-13.0
3616.00	34.6(P)	90	2.2	V	30.3	4.3	20.0	49.2	74.0	-24.8
3616.00	28.1(A)	90	2.2	V	30.3	4.3	20.0	42.7	54.0	-11.3
4520.00	30.7(P)	145	1.3	V	32.5	4.9	20.0	48.1	74.0	-25.9
4520.00	19.8(A)	145	1.3	V	32.5	4.9	20.0	37.2	54.0	-16.8
5425.00	26.9(P)	145	1.2	V	33.9	5.2	20.0	46.0	74.0	-28.0
5425.00	17.7(A)	145	1.2	V	33.9	5.2	20.0	36.8	54.0	-17.2
2712.00	38.5(P)	350	3.2	H3	29.0	3.7	20.0	51.2	74.0	-22.8
2712.00	28.0(A)	350	3.2	H3	29.0	3.7	20.0	40.7	54.0	-13.3
3616.00	32.2(P)	180	3.2	H3	30.3	4.3	20.0	46.8	74.0	-27.2
3616.00	24.0(A)	180	3.2	H3	30.3	4.3	20.0	38.6	54.0	-15.4
4520.00	29.3(P)	360	3.2	H3	32.5	4.9	20.0	46.7	74.0	-27.3
4520.00	22.3(A)	360	3.2	H3	32.5	4.9	20.0	39.7	54.0	-14.3
5425.00	28.0(P)	20	1.5	H3	33.9	5.2	20.0	47.1	74.0	-26.9
5425.00	23.0(A)	20	1.5	H3	33.9	5.2	20.0	42.1	54.0	-11.9

3.6.3.c Final Scan, Base, Low Channel.

INDICA	ATED	TABLE	ANTI	ENNA	CORRECTION FACTOR		CORRECTED AMPLITUDE	FC CLA	-	
Frequency MHz	Ampl. dB mi //m	Angle Degree	-leigh Meter	Polar H/ V	Antenna dB mi/ /m	Cable dB	Amp. dB	Corr. Ampl. dB mì //m	Limit dB mì //m	Margin dB
926.10	66.6	145	3.0	V	24.7	4.4	20.2	75.5		
926.10	72.2	145	1.1	Н	24.7	4.4	20.2	81.1		
1851.00	45.2	230	1.1	V	25.3	2.6	20.0	53.1	61.1	-8.0
1851.00	46.9	145	1.2	Н	25.3	2.6	20.0	54.8	61.1	-6.3
2777.00	40.2(P)	360	1.5	V	29.0	3.7	20.0	52.9	74.0	-21.1
2777.00	32.9(A)	350	1.4	V	29.0	3.7	20.0	45.6	54.0	-8.4
3703.00	38.2(P)	190	1.4	V	30.3	4.3	20.0	52.8	74.0	-21.2
3703.00	28.9(A)	190	1.4	V	30.3	4.3	20.0	43.5	54.0	-10.5
5554.00	31.8(P)	200	1.4	V	34.1	5.4	20.0	51.3	74.0	-22.7
5554.00	23.9(A)	200	1.4	V	34.1	5.4	20.0	43.4	54.0	-10.6
2777.00	40.0(P)	70	1.2	Н	29.0	3.7	20.0	52.7	74.0	-21.3
2777.00	32.8(A)	70	1.2	Н	29.0	3.7	20.0	45.5	54.0	-8.5
3703.00	35.0(P)	180	1.2	Н	30.3	4.3	20.0	49.6	74.0	-24.4
3703.00	28.0(A)	180	1.2	Н	30.3	4.3	20.0	42.6	54.0	-11.4
5554.00	27.1(P)	245	1.2	Н	34.1	5.4	20.0	46.6	74.0	-27.4
5554.00	18.0(A)	245	1.2	Н	34.1	5.4	20.0	37.5	54.0	-16.5

3.6.3.d Final Scan, Handset, High Channel.

INDICA	ATED	TABLE	ANTI	ENNA	CORRECTION FACTOR		CORRECTED AMPLITUDE			
Frequency MHz	Ampl. dB mi/ /m	Angle Degree	-leigh Meter	Polar H/ V	Antenna dB mì/ /m	Cable dB	Amp. dB	Corr. Ampl. dB mì //m	Limit dB mì/ /m	Margin dB
914.69	65.3	160	2.9	V	24.6	4.2	19.8	74.3		
914.69	72.8	145	1.1	Н	24.6	4.2	19.8	81.8		
1828.00	43.8	270	1.2	Н	25.3	2.6	20.0	51.7	61.8	-10.1
1828.00	46.5	145	1.8	V	25.3	2.6	20.0	54.4	61.8	-7.4
2743.00	39.3(P)	260	1.2	Н	29.0	3.7	20.0	52.0	74.0	-22.0
2743.00	29.7(A)	260	1.2	Н	29.0	3.7	20.0	42.4	54.0	-11.6
3657.00	36.2(P)	30	1.5	Н	30.3	4.3	20.0	50.8	74.0	-23.2
3657.00	27.6(A)	30	1.5	Н	30.3	4.3	20.0	42.2	54.0	-11.8
5486.00	29.9(P)	100	1.5	Н	33.9	5.2	20.0	49.0	74.0	-25.0
5486.00	23.2(A)	100	1.5	Н	33.9	5.2	20.0	42.3	54.0	-11.7
5486.00	33.3(P)	120	1.8	V	33.9	5.2	20.0	52.4	74.0	-21.6
5486.00	24.6(A)	120	1.8	V	33.9	5.2	20.0	43.7	54.0	-10.3
3657.00	36.8(P)	90	1.8	V	30.3	4.3	20.0	51.4	74.0	-22.6
3657.00	29.8(A)	90	1.8	V	30.3	4.3	20.0	44.4	54.0	-9.6
2473.00	42.1(P)	200	1.8	V	28.1	3.4	20.0	53.6	74.0	-20.5
2473.00	33.9(A)	200	1.8	V	28.1	3.4	20.0	45.4	54.0	-8.7

3.6.3.e Final Scan, Handset, Middle Channel.

INDICA	ATED	TABLE	ANTI	ENNA	CORREC	CORRECTION FACTOR		CORRECTED AMPLITUDE		
Frequency	Ampl.	Angle	leigh	Polar	Antenna	Cable	Amp.	Corr. Ampl.	Limit	Margin
MHz	dB mì/ /m	Degree	Meter	H/ V	dB mì/ /m	dB	dB	dB mì/ /m	dB mi/ /m	dB
904.50	66.2	340	2.9	V	24.8	3.0	19.8	74.2		
904.50	73.5	90	1.1	Н	24.8	3.0	19.8	81.5		
1808.00	43.0	200	1.1	V	25.3	2.6	20.0	50.9	61.5	-10.6
1808.00	41.2	160	1.2	Н	25.3	2.6	20.0	49.1	61.5	-12.4
2712.00	38.5(P)	270	1.2	Н	29.0	3.7	20.0	51.2	74.0	-22.8
2712.00	28.3(A)	270	1.2	Н	29.0	3.7	20.0	41.0	54.0	-13.0
3616.00	37.8(P)	360	1.9	Н	30.3	4.3	20.0	52.4	74.0	-21.6
3616.00	26.5(A)	360	1.9	Н	30.3	4.3	20.0	41.1	54.0	-12.9
5425.00	28.9(P)	180	1.8	Н	33.9	5.2	20.0	48.0	74.0	-26.0
5425.00	22.7(A)	180	1.8	Н	33.9	5.2	20.0	41.8	54.0	-12.2
2712.00	34.4(P)	180	1.4	V	29.0	3.7	20.0	47.1	74.0	-26.9
2712.00	24.0(A)	180	1.4	V	29.0	3.7	20.0	36.7	54.0	-17.3
3616.00	32.0(P)	270	1.4	V	30.3	4.3	20.0	46.6	74.0	-27.4
3616.00	26.5(A)	270	1.4	V	30.3	4.3	20.0	41.1	54.0	-12.9
5425.00	29.6(P)	145	1.4	V	33.9	5.2	20.0	48.7	74.0	-25.3
5425.00	23.3(A)	145	1.4	V	33.9	5.2	20.0	42.4	54.0	-11.6

3.6.3.f Final Scan, Handset, Low Channel.

3.7.0 Processing Gain

Processing Gain Measurements for GT-8110 DCT TEST report

3.7.1 Scope

This document details the results of measurement of the processing gain of a DCT(GT-8320C) with reference to the Code of Federal Regulations, Title 47, Chapter 1, Part 15 Radio Frequency Devices, FCC. The purpose of this document is to provide conceptual background of processing gain and method of measurement.

FCC	Federal Communications Commission				
SNR	Signal to Noise Ratio				
JSR	Jammer to Signal Ratio				
CW	Continuous wave (jammer)				
HS	Handset				
BS	Basestation				
DBPSK	Differential Binary Phase Shift Keying				

Table 1: Definitions and Abbreviations

3.7.2 An Overview of the FCC Method for measuring Processing Gain

Processing Gain Calculation

Theoretical processing gain limit for the 12bit Spreading BPSK system is 10.8dB.

Processing Gain = 10Log (Spreaded data rate/Unspreaded data rate)

- = 10 Log [(12 Chip/bit*100Kbit/sec)/100 Kbit/sec)]
 - = 10 Log[12]
 - = 10.8 dB

Processing Gain Measurement Method

Following method is specified by the FCC to measure processing gain. The detailed are in 15.247 (e)(1). This involves transmitting a CW jammer in the RF passband of the system and measuring the jammer to signal ratio (JSR) required to achieve a certain bit error rate. The choice of the actual value of the bit error rate is left up to the tester. The jammer is stepped in 50 kHz increments across the entire passband and in each case the JSR to achieve the desired bit error rate is measured. The JSR is measured at the RF input to the system under test. The lowest 20% of the JSR data (in dB) is discarded. The processing gain can then be calculated as follows:

$$G_{p} = \left(\frac{S}{N}\right)_{theory} + \left(\frac{J}{S}\right)_{measured} + L_{system}$$

Where G_p is the processing gain, the SNR is that theoretically predicted for the system under the test to achieve the desired bit error rate, the JSR is the lowest value (in dB) in the remaining data set and L_{sys} adjusts for non-ideal system losses. L_{sys} cannot be greater than 2 dB.

3.7.3 Processing Gain Measurement Test Setup

The test setup is shown in Fig.1. The base station and handset are configured to measure the Bit Error Rate (BER) through serial ports of a personal computer. Conexant's software utility program (FCC_3V3.exe) is used to configure the test modes, establish the link between the base and handset unit and monitor the results. The BER test results are displayed on the monitor. The strength of the received signal entering at the receiving antenna port of the unit under test is derived from the signal strength of the transmitting unit. The following parameters were used in the test setup.

Gene ral Procedure

- Step-1: Measure the output power of the base and handset units in LO power mode. Determine attenuation and signal losses in the path to calculate the received signal strength arriving at the base station antenna port.
- Step-2: Connect the serial interface of the base and handset to the serial ports of a PC.
- Step-3: Connect the base and handset through attenuator, signal combiner etc components using 50 ohm SMA connectors and cables as shown in Figure 1. Thus, the BER test set up establishes link through wired connection.Step-4;Using utility test software, select the channel frequency (921.6MHz), LOW power mode, LNA attenuation for base and handset units.
- Step-5: Click on "Start S7 HS Master" button ON. The two link is established and the BER results are displayed on monitor.
- Step-6:Feed jamming signal from the signal generator.
- Step-7: Increase the amplitude of the jamming while monitoring BER such that the BER is ≤10E-3. this signal power is recorded for computing received Jammer power level J.
- Step-8: Increment the Jammer signal frequency in steps of 0kHZ and repeat step 7 and determine the minimum Jammer signal power to achieve BER of ≤10E-3. Calculate the processing gain.

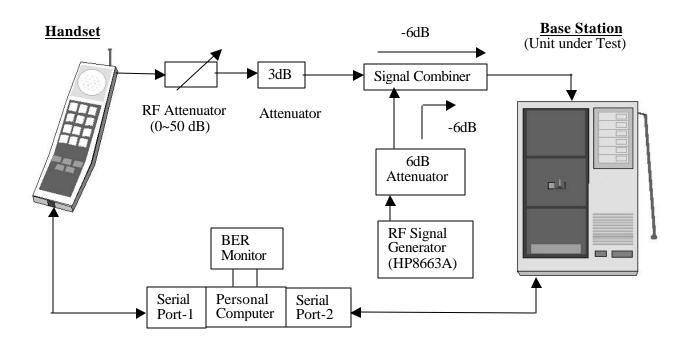


Figure 1: Test Setup

The following parameter was used in the test setup.

 Table 2: Test Setup Parameters

HS Tx power (dBm)	-1.9	Measured @ 50-ohm SMA-antenna port
BS LNA gain (dB)	0	
Test system losses (signal)(dB)	-61.75	-50dB (channel attenuation)-5.7dB (attenuator
		& cables), -6dB (signal combiner)
Received signal strength (dBm) at combiner output	-63.65	Measured @ combiner output
Test system losses (jammer) (dB) upto the combiner output	-12.85	-6dB (attenuator), -6dB (signal combiner), -0.85 dB (cable)

3.7.4 Results and Conclusions

The following measurement results were taken at the basestation. The desired bit error rate was set at 10^{-3} .

Table 3: Test Results

Jammer Frequency	BER (BS)	Received jammer	Received signal	Jammer/Signal
(MHz)	2 4 4 2 4	power (dBm)	power (dBm)	ratio (dB)
913.80	9.4x10 ⁻⁴	-59.65	-63.65	4.5
913.85	9.6x10 ⁻⁴	-57.95	-63.65	5.7
913.90	9.6x10 ⁻⁴	-60.25	-63.65	3.3
913.95	9.6x10 ⁻⁴	-64.25	-63.65	-0.6
914.00	1.1×10^{-3}	-61.55	-63.65	2.1
914.05	9.8x10 ⁻⁴	-61.45	-63.65	2.2
914.10	1.1×10^{-3}	-61.95	-63.65	1.9
914.15	9.2x10 ⁻⁴	-62.85	-63.65	0.7
914.20	1.0×10^{-3}	-59.85	-63.65	3.5
914.25	1.0×10^{-3}	-61.15	-63.65	2.5
914.30	1.1×10^{-3}	-62.05	-63.65	1.5
914.35	1.0×10^{-3}	-57.65	-63.65	6.0
914.40	1.1×10^{-3}	-55.65	-63.65	8.1
914.45	1.0×10^{-3}	-49.35	-63.65	14.3
914.50	1.1×10^{-3}	-59.25	-63.65	4.7
914.55	1.0×10^{-3}	-62.35	-63.65	1.3
914.60	9.7×10^{-4}	-59.05	-63.65	4.6
914.65	1.0×10^{-3}	-61.05	-63.65	2.6
914.70	1.1×10^{-3}	-62.55	-63.65	1.1
914.75	9.0x10 ⁻⁴	-61.95	-63.65	1.7
914.80	1.0×10^{-3}	-61.05	-63.65	2.6
914.85	9.9x10 ⁻⁴	-62.25	-63.65	1.3
914.90	1.1×10^{-3}	-64.05	-63.65	-0.3
914.95	9.2x10 ⁻⁴	-56.25	-63.65	7.4
915.00	1.0×10^{-3}	-59.85	-63.65	4.1
915.05	1.1×10^{-3}	-57.25	-63.65	6.6
915.10	9.9x10 ⁻⁴	-58.15	-63.65	5.6

required SNR (dB)	8.0
system losses (dB)	2.0
J/S ratio at 80% point (dB)	1.30
FCC Processing gain (dB)	11.3

Conclusions

The result measured for processing gain of **11.3** dB is close to the actual processing gain due to a 12 chip spreading code of

 $10 \ \log_{10}(12) = 10.8 \ dB$

4 - CONDUCTED EMISSIONS TEST DATA

4.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

4.2 EUT Setup

The measurement was performed at the Open Area Test Site, using the same setup per ANSI C63.4 - 1992 measurement procedure. The specification used was with FCC Class B limits.

4.3 Spectrum Analyzer Setup

The spectrum analyzer was set with the following configurations during the conduction test:

Start Frequency	450 kHz
Stop Frequency	30 MHz
Sweep Speed	
IF Bandwidth	
Video Bandwidth	100 kHz
Quasi-Peak Adapter Bandwidth	9 kHz
Quasi-Peak Adapter Mode	Normal

4.4 Test Procedure

During the conducted emission test, the power cord of the host system was connected to the auxiliary outlet of the first LISN.

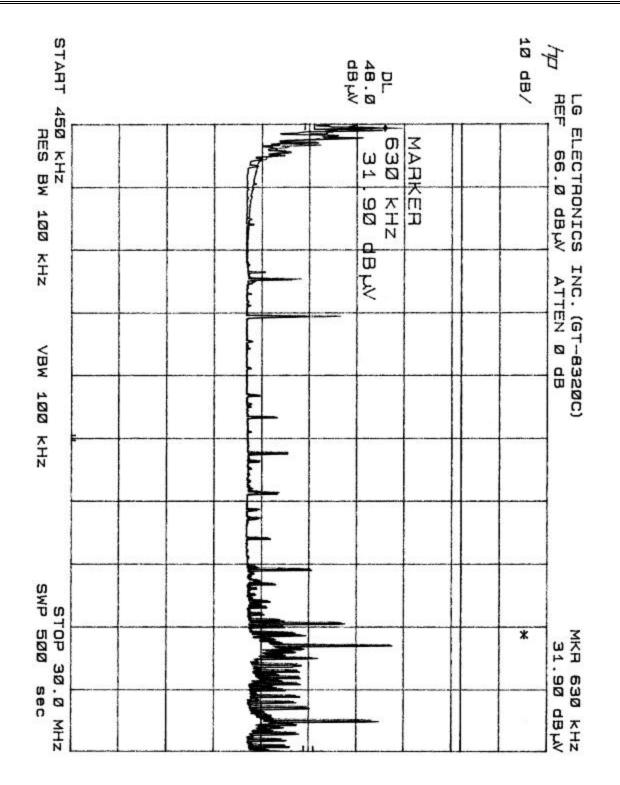
Maximizing procedure was performed on the six (6) highest emissions of each modes tested to ensure EUT is compliant with all installation combination.

All data was recorded in the peak detection mode. Quasi-peak readings were only performed when an emission was found to be marginal (less than -4 dB μ V). Quasi-peak readings are distinguished with a "**QP**".

4.5 Summary of Test Results

According to the data in section 3.6, the EUT <u>complied with the FCC</u> Conducted margin for a Class B device and these test results is deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations, with the *worst* margin reading of:

-5.4 dBmV at 0.450 MHz in the Line mode power supply.


4.6 Conducted Emissions Test Data

4.6.1 Test Data, 0.45 - 30 MHz.

LINE CONDUCTED EMISSIONS			FCC CLASS B		
Frequency	Amplitude	Detector	Phase	Limit	Margin
MHz	dBµV	QP/Ave/Peak	Line/Neutral	dBµV	DB
0.450	41.5	AVPeak	Line	47	-5.4
0.450	35.6	AVPeak	Neutral	47	-11.3
16.580	15.7	AVPeak	Line	50	-34.3
15.850	14.8	AVPeak	Neutral	50	-35.2
2.810	13.4	AVPeak	Line	46	-32.6
3.580	6.9	AVPeak	Neutral	46	-39.1

4.7 Plot of Conducted Emissions Test Data

Plot(s) of Conducted Emissions Test Data is presented in the following Appendix of this report as reference.

Appendix A – AGENT AUTHORIZATION LETTER

LGIC LG Information & Communications, Ltd. LG Kangseo B/D 36, Munlae-Dong, 6-Ga, Youngdungpo-Gu, Seoul, 150-096, Korea Youngdungpo P.O Box101, Seoul, Korea Telephone : 82-2-2630-3651~2 Fax : 82-2-2630-3669

Exhibit B

AUTHORITY TO ACT AS AGENT TO THE FEDERAL COMMUNICATIONS COMMISSION

Date : February 21, 2000

Federal Communications Commission Authorization and Evaluation Division Equipment Authorization Branch 7435 Oakland Mills Road Columbia, MID 21046 U.S.A.

Dear Sir:

We, the undersigned, hereby authorize Bay Area Compliance Laboratory Corp. to act on our behalf in all matters relating to applications for approval of Telecommunication apparatus, including the signing of all documents relating to this matters. Any and all acts carried out by Bay Area Compliance Laboratory Corp., on our behalf

Any and all acts carried out by Bay Area Compliance Laboratory Corp., on our behalf shall have the same effect as acts of our own.

I further appoint Bay Area Compliance Laboratory Corp., to act as agent in preparation of this application for registration of LG Information & Communications, Ltd., Model GT-8110 as Exhibit C under Part 68 of the Rules and Regulations of the Federal Communications Commission.

I certify that the exhibits properly describe the device or system for which registration is sought, that Exhibit G represents the policies of the applicant which will be followed for all units manufactured and distributed under the provisions of Part 68, that the labels described in Exhibit H will be affixed to each unit, and that the information described in Exhibit J will be provided with each unit manufactured or distributed by the applicant. We also certify that no party to the applications authorized hereunder is subject to benefits, including FCC benefits, Pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988,21 USC 853(a).

Sincerely yours,

D. S. Km

D.S.KIM / Quality Engineering Dept. LG Information & Communications, Ltd.