

Report No.: EED32Q81846703 Page 1 of 81

TEST REPORT

Product : Smart Projector

Trade mark : TOUMEI

Model/Type reference : See section 4.2

Serial Number : N/A

Report Number : EED32Q81846703

FCC ID : 2BCE6-Q7

Date of Issue : Dec. 30, 2024

EVEN

Keven Tan

Aaron Ma

avon Ma

Test Standards : 47 CFR Part 15 Subpart E

Test result : PASS

Prepared for:

SHENZHEN TOUMEI TECHNOLOGY CO., LTD 502, Building A, Jinke Industrial Park, No.310, Wuhe Dadao, Luhu Community Guanhu Street, Longhua District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Approved by:

Report Seal

Reviewed by:

Frazer Li

Date:

Dec. 30, 2024

Check No.: 9532131124

Report No.: EED32Q81846703

V Page 2 of 81

Content

1 CONTENT	2
2 VERSION	
3 TEST SUMMARY	
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION 4.2 GENERAL DESCRIPTION OF EUT 4.3 TEST CONFIGURATION 4.4 TEST ENVIRONMENT 4.5 DESCRIPTION OF SUPPORT UNITS 4.6 TEST LOCATION 4.7 DEVIATION FROM STANDARDS 4.8 ABNORMALITIES FROM STANDARD CONDITIONS 4.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER 4.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2) 5 EQUIPMENT LIST	
6.1 ANTENNA REQUIREMENT	
PHOTOGRAPHS OF TEST SETUPPHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILSPHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	81

Report No.: EED32Q81846703

V Page 3 of 81

2 Version

Version No.	Date	Description	
00	Dec. 30, 2024	Original	
(6	(45)		
			1

Report No. : EED32Q81846703 V Page 4 of 81

3 Test Summary

o root oanning		The second second	
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.407 (b)(6)	PASS	
Duty Cycle	47 CFR Part 15 Subpart E Section 15.407	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
26dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
99% Occupied bandwidth	(6)	PASS	
6dB emission bandwidth	47 CFR Part 15 Subpart E Section 15.407 (e)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	PASS	
Frequency stability	47 CFR Part 15 Subpart E Section 15.407 (g)	PASS	
Radiated Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15 Subpart E Section 15.407 (b)	PASS	
/ 1/4 M			

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: Q7, Q1, Q2, Q3, Q4, Q5, Q6, Q8, Q9, Q10, Q11, Q12, Q5-GTV, Q6-GTV, Q7-GTV, Q8-GTV, Q9-GTV, A1, A2, A3, A5, A6, A7, A8, A9, A10, F1, F2, F3, F5, F6, F7, F8, F9, F10, D1, D2, D3, D5, D6, D7, D8, D9, D10

Only the model Q7 was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being color of appearance, model name and sales platform.

Report No. : EED32Q81846703 V Page 5 of 81

4 General Information

4.1 Client Information

Applicant:	SHENZHEN TOUMEI TECHNOLOGY CO., LTD
Address of Applicant:	502, Building A, Jinke Industrial Park, No.310, Wuhe Dadao, Luhu
25	Community Guanhu Street, Longhua District, Shenzhen, China
Manufacturer:	SHENZHEN TOUMEI TECHNOLOGY CO., LTD
Address of Manufacturer:	502, Building A, Jinke Industrial Park, No.310, Wuhe Dadao, Luhu
	Community Guanhu Street, Longhua District, Shenzhen, China
Factory :	SHENZHEN TOUMEI TECHNOLOGY CO., LTD
Address of Factory :	502, Building A, Jinke Industrial Park, No.310, Wuhe Dadao, Luhu
(24)	Community Guanhu Street, Longhua District, Shenzhen, China

4.2 General Description of EUT

Product Name:	Smart Projector				
Model No.:	Q7, Q1, Q2, Q3, Q4, Q5, Q6, Q8, Q9, Q10, Q11, Q12, Q5-GTV, Q6-GTV, Q7-GTV, Q8-GTV, Q9-GTV, A1, A2, A3, A5, A6, A7, A8, A9, A10, F1, F2, F3, F5, F6, F7, F8, F9, F10, D1, D2, D3, D5, D6, D7, D8, D9, D10				
Test Model No.:	Q7				
Trade mark:	TOUMEI				
Product Type:	☐ Mobile	□ Portable □ Fix Location			
Type of Modulation:	IEEE 802.11a: OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11n(HT20/HT40): OFDM (BPSK, QPSK, 16QAM, 64QAM) IEEE 802.11ac(VHT20/VHT40): OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM) IEEE 802.11ax(HE20/HE40): OFDMA (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)				
Operating Frequency	U-NII-1: 5150-5250MHz U-NII-3:5745-5825MHz				
Antenna Type:	FPC Antenn	a			
Antenna Gain:	U-NII-1: 2.86 dBi U-NII-3: 3.28 dBi				
Power Supply:	Adapter AC 110V				
Test voltage:	AC 110V	AC 110V			
Sample Received Date:	Nov. 29, 2024				
Sample tested Date:	Nov. 29, 2024 to Dec. 17, 2024				

Report No. : EED32Q81846703 V Page 6 of 81

Operation Frequency each of channel

802.11a/802.11n/802.11ac/802.11ax (20MHz) Frequency/Channel Operations:

	U-NII-1	U-NII-3		
Channel Frequency(MHz)		Channel	Frequency(MHz)	
36	36 5180		5745	
40	40 5200		5765	
44	44 5220		5785	
48 5240		161	5805	
-10	y .	165	5825	

802.11n/802.11ac/802.11ax (40MHz) Frequency/Channel Operations:

7	(101111 1 <u>—</u>)	1 Toquonoj, onam	or operane	71101
	U-NII-1			U-NII-3
	Channel Frequency(MHz)		Channel Frequency(MHz	
	38 5190		151	5755
	46	5230	159	5795

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No. : EED32Q81846703 V Page 7 of 81

4.3 Test Configuration

EUT Test Software Settings:				
Software:	Adb.exe	25	/3	13
EUT Power Grade:	Default	(252)	(250)	(2)
Use test software to set transmitting of the EUT.	he lowest frequency	, the middle frequ	uency and the highest frequency keep	
Test Mode:				
the EUT in transmitting o	peration, which was	shown in this tes	ation. All the test modes were carried ou at report and defined as follows: If the follow list which it	it with
was worst case.				
	/lode		Data rate	
80	2.11a	Sec.	6 Mbps	
802.1	1n(HT20)	100	MCS0	
802.1	1n(HT40)	(10°00)	MCS0	63
802.11	ac(VHT20)		MCS0	1
	ac(VHT40)		MCS0	
	ax(VHT20)		MCS0	

MCS0

4.4 Test Environment

802.11ax(VHT40)

»:		
22~25.0 °C	(6,	
50~55 % RH		
1010mbar		
22~25.0 °C	(C)	(25)
50~55 % RH		
1010mbar		
50~55 % RH	(40)	(40)
1010mbar	(0)	(6.)
NT (Normal Temperature)	22~25.0 °C	
LT (Low Temperature)	0 °C	
HT (High Temperature)	40 °C	
NV (Normal Voltage)	120V	(6.)
LV (Low Voltage)	108V	
HV (High Voltage)	132V	
	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar 50~55 % RH 1010mbar NT (Normal Temperature) LT (Low Temperature) HT (High Temperature) NV (Normal Voltage) LV (Low Voltage)	22~25.0 °C 50~55 % RH 1010mbar 22~25.0 °C 50~55 % RH 1010mbar NT (Normal Temperature) 22~25.0 °C LT (Low Temperature) 0 °C HT (High Temperature) 40 °C NV (Normal Voltage) 120V LV (Low Voltage) 108V

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Report No. : EED32Q81846703 V Page 8 of 81

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	DESKTOP-	FCC&CE	СТІ
	ST.	H31GDCQ	(0,	10.

4.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Deviation from Standards

None.

4.8 Abnormalities from Standard Conditions

None.

4.9 Other Information Requested by the Customer

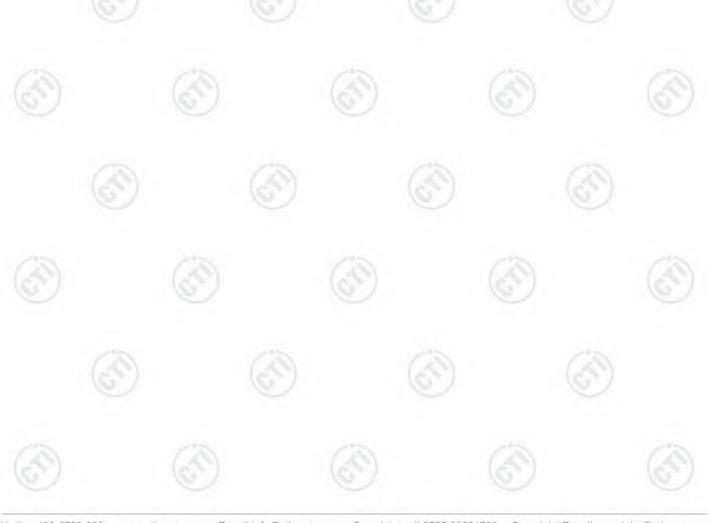
None.

4.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DC newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
		3.3dB (9kHz-30MHz)
3	Radiated Spurious emission test	4.5dB (30MHz-1GHz)
3		4.8dB (1GHz-18GHz)
		3.4dB (18GHz-40GHz)
4	Conduction oncionion	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No. : EED32Q81846703 V Page 9 of 81

5 Equipment List


RF test system						
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Communication test set	R&S	CMW500	107929	06-26-2024	06-25-2025	
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-02-2024	09-01-2025	
Spectrum Analyzer	R&S	FSV40	101200	07-18-2024	07-17-2025	
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-25-2024	06-24-2025	
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-12-2023 11-30-2024	12-10-2024 11-29-2025	
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025	
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0	(F)	- (3	
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025	

Report No. : EED32Q81846703 V Page 10 of 81

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025		
Temperature/ Humidity Indicator	Defu	TH128	/	04-25-2024	04-24-2025		
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025		
Barometer	changchun	DYM3	1188	\(67)		
Test software	Fara	EZ-EMC	EMC-CON 3A1.1				
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025		
ISN	TESEQ	ISN T800	30297	12/14/2023 12/05/2024	12/13/2024 12/04/2025		

Report No. : EED32Q81846703 V Page 11 of 81

3M	Semi-anechoic	Chamber (2)- Rad	diated distur	bance Test	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
BM Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023 12/05/2024	12/13/2024 12/04/2025
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre		
Cable line	Fulai(7M)	SF106	5219/6A	05/22/2022	05/21/2025
Cable line	Fulai(6M)	SF106	5220/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5216/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5217/6A	05/22/2022	05/21/2025

Report No.: EED32Q81846703 V Page 12 of 81

7.431		OM full anachai	a Chambar	1.4	31
		3M full-anechoi	c Chamber	Oal Data	Oal Bur data
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023 12-05-2024	12-13-2024 12-04-2025
Temperature/	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0	<u>ئ</u>	<u>(C)</u>
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2024	01-08-2027
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2024	01-08-2027
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2024	01-08-2027
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2024	01-08-2027

Report No. : EED32Q81846703 V Page 13 of 81

6 Radio Technical Requirements Specification

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna: Please see Internal photos

The antenna is FPC antenna. The best case gain of the antenna are U-NII-1: 2.86 dBi, U-NII-3: 3.28 dBi.

Report No. : EED32Q81846703 V Page 14 of 81

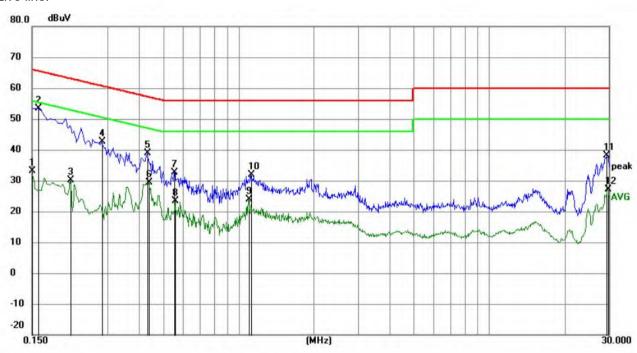
6.2 AC Power Line Conducted Emissions

	Test Requirement:	47 CFR Part 15C Section 15	207				
	Test Method:	ANSI C63.10: 2013		h possib			
	Test Frequency Range:	150kHz to 30MHz					
	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Limit:	[[[] [] [] [] [] [] [] [] []	Limit (dBuV)				
		Frequency range (MHz)	Quasi-peak	Average			
		0.15-0.5	66 to 56*	56 to 46*			
		0.5-5	56	46			
		5-30	60	50			
		* Decreases with the logarith	m of the frequency.				
2 *	Test Setup:						
		Shielding Room EUT AC Mains LISN1	AE LISN2 AC Ma	Test Receiver			
	Test Procedure:	The mains terminal distur	bance voltage test was	s conducted in a shielded			
		room. 2) The EUT was connected Impedance Stabilization In impedance. The power connected to a second LI plane in the same way multiple socket outlet strip single LISN provided the single LISN provided the single country and reference plane. A placed on the horizontal of the EUT shall be 0.4 m vertical ground reference reference plane. The LIS unit under test and bot mounted on top of the ground relevant of the closest points of the	Network) which provide cables of all other SN 2, which was bonder as the LISN 1 for the power was used to connect practing of the LISN was placed upon a non-metal and for floor-standing a pround reference plane, with a vertical ground reference plane was bonded N 1 was placed 0.8 minded to a ground reference plane. To	s a 50Ω/50μH + 5Ω linear units of the EUT were at to the ground reference unit being measured. A multiple power cables to a not exceeded. Allic table 0.8m above the rrangement, the EUT was ference plane. The rear of the to the horizontal ground from the boundary of the ference plane for LISNs this distance was between			
		and associated equipmen 5) In order to find the maxim and all of the interface ca	num emission, the relati	ve positions of equipmen			

Report No.: EED32Q81846703

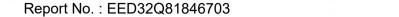
V Page 15 of 81

	ANSI C63.10: 2013 on conducted measurement.
Test Mode:	All modes were tested, only the worst case was recorded in the report.
Test Results:	Pass

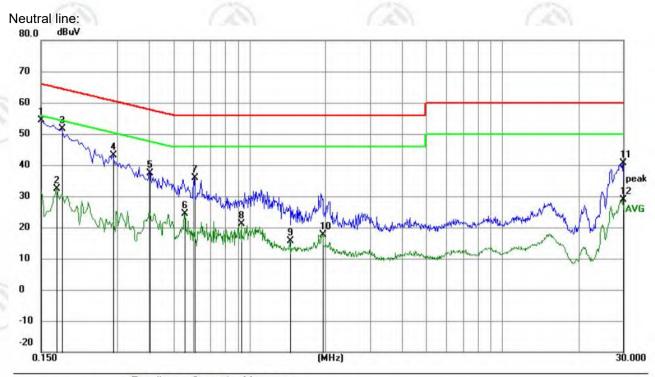


Measurement Data

Live line:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		13, 1, 1
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	22.80	10.28	33.08	56.00	-22.92	AVG	
2	*	0.1590	43.20	10.27	53.47	65.52	-12.05	QP	
3		0.2130	20.03	10.20	30.23	53.09	-22.86	AVG	
4		0.2850	32.44	10.14	42.58	60.67	-18.09	QP	
5		0.4335	28.91	10.09	39.00	57.19	-18.19	QP	
6		0.4380	19.21	10.09	29.30	47.10	-17.80	AVG	
7		0.5550	22.54	10.09	32.63	56.00	-23.37	QP	
8		0.5595	13.39	10.09	23.48	46.00	-22.52	AVG	
9		1.0950	13.75	10.18	23.93	46.00	-22.07	AVG	
10		1.1220	21.82	10.18	32.00	56.00	-24.00	QP	
11		29.5170	28.19	9.82	38.01	60.00	-21.99	QP	
12		29.8275	17.19	9.82	27.01	50.00	-22.99	AVG	

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin			
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment	
1	*	0.1500	44.08	10.28	54.36	66.00	-11.64	QP		
2		0.1725	22.02	10.25	32.27	54.84	-22.57	AVG		
3		0.1815	41.31	10.24	51.55	64.42	-12.87	QP		
4		0.2895	32.94	10.14	43.08	60.54	-17.46	QP		
5		0.4020	27.25	10.09	37.34	57.81	-20.47	QP		
6		0.5550	14.31	10.09	24.40	46.00	-21.60	AVG		
7		0.6045	25.85	10.10	35.95	56.00	-20.05	QP		
8		0.9285	10.85	10.17	21.02	46.00	-24.98	AVG		
9		1.4415	5.54	10.18	15.72	46.00	-30.28	AVG		
10		1.9455	7.56	10.17	17.73	46.00	-28.27	AVG		
11		29.8455	30.81	9.82	40.63	60.00	-19.37	QP		
12		29.8455	18.94	9.82	28.76	50.00	-21.24	AVG		
		(Herievales)			10000000	1513 (1514)	20000000			

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No. : EED32Q81846703 V Page 18 of 81

6.3 Maximum Conducted Output Power

Test Requirement:	47 CFR Part 15C S	ection 15.407 (a)				
Test Method:	KDB789033 D02 G	General UNII Test	t Procedures New R	ules v02r01 Section		
Test Setup:	(6	D.				
	Control Computer Power Supply TEMPERATURE CABI	Attenuator	RF test System Instrument			
Test Procedure:	General UNII Test I 2. The RF output of attenuator. The pat measurement. 3. Set to the maxim continuously.	Procedures New f EUT was conne th loss was comp num power setting	ent Procedure of KD Rules v02r01 Section cted to the power me ensated to the results g and enable the EU ^T wer and record the re	n E, 3, a ster by RF cable and s for each		
Limit:	10		(6)	(0)		
	Frequency band (MHz)	Limit				
	5150-5250	≤1W(30dBm) for master device				
	(25)	≤250mW(24dBm) for client device				
	5250-5350	≤250mW(24dBm) for client device or 11dBm+10logB*				
	5470-5725	≤250mW(24dBr	m) for client device o	r 11dBm+10logB*		
	5725-5850					
	Remark:	The maximum of measured over	e 26dB emission ban conducted output pov any interval of contin ntation calibrated in to ge.	ver must be luous transmission		
Test Mode:	Transmitting mode	with modulation	7	20		
Test Results:	Refer to Appendix 8	5G Wi-Fi	/	67)		

6.4 6dB Emisson Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (e)					
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C					
Test Setup:	RF test Computer Pount System Pount Supply Pount Table Remark: Offset=Cable loss+ attenuation factor.					
Test Procedure:	1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. 4. Measure and record the results in the test report.					
Limit:	≥ 500 kHz					
Test Mode:	Transmitting mode with modulation					
Test Results:	Refer to Appendix 5G Wi-Fi					

Report No. : EED32Q81846703 V Page 20 of 81

6.5 26dB Emission Bandwidth and 99% Occupied Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.407 (a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D
Test Setup:	(30) (30)
	Control Control Control Control Control Power Supply Table RF test System System Instrument Table
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. 4. Measure and record the results in the test report.
Limit:	No restriction limits
Test Mode:	Transmitting mode with modulation
Test Results:	Refer to Appendix 5G Wi-Fi

Report No. : EED32Q81846703 V Page 21 of 81

6.6 Maximum Power Spectral Density

Test Requirement:				
Test Method:	KDB789033 D02 G	eneral UNII Test	Procedures New Rule	s v02r01 Section F
Test Setup:	(6	(50)	(55)	61
	Control Computer Power Supply TEMPERATURE CAB	Attenuator	RF test - System Instrument	
Took Dreamdures	Remark: Offset=Ca		ation factor. receiver span to view	the entire emission
Test Procedure:	bandwidth. 1. Set F Auto, Detector = RI 2. Allow the sweep	RBW = 510 kHz/1 MS. s to continue until	MHz, VBW ≥ 3*RBW, the trace stabilizes.	
		anter famolion to a	letermine the maximur	m amplitude level.
Limit:		arice ranouori to a	letermine the maximur	n amplitude level.
Limit:	Frequency band (MHz)	Limit	etermine the maximur	m amplitude level.
Limit:	Frequency band	Limit	letermine the maximur	n amplitude level.
Limit:	Frequency band (MHz)	Limit ≤17dBm in 1MF		m amplitude level.
Limit:	Frequency band (MHz)	Limit ≤17dBm in 1MF ≤11dBm in 1MF	dz for master device	n amplitude level.
Limit:	Frequency band (MHz) 5150-5250	Limit ≤17dBm in 1MH ≤11dBm in 1MH ≤11dBm in 1MH	Hz for master device	m amplitude level.
Limit:	Frequency band (MHz) 5150-5250 5250-5350	Limit ≤17dBm in 1MH ≤11dBm in 1MH ≤11dBm in 1MH	Hz for master device Hz for client device Hz for client device Hz for client device	n amplitude level.
Limit:	Frequency band (MHz) 5150-5250 5250-5350 5470-5725	Limit ≤17dBm in 1MH ≤11dBm in 1MH ≤11dBm in 1MH ≤11dBm in 500l The maximum particular conducted em	Hz for master device Hz for client device Hz for client device Hz for client device	is measured as ection of a
Limit:	Frequency band (MHz) 5150-5250 5250-5350 5470-5725 5725-5850	Limit ≤17dBm in 1MH ≤11dBm in 1MH ≤11dBm in 1MH ≤11dBm in 500l The maximum particular conducted emcalibrated test in	Hz for master device Hz for client device Hz for client device Hz for client device KHz Dower spectral density	is measured as ection of a

6.7 Frequency Stability

Test Requirement:	47 CFR Part 15C Section 15.407 ((g)			
Test Method:	ANSI C63.10: 2013	13	(3)		
Test Setup:	(25)	(858)	(8%)		
	Control Contro	RF test System Instrument	9		
	Remark: Offset=Cable loss+ atten	uotion factor	(6)		
Test Procedure:	1.The EUT was placed inside the by nominal AC/DC voltage. 2. Turn the EUT on and couple its 3. Turn the EUT off and set the ch specified. d. Allow sufficient time (of the chamber to stabilize. 4. Repeat step 2 and 3 with the temperature. 5. The test chamber was allowed to 30 minutes. The supply voltage 115% and the frequency record.	environmental test characteristics output to a spectrum amber to the highest approximately 30 min approximately and the second of the second o	analyzer. temperature) for the temperature et to the lowest ree C for a minimum the EUT from 85% to		
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.				
Test Mode:	Transmitting mode with modulation				
Test Results:	Refer to Appendix 5G Wi-Fi	7	(6.)		

Report No. : EED32Q81846703 V Page 23 of 81

6.8 Radiated Emission

Test Requirement:	47 CFR Part 15C Sect	ion 1	5.209 and 18	5.407 (b)			
Test Method:	ANSI C63.10 2013	5		70			15
Test Site:	Measurement Distance	e: 3m	n (Semi-Anec	hoic Char	nbe	r)	(250)
Receiver Setup:	Frequency	1	Detector	RBV	V VBW		Remark
	0.009MHz-0.090MH	Ηz	Peak	10kH	Ιz	30kHz	Peak
	0.009MHz-0.090MH	Ηz	Average	10kH	Ηz	30kHz	Average
	0.090MHz-0.110MH	Ηz	Quasi-peal	k 10kH	Ηz	30kHz	Quasi-peak
	0.110MHz-0.490MH	Ηz	Peak	10kF	Ηz	30kHz	Peak
	0.110MHz-0.490MH	Ηz	Average	10kH	Ιz	30kHz	Average
	0.490MHz -30MHz	Z	Quasi-peal	k 10kH	Ηz	30kHz	Quasi-peak
	30MHz-1GHz	18	Quasi-peal	k 100 k	Hz	300kHz	Quasi-peak
	Above 1GHz		Peak	1MH	lz	3MHz	Peak
	Above 10112		Peak	1MF	lz	10kHz	Average
Limit:	Frequency		ld strength rovolt/meter)	Limit (dBuV/m)	R	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	24	00/F(kHz)	-		166	300
	0.490MHz-1.705MHz	240	000/F(kHz)	-		-	30
	1.705MHz-30MHz		30	-		-	30
	30MHz-88MHz	1	100	40.0	Qu	asi-peak	3
	88MHz-216MHz	y	150	43.5	Qu	asi-peak	3
	216MHz-960MHz		200	46.0	Qu	asi-peak	3
	960MHz-1GHz		500	54.0	Qu	asi-peak	3
	Above 1GHz		500	54.0	Α	verage	3
	*(1) For transmitters outside of the 5.15-5 dBm/MHz. (2) For transmitters opof the 5.15-5.35 GHz because of the 5.47-5 dBm/MHz. (3) For transmitters opot the 5.47-5 dBm/MHz. (4) For transmitters opot in All emissions shall be above or below the because or below the because of the band edge, and folionarily to a level of 27 Remark: The emission measurements employed frequency bands 9-9 emission limits in these	5.35 eratii band ppera 5.725 eratii poe lin and ly to rom dBn bying 0kHz	GHz band ng in the 5.25 shall not excepting in the 5.72 nited to a level of 15 5 MHz above 15 5 MHz above 15 5 MHz at the 15 mits shown a CISPR 2, 110-490kb	shall not 5-5.35 GH eed an e.i 5.47-5.72 shall no 25-5.85 G el of -27 ding linearlom 25 Ml e or belo band edg in the quasi-peadz and a	ex z ba z ba i.r.p. 5 G t ex dBm y to Hz a show the e. above above above the control of the cont	ceed an and: All em of -27 dB GHz band: ceed an oand: n/MHz at 7 10 dBm/Mabove or bat 5 MHz ane band edetector educed and look of the section	e.i.r.p. of -27 hissions outside Bm/MHz. All emissions e.i.r.p. of -27 5 MHz or more MHz at 25 MHz below the band above or below dge increasing are based on except for the MHz. Radiated

Report No.: EED32Q81846703 V Page 24 of 81

an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

Note:

(i) EIRP = ((E*d)^2) / 30

where:

E is the field strength in V/m;d is the measurement distance in meters;

• EIRP is the equivalent isotropically radiated power in watts.

(ii) Working in dB units, the above equation is equivalent to:

EIRP[dBm] = $E[dB\mu V/m] + 20 \log(d[meters]) - 104.77$

(iii) Or, if d is 3 meters:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

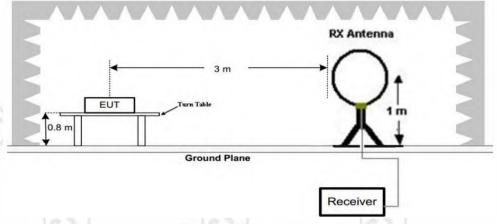
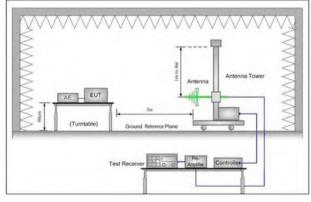



Figure 1. Below 30MHz

Horn Antonna Antenna Tower

AE EUT

Ground Reference Plane

Test Receiver

Test Receiver

Controller

Figure 2. 30MHz to 1GHz

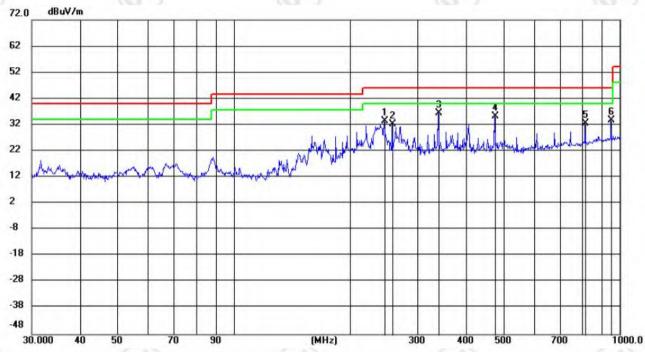

Figure 3. Above 1 GHz

Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

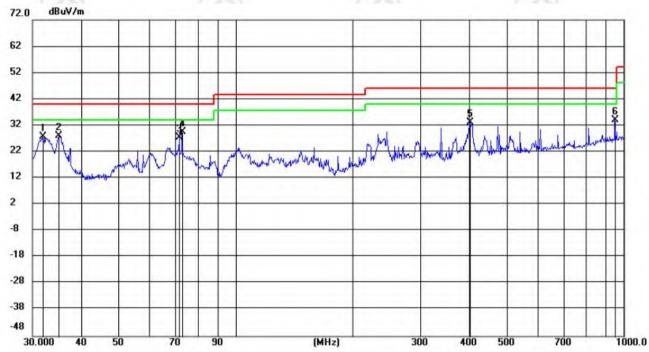
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	 e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel, the middle channel and the highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the
	worst case. i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode with modulation
Test Results:	Pass



Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

Remark: During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of 6Mbps for 802.11 a was recorded in the report.

Horizontal:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		245.7354	19.41	14.10	33.51	46.00	-12.49	QP	100	26	
2		258.0547	17.62	14.57	32.19	46.00	-13.81	QP	100	121	
3	*	338.9939	19.70	16.89	36.59	46.00	-9.41	QP	100	111	
4		474.6661	15.89	19.38	35.27	46.00	-10.73	QP	200	134	
5		813.6820	7.93	24.69	32.62	46.00	-13.38	QP	100	269	
6		949.2601	7.51	26.21	33.72	46.00	-12.28	QP	100	352	

V Page 27 of 81

Vertical:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		31.9210	15.37	12.50	27.87	40.00	-12.13	QP	100	18	
2		35.1216	15.03	12.95	27.98	40.00	-12.02	QP	100	7	
3		71.6182	17.10	10.24	27.34	40.00	-12.66	QP	100	232	
4	*	73.0385	19.51	10.06	29.57	40.00	-10.43	QP	100	7	
5		402.4025	15.22	18.08	33.30	46.00	-12.70	QP	100	168	
6		949.2602	7.99	26.21	34.20	46.00	-11.80	QP	100	18	

Report No.: EED32Q81846703 V Page 28 of 81

Transmitter Emission above 1GHz

Remark: Through Pre-scan, for 20MHz Occupied Bandwidth, 802.11 a mode was the worst case; for 40MHz Occupied Bandwidth, 802.11 n(HT40) mode was the worst case; only the worst case was recorded in the report.

Mode	:	80)2.11 a Tran	smitting		Channe	el:	5180MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1611.8445	11.97	35.66	47.63	68.20	20.57	PASS	Horizontal	PK
2	2556.1222	16.18	35.62	51.80	68.20	16.40	PASS	Horizontal	PK
3	3700.388	19.57	33.41	52.98	68.20	15.22	PASS	Horizontal	PK
4	8100.305	-4.09	56.40	52.31	68.20	15.89	PASS	Horizontal	PK
5	11212.9356	4.58	46.19	50.77	68.20	17.43	PASS	Horizontal	PK
6	14252.5376	12.49	40.56	53.05	68.20	15.15	PASS	Horizontal	PK
7	1924.037	16.48	36.32	52.80	68.20	15.40	PASS	Vertical	PK
8	3080.4032	17.73	35.84	53.57	68.20	14.63	PASS	Vertical	PK
9	4138.2055	20.22	32.85	53.07	68.20	15.13	PASS	Vertical	PK
10	8100.88	-4.08	56.92	52.84	68.20	15.36	PASS	Vertical	PK
11	12851.7676	8.00	43.24	51.24	68.20	16.96	PASS	Vertical	PK
12	15506.1003	10.95	42.04	52.99	68.20	15.21	PASS	Vertical	PK

4	Mode	:		802.11 a Tran	smitting		Channe	el:	5200MHz	
7	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1167.2067	9.85	36.97	46.82	68.20	21.38	PASS	Horizontal	PK
	2	1952.4181	16.99	34.47	51.46	68.20	16.74	PASS	Horizontal	PK
	3	2395.5158	16.23	36.17	52.40	68.20	15.80	PASS	Horizontal	PK
	4	8100.88	-4.08	55.65	51.57	68.20	16.63	PASS	Horizontal	PK
	5	11256.6378	4.65	45.97	50.62	68.20	17.58	PASS	Horizontal	PK
9	6	14250.8125	12.65	39.43	52.08	68.20	16.12	PASS	Horizontal	PK
	7	1137.2855	9.93	37.88	47.81	68.20	20.39	PASS	Vertical	PK
	8	1948.898	17.10	35.09	52.19	68.20	16.01	PASS	Vertical	PK
	9	2581.4233	15.94	36.02	51.96	68.20	16.24	PASS	Vertical	PK
	10	8100.88	-4.08	56.31	52.23	68.20	15.97	PASS	Vertical	PK
	11	11940.922	4.67	46.58	51.25	68.20	16.95	PASS	Vertical	PK
	12	15894.2447	13.77	38.16	51.93	68.20	16.27	PASS	Vertical	PK

Report No.: EED32Q81846703

V Page 29 of 81

п		1. 250.5		1 2 5 1		1 1			7-200	
	Mode	:		802.11 a Tran	smitting		Channe	el:	5240MHz	
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
0	1	1932.8373	16.70	35.10	51.80	68.20	16.40	PASS	Horizontal	PK
	2	2935.6374	17.39	35.74	53.13	68.20	15.07	PASS	Horizontal	PK
	3	4073.743	19.74	32.86	52.60	68.20	15.60	PASS	Horizontal	PK
	4	8100.88	-4.08	56.03	51.95	68.20	16.25	PASS	Horizontal	PK
	5	11951.8476	4.97	46.73	51.70	68.20	16.50	PASS	Horizontal	PK
	6	15504.9502	11.00	42.28	53.28	68.20	14.92	PASS	Horizontal	PK
	7	1580.8232	11.57	36.19	47.76	68.20	20.44	PASS	Vertical	PK
	8	2243.7097	15.20	35.50	50.70	68.20	17.50	PASS	Vertical	PK
	9	3104.6042	17.89	35.27	53.16	68.20	15.04	PASS	Vertical	PK
	10	8100.88	-4.08	56.22	52.14	68.20	16.06	PASS	Vertical	PK
	11	9664.9582	1.46	46.33	47.79	68.20	20.41	PASS	Vertical	PK
	12	14249.0875	12.54	40.75	53.29	68.20	14.91	PASS	Vertical	PK

Mode	:	80)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5190MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1706.2282	12.86	36.03	48.89	68.20	19.31	PASS	Horizontal	PK
2	2533.0213	16.09	36.33	52.42	68.20	15.78	PASS	Horizontal	PK
3	3301.072	18.36	34.22	52.58	68.20	15.62	PASS	Horizontal	PK
4	8089.3795	-4.20	55.49	51.29	68.20	16.91	PASS	Horizontal	PK
5	11233.6367	4.81	46.03	50.84	68.20	17.36	PASS	Horizontal	PK
6	15506.1003	10.95	42.50	53.45	68.20	14.75	PASS	Horizontal	PK
7	1922.0569	16.44	35.28	51.72	68.20	16.48	PASS	Vertical	PK
8	2856.2142	17.02	35.30	52.32	68.20	15.88	PASS	Vertical	PK
9	3786.4115	19.50	33.12	52.62	68.20	15.58	PASS	Vertical	PK
10	8100.88	-4.08	56.60	52.52	68.20	15.68	PASS	Vertical	PK
11	10599.955	4.94	44.74	49.68	68.20	18.52	PASS	Vertical	PK
12	15510.7005	10.73	41.66	52.39	68.20	15.81	PASS	Vertical	PK

Report No.: EED32Q81846703

V Page 30 of 81

Mod	e:	80)2.11 n(HT4	0) Transmitti	ng	Channe	el:	5230MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1710.1884	12.88	36.10	48.98	68.20	19.22	PASS	Horizontal	PK
2	2442.5977	15.89	36.26	52.15	68.20	16.05	PASS	Horizontal	PK
3	3425.597	19.21	33.85	53.06	68.20	15.14	PASS	Horizontal	PK
4	8100.88	-4.08	55.74	51.66	68.20	16.54	PASS	Horizontal	PK
5	11215.8108	4.61	45.87	50.48	68.20	17.72	PASS	Horizontal	PK
6	15000.075	10.78	41.25	52.03	68.20	16.17	PASS	Horizontal	PK
7	1400.416	10.63	36.75	47.38	68.20	20.82	PASS	Vertical	PK
8	2158.7864	15.07	35.85	50.92	68.20	17.28	PASS	Vertical	PK
9	3422.2969	19.16	33.83	52.99	68.20	15.21	PASS	Vertical	PK
10	8100.88	-4.08	57.09	53.01	68.20	15.19	PASS	Vertical	PK
11	12395.1948	6.46	45.08	51.54	68.20	16.66	PASS	Vertical	PK
12	14251.3876	12.59	40.29	52.88	68.20	15.32	PASS	Vertical	PK

Mode	:	8	02.11 a Tran	smitting		Channe	el:	5745MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1444.4444	10.57	37.15	47.72	68.20	20.48	PASS	Horizontal	PK
2	1945.5446	16.95	35.92	52.87	68.20	15.33	PASS	Horizontal	PK
3	2706.2706	16.31	35.55	51.86	68.20	16.34	PASS	Horizontal	PK
4	8100.9067	-4.08	55.58	51.50	68.20	16.70	PASS	Horizontal	PK
5	11252.1168	4.88	46.66	51.54	68.20	16.66	PASS	Horizontal	PK
6	15511.2341	10.70	43.48	54.18	68.20	14.02	PASS	Horizontal	PK
7	1572.6073	11.39	36.30	47.69	68.20	20.51	PASS	Vertical	PK
8	2190.319	14.58	36.17	50.75	68.20	17.45	PASS	Vertical	PK
9	3080.8581	17.59	35.65	53.24	68.20	14.96	PASS	Vertical	PK
10	8061.0374	-4.53	55.60	51.07	68.20	17.13	PASS	Vertical	PK
11	10600.4067	4.92	45.63	50.55	68.20	17.65	PASS	Vertical	PK
12	14745.283	10.87	41.35	52.22	68.20	15.98	PASS	Vertical	PK

Report No. : EED32Q81846703

V Page 31 of 81

	1		100		100	200		(TA)	
Mod	e:	80)2.11 a Tran	smitting		Chann	el:	5785MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1594.0594	11.73	35.76	47.49	68.20	20.71	PASS	Horizontal	PK
2	2265.1265	15.26	35.91	51.17	68.20	17.03	PASS	Horizontal	PK
3	3062.1562	17.24	35.41	52.65	68.20	15.55	PASS	Horizontal	PK
4	8100.9067	-4.08	56.27	52.19	68.20	16.01	PASS	Horizontal	PK
5	11208.4139	4.54	45.99	50.53	68.20	17.67	PASS	Horizontal	PK
6	16501.0667	9.08	42.17	51.25	68.20	16.95	PASS	Horizontal	PK
7	1542.3542	10.94	36.71	47.65	68.20	20.55	PASS	Vertical	PK
8	2405.3905	16.28	36.43	52.71	68.20	15.49	PASS	Vertical	PK
9	3390.5391	18.43	34.67	53.10	68.20	15.10	PASS	Vertical	PK
10	8100.9067	-4.08	54.77	50.69	68.20	17.51	PASS	Vertical	PK
11	11218.3812	4.64	45.82	50.46	68.20	17.74	PASS	Vertical	PK
12	12977.9985	7.31	44.75	52.06	68.20	16.14	PASS	Vertical	PK

Mode	:	80)2.11 a Tran	smitting		Channe	el:	5825MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1400.44	10.52	37.12	47.64	68.20	20.56	PASS	Horizontal	PK
2	2073.1573	15.27	35.69	50.96	68.20	17.24	PASS	Horizontal	PK
3	2941.1441	17.57	35.52	53.09	68.20	15.11	PASS	Horizontal	PK
4	7586.4391	-3.60	48.29	44.69	68.20	23.51	PASS	Horizontal	PK
5	8100.9067	-4.08	55.84	51.76	68.20	16.44	PASS	Horizontal	PK
6	11351.0234	5.02	46.27	51.29	68.20	16.91	PASS	Horizontal	PK
7	1504.4004	10.42	36.11	46.53	68.20	21.67	PASS	Vertical	PK
8	2184.8185	14.66	37.05	51.71	68.20	16.49	PASS	Vertical	PK
9	2849.835	16.99	35.67	52.66	68.20	15.54	PASS	Vertical	PK
10	8100.9067	-4.08	56.09	52.01	68.20	16.19	PASS	Vertical	PK
11	10840.3894	3.75	46.06	49.81	68.20	18.39	PASS	Vertical	PK
12	16824.6216	12.86	39.79	52.65	68.20	15.55	PASS	Vertical	PK

Report No. : EED32Q81846703 V Page 32 of 81

Mode:			2.11 n(HT4	0) Transmitti	ng	Channel:		5755MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1482.9483	10.43	36.72	47.15	68.20	21.05	PASS	Horizontal	PK
2	2156.2156	15.06	36.16	51.22	68.20	16.98	PASS	Horizontal	PK
3	2958.7459	17.54	35.15	52.69	68.20	15.51	PASS	Horizontal	PK
4	8100.9067	-4.08	56.60	52.52	68.20	15.68	PASS	Horizontal	PK
5	10458.5639	3.85	45.22	49.07	68.20	19.13	PASS	Horizontal	PK
6	13244.0496	7.50	45.40	52.90	68.20	15.30	PASS	Horizontal	PK
7	1478.5479	10.46	36.64	47.10	68.20	21.10	PASS	Vertical	PK
8	2216.1716	14.73	36.66	51.39	68.20	16.81	PASS	Vertical	PK
9	3546.7547	19.08	33.19	52.27	68.20	15.93	PASS	Vertical	PK
10	8100.9067	-4.08	56.62	52.54	68.20	15.66	PASS	Vertical	PK
11	10612.6742	4.20	44.97	49.17	68.20	19.03	PASS	Vertical	PK
12	17513.9009	11.32	41.39	52.71	68.20	15.49	PASS	Vertical	PK

Mode:		80)2.11 n(HT4	Channe	əl:	5795MHz			
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1433.4433	10.56	36.70	47.26	68.20	20.94	PASS	Horizontal	PK
2	2096.8097	15.21	36.18	51.39	68.20	16.81	PASS	Horizontal	PK
3	3518.7019	18.04	35.05	53.09	68.20	15.11 15.31	PASS	Horizontal Horizontal	PK
4	8100.9067	-4.08	56.97	52.89	68.20		PASS		PK
5	11256.7171	4.65	46.10	50.75	68.20	17.45	PASS	Horizontal	PK
6	14716.9145	10.36	41.53	51.89	68.20	16.31	PASS	Horizontal	PK
7	1459.2959	10.54	35.98	46.52	68.20	21.68	PASS	Vertical	PK
8	2300.33	15.07	38.06	53.13	68.20	15.07	PASS	Vertical	PK
9	3132.5633	17.10	35.50	52.60	68.20	15.60	PASS	Vertical	PK
10	8100.9067	-4.08	56.76	52.68	68.20	15.52	PASS	Vertical	PK
11	11002.1668	4.90	45.73	50.63	68.20	17.57	PASS	Vertical	PK
12	17002.5002	10.59	41.83	52.42	68.20	15.78	PASS	Vertical	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 40GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No. : EED32Q81846703 V Page 33 of 81

6.9 Radiated Emission which fall in the restricted bands

	Test Requirement:	47 CFR Part 15C Section 15.209 and 15.407 (b)							
1	Test Method:	ANSI C63.10 2013	13 13						
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)							
1	Receiver Setup:	Frequency	Detector	RBV	٧	VBW	Remark		
		0.009MHz-0.090MH	Peak 10kh		Hz 30kHz		Peak		
		0.009MHz-0.090MH	łz	Average	10kF	Ιz	30kHz	Average	
		0.090MHz-0.110MH	łz	Quasi-peak 10kl		Hz 30kHz		Quasi-peak	
		0.110MHz-0.490MHz		Peak 10		Ιz	30kHz	Peak	
		0.110MHz-0.490MH	Average	10kF	Ηz	30kHz	Average		
		0.490MHz -30MHz	<u>z</u>	Quasi-pea	k 10kH	Ιz	30kHz	Quasi-peak	
N		30MHz-1GHz		Quasi-pea	k 100 k	Hz 300kHz		Quasi-peak	
		Above 1GHz		Peak	1MH	lz	3MHz	Peak	
		Above 1G112		Peak	1MH	lz	10kHz	Average	
	Limit:	Lroguonov		ld strength rovolt/meter)	Limit (dBuV/m)	Remark		Measurement distance (m)	
		0.009MHz-0.490MHz 24		00/F(kHz)	-		-	300	
		0.490MHz-1.705MHz 240		000/F(kHz)	-		-	30	
		1.705MHz-30MHz	30		- ,10	<	-	30	
١		30MHz-88MHz		100	40.0	Qu	asi-peak	3	
4		88MHz-216MHz	1	150	43.5	Qu	asi-peak	3	
		216MHz-960MHz	200		46.0	6.0 Quasi-pea		3	
		960MHz-1GHz		500	54.0	Quasi-peak		3	
		Above 1GHz		500	54.0	Α	verage	3	
1000		*(1) For transmitters operating in the 5.15-5.25 GHz band: All emoutside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. (3) For transmitters operating in the 5.47-5.725 GHz band: All emoutside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of dBm/MHz. (4) For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz above or below the band edge increasing linearly to 10 dBm/MHz at 2 above or below the band edge, and from 25 MHz above or below the edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. Remark: The emission limits shown in the above table are base.							
		measurements emplo frequency bands 9-9							

emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. Note: (i) EIRP = $((E*d)^2) / 30$ where: • E is the field strength in V/m; • d is the measurement distance in meters; • EIRP is the equivalent isotropically radiated power in watts. (ii) Working in dB units, the above equation is equivalent to: $EIRP[dBm] = E[dB\mu V/m] + 20 log(d[meters]) - 104.77$ (iii) Or, if d is 3 meters: $EIRP[dBm] = E[dB\mu V/m] - 95.2$

Test Setup:

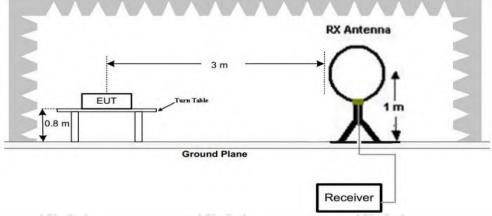
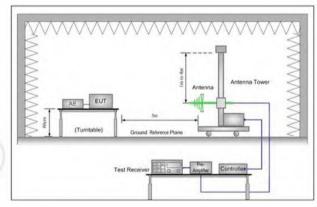



Figure 1. Below 30MHz

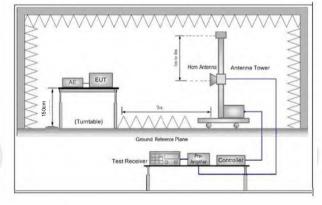
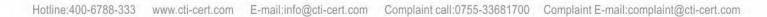


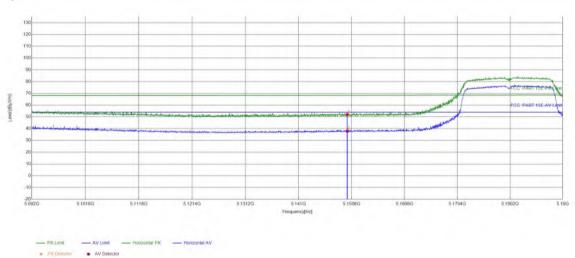
Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz


Test Procedure:

- 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Test Results:	Pass
Test Mode:	Transmitting mode with modulation
	r. Repeat above procedures until all frequencies measured was complete.
	 p. Test the EUT in the lowest channel, the Highest channel q. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	o. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. n. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. m. For each suspected emission, the EUT was arranged to its worst case.
	Note: For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. k. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

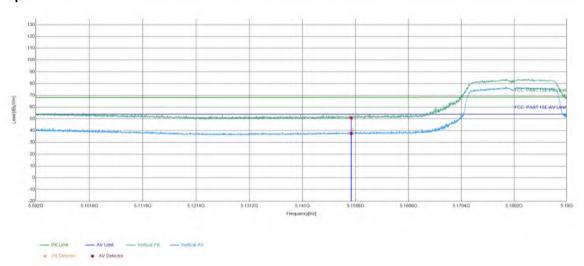


Report No. : EED32Q81846703 V Page 36 of 81

Test Data:

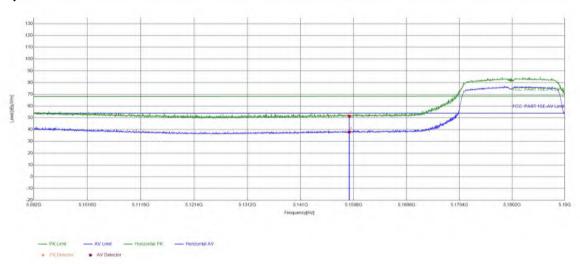
EUT_Name		Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	(30)

Test Graph


Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5150	21.98	30.06	52.04	68.38	16.34	PASS	Horizontal	PK			
2	5150	21.98	15.87	37.85	54.00	16.15	PASS	Horizontal	AV			

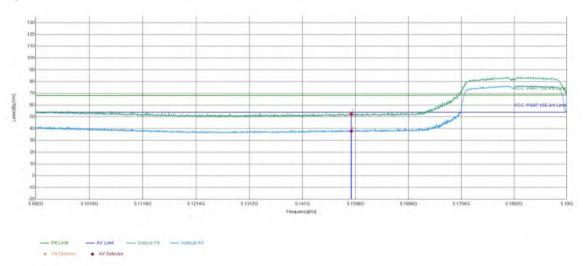
Report No. : EED32Q81846703 V Page 37 of 81

3 /	(Na) -/	V63 - V	(69.7
EUT_Name		Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(30)	60

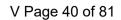

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	21.98	28.85	50.83	68.38	17.55	PASS	Vertical	PK		
2	5150	21.98	15.63	37.61	54.00	16.39	PASS	Vertical	AV		

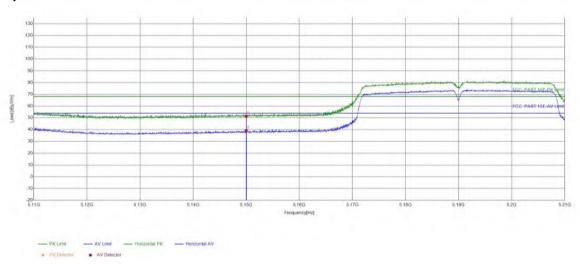
V Page 38 of 81 Report No.: EED32Q81846703

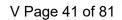
0 /	1900	1000 7	V02 /	
EUT_Name		Test_Model		
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16	
Remark	23.5°C56.9%\	(3)	(30)	

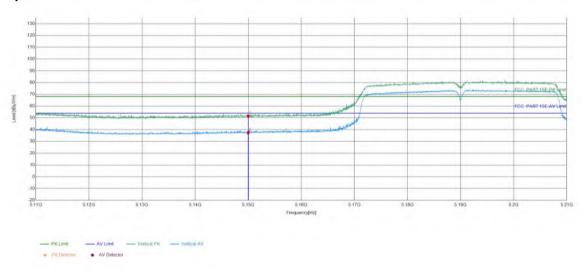

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	21.98	29.57	51.55	68.38	16.83	PASS	Horizontal	PK		
2	5150	21.98	16.00	37.98	54.00	16.02	PASS	Horizontal	AV		

V Page 39 of 81 Report No.: EED32Q81846703

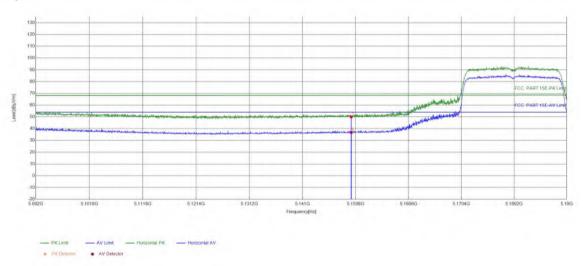

13 /	1/43	V63 - 7	100
EUT_Name		Test_Model	
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	(30)


Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	21.98	30.41	52.39	68.38	15.99	PASS	Vertical	PK		
2	5150	21.98	15.87	37.85	54.00	16.15	PASS	Vertical	AV		


EUT_Name		Test_Model	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(20)	(3)

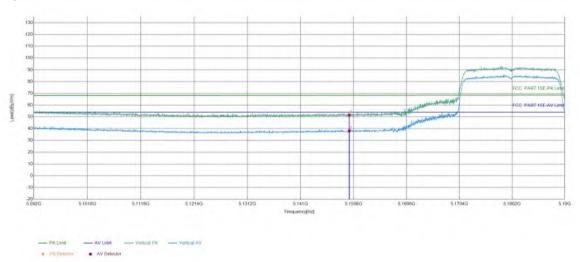

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	21.73	29.83	51.56	68.20	16.64	PASS	Horizontal	PK		
2	5150	21.73	17.37	39.10	54.00	14.90	PASS	Horizontal	AV		

<i>Q</i> _ <i>J</i>	1002 7	100	100 /	
EUT_Name		Test_Model		
Test_Mode 802.11 n(HT40) Transmitting		Test_Frequency	5190MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16	
Remark	23.5°C56.9%\	(3)	(30)	


Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	21.73	29.92	51.65	68.20	16.55	PASS	Vertical	PK		
2	5150	21.73	15.62	37.35	54.00	16.65	PASS	Vertical	AV		

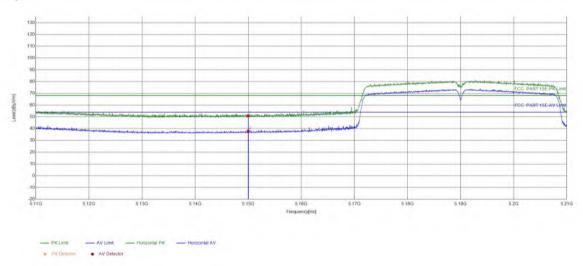
V Page 42 of 81 Report No.: EED32Q81846703

<u></u>	6			
EUT_Name		Test_Model		
Test_Mode 802.11 ac(VHT20) Transmitting		Test_Frequency	5180MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024/12/17	
Remark	23.5°C56.9%\	(3)	(3)	


Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	21.98	28.08	50.06	68.38	18.32	PASS	Horizontal	PK		
2	5150	21.98	14.81	36.79	54.00	17.21	PASS	Horizontal	AV		

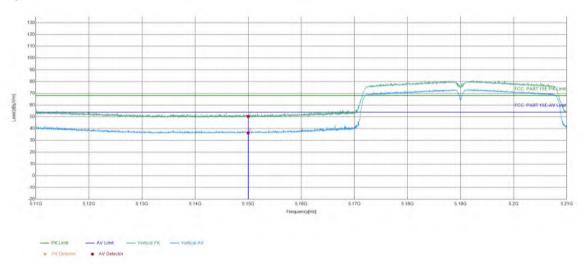
V Page 43 of 81 Report No.: EED32Q81846703

EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/17
Remark	23.5°C56.9%\	(20)	(30)


Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	21.98	29.74	51.72	68.38	16.66	PASS	Vertical	PK	
2	5150	21.98	16.07	38.05	54.00	15.95	PASS	Vertical	AV	

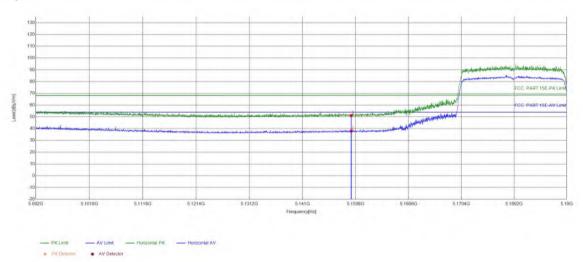
Report No. : EED32Q81846703 V Page 44 of 81

13. /	1/63	1063	100
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	chenjun	Test_Date	2024/12/16
Remark	21.8°C59.9%\	(3)	(30)

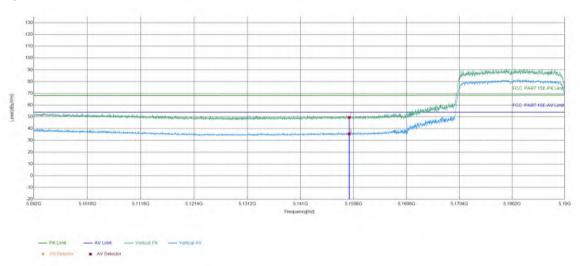


Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	21.73	29.22	50.95	68.20	17.25	PASS	Horizontal	PK	
2	5150	21.73	16.05	37.78	54.00	16.22	PASS	Horizontal	AV	

	102 /	100 /	100 /
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5190MHz
Tset_Engineer	chenjun	Test_Date	2024/12/16
Remark	21.8°C59.9%\	(30)	(30)

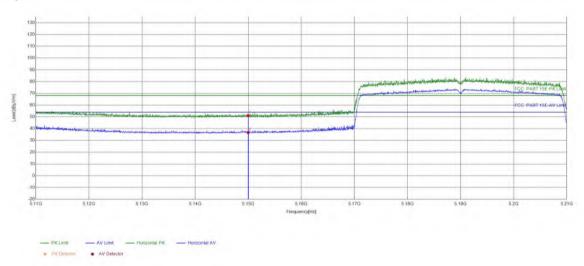

Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	21.73	28.64	50.37	68.20	17.83	PASS	Vertical	PK	
2	5150	21.73	14.63	36.36	54.00	17.64	PASS	Vertical	AV	

EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE20)Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/17
Remark	23.5°C56.9%\	(3)	(30)


Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	21.98	29.19	51.17	68.38	17.21	PASS	Horizontal	PK	
2	5150	21.98	15.93	37.91	54.00	16.09	PASS	Horizontal	AV	

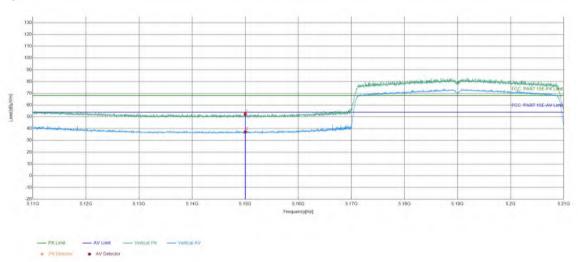
V Page 47 of 81 Report No.: EED32Q81846703

13 /	1763	V63 V	(No.)
EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE20)Transmitting	Test_Frequency	5180MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/17
Remark	23.5°C56.9%\	(3)	(30)

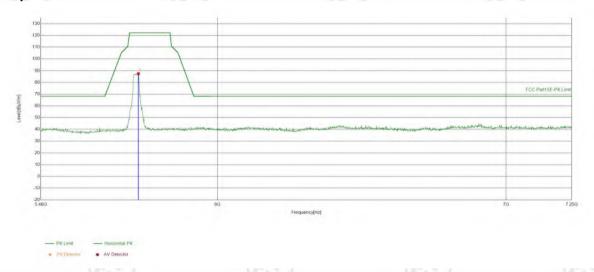

Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5150	21.98	27.62	49.60	68.38	18.78	PASS	Vertical	PK	
2	5150	21.98	13.54	35.52	54.00	18.48	PASS	Vertical	AV	

V Page 48 of 81 Report No.: EED32Q81846703

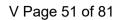
	NO.	100	
EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE40)Transmitting	Test_Frequency	5190MHz
Tset_Engineer	chenjun	Test_Date	2024/12/16
Remark	21.8°C59.9%\	(A)	(20)

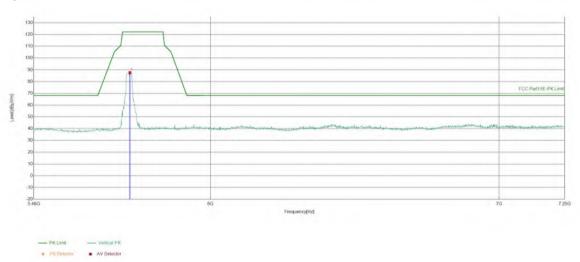

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	21.73	29.34	51.07	68.20	17.13	PASS	Horizontal	PK		
2	5150	21.73	14.97	36.70	54.00	17.30	PASS	Horizontal	AV		

EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE40)Transmitting	Test_Frequency	5190MHz
Tset_Engineer	chenjun	Test_Date	2024/12/16
Remark	21.8°C59.9%\	(30)	GB)

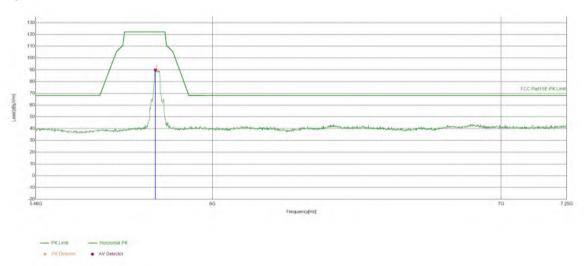

Suspecte	Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark		
1	5150	21.73	30.64	52.37	68.20	15.83	PASS	Vertical	PK		
2	5150	21.73	15.45	37.18	54.00	16.82	PASS	Vertical	AV		

V	Page	50	of 81	
v	ıayc	JU	01 0 1	


EUT_Name	6.	Test_Model	(0)
Test_Mode	802.11 a Transmitting	Test_Frequency	5745MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	205	245

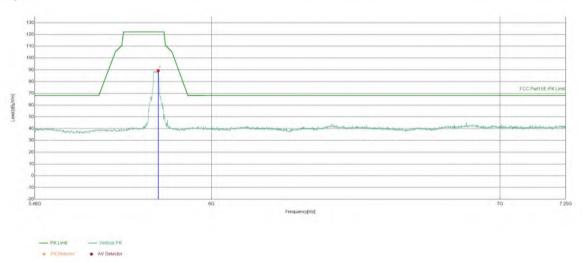

Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5751.916	-7.49	95.05	87.56	122.20	34.64	PASS	Horizontal	PK

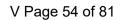
0 /	100	1063-3	
EUT_Name		Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5745MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(30)	60

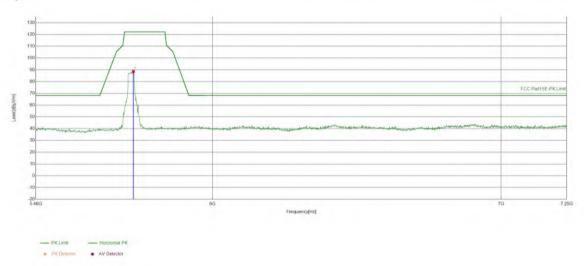

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5747.4387	-7.58	95.26	87.68	122.20	34.52	PASS	Vertical	PK

V Page 52 of 81 Report No.: EED32Q81846703

13 /	1/43	V63 - 7	100
EUT_Name		Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(30)	(30)

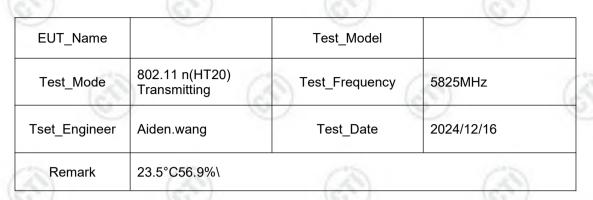

Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5819.97	-7.66	97.63	89.97	122.20	32.23	PASS	Horizontal	PK

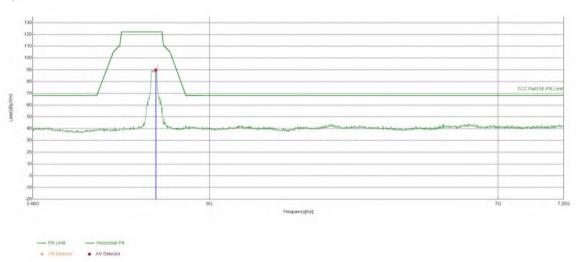

EUT_Name		Test_Model	
Test_Mode	802.11 a Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(20)	(2)


Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5831.6108	-7.58	96.82	89.24	122.20	32.96	PASS	Vertical	PK
	•	•				•	•		

EUT_Name		Test_Model	
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5745MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(20)	(A)

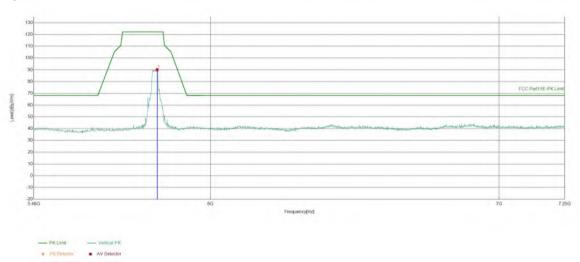
Sus	spected List								
NC	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5751.916	-7.49	96.07	88.58	122.20	33.62	PASS	Horizontal	PK


EUT_Name		Test_Model	
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5745MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	(30)

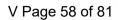

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5749.2296	-7.51	95.74	88.23	122.20	33.97	PASS	Vertical	PK

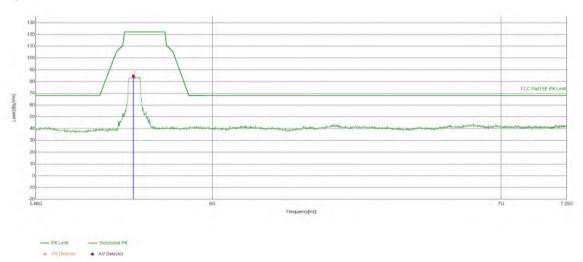
Test Graph

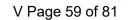
Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5830.7154	-7.59	97.50	89.91	122.20	32.29	PASS	Horizontal	PK

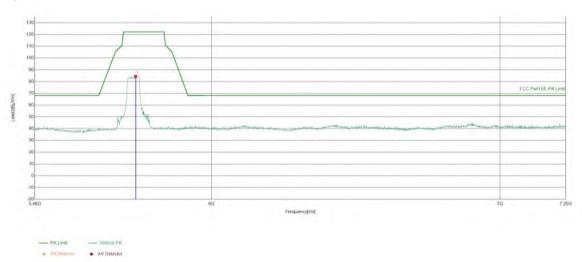


V Page 56 of 81

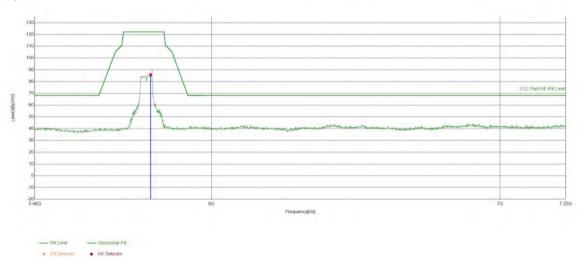

EUT_Name		Test_Model	
Test_Mode	802.11 n(HT20) Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	(30)


Suspe	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5831.6108	-7.58	97.83	90.25	122.20	31.95	PASS	Vertical	PK


63 /	Nu - /	V63-7	V62 /
EUT_Name		Test_Model	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5755MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\		

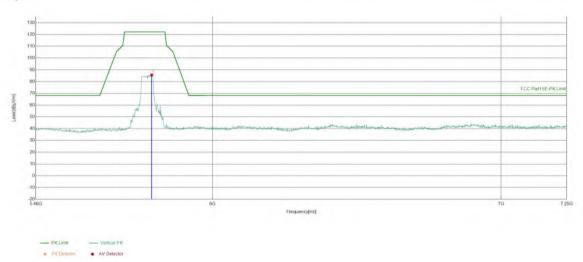

Suspe	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5751.916	-7.49	92.25	84.76	122.20	37.44	PASS	Horizontal	PK	

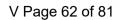
<i>Q</i> _ <i>J</i>	1002 7	100	100 /
EUT_Name		Test_Model	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5755MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	(30)

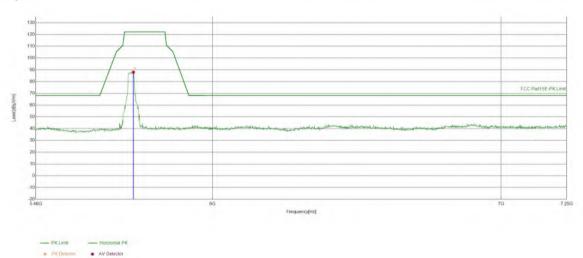

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5761.7659	-7.55	91.99	84.44	122.20	37.76	PASS	Vertical	PK

V	Page	60	∩f	81
v	гачс	υu	ΟI	OΙ

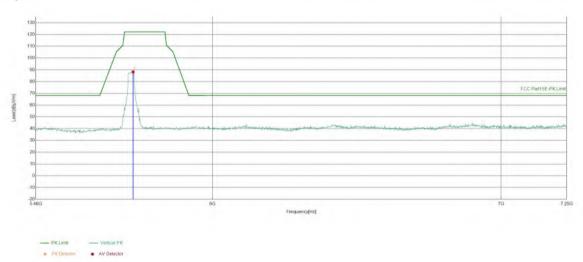
EUT_Name		Test_Model	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5795MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	(3)


Suspe	ected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5808.3292	-7.73	93.55	85.82	122.20	36.38	PASS	Horizontal	PK

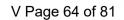

EUT_Name		Test_Model	
Test_Mode	802.11 n(HT40) Transmitting	Test_Frequency	5795MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(20)	CO.

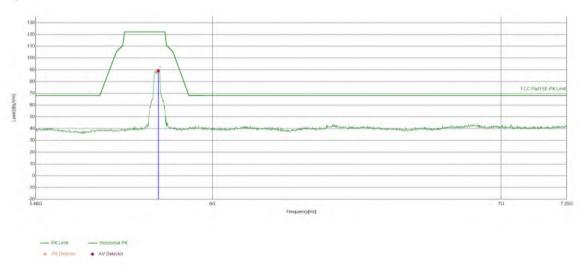

NO Freq. [dB] Factor [dB] Reading [dBμV] Level [dBμV/m] Limit [dBμV/m] Margin [dB] Result Polarity Remark 1 5808.3292 -7.73 93.36 85.63 122.20 36.57 PASS Vertical PK	Sus	pected List								
1 5808.3292 -7.73 93.36 85.63 122.20 36.57 PASS Vertical PK	NO							Result	Polarity	Remark
	1	5808.3292	-7.73	93.36	85.63	122.20	36.57	PASS	Vertical	PK

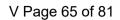
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5745MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(20)	GD.

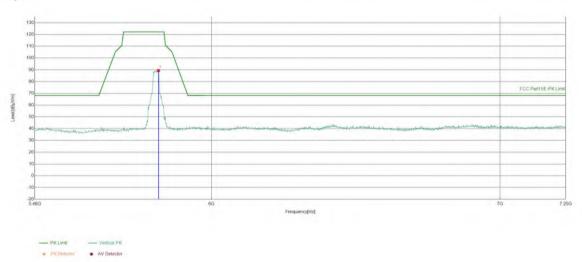

S	uspe	cted List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	5751.916	-7.49	95.57	88.08	122.20	34.12	PASS	Horizontal	PK

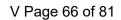
١/	Page	63	٥f	Q 1	
V	Page	ხა	Οī	δT	

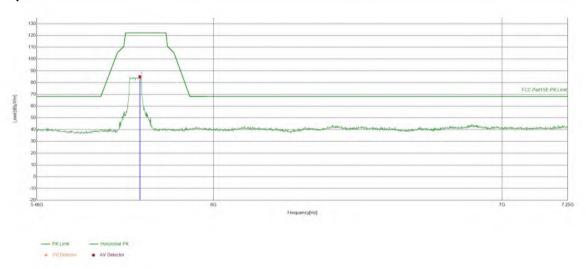

EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5745MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	(30)

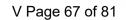

Suspe	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5751.0205	-7.49	95.79	88.30	122.20	33.90	PASS	Vertical	PK

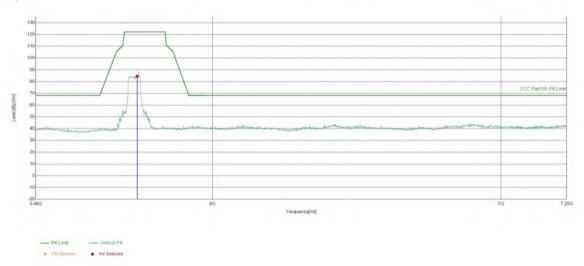

EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(20)	(3)

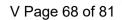

[MHZ] [dBhA] [dBhA/w] [dBhA/w] [dBh									cted List	Suspe
4 5000 0045 7.00 00.74 00.44 400.00 00.00 00.00 00.00	Remark	Polarity	Result							NO
1 5828.9245 -7.60 96.74 89.14 122.20 33.06 PASS Horizontal	PK	Horizontal	PASS	33.06	122.20	89.14	96.74	-7.60	5828.9245	1

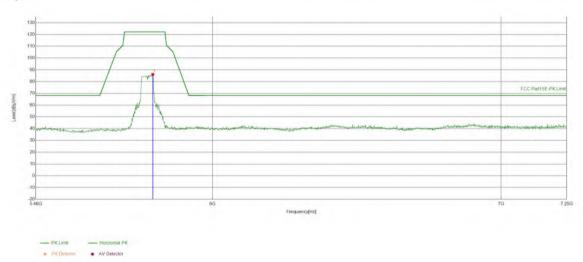

	1322	100	100
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT20) Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(30)	(30)


Suspe	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5832.5063	-7.58	96.94	89.36	122.20	32.84	PASS	Vertical	PK

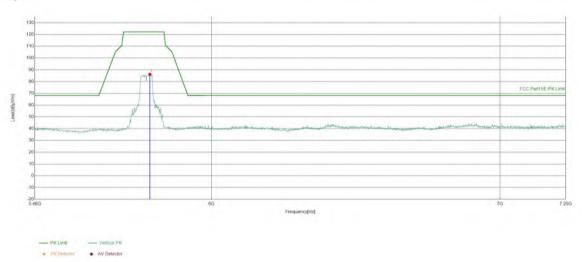

EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5755MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	(30)


Susp	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5768.9295	-7.59	92.62	85.03	122.20	37.17	PASS	Horizontal	PK


<i>Q</i> _ <i>J</i>	1000	100 /	100 /
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5755MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(30)	(30)

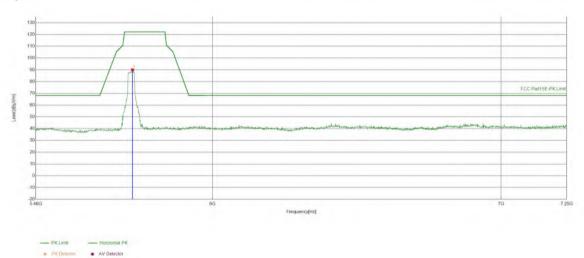

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5763.5568	-7.56	92.15	84.59	122.20	37.61	PASS	Vertical	PK

EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5795MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(20)	(3)

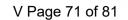

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5811.911	-7.71	93.81	86.10	122.20	36.10	PASS	Horizontal	PK

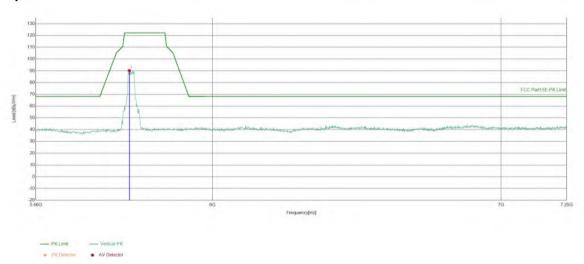
١,	Page	60	۰f	01	
V	Page	งษ	OI	ÖΙ	

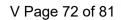
<i>Q</i> _ <i>J</i>	1000	100 /	100 /
EUT_Name		Test_Model	
Test_Mode	802.11 ac(VHT40) Transmitting	Test_Frequency	5795MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(30)	(30)

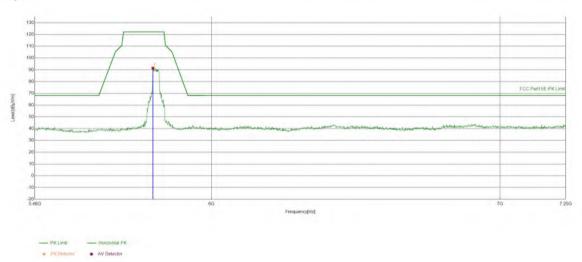

Suspe	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5805.6428	-7.74	93.92	86.18	122.20	36.02	PASS	Vertical	PK

V	Page	70	of	81	
v	rauc	. 10	UΙ	OΙ	

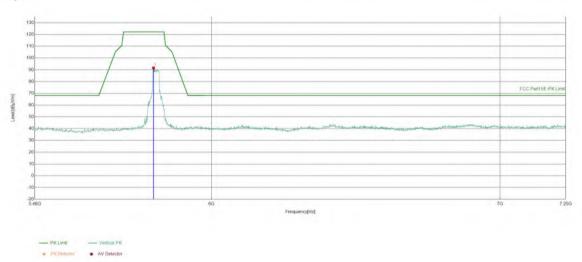

EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE20)Transmitting	Test_Frequency	5745MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	GB)


Suspected List										
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	5749.2296	-7.51	97.50	89.99	122.20	32.21	PASS	Horizontal	PK	


EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE20)Transmitting	Test_Frequency	5745MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	GB)

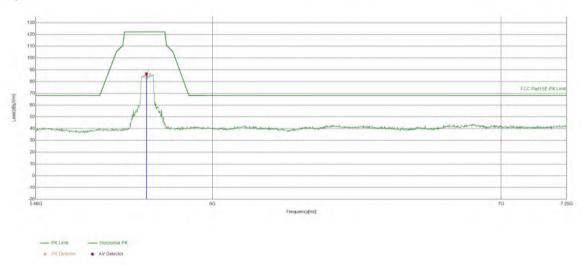

Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5739.3797	-7.91	98.10	90.19	122.20	32.01	PASS	Vertical	PK			

EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE20)Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(20)	CO.


Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5815.4927	-7.69	99.15	91.46	122.20	30.74	PASS	Horizontal	PK			

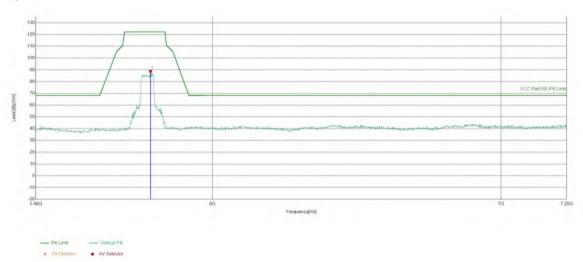
١/	Dago	72	٥f	Q 1	
V	Page	73	OΤ	δT	

0 /	VW.	1000	
EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE20)Transmitting	Test_Frequency	5825MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	GA)


Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5817.2836	-7.67	99.28	91.61	122.20	30.59	PASS	Vertical	PK			

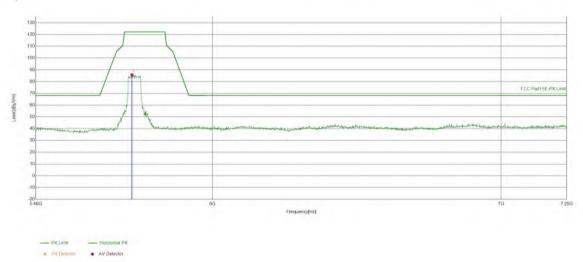
Report No. : EED32Q81846703 V Page 74 of 81

13 /	1763	V63 V	(No.)
EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE40)Transmitting	Test_Frequency	5755MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(3)	(30)


Susp	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5792.2111	-7.73	94.35	86.62	122.20	35.58	PASS	Horizontal	PK			

V Page 75 of 81

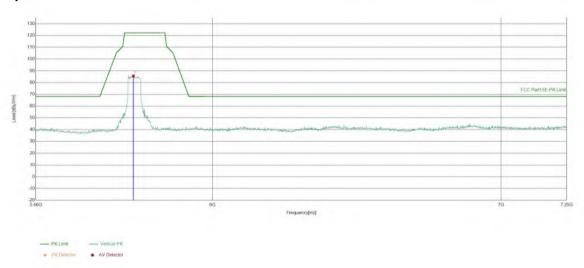
EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE40)Transmitting	Test_Frequency	5755MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(20)	(3)


Suspe	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	5804.7474	-7.75	96.55	88.80	122.20	33.40	PASS	Vertical	PK			

\/	Page	76	Ωf	21
V	Page	70	OI	OΙ

EUT_Name		Test_Model		
Test_Mode 802.11 ax(HE40)Transmitting		Test_Frequency	5795MHz	
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16	
Remark	23.5°C56.9%\	(30)	(A)	

	cted List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5747.4387	-7.58	93.32	85.74	122.20	36.46	PASS	Horizontal	PK



Report No.: EED32Q81846703 V Page 77 of 81

3 /	Nu3 - /	V63 - 7	100
EUT_Name		Test_Model	
Test_Mode	802.11 ax(HE40)Transmitting	Test_Frequency	5795MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/12/16
Remark	23.5°C56.9%\	(30)	(A)

Test Graph

Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	5751.916	-7.49	93.12	85.63	122.20	36.57	PASS	Vertical	PK

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 1GHz to 25GHz, the disturbance above 13GHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

V Page 78 of 81

7 Appendix 5G Wi-Fi

Refer to Appendix: 5G Wi-Fi Band 1& Band 4 of EED32Q81846703

