KSIGN (Guangdong) Testing Co., Ltd. West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel.: + (86)755-29852678 Fax: + (86)755-29852397 E-mail: info@gdksign.cn Website: www.gdksign.com # **TEST REPORT** Report No.: KS2101S00230E02 FCC ID------2AO94-LW004-PB Applicant: **MOKO TECHNOLOGY LIMITED** 2F, Building1, No.37 Xiaxintang Xintang village, Fucheng Street, Address: Longhua District, Shenzhen, Guangdong Province, China Manufacturer....: MOKO TECHNOLOGY LTD. 2F, Building1, No.37 Xiaxintang Xintang village, Fucheng Street, Address....: Longhua District, Shenzhen, Guangdong Province, China Cory Hua Product Name: LoRaWAN Node Trade Mark Model/Type reference....: LW004-PB Listed Model(s)....: Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.249 Date of Receipt.....: Jan. 11, 2021 Date of Test Date Jan. 11, 2021- Jan. 23, 2021 Date of issue: Jan. 23, 2021 Test result....: Compiled by: (Printed name+signature) Rory Huang Supervised by: (Printed name+signature) Eder Zhan Approved by: (Printed name+signature) Address Cary Luo Testing Laboratory Name: KSIGN(Guangdong) Testing Co., Ltd. > West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample. | N2. | TABLE OF CONTENTS | Page | |-----------------------------------|---|-------------| | 1. TEST SUMMARY | NO CONTRACTOR OF THE PROPERTY | | | 1.1. Test Standards | 33% | (M) 100 per | | | | | | 1.3. TEST DESCRIPTION | <u> Alle</u> | | | 1.4. TABLE OF CARRIER FREQUENCY | | 4 | | 1.5. MEASUREMENT UNCERTAINTY | | | | 1.6. Environmental conditions | 500.7.22 | | | 2. GENERAL INFORMATION | 7.38.58 | | | 2.1. CLIENT INFORMATION | 1000 X | | | | 243,09 | | | | 734) MAC 2 | | | 2.4. MEASUREMENT INSTRUMENTS LIST | XIT | | | 2.5. Test Software | | A | | 3. TEST ITEM AND RESULTS | | | | 3.1 ANTENNA PEOULDEMENT | (A) | 10 | | | Z X392 | | | | A16252 | | | | XXXX | | | | | | | | | | | | CTIONAL | 3′ | ## 1. TEST SUMMARY ### 1.1. Test Standards The tests were performed according to following standards: **FCC Rules Part 15.249:** Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz. Report No.: KS2101S00230E02 ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices. ## 1.2. Report version | Revised No. | Date of issue | Description | |-------------|---------------|-------------| | 01 | Jan. 23, 2021 | Original | | | AL. | | | , A | 20 | | | | | | # 1.3. Test Description | | FCC Rules Part 15.249 | | | |--------------------------------------|--|----------|------------| | T | Section in CFR 47 | December | Test | | Test Item | FCC | Result | Engineer | | Antenna requirement | 15.203 | Pass | Rory Huang | | AC Power Line Conducted
Emissions | 15.207 | Pass | Rory Huang | | 20dB Bandwidth | Section 15.215(c) | Pass | Rory Huang | | Band edge Emissions | Section 15.249(d) | Pass | Rory Huang | | Radiated Spurious Emissions | Section 15.205(a), Section 15.209(a),
Section 15.249, Section 15.35 | Pass | Rory Huang | #### Note: 1. The measurement uncertainty is not included in the test result. ## 1.4. Table of Carrier Frequency | Frequency Band | Channel Number | Frequency | |----------------|----------------|-----------| | 915MHz | 1 | 915MHz | ### 1.5. Measurement Uncertainty The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd. Report No.: KS2101S00230E02 | Test Items | Measurement Uncertainty | Notes | |---|-------------------------|-------| | Transmitter power conducted | 0.42 dB | (1) | | Transmitter power Radiated | 2.14 dB | (1) | | Conducted spurious emissions 9kHz~40GHz | 1.60 dB | (1) | | Radiated spurious emissions 9kHz~40GHz | 2.20 dB | (1) | | Conducted Emissions 9kHz~30MHz | 3.20 dB | (1) | | Radiated Emissions 30~1000MHz | 4.70 dB | (1) | | Radiated Emissions 1~18GHz | 5.00 dB | (1) | | Radiated Emissions 18~40GHz | 5.54 dB | (1) | | Occupied Bandwidth | 2.80 dB | (1) | **Note (1):** This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96. #### 1.6. Environmental conditions During the measurement the environmental conditions were within the listed ranges: | Temperature: | 15~35°C | |--------------------|-------------| | Relative Humidity: | 30~60 % | | Air Pressure: | 950~1050mba | # 2. GENERAL INFORMATION ## 2.1. General Description of EUT | Test Sample Number: | 1-1-1(Normal Sample),1-1-2(Engineering Sample) | | |-----------------------|--|----------| | Product Name: | LoRaWAN Node | | | Trade Mark: | / | N.7 | | Model/Type reference: | LW004-PB | She | | Listed Model(s): | | | | Model Different: | | 2 | | Power supply | DC 5V□1A | | | Power supply(Battery) | DC 3.7V□540mAh 1.998Wh | | | Hardware version: | V1.0.4 | 2010 | | Software version: | V1.0.10 | | | Specification | | | | Modulation: | GFSK | 9 | | Operation frequency: | 915MHz | V | | Channel number: | 1 1 | | | Antenna type: | FPC Antenna | | | Antenna gain: | 1.40 dBi | | ### 2.2. Description of Test Modes Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing. Test Frequency: 915MHz #### Test mode For RF test items: The engineering test program was provided and enabled to make EUT continuous transmit. For Radiated spurious emissions test item: The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded ## 2.3. Measurement Instruments List | | ٦ | Tonscend JS0806-2 | Test system | | | |------|--|-------------------|-------------|------------|------------| | Item | Test Equipment | Manufacturer | Model No. | Serial No. | Cal. Until | | 1 | Spectrum Analyzer | R&S | FSV40-N | 101798 | 04/07/2021 | | 2 | Vector Signal Generator | Agilent | N5182A | MY50142520 | 04/07/2021 | | 3 | Analog Signal Generator | HP | 83752A | 3344A00337 | 04/07/2021 | | 4 | Power Sensor | Agilent | E9304A | MY50390009 | 04/07/2021 | | 5 | Power Sensor | Agilent | E9300A | MY41498315 | 04/07/2021 | | 6 | Wideband Radio
Communication Tester | R&S | CMW500 | 157282 | 04/07/2021 | | 7 | Climate Chamber | Angul | AGNH80L | 1903042120 | 04/07/2021 | | 8 | Dual Output DC Power
Supply | Agilent | E3646A | MY40009992 | 04/07/2021 | | 9 | RF Control Unit | Tonscend | JS0806-2 | 1 | 04/07/2021 | | | Transmitter sp | ourious emissions | & Receiver spuriou | us emissions | | |------|--|------------------------|--------------------|--------------|------------| | Item | Test Equipment | Manufacturer | Model No. | Serial No. | Cal. Until | | 1 | EMI Test Receiver | R&S | ESR | 102525 | 04/07/2021 | | 2 | High Pass Filter | Chengdu
E-Microwave | OHF-3-18-S | 0E01901038 | 03/27/2021 | | 3 | High Pass Filter | Chengdu
E-Microwave | OHF-6.5-18-S | 0E01901039 | 03/27/2021 | | 4 | Spectrum Analyzer | HP | 8593E | 3831U02087 | 04/07/2021 | | 5 | Ultra-Broadband
logarithmic period
Antenna | Schwarzbeck | VULB 9163 | 01230 | 03/29/2023 | | 6 | Loop Antenna | Beijin ZHINAN | ZN30900C | 18050 | 03/25/2021 | | 7 | Spectrum Analyzer | R&S | FSV40-N | 101798 | 04/07/2021 | | 8 | Horn Antenna | Schwarzbeck | BBHA 9120 D | 2023 | 03/29/2023 | | 9 | Pre-Amplifier | Schwarzbeck | BBV 9745 | 9745#129 | 04/07/2021 | | 10 | Pre-Amplifier | EMCI | EMC051835SE | 980662 | 04/07/2021 | | 11 | Pre-Amplifier | Schwarzbeck | BBV-9721 | 57 | 04/07/2021 | | 12 | Horn Antenna | Schwarzbeck | BBHA 9170 | 00939 | 03/29/2021 | | Item | Test Equipment | Manufacturer | Model No. | Serial No. | Cal. Until | |------|-------------------|--------------|-----------|--------------|------------| | 1 | LISN | R&S | ENV432 | 1326.6105.02 | 03/27/2021 | | 2 | EMI Test Receiver | R&S | ESR | 102524 | 04/07/2021 | | 3 | Manual RF Switch | JS TOYO | 1 | MSW-01/002 | 04/07/2021 | Note: ¹⁾The Cal. Interval was one year. 2)The cable loss has calculated in test result which connection between each test instruments. 2.4. Test Software | Software name | Model | Version | |---|----------|---------------| | Conducted emission Measurement Software | EZ-EMC | EMC-Con 3A1.1 | | Radiated emission Measurement Software | EZ-EMC | FA-03A.2.RE | | Bluetooth and WIFI Test System | JS1120-3 | 2.5.77.0418 | Report No.: KS2101S00230E02 ### 3. TEST ITEM AND RESULTS ### 3.1. Antenna requirement #### Requirement #### FCC CFR Title 47 Part 15 Subpart C Section 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. Report No.: KS2101S00230E02 #### FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i): (i) Systems operating in the 902~928 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi. #### **Test Result** The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo. Note: The antenna is permanently fixed to the EUT #### 3.2. 20dB Bandwidth #### Limit Operation Frequency range 902MHz~928MHz. #### **Test Configuration** #### **Test Procedure** - 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement. - 2. Set to the maximum power setting and enable the EUT transmit continuously - Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel Page 11 of 31 RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold 4. Measure and record the results in the test report. #### **Test Mode** Please refer to the clause 2.2. #### **Test Results** #### 3.3. Conducted Emission #### Limit #### **Conducted Emission Test Limit** | = 30 | Maximum RF Line Voltage (dBμV) | | | |---------------|--------------------------------|---------------|--| | Frequency | Quasi-peak Level | Average Level | | | 150kHz~500kHz | 66 ~ 56 * | 56 ~ 46 * | | | 500kHz~5MHz | 56 | 46 | | | 5MHz~30MHz | 60 | 50 | | #### Notes: - (1) *Decreasing linearly with logarithm of the frequency. - (2) The lower limit shall apply at the transition frequencies. - (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz. #### **Test Configuration** #### **Test Procedure** - 1. The EUT was setup according to ANSI C63.10:2013 requirements. - 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface. - 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs) - 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source. - 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length. - 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz. - 7. During the above scans, the emissions were maximized by cable manipulation. #### **Test Results** Page 14 of 31 #### Remarks: ^{1.}Measurement = Reading Level+ Correct Factor ^{2.}Over = Measurement -Limit Remarks: ^{1.}Measurement = Reading Level+ Correct Factor ^{2.}Over = Measurement -Limit ## 3.4. Radiated Spurious Emissions #### LIMIT FCC CFR Title 47 Part 15 Subpart C Section 15.209(a) and 15.205(a) #### Standard FCC15.249 | Fundamental Frequency | Field Strength of Fundamental (millivolts/meter) | Field Strength of Harmonics (microvolts/meter) | | | |-----------------------|--|--|--|--| | 900-928MHz | 50 (94dBuV/m @3m) | 500 (54dBuV/m @3m) | | | | 2400-2483.5MHz | 50 (94dBuV/m @3m) | 500 (54dBuV/m @3m) | | | | 5725-5875MHz | 50 (94dBuV/m @3m) | 500 (54dBuV/m @3m) | | | | 24.0-24.25GHz | 250 (108dBuV/m @3m) | 2500 (68dBuV/m @3m) | | | #### Standard FCC 15.209 | Frequency | Distance | Field Strengths Limit | | | | |---------------|----------|--------------------------|------------------------|--|--| | (MHz) | Meters | μ V/m | dB(μV)/m | | | | 0.009 ~ 0.490 | 300 | 2400/F(kHz) | | | | | 0.490 ~ 1.705 | 30 | 24000/F(kHz) | / 20 | | | | 1.705 ~ 30 | 30 | 30 | (/-)/ | | | | 30 ~ 88 | 3 | 100 | 40.0 | | | | 88 ~ 216 | 3 | 150 | 43.5 | | | | 216 ~ 960 | 3 | 200 | 46.0 | | | | 960 ~ 1000 | 3 | 500 | 54.0 | | | | Above 1000 | 3 | Other:74.0dB(µV)/m(Peak) | 54.0dB(μV)/m (Average) | | | Remark: - (1) Emission level dB μ V = 20 log Emission level μ V/m - (2) The smaller limit shall apply at the cross point between two frequency bands. - (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system. #### FREQUENCY RANGE OF RADIATED MEASUREMENT | Spectrum Parameter | Setting | | | |-----------------------|--------------------------------|--|--| | Start ~Stop Frequency | 9KHz~150KHz/RB 200Hz for QP | | | | Start ~Stop Frequency | 150KHz~30MHz/RB 9KHz for QP | | | | Start ~Stop Frequency | 30MHz~1000MHz/RB 120KHz for QP | | | | A/3/ | 1GHz~26.5GHz | | | | Start ~Stop Frequency | RBW 1MHz/ VBW 1MHz for Peak, | | | | | RBW 1MHz/ VBW 10Hz for Average | | | | Receiver Parameter | Setting | |-----------------------|--------------------------------| | Start ~Stop Frequency | 9KHz~150KHz/RB 200Hz for QP | | Start ~Stop Frequency | 150KHz~30MHz/RB 9KHz for QP | | Start ~Stop Frequency | 30MHz~1000MHz/RB 120KHz for QP | #### **Test Configuration** Below 30MHz Test Setup Below 1000MHz Test Setup Above 1GHz Test Setup #### **Test Procedure** - 1. The EUT was setup and tested according to ANSI C63.10:2013 - 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. Report No.: KS2101S00230E02 - 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. - 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. - 5. Set to the maximum power setting and enable the EUT transmit continuously. - 6. Use the following spectrum analyzer settings - (1) Span shall wide enough to fully capture the emission being measured; - (2) Below 1 GHz: RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. (3) From 1 GHz to 10th harmonic: RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=10HzPeak detector for Average value. #### **TEST MODE:** Please refer to the clause 2.2. #### TEST RESULTS | □ Passed | ☐ Not Applicable | |----------|------------------| |----------|------------------| #### 9 KHz~30 MHz and 18GHz~25GHz From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS #### Note: - Final level = Reading level + Correct Factor Correct Factor=Antenna Factor + Cable Loss Preamplifier Factor - 2) The emission levels of other frequencies are very lower than the limit and not show in test report. - 3) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported. - 4) 18GHz ~ 25GHz The EUT was pre-scanned the frequency band (18GHz~25GHz), found the radiated level(Background noise) lower than the limit, so don't show on the report. 3 #### Radiated field strength of the fundamental signal | Frequency
(MHz) | Read
Level
(dBuV) | Correct
Factor
(dB/m) | Level
(dBuV/m) | Limit Line
(dBuV/m) | Over
Limit
(dBuV/m) | Polarization | Test value | |--------------------|-------------------------|-----------------------------|-------------------|------------------------|---------------------------|--------------|------------| | 915 | 96.40 | -4.07 | 92.33 | 94 | -1.67 | Vertical | QP | | 915 | 87.42 | -4.07 | 83.35 | 94 | -10.65 | Horizontal | QP | Note: Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor #### **RADIATED EMISSION BELOW 30MHZ** No emission found between lowest internal used/generated frequencies to 30MHz. | Test Voltage | e: DC | 3.7V | ×. | | | | | | | |---------------|--------------------------------------|--|-----------|------------|----------------|--------------|----------------|--|--| | Ant. Pol. | Ho | Horizontal | | | | | | | | | Test Mode: | TX | 915MHz | | - 1 | | | | | | | 30.0 dBuV/m | | | | | | | _ | | | | 70 | | | | | | | | | | | 60 | | | | | FCC Part 15C (| (30MHz-1GHz) | | | | | 50 | | | | | | Margin -6 d | в | | | | 10 | | | | 3 4 | - | | \blacksquare | | | | 30 | | | | | What white | William ! | Mall | | | | 20 | | Mulliparas appropriation | Albahan A | partiron a | | | | | | | O managements | aperage depth was the second follows | Washington and the control of co | | | | | | | | | 30.000 | 60 | 100 | (MHz) | | 500 | | 1000. | | | | | | Reading | Correct | Measure- | | | | | | | No. Mk. | Freq. | Level | Factor | ment | Limit | Over | | | | | | MHz | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | Detect | | | | 1 1 | 144.1827 | 53.45 | -21.33 | 32.12 | 43.50 | -11.38 | QP | | | | 2 1 | 168.1184 | 50.98 | -20.70 | 30.28 | 43.50 | -13.22 | QP | | | | 3 * 2 | 264.0040 | 50.64 | -15.48 | 35.16 | 46.00 | -10.84 | QP | | | | 4 2 | 298.5819 | 49.00 | -14.70 | 34.30 | 46.00 | -11.70 | QP | | | | 5 5 | 528.0606 | 42.88 | -9.36 | 33.52 | 46.00 | -12.48 | QP | | | | | | | | | | | QP | | | **Emission Level= Read Level+ Correct Factor** #### Adobe 1GHz ### 3.5. Band Edge Emissions(Radiated) #### **Test Configuration** Page 24 of 31 #### **Test Procedure** - 1. The EUT was setup and tested according to ANSI C63.10:2013 - 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level. - 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower. - 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines. - 5. Set to the maximum power setting and enable the EUT transmit continuously. - 6. Use the following spectrum analyzer settings - (1) Span shall wide enough to fully capture the emission being measured; RBW=1MHz, VBW=3MHz PEAK detector for Peak value. RBW=1MHz, VBW=10Hz with PEAK Detector for Average Value. #### **Test Mode** Please refer to the clause 2.2. #### **Test Results** #### Note: - 1) Final level= Read level + Antenna Factor + Cable Loss Preamp Factor - 2) Correction Factor = Antenna factor + cable loss - 3) The peak level is lower than average limit(54dBuV/m), this data is the too weak instrument of signal is unable to test. - 4) The emission levels of other frequencies are very lower than the limit and not show in test report. | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | |-----|-----|----------|------------------|-------------------|------------------|----------|--------|----------| | | | MHz | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | Detector | | 1 | | 898.3495 | 35.89 | -4.22 | 31.67 | 74.00 | -42.33 | peak | | 2 | | 902.0000 | 35.29 | -4.18 | 31.11 | 74.00 | -42.89 | peak | | 3 | | 905.0380 | 37.04 | -4.15 | 32.89 | 74.00 | -41.11 | peak | | 4 | | 907.1842 | 36.89 | -4.14 | 32.75 | 74.00 | -41.25 | peak | | 5 | | 909.9184 | 37.57 | -4.11 | 33.46 | 74.00 | -40.54 | peak | | 6 | * | 912.3082 | 37.63 | -4.10 | 33.53 | 74.00 | -40.47 | peak | **Emission Level= Read Level+ Correct Factor** | No. | Mk. | Freq. | Reading
Level | Correct
Factor | Measure-
ment | Limit | Over | | |-----|-----|----------|------------------|-------------------|------------------|----------|--------|----------| | | | MHz | (dBuV) | (dB/m) | (dBuV/m) | (dBuV/m) | (dB) | Detector | | 1 | | 917.5230 | 35.78 | -4.05 | 31.73 | 74.00 | -42.27 | peak | | 2 | | 919.4224 | 36.29 | -4.03 | 32.26 | 74.00 | -41.74 | peak | | 3 | | 920.7663 | 37.45 | -4.03 | 33.42 | 74.00 | -40.58 | peak | | 4 | | 922.8048 | 37.57 | -4.01 | 33.56 | 74.00 | -40.44 | peak | | 5 | * | 924.0878 | 38.17 | -4.00 | 34.17 | 74.00 | -39.83 | peak | | 6 | | 928.0000 | 36.54 | -3.97 | 32.57 | 74.00 | -41.43 | peak | **Emission Level= Read Level+ Correct Factor** # 4.EUT TEST PHOTOS Radiated measurements: 30MHz-1GHz Report No.: KS2101S00230E02 Above 1GHz ### Conducted Emission RF Conducted ## 5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL Please refer to the report KS2101S00230E01 Report No.: KS2101S00230E02 KSIGN(Guangdon) Testing Co., Ltd.