

Supplemental "Transmit Simultaneously" Test Report

Report No.: RF200203E11-2

FCC ID: 2AF5PML2410

Test Model: ML2410

Series Model: ML2410XY

(where both X and Y can be A, B, C, D or blank.)

Received Date: Feb. 03, 2020

Test Date: Mar. 03 to 04, 2020

Issued Date: Apr. 01, 2020

Applicant: MTRLC LLC

Address: 225 Franklin Street, 26th Floor, Boston, MA 02110 USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwa

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan.

FCC Registration /

Designation Number: "2

723255 / TW2022

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	eleas	e Control Record	. 3
1		Certificate of Conformity	. 4
2	,	Summary of Test Results	. 5
	2.1 2.2	Measurement Uncertainty	
3		General Information	. 6
	3.2 3.2.1	General Description of EUT Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test	9 .11 12
4	•	Test Types and Results	13
		Radiated Emission and Bandedge MeasurementLimits of Radiated Emission and Bandedge Measurement	13
	4.1.3	Part Instruments Test Procedures.	16
	4.1.5	Deviation from Test Standard	17
	4.1.7	EUT Operating Conditions	19
		Conducted Emission Measurement Limits of Conducted Emission Measurement	24
	4.2.3	Test Instruments Test Procedures Deviation from Test Standard	25
	4.2.5	Test Setup	25
	4.3	Test Results	28
	4.3.2	Limits of Conducted Out of Band Emission Measurement 2 Test Setup	28
	4.3.4	Test Instruments Test Procedures	28
	4.3.6	Deviation from Test Standard	28
5		Pictures of Test Arrangements	30
Δ	nnen	dix – Information of the Testing Laboratories	31

Release Control Record

Issue No.	Description	Date Issued
RF200203E11-2	Original release.	Apr. 01, 2020

1 Certificate of Conformity

Product: AC1900 LTE Router

Brand: Motorola

Test Model: ML2410

Series Model: ML2410XY

(where both X and Y can be A, B, C, D or blank.)

Sample Status: ENGINEERING SAMPLE

Applicant: MTRLC LLC

Test Date: Mar. 03 to 04, 2020

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

47 CFR FCC Part 15, Subpart E (Section 15.407)

FCC Part 27, Subpart H

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: , Date: Apr. 01, 2020

Joyce Kuo / Specialist

Approved by : , Date: Apr. 01, 2020

Clark Lin / Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C, E (SECTION 15.247, 15.407) FCC Part 27					
FCC Clause	Test Item	Result	Remarks		
15.207 15.407(b)(6)	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -4.86dB at 20.24219MHz.		
15.205 / 15.209 / 15.247(d) 15.407(b) (1/2/3/4(i/ii)/6)	Radiated Emissions and Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -3.3dB at 48.58MHz.		
2.1053 27.53	Radiated Spurious Emissions	PASS	Meet the requirement of limit. Minimum passing margin is -41.85dB at 3498.5MHz.		

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.8 dB
Padiated Emissions up to 1 CHz	9kHz ~ 30MHz	3.0 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.1 dB
	1GHz ~ 6GHz	5.1 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.2 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

on Contra Description of Eq.				
Product	AC1900 LTE Router			
Brand	Motorola			
Test Model	ML2410			
Series Model	ML2410XY (where both X and Y can be A, B, C, D or blank.)			
Status of EUT	ENGINEERING SAMPLE			
Power Supply Rating	12Vdc from power adapter or 7.2Vdc from batttery			
Modulation Type	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode and VHT20/40 in 2.4GHz			
Modulation Technology	DSSS,OFDM			
Operating Frequency	2.4GHz: 2.412 ~ 2.462GHz 5GHz: 5.18 ~ 5.24GHz, 5.26 ~ 5.32 GHz, 5.50 ~ 5.72 GHz, 5.745 ~ 5.825GHz			
Antenna Type	Refer to Note			
Antenna Connector	Refer to Note			
Accessory Device	Adapter x 1, Battery x1			
Data Cable Supplied	Ethernet cable x1 (Unshieled, 1.5m)			

Note:

- 1. The EUT contains certified WWAN module which FCC ID: XMR201808EC25AF (Brand: Quectel; Model: EC25-AF)
- 2. The EUT has below model names, which are identical to each other in all aspects except for the following table:

3.	Brand	Model No.	Description
		ML2410	For marketing purposes of identical
Mot		ML2410XY	hardware.
		(where both X and Y can be A, B, C, D or blank)	Tidi di Valo

From the above models, model: **ML2410** was selected as representative model for the test and its data was recorded in this report.

4. The EUT has below radios as following table:

Radio 1	Radio 2	Radio 3	
WLAN (2.4GHz)	WLAN (5GHz)	WWAN	

5. Simultaneously transmission condition.

Condition	Technology			
1	WWAN + WLAN (2.4GHz) + WLAN (5GHz)			
2	WWAN + WLAN (2.4GHz)			
3	WWAN + WLAN (5GHz)			
4	WLAN (2.4GHz) + WLAN (5GHz)			

6. The EUT must be supplied with a power and the following different models could be chosen:

Adapter							
No	Brand	Model No.	Spec.				
1	T&W ELECTRONICS	S36B52-120A300-04	Input: 100-240V, 1A, 50-60Hz Output: 12V, 3A DC output cable (Unshielded, 1.5 m)				
2	HON-KWANG ELECTRIC CO., LTD.	HK-BE-120A300-US (HKSC-190178)	Input: 100-240V, 1A, 50-60Hz Output: 12V, 3A DC output cable (Unshielded, 1.5 m)				
3	HON-KWANG ELECTRIC CO., LTD.	HK-BE-120A300-US (HKSC-190147)	Input: 100-240V, 1A, 50-60Hz Output: 12V, 3A DC output cable (Unshielded, 1.5 m)				
Batte	Battery						
No	Brand	Model No.	Spec.				
1	Getac Technolog(Kunshan) Co.,LTD	BP-15033-22/2150 S	7.2V 4.3Ah 30.96Wh				

Note:

- 1. The adapter 3 is as same as adapter 2; except for DC plug is different.
- 2. From the above adapters, the AC Power Conducted Emissions test worst case was found in **Adapter No.: 1**. Therefore only the test data of the mode was recorded in this report.
- 3. From the above adapters and battery, the Radiated Emissions test worst case was found in **Adapter No.: 1**. Therefore only the test data of the mode was recorded in this report.

7. The antennas provided to the EUT, please refer to the following table:

7. 1110 0	7. The antennas provided to the EOT, please refer to the following table.						
-	WLAN Antenna						
Ant. No.	RF Chain No.	Brand	Ant. Net Gain	Frequency Range (GHz)	Antenna Type	Connector Type	Cable Length (mm)
1	WiFi Chain0 Airgain 4.3 dBi, 4.3 dBi, 5.5 dBi		2.4 to 2.49, 5.15 to 5.35, 5.47 to 5.85	РСВ	i-pex(MHF)	140	
2	WiFi Chain1	I Airdain I 4 4 dBi I		2.4 to 2.49, 5.15 to 5.35, 5.47 to 5.85	PCB	i-pex(MHF)	170
3 WiFi Chain2 Airgain 4.6 dBi, 4.9 dBi, 5.4 dBi		4.9 dBi,	2.4 to 2.49, 5.15 to 5.35, 5.47 to 5.85	PCB	i-pex(MHF)	100	
			WWAN Ante	nna			
Ant. No. RF Chain No.		Brand	Ant. Net Gain	Frequency Range (MHz)	Antenna Type	Connector Type	Cable Length (mm)
1	1 LTE Cortec 1.08 dBi 3.19 dBi		617 ~ 894 1710 ~ 2200	Dipole	SMA	280	
2	2 LTE AUX Cortec 1.08 dBi 3.19 dBi		617 ~ 894 1710 ~ 2200	Dipole	SMA	200	

8. The EUT incorporates a MIMO function.

2.4GHz Band					
MODULATION MODE TX & RX CONFIGURATION					
802.11b	3TX	3RX			
802.11g	3TX	3RX			
802.11n (HT20)	3TX	3RX			
802.11n (HT40)	3TX	3RX			
VHT20	3TX	3RX			
VHT40	3TX	3RX			
5GHz Band					
MODULATION MODE	TX & RX CON	IFIGURATION			
802.11a	3TX	3RX			
802.11n (HT20)	3TX	3RX			
802.11n (HT40)	3TX	3RX			
802.11ac (VHT20)	3TX	3RX			
802.11ac (VHT40)	3TX	3RX			
802.11ac (VHT80)	3TX	3RX			

Note:

- 1. All of modulation mode support beamforming function except 802.11a/b/g modulation mode.
- The EUT support Beamforming and non-beamforming mode, therefore both mode were investigated and the worst case scenario was identified. The worst case data were presented in test report.
- 9. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

Test Mode Applicability and Tested Channel Detail 3.1.1

EUT Configure		Applica	able To		Description
Mode	RE≥1G	RE<1G	PLC	ОВ	Description
-	V	√	V	V	-

Where

RE≥1G: Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

OB: Conducted Out-Band Emission Measurement

Radiated Emission Test (Above 1GHz):

The tested configurations represent the worst-case mode from all possible combinations by the maximum

☐ Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
11b	1 to 11	6	DSSS	DBPSK
11b + 802.11a + LTE Band 12	36 to 64, 100 to 144, 149 to 165	165	OFDM	BPSK
	23017 to 23173	23017	OFDMA	-

Radiated Emission Test (Below 1GHz):

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

⊠ Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
11b	1 to 11	6	DSSS	DBPSK
+ 802.11a + LTE Band 12	36 to 64, 100 to 144, 149 to 165	165	OFDM	BPSK
	23017 to 23173	23017	OFDMA	-

Power Line Conducted Emission Test:

☐ The tested configurations represent the worst-case mode from all possible combinations by the maximum

☐ Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
11b	1 to 11	6	DSSS	DBPSK
+ 802.11a + LTE Band 12	36 to 64, 100 to 144, 149 to 165	165	OFDM	BPSK
	23017 to 23173	23017	OFDMA	-

Conducted Out-Band Emission Measurement:

The tested configurations represent the worst-case mode from all possible combinations by the maximum power.

⊠ Following channel(s) was (were) selected for the final test as listed below.

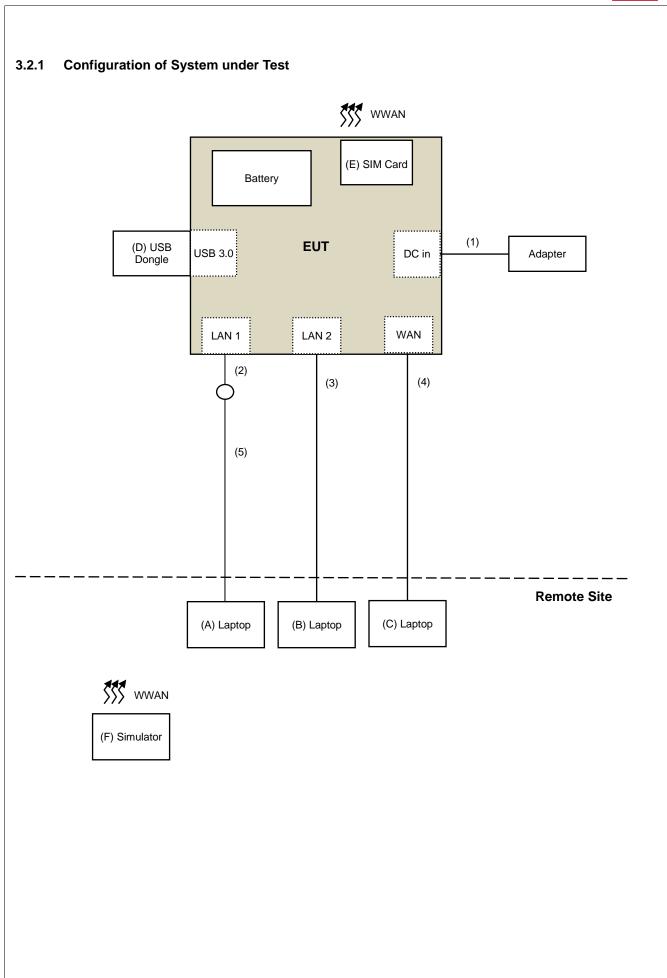
MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE
11b	1 to 11	6	DSSS	DBPSK
+	36 to 64,			
802.11a	100 to 144,	165	OFDM	BPSK
	149 to 165			

Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	23deg. C, 67%RH	120Vac, 60Hz	Ryan Du
RE<1G	23deg. C, 63%RH	120Vac, 60Hz	Kevin Ko
PLC	25deg. C, 75%RH	120Vac, 60Hz	Kevin Ko
ОВ	25deg. C, 60%RH	120Vac, 60Hz	Anderson Chen

3.2 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Laptop	DELL	E5430	HYV4VY1	FCC DoC	Provided by Lab
B.	Laptop	SONY	SVS151A12P	275548477001150	NA	Provided by Lab
C.	Laptop	DELL	E5430	4N1SKV1	FCC DoC	Provided by Lab
D.	USB Dongle	Sandisk	128G	NA	NA	Provided by Lab
E.	SIM Card	Anritsu	NA	NA	NA	Provided by Lab
F.	Simulator	Anritsu	MT8820C	6201127458	NA	Provided by Lab

Note:

^{1.} All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	DC Cable	1	1.5	No	0	Supplied by client
2.	RJ-45 Cable	1	1.5	No	0	Supplied by client
3.	RJ-45 Cable	1	10	No	0	Provided by Lab
4.	RJ-45 Cable	1	10	No	0	Provided by Lab
5.	RJ-45 Cable	1	10	No	0	Provided by Lab

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

For 47 CFR FCC Part 15:

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table.

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Limits of unwanted emission out of the restricted bands

Limits of driwanted en	113310	ir out or the restrict	Da Darias		
Applicable To			Limit		
789033 D02 General UNII Test Procedure			Field Strength at 3m		
New Rules v02r01		PK:74 (dBµV/m)	AV:54 (dBµV/m)		
Frequency Band	Applicable To		EIRP Limit	Equivalent Field Strength at 3m	
5150~5250 MHz	15.407(b)(1)				
5250~5350 MHz	15.407(b)(2)		PK:-27 (dBm/MHz)	PK:68.2(dBµV/m)	
5470~5725 MHz		15.407(b)(3)			
5725~5850 MHz	\boxtimes	15.407(b)(4)(i)	PK:-27 (dBm/MHz) *1 PK:10 (dBm/MHz) *2 PK:15.6 (dBm/MHz) *3 PK:27 (dBm/MHz) *4	PK: 68.2(dBµV/m) *1 PK:105.2 (dBµV/m) *2 PK: 110.8(dBµV/m) *3 PK:122.2 (dBµV/m) *4	
		15.407(b)(4)(ii)	Emission limits in section 15.247(d)		
*2 below the hand edge increasing linearly to 10					

^{*1} beyond 75 MHz or more above of the band edge.

Note:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3}$$
 µV/m, where P is the eirp (Watts).

Report No.: RF200203E11-2 Page No. 13 / 31 Report Format Version: 6.1.2

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

For FCC Part 27:
TOTT COT CITET.
According to FCC 27.53(g) for operations in the 600 MHz band and the 698-746 MHz band, the power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed.

Report No.: RF200203E11-2 Page No. 14 / 31 Report Format Version: 6.1.2

4.1.2 Test Instruments

Description &	Model no.	Serial No.	Calibrated	Calibrated
Manufacturer			DATE	Until
Test Receiver	N9038A	MY54450088	July 03, 2019	July 02, 2020
Keysight				
Pre-Amplifier	EMC001340	980142	May 30, 2019	May 29, 2020
EMCI				
Loop Antenna	EM-6879	269	Sep. 16,	Sep. 15,
Electro-Metrics			2019	2020
RF Cable	NA	LOOPCAB-001	Jan. 08, 2020	Jan. 07, 2021
RF Cable	NA	LOOPCAB-002	Jan. 08, 2020	Jan. 07, 2021
Pre-Amplifier	ZFL-1000VH2B	AMP-ZFL-05	Apr. 30, 2019	Apr. 29, 2020
Mini-Circuits				
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 11, 2019	Nov. 10, 2020
RF Cable	8D	966-3-1	Mar. 18, 2019	Mar. 17, 2020
RF Cable	8D	966-3-2	Mar. 18, 2019	
RF Cable	8D	966-3-3	Mar. 18, 2019	· · · · · · · · · · · · · · · · · · ·
Fixed attenuator	UNAT-5+	PAD-3m-3-01	Sep. 26,	Sep. 25,
Mini-Circuits			2019	2020
Horn_Antenna	BBHA9120-D	9120D-406	Nov. 24, 2019	Nov. 23, 2020
SCHWARZBECK			,	
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-1200	160922	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC104-SM-SM-2000	180601	June 10,	June 09,
			2019	2020
RF Cable	EMC104-SM-SM-6000	180602	June 10,	June 09,
			2019	2020
Spectrum Analyzer	N9030A	MY54490679	July 17, 2019	July 16, 2020
Keysight				
Pre-Amplifier EMCI	EMC184045SE	980387	Jan. 15, 2020	Jan. 14, 2021
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170519	Nov. 24, 2019	Nov. 23, 2020
RF Cable	EMC102-KM-KM-1200	160924	Jan. 15, 2020	Jan. 14, 2021
RF Cable	EMC102-KM-KM-4500	181205	Aug. 26,	Aug. 25,
THE OUDIC	LIVIO 102 IXIVI-IXIVI-4000	101200	2019	2020
Software	ADT Radiated V8.7.08	NA	NA NA	NA
Antenna Tower & Turn	MF-7802	MF780208406	NA	NA
Table	7002	700200-00		
Max-Full				
	FBA-01	FBA-SIP01	NA	NA

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in 966 Chamber No. 3.
- 3. Loop antenna was used for all emissions below 30 MHz.
- 4. Tested Date: Mar. 03 to 04, 2020

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

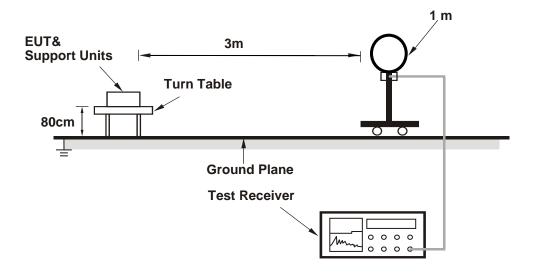
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

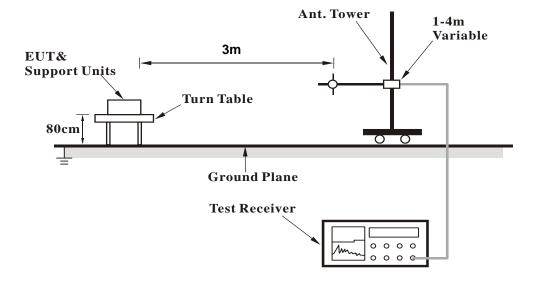
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is \geq 1/T (Duty cycle < 98%) or 10Hz (Duty cycle \geq 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

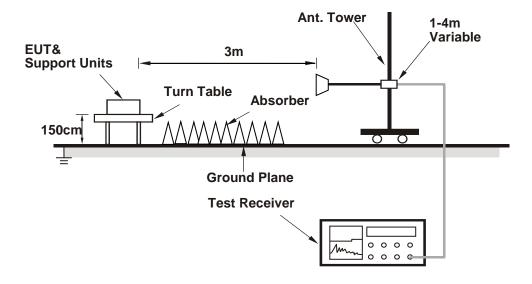

4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Connected the EUT with the Laptop is placed on remote site.
- b. Controlling software (WLAN: package_UIv2.05_DLLv4.08_20190312 / WWAN: EUT link Simulator) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data

 FREQUENCY RANGE
 1GHz ~ 40GHz
 DETECTOR FUNCTION
 Peak (PK) Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	4874.00	43.9 PK	74.0	-30.1	1.00 H	178	41.8	2.1	
2	4874.00	31.6 AV	54.0	-22.4	1.00 H	178	29.5	2.1	
3	7311.00	44.5 PK	74.0	-29.5	2.25 H	205	36.4	8.1	
4	7311.00	32.9 AV	54.0	-21.1	2.25 H	205	24.8	8.1	
5	11650.00	52.2 PK	74.0	-21.8	1.48 H	312	39.8	12.4	
6	11650.00	40.1 AV	54.0	-13.9	1.48 H	312	27.7	12.4	
7	#17475.00	48.9 PK	68.2	-19.3	1.52 H	177	31.9	17.0	
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	T 3 M		

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	4874.00	47.0 PK	74.0	-27.0	3.90 V	106	44.9	2.1
2	4874.00	34.6 AV	54.0	-19.4	3.90 V	106	32.5	2.1
3	7311.00	44.4 PK	74.0	-29.6	2.48 V	283	36.3	8.1
4	7311.00	32.5 AV	54.0	-21.5	2.48 V	283	24.4	8.1
5	11650.00	53.8 PK	74.0	-20.2	3.97 V	280	41.4	12.4
6	11650.00	41.4 AV	54.0	-12.6	3.97 V	280	29.0	12.4
7	#17475.00	45.0 PK	68.2	-23.2	1.48 V	52	28.0	17.0

REMARKS:

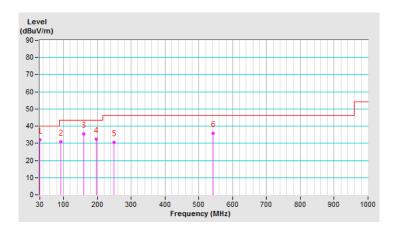
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " # ": The radiated frequency is out of the restricted band.

Mode	TX channel 23071	Frequency Range	Above 1GHz

	Antenna Polarity & Test Distance: Horizontal at 3 M									
No.	Freq. (MHz)	Reading	Correction	EIRP	Limit	Margin (dB)				
INO.	1 16q. (WII 12)	(dBm)	Factor (dB)	(dBm)	(dBm)	Margin (ub)				
1	1399.4	36.79	-95.26	-58.47	-13	-45.47				
2	2099.1	36.43	-95.26	-58.83	-13	-45.83				
3	2798.8	40.07	-95.26	-55.19	-13	-42.19				
4	3498.5	40.41	-95.26	-54.85	-13	-41.85				
		Antenna Po	plarity & Test Dis	stance: Vertical	at 3 M					
No	From (MUT)	Reading	Correction	EIRP	Limit	Margin (dD)				
No.	Freq. (MHz)	(dBm)	Factor (dB)	(dBm)	(dBm)	Margin (dB)				
1	1399.4	34.97	-95.26	-60.29	-13	-47.29				
2	2099.1	35.37	-95.26	-59.89	-13	-46.89				
3	2798.8	37.63	-95.26	-57.63	-13	-44.63				
4	3498.5	38.09	-95.26	-57.17	-13	-44.17				

Remarks:

- 1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).
- 2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

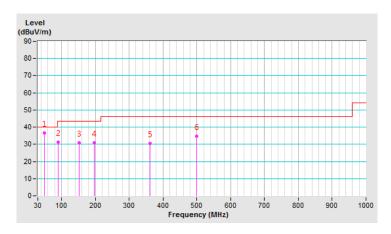

Below 1GHz Data:

FREQUENCY RANGE	19kHz ~ 1(fHz	DETECTOR FUNCTION	Quasi-Peak (QP)
-----------------	---------------	----------------------	-----------------

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	30.05	32.1 QP	40.0	-7.9	1.00 H	47	40.7	-8.6			
2	91.86	30.8 QP	43.5	-12.7	2.00 H	58	44.0	-13.2			
3	160.42	35.3 QP	43.5	-8.2	1.50 H	69	42.4	-7.1			
4	197.16	32.2 QP	43.5	-11.3	1.00 H	71	42.5	-10.3			
5	250.02	30.5 QP	46.0	-15.5	1.00 H	360	38.9	-8.4			
6	542.50	35.8 QP	46.0	-10.2	1.50 H	276	36.6	-0.8			

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



FREQUENCY RANGE	9kHz ~ 1GHz	DETECTOR FUNCTION	Quasi-Peak (QP)
-----------------	-------------	----------------------	-----------------

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	48.58	36.7 QP	40.0	-3.3	1.00 V	360	44.4	-7.7		
2	89.73	31.3 QP	43.5	-12.2	2.00 V	360	44.7	-13.4		
3	152.49	30.8 QP	43.5	-12.7	1.00 V	128	37.9	-7.1		
4	196.06	30.8 QP	43.5	-12.7	1.00 V	360	41.1	-10.3		
5	361.72	30.6 QP	46.0	-15.4	1.50 V	19	35.3	-4.7		
6	500.01	34.8 QP	46.0	-11.2	1.00 V	74	36.4	-1.6		

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Mod	е	TX channe	TX channel 23017		Frequency Range					
	Antenna Polarity & Test Distance: Horizontal at 3 M									
No.	Freq. (MHz)	Reading	Correction	EIRP	Limit	Margin (dB)				
INO.	rieq. (IVIDZ)	(dBm)	Factor (dB)	(dBm)	(dBm)	iviargiri (ub)				
1	62.01	26.92	-95.26	-68.34	-13	-55.34				
2	88.9	29.41	-95.26	-65.85	-13	-52.85				
3	131.91	25.47	-95.26	-69.79	-13	-56.79				
4	235.7	30.65	-95.26	-64.61	-13	-51.61				
5	510.39	32.36	-95.26	-62.90	-13	-49.90				
6	612.89	35.69	-95.26	-59.57	-13	-46.57				
		Antenna Po	olarity & Test Di	stance: Vertical	at 3 M					
No	Frog (MU=)	Reading	Correction	EIRP	Limit	Margin (dD)				
No.	Freq. (MHz)	(dBm)	Factor (dB)	(dBm)	(dBm)	Margin (dB)				
1	83.17	34.31	-95.26	-60.95	-13	-47.95				
2	138.2	34.19	-95.26	-61.07	-13	-48.07				
3	286.9	31.87	-95.26	-63.39	-13	-50.39				

Remarks:

344.99

470.51

737.06

4

5

6

1. Emission Value (dBm) = S.G Value (dBm) + Correction Factor (dB).

32.35

32.99

40.3

2. Correction Factor (dB) = Substitution Antenna Gain (dB) + Cable Loss (dB).

-95.26

-95.26

-95.26

-62.91

-62.27

-54.96

-13

-13

-13

-49.91

-49.27

-41.96

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Eroguepov (MHz)	Conducted Limit (dBuV)					
Frequency (MHz)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

4.2.2 Test Instruments

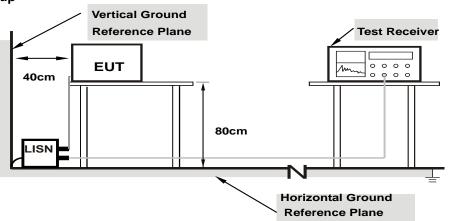
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Oct. 23, 2019	Oct. 22, 2020
Line-Impedance Stabilization Network (for Peripheral) R&S	ESH3-Z5	835239/001	Mar. 17, 2019	Mar. 16, 2020
50 ohms Terminator	50	3	Oct. 23, 2019	Oct. 22, 2020
RF Cable	5D-FB	COCCAB-001	Sep. 27, 2019	Sep. 26, 2020
Fixed attenuator EMCI	STI02-2200-10	003	Mar. 14, 2019	Mar. 13, 2020
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Conduction 1.
- 3 Tested Date: Mar. 03, 2020

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

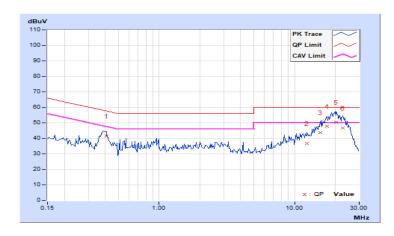
4.2.7 Test Results

Phase	Line (L)	Detector Function	Quasi-Peak (QP) /
Filase	Line (L)	Detector Function	Average (AV)

	Phase Of Power : Line (L)										
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	8.19922	10.53	24.16	18.51	34.69	29.04	60.00	50.00	-25.31	-20.96	
2	13.19141	10.88	27.56	21.34	38.44	32.22	60.00	50.00	-21.56	-17.78	
3	16.02344	11.09	32.35	26.23	43.44	37.32	60.00	50.00	-16.56	-12.68	
4	18.21484	11.24	35.54	29.70	46.78	40.94	60.00	50.00	-13.22	-9.06	
5	19.98828	11.37	36.92	31.36	48.29	42.73	60.00	50.00	-11.71	-7.27	
6	23.60938	11.50	31.61	25.32	43.11	36.82	60.00	50.00	-16.89	-13.18	

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

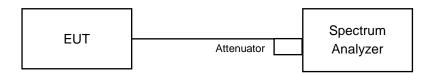


_				
	Phase	Neutral (N)	LDATACTOR FUNCTION	Quasi-Peak (QP) / Average (AV)

	Phase Of Power : Neutral (N)									
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.40781	10.01	31.29	21.86	41.30	31.87	57.69	47.69	-16.39	-15.82
2	12.39063	10.71	26.14	20.40	36.85	31.11	60.00	50.00	-23.15	-18.89
3	15.51953	10.88	32.69	27.05	43.57	37.93	60.00	50.00	-16.43	-12.07
4	17.31250	10.97	36.64	30.98	47.61	41.95	60.00	50.00	-12.39	-8.05
5	20.24219	11.12	39.18	34.02	50.30	45.14	60.00	50.00	-9.70	-4.86
6	22.74609	11.18	35.33	29.55	46.51	40.73	60.00	50.00	-13.49	-9.27

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 Conducted Out of Band Emission Measurement

4.3.1 Limits of Conducted Out of Band Emission Measurement

Below 30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

MEASUREMENT PROCEDURE REF

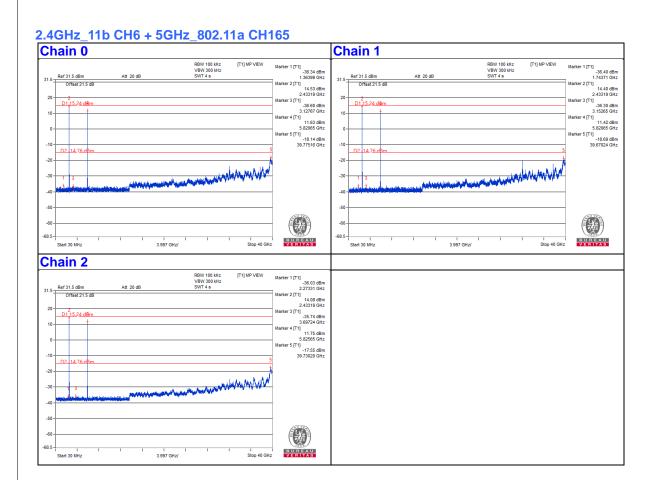
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.3.5 Deviation from Test Standard

No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Results

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements					
Please refer to the attached file (Test Setup Photo).					

Report No.: RF200203E11-2 Page No. 30 / 31 Report Format Version: 6.1.2

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab
Tel: 886-3-6668565
Fax: 886-3-6668323

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---