

RF TEST REPORT

Report No.: 20240917G19671X-W2

Product Name: Automotive Al Thermal Master

Model No.: NV300 Max

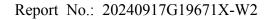
FCC ID: 2BHGX-NV300MAX

Applicant: Thermal Master Technology Co., Ltd.

Address: Building C, Room 606, No. 3 Nanchang Street, Guxian Street,

Yantai, Shandong, China

Dates of Testing: 09/29/2024 - 11/12/2024


Issued by: CCIC Southern Testing Co., Ltd.

Lab Location: Electronic Testing Building, No.43, Shahe Road, Xili Street,

Nanshan District, Shenzhen, Guangdong, China.

Tel: 86-755-26627338 E-Mail: manager@ccic-set.com

This test report consists of 52 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

Test Report

Product.....: Automotive Al Thermal Master

Trade Name: N/A

Applicant.....: Thermal Master Technology Co., Ltd.

Applicant Address...... Building C, Room 606, No. 3 Nanchang Street, Guxian

Street, Yantai, Shandong, China

Manufacturer...... Thermal Master Technology Co., Ltd.

Manufacturer Address.......: Building C, Room 606, No. 3 Nanchang Street, Guxian

Street, Yantai, Shandong, China

Test Standards....: 47 CFR Part 15 Subpart C 15.247

ANSI C63.10-2020

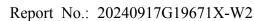
Test Result.....: Pass

Chuiwang Zhang, Test Engineer

Sun Jiaohui, Senior Engineer

Approved by.....: 2024.11.12

Chris You, Manager


TABLE OF CONTENTS

1. GENERAL INFORMATION	5
1.1. EUT Description	5
1.2. Test Standards and Results	6
1.3. Channel List	6
1.4. Test environment and mode	7
1.5. Table for Supporting Units	7
1.6. EUT Operation Test Setup	7
1.7. Laboratory Facilities	8
2. TEST REQUIREMENTS	9
2.1. Antenna requirement	9
2.2. Maximum Conducted Output Power	10
2.3. 6dB and 99% Bandwidth	12
2.4. Power spectral density (PSD)	14
2.5. Conducted Band Edges and Spurious Emissions	16
2.6. Radiated Band Edge and Spurious Emission	18
2.7. AC Power Line Conducted Emission	28
3. LIST OF MEASURING EQUIPMENT	30
4. UNCERTAINTY OF EVALUATION	31
ADDENDIY A	32

Change History		
Issue Date Reason for change		Reason for change
1.0 2024.11.12 First edition		

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	Automotive AI Thermal Master
EUT supports Radios application	WLAN2.4GHz 802.11b/g/n(HT20/HT40)
Frequency Range	802.11b/g/n(20MHz): 2.412GHz - 2.462GHz 802.11n(40MHz): 2422~2452MHz
Channel Number	802.11b/g/n-20MHz: 11 802.11n-40MHz: 7
Transfer Rate	802.11b: 11/5.5/2/1 Mbps 802.11g: 54/48/36/24/18/12/9/6 Mbps 802.11n: up to 150 Mbps
Modulation Type	DSSS (802.11b), OFDM (802.11g/n)
Antenna Type	FPC Antenna
Antenna Gain	2.5dBi
Power supply	DC 12V

Note 1: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Note 2: The information of antenna gain and cable loss is provided by the manufacturer and our lab is not responsible for the accuracy of the antenna gain and cable loss information.

1.2. Test Standards and Results

The purpose of the report is to conduct testing according to the following FCC certification standards:

No.	Identity	Document Title
1	47 CFR Part 15 Subpart C	Radio Frequency Devices
2	KDB 558074 D01 15.247 Meas Guidance v05r02	Cuidance for Compliance Measurement on Digital Transmission Systems, Frequency Hopping Spread Spectrum Systems, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules
4	ANSI C63.10-2020	American National Standard for Testing Unlicensed Wireless Devices

Test detailed items/section required by FCC rules and results are as below:

No.	Section in CFR 47	Description	Result
1	15.203	Antenna Requirement	PASS
1	15.247(c)	Antenna Requirement	TASS
2	15.247(b)(3)	Maximum Conducted Output Power	PASS
3	15.247(a)(2)	6dB and 99% Bandwidth	PASS
4	15.247(d)	Conducted Band Edges and Spurious Emission	PASS
5	15.247(e)	Power spectral density (PSD)	PASS
6	15.207	AC Power Line Conducted Emission	N/A ^{Note 3}
	15.205		
7	15.209	Radiated Band Edges and Spurious Emission	PASS
	15.247(d)		

Note 1: The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10-2020.

Note 2: These RF tests were performed according to the method of measurements prescribed in KDB 558074 D01 15.247 Meas Guidance v05r02.

Note 3: Not applicable, the product is only powered by car charger DC.

1.3. Channel List

Channel No.	Frequency	Channel No.	Frequency	Channel No.	Frequency
1	2412MHz	5	2432MHz	9	2452MHz
2	2417MHz	6	2437MHz	10	2457MHz
3	2422MHz	7	2442MHz	11	2462MHz
4	2427MHz	8	2447MHz	/	/

Note: Channel 1, 6 & 11 selected for 802.11b/g/n-20MHz as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-40MHz as Lowest, Middle and Highest Channel.

1.4. Test environment and mode

During the measurement, the environmental conditions were within the listed ranges:

Operating Environment		
Temperature	15°C - 35°C	
Humidity	30% -60%	
Atmospheric Pressure	86kPa-106kPa	
Test mode:		
Continuously transmitting mode Keep the EUT in continuous transmitting with modulation		

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel
Maximum Conducted Output Power	11b/DSSS	1 Mbps	1/6/11
Power Spectral Density	11g/OFDM	6 Mbps	1/6/11
6dB and 99% Bandwidth Conducted Spurious Emission	11n-HT20/OFDM	MCS 0	1/11
Radiated Spurious Emission	11n-HT40/OFDM	MCS 0	3/9
	11b/DSSS	1 Mbps	1/11
D 151	11g/OFDM	6 Mbps	1/11
Band Edge	11n-HT20/OFDM	MCS 0	1/11
	11n-HT40/OFDM	MCS 0	3/9

1.5. Table for Supporting Units

Ī	No.	Equipment	Brand Name	Model Name	Manufacturer	Serial No.	Note
	1	Laptop	HP	TPN-Q221	HP	5CD14347QB	FCC DOC

1.6. EUT Operation Test Setup

For RF test items, an engineering test program was provided and enable to make EUT transmitting.

1.7. Laboratory Facilities

FCC-Registration No.: CN1283

CCIC Southern Testing Co., Ltd EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Designation Number: CN1283, valid time is until Jun. 30th, 2025.

ISED Registration: 11185A

CCIC Southern Testing Co., Ltd. EMC Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 11185A on Aug. 04, 2016, valid time is until Jun. 30th, 2025.

CAB number: CN0064

A2LA Code: 5721.01

CCIC-SET is a third party testing organization accredited by A2LA according to ISO/IEC 17025. The accreditation certificate number is 5721.01.

2. Test Requirements

2.1. Antenna requirement

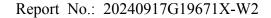
2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

And according to FCC 47 CFR Section 15.247(c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

2.1.2. Antenna Information

Antenna Category: FPC Antenna


A internal Antenna was soldered to the antenna port of EUT via an adaptor cable, can't be removed.

Antenna General Information:

No.	EUT	Operating frequency range	Ant. Type	Ant. Gain
1	Automotive AI Thermal Master	2412-2462MHz	FPC Antenna	2.5dBi

1.1.1. Result: comply

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. Maximum Conducted Output Power

2.2.1. Limit of Maximum Conducted Output Power

For DTSs employing digital modulation techniques operating in the bands 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1W.

2.2.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

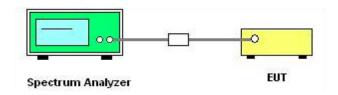
2.2.3. Test Setup

2.2.4. Test Procedures

- 1. The testing follows the Measurement Procedure of ANSI C63.10-2020 Section 11.9.2.3.1.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure using a wideband RF power meter with a thermocouple detector or equivalent.
- 5. If the transmitter does not transmit continuously, measure the duty cycle, D, of the transmitter output signal as described in ANSI C63.10-2020 Section 11.6.
- 6. Measure the average power of the transmitter. This measurement is an average over both the ON and OFF periods of the transmitter.
- 7. Correct the measurement in dBm by adding [10 log (1 / D)], where D is the duty cycle.
- 8. Record the measurement results in the test report.

2.2.5.	Test Result of Maximum Conducted Output Power
Please ref	er to Appendix A for detail.

2.3. 6dB and 99% Bandwidth


2.3.1. Limit of 6dB Bandwidth

The minimum 6 dB Occupied bandwidth shall be at least 500 kHz.

2.3.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.3.3. Test Setup

2.3.4. Test Procedures

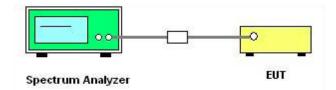
- 1. The testing follows the Measurement Procedure of ANSI C63.10-2020 Section 11.8.1 and 6.9.3.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the spectrum analyzer "Channel Bandwidth" function to easurement the 6dB EBW and 99% OBW.
- 5. For 6dB EBW Use the following spectrum analyzer settings:

RBW: Within 1% to 5% of OBW / VBW \geq 3 × RBW / Detector: Peak / Trace mode: Max hold / Sweep time: Auto couple / Allow trace to fully stabilize.

- 6. For 99% OBW Use the following spectrum analyzer settings:
 - Set Span = 1.5 times to 5.0 times the OBW/ RBW = Within 1% to 5% of OBW/VBW \geq 3 × RBW Set Detector = Peak/Trace mode = max hold/ Sweep time = auto couple.
- 7. Record the measurement results in the test report.

2.3.5.	Test Results of 6dB and 99% Bandwidth
Please ref	er to Appendix A for detail.

2.4. Power spectral density (PSD)


2.4.1. Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

2.4.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

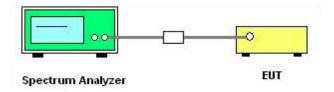
2.4.3. Test Setup

2.4.4. Test Procedures

- 1. The testing follows the Measurement Procedure of ANSI C63.10-2020 Section 11.10.5.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings:
 Set instrument center frequency to DTS channel center frequency / Set the span to 1.5 times the
 DTS bandwidth / RBW: 3kHz / VBW: 10kHz / Detector: RMS / Sweep time: Auto couple / Trace
 mode: Average / Employ trace averaging (rms) mode over a minimum of 100 traces / Use the peak
 marker function to determine the maximum power level.
- 5. Add [10 log (1 / D)], where D is the duty cycle), to the measured PSD to compute the average PSD during the actual transmission time.
- 6. Record the measurement results in the test report.

2	2.4.5.	Test Results of Power Spectral Density
F	Please ref	er to Appendix A for detail.

2.5. Conducted Band Edges and Spurious Emissions


2.5.1. Limit of Conducted Band Edges and Spurious Emissions

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is perating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

2.5.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

2.5.3. Test Setup

2.5.4. Test Procedure

- 1. The testing follows the Measurement Procedure of ANSI C63.10-2020 Section 11.11 and 11.12.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Use the following spectrum analyzer settings:

Reference level measurement: Set spectrum analyzer center frequency to DTS channel center frequency / Set the span to ≥1.5 times the DTS bandwidth / RBW: 100kHz / VBW: 300kHz / Detector: Peak / Sweep time: Auto couple / Trace mode: Max hold / Allow trace to fully stabilize / Use the peak marker function to determine the maximum PSD level and attenuate it by 30dB. Emission level measurement: Set the center frequency and span to encompass frequency range to be measured / RBW: 100kHz / VBW: 300kHz / Detector: Peak / Sweep time: Auto couple / Trace mode: Max hold / Allow trace to fully stabilize / Use the peak marker function to determine the maximum amplitude level.

5. Record the measurement results in the test report.

2.5.5.	Test Results of Conducted Band Edges and Spurious Emissions
Please ref	fer to Appendix A for detail.

2.6. Radiated Band Edge and Spurious Emission

2.6.1. Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the frequency band in which the intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level. If the transmitter uses an RMS average conducted power limit, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the estricted bands, as defi ned in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

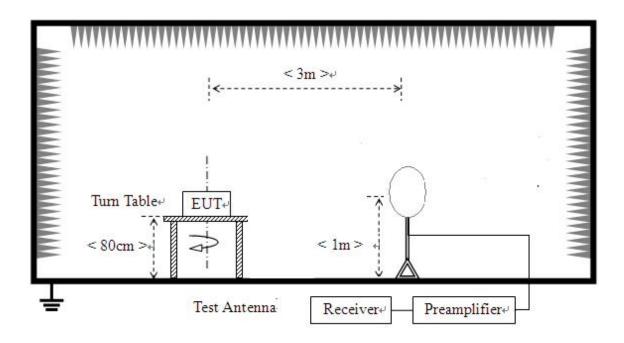
§15.209(a) Radiated emission limits:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

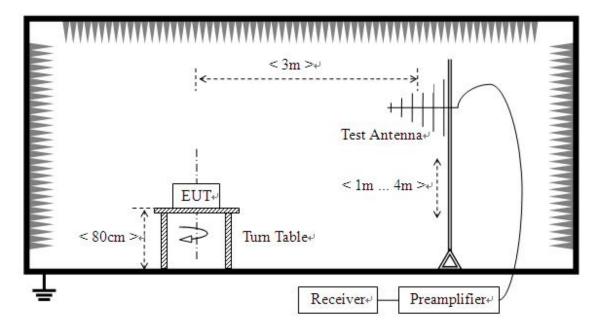
Restricted bands of operation refer to §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41	1	1	1

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6.

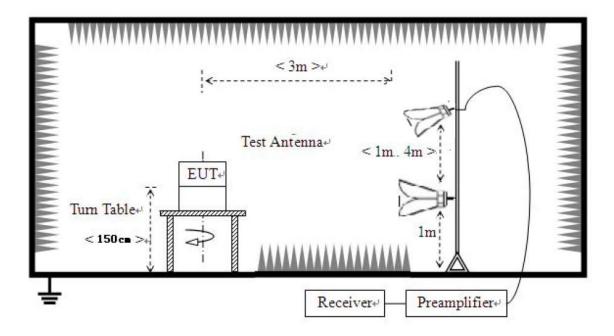


2.6.2. Measuring Instruments

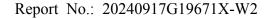

The measuring equipment is listed in the section 3 of this test report.

2.6.3. Test Setup

For radiated emissions from 9 kHz to 30 MHz



For radiated emissions from 30MHz to 1GHz



For radiated emissions above 1GHz

2.6.4. Test Procedures

- 1. The EUT was placed on the top of a rotating table 0.8m for below 1GHz and 1.5m for above 1GHz above the ground at a 3 meters semi-anechoic chamber.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on thetop of a variable height antenna tower.
- 3. Height of receiving antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode
- 6. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then

reported in a data sheet.

7. For the radiated emission test above 1GHz:

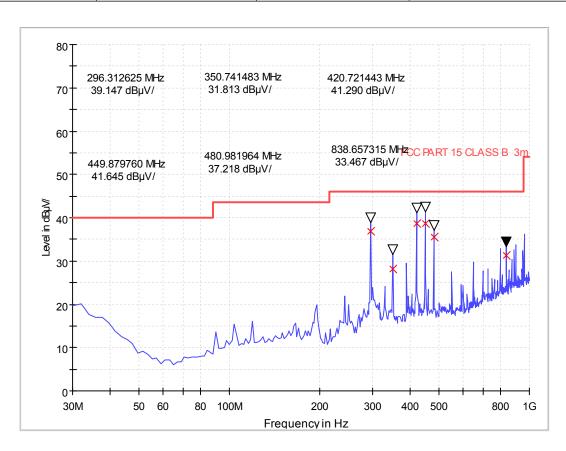
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T(Duty cycle < 98%) or 10Hz(Duty cycle > 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

2.6.5. Test Results of Radiated Band Edge and Spurious Emission

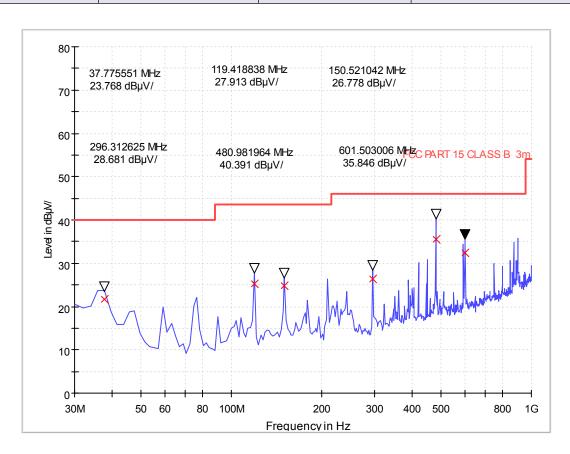
For 9 kHz to 30MHz, The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


For 30MHz to 1GHz, All of the EUT Configure mode were tested and found 802.11b_2412MHz channel is the worst mode, the worst case is recorded in this report.

For 1GHz to 25GHz, Only worst-case data is reported.

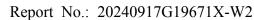
For 30MHz to 1000MHz

Test site:	3M anechoic chamber	Environment:	Temp: 23℃; Humi:48%;101kPa
Operator:	Huang Chaoming	Test Date:	2024.10.18
Test Mode:	WIFI - TX	Test Result:	Pass



Frequency (MHz)	QuasiPeak (dB¦ÌV/m)	Bandwidth (kHz)	Height (cm)	Polarity	Corr. (dB/m)	Margin - QPK	Limit - QPK
296.320000	36.76	120.000	100.0	Н	14.9	9.24	46.0
350.760000	28.05	120.000	100.0	Н	16.0	17.95	46.0
420.720000	38.73	120.000	100.0	Н	17.2	7.27	46.0
449.880000	38.67	120.000	100.0	Н	17.6	7.33	46.0
481.000000	35.43	120.000	100.0	Н	18.1	10.57	46.0
838.640000	31.19	120.000	100.0	Н	22.2	14.81	46.0

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB).
- 3. Margin value = Limit value Emission Level.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Only the antenna height (from 1m to 4m) at maximum reading are recorded.

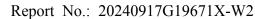


Test site:	3M anechoic chamber	Environment:	Temp: 23℃; Humi:48%;101kPa
Operator:	Huang Chaoming	Test Date:	2024.10.18
Test Mode:	WIFI - TX	Test Result:	Pass

Frequency (MHz)	QuasiPeak (dB¦ÌV/m)	Bandwidth (kHz)	Height (cm)	Polarity	Corr. (dB/m)	Margin - QPK	Limit - QPK
37.760000	21.68	120.000	100.0	V	15.3	18.32	40.0
119.400000	25.18	120.000	100.0	V	11.0	18.32	43.5
150.520000	24.73	120.000	100.0	V	12.1	18.77	43.5
296.320000	26.27	120.000	100.0	V	14.9	19.73	46.0
481.000000	35.43	120.000	100.0	V	18.1	10.57	46.0
601.520000	32.47	120.000	100.0	V	18.9	13.53	46.0

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB).
- 3. Margin value = Limit value Emission Level.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Only the antenna height (from 1m to 4m) at maximum reading are recorded.

For 1GHz to 25GHz


			2.4	4G Wi-Fi	802.11b_	2412MHz			
Frequency (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
2390.00	52.17	74.00	-21.83	1.50	220	55.26	-3.09	Horizontal	Peak
2390.00	42.96	54.00	-11.04	1.50	220	46.05	-3.09	Horizontal	Average
4824.00	46.65	74.00	-27.35	1.50	220	45.48	1.17	Horizontal	Peak
4824.00	37.53	54.00	-16.47	1.50	220	36.36	1.17	Horizontal	Average
7236.00	51.15	74.00	-22.85	1.50	220	45.20	5.95	Horizontal	Peak
7236.00	40.95	54.00	-13.05	1.50	220	35.00	5.95	Horizontal	Average
2390.00	52.44	74.00	-21.56	1.50	160	55.53	-3.09	Vertical	Peak
2390.00	42.81	54.00	-11.19	1.50	160	45.90	-3.09	Vertical	Average
4824.00	46.90	74.00	-27.10	1.50	160	45.73	1.17	Vertical	Peak
4824.00	37.40	54.00	-16.60	1.50	160	36.23	1.17	Vertical	Average
7236.00	50.39	74.00	-23.61	1.50	160	44.44	5.95	Vertical	Peak
7236.00	41.28	54.00	-12.72	1.50	160	35.33	5.95	Vertical	Average
	'	'	2.4	4G Wi-Fi	802.11b_	2437MHz			
Frequency (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
4874.00	46.90	74.00	-27.10	1.50	220	45.94	0.96	Horizontal	Peak
4874.00	37.70	54.00	-16.30	1.50	220	36.74	0.96	Horizontal	Average
7311.00	51.09	74.00	-22.91	1.50	220	45.55	5.54	Horizontal	Peak
7311.00	41.28	54.00	-12.72	1.50	220	35.74	5.54	Horizontal	Average
4874.00	47.07	74.00	-26.93	1.50	160	46.11	0.96	Vertical	Peak
4874.00	37.39	54.00	-16.61	1.50	160	36.43	0.96	Vertical	Average
7311.00	50.64	74.00	-23.36	1.50	160	45.10	5.54	Vertical	Peak
7311.00	41.73	54.00	-12.27	1.50	160	36.19	5.54	Vertical	Average

- 1. $Emission \ Level(dBuV/m) = Raw \ Value(dBuV) + Correction \ Factor(dB/m)$
- 2. $Correction\ Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) Pre-Amplifier\ Factor(dB)$
- 3. Margin value = Emission Level Limit value
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Trily the antenna height (from 1m to 4m) and turntable angle (from 0 degrees to 360 degrees) at maximum reading are recorded.

	2.4G Wi-Fi 802.11b_2462MHz											
Frequency (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector			
2483.50	54.27	74.00	-19.73	1.50	220	59.02	-4.75	Horizontal	Peak			
2483.50	43.81	54.00	-10.19	1.50	220	48.56	-4.75	Horizontal	Average			
4924.00	47.12	74.00	-26.88	1.50	220	46.52	0.60	Horizontal	Peak			
4924.00	36.60	54.00	-17.40	1.50	220	36.00	0.60	Horizontal	Average			
7386.00	50.62	74.00	-23.38	1.50	220	44.69	5.93	Horizontal	Peak			
7386.00	41.15	54.00	-12.85	1.50	220	35.22	5.93	Horizontal	Average			
2483.50	53.95	74.00	-20.05	1.50	160	58.70	-4.75	Vertical	Peak			
2483.50	43.95	54.00	-10.05	1.50	160	48.70	-4.75	Vertical	Average			
4924.00	46.08	74.00	-27.92	1.50	160	45.48	0.60	Vertical	Peak			
4924.00	36.60	54.00	-17.40	1.50	160	36.00	0.60	Vertical	Average			
7386.00	50.80	74.00	-23.20	1.50	160	44.87	5.93	Vertical	Peak			
7386.00	41.66	54.00	-12.34	1.50	160	35.73	5.93	Vertical	Average			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Trily the antenna height (from 1m to 4m) and turntable angle (from 0 degrees to 360 degrees) at maximum reading are recorded.

			2.4G	Wi-Fi 802	2.11n-HT4	40_2422MF			
Frequency (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
2390.00	51.93	74.00	-22.07	1.50	220	55.02	-3.09	Horizontal	Peak
2390.00	43.07	54.00	-10.93	1.50	220	46.16	-3.09	Horizontal	Average
4844.00	46.78	74.00	-27.22	1.50	220	45.70	1.08	Horizontal	Peak
4844.00	37.32	54.00	-16.68	1.50	220	36.24	1.08	Horizontal	Average
7266.00	51.26	74.00	-22.74	1.50	220	45.54	5.72	Horizontal	Peak
7266.00	40.94	54.00	-13.06	1.50	220	35.22	5.72	Horizontal	Average
2390.00	52.41	74.00	-21.59	1.50	160	55.50	-3.09	Vertical	Peak
2390.00	43.06	54.00	-10.94	1.50	160	46.15	-3.09	Vertical	Average
4844.00	47.09	74.00	-26.91	1.50	160	46.01	1.08	Vertical	Peak
4844.00	37.35	54.00	-16.65	1.50	160	36.27	1.08	Vertical	Average
7266.00	50.04	74.00	-23.96	1.50	160	44.32	5.72	Vertical	Peak
7266.00	41.54	54.00	-12.46	1.50	160	35.82	5.72	Vertical	Average
			2.4G	Wi-Fi 802	2.11n-HT4	40_2437MI	Hz		
Frequency (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector
4874.00	46.70	74.00	-27.30	1.50	220	45.74	0.96	Horizontal	Peak
4874.00	37.82	54.00	-16.18	1.50	220	36.86	0.96	Horizontal	Average
7311.00	50.69	74.00	-23.31	1.50	220	45.15	5.54	Horizontal	Peak
7311.00	41.26	54.00	-12.74	1.50	220	35.72	5.54	Horizontal	Average
4874.00	47.07	74.00	-26.93	1.50	160	46.11	0.96	Vertical	Peak
4874.00	37.59	54.00	-16.41	1.50	160	36.63	0.96	Vertical	Average
7311.00	50.03	74.00	-23.97	1.50	160	44.49	5.54	Vertical	Peak
7311.00	41.54	54.00	-12.46	1.50	160	36.00	5.54	Vertical	Average

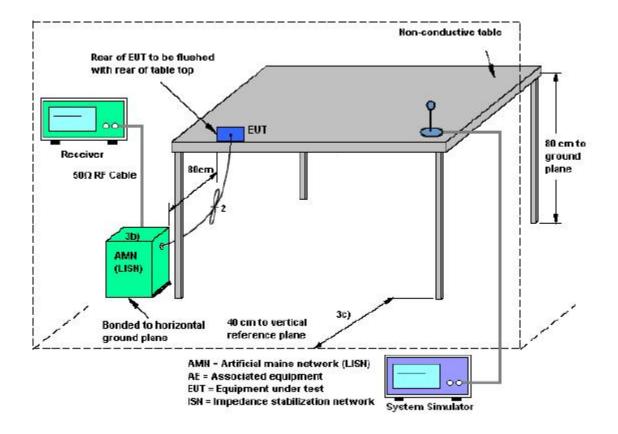
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. $Correction\ Factor(dB/m) = Antenna\ Factor(dB/m) + Cable\ Factor(dB) Pre-Amplifier\ Factor(dB)$
- 3. Margin value = Emission Level Limit value
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Trily the antenna height (from 1m to 4m) and turntable angle (from 0 degrees to 360 degrees) at maximum reading are recorded.

	2.4G Wi-Fi 802.11n-HT40_2452MHz										
Frequency (MHz)	Emssion Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV/m)	Correction Factor (dB/m)	Polarity	Detector		
2483.50	54.37	74.00	-19.63	1.50	220	59.12	-4.75	Horizontal	Peak		
2483.50	43.89	54.00	-10.11	1.50	220	48.64	-4.75	Horizontal	Average		
4904.00	47.22	74.00	-26.78	1.50	220	46.41	0.81	Horizontal	Peak		
4904.00	36.90	54.00	-17.10	1.50	220	36.09	0.81	Horizontal	Average		
7356.00	50.09	74.00	-23.91	1.50	220	44.31	5.78	Horizontal	Peak		
7356.00	41.13	54.00	-12.87	1.50	220	35.35	5.78	Horizontal	Average		
2483.50	54.74	74.00	-19.26	1.50	160	59.49	-4.75	Vertical	Peak		
2483.50	43.36	54.00	-10.64	1.50	160	48.11	-4.75	Vertical	Average		
4904.00	45.35	74.00	-28.65	1.50	160	44.54	0.81	Vertical	Peak		
4904.00	36.99	54.00	-17.01	1.50	160	36.18	0.81	Vertical	Average		
7356.00	50.69	74.00	-23.31	1.50	160	44.91	5.78	Vertical	Peak		
7356.00	41.50	54.00	-12.50	1.50	160	35.72	5.78	Vertical	Average		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. Trily the antenna height (from 1m to 4m) and turntable angle (from 0 degrees to 360 degrees) at maximum reading are recorded.

2.7. AC Power Line Conducted Emission

2.7.1. Limit of AC Power Line Conducted Emission

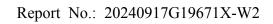

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Eraguanay ranga (MHz)	Conducted Limit (dBμV)		
Frequency range (MHz)	Quai-peak	Average	
0.15 - 0.50	66 to 56	56 to 46	
0.50 - 5	56	46	
5 - 30	60	50	

2.7.2. Measuring Instruments

The measuring equipment is listed in the section 3 of this test report.

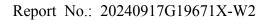
2.7.3. Test Setup


2.7.4. Test Procedures

1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.

- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 micrometry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

2.7.5. Test Results of Conducted Emission


Not applicable, the product is only powered by car charger DC.

3. List of measuring equipment

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	5M Anechoic Chamber	Albatross	SAC-5MAC 12.8x6.8x6.4m	A0304210	2023.08.01	2026.07.31
2	EMI Test Receiver	ROHDE&SCHWARZ	ESW26	A180502935	2024.05.23	2025.05.22
3	Loop Antenna	Schwarz beck	HFH2-Z2	A0304220	2022.05.02	2025.05.01
4	Broadband antenna (30MHz~1GHz)	R&S	HL562	A0304224	2023.06.08	2026.06.07
5	EMI Horn Ant. (1-18G)	ETC	MCTD-1209	A150402241	2023.05.16	2026.05.15
6	Horn antenna (18GHz~26.5GHz)	AR	AT4510	A0804450	2023.06.01	2026.05.31
7	Amplifier 30M~1GHz	TESEQ	CBA1G-600B	A190503534	2024.09.05	2025.09.04
8	Amplifier 1G~18GHz	MILMEGA	AS0104R-800/400	A160302517	2024.05.25	2025.05.24
9	Spectrum Analyzer	KEYSIGHT	N9030A	A160702554	2024.01.18	2025.01.17
10	Test Receiver	R&S	ESIB7	A0501375	2024.02.28	2025.02.27
11	Broadband Ant.	ETC	MCTD 2786	A150402240	2023.05.22	2026.05.21
12	3M Anechoic Chamber	Albatross	SAC-3MAC 9*6*6m	A0412375	2024.02.27	2027.02.26
13	Cable(9kHz~30MHz)	/	/	C230800587	2023.08.21	2026.08.20
14	Cable(30MHz~18GHz)	/	XSMJA750-SMN M(RA)-12M	C230800588	2023.08.21	2026.08.20
15	Cable(18GHz~40GHz)	/	SUCOFLEX102	C230800590	2023.08.21	2026.08.20

4. Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2020. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence . The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of AC Power Line Conducted Emission Measurement (150kHz~30MHz)

Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	2.8dB				
Uncertainty of Radiated Emission Measurement (9kHz~30MHz)					
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	3.5dB				
Uncertainty of Radiated Emission Measurement (30N	MHz~1GHz)				
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	3.91dB				
Uncertainty of Radiated Emission Measurement (1GI	Hz~18GHz)				
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	4.5dB				
Uncertainty of Radiated Emission Measurement (180	GHz~40GHz)				
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	4.9dB				
Uncertainty of RF Conducted Measurement (9kHz~40GHz)					
Measuring Uncertainty for a level of confidence of 95%(U=2Uc(y))	1.2dB				

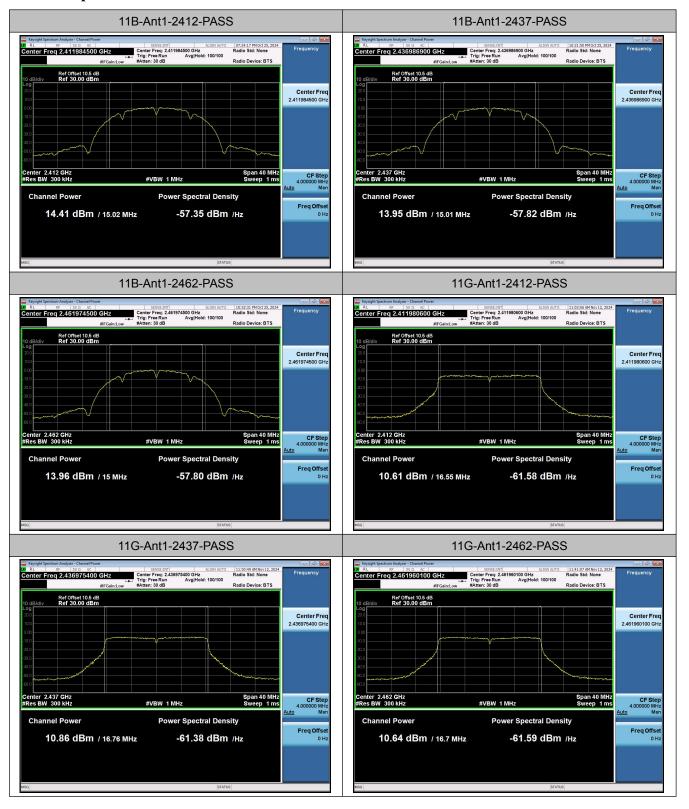
Appendix A

Duty Cycle

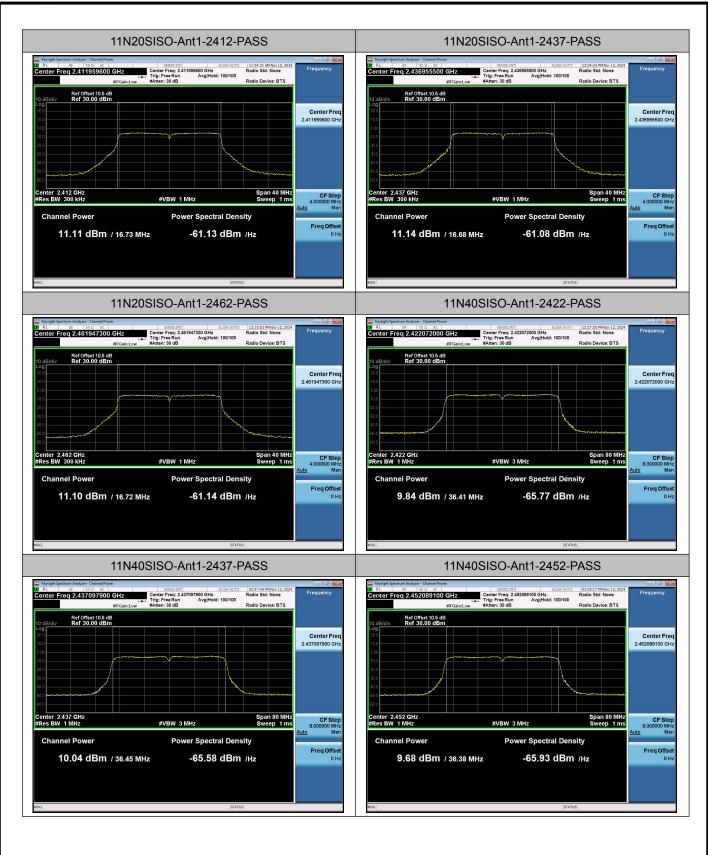
Test Result and Data

TestMode	Antenna	Frequency[MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	Factor
11B	Ant1	2412	12.42	14.36	86.49	0.63
11G	Ant1	2412	20.00	20.00	100.00	0.00
11N20SISO	Ant1	2412	2.06	2.21	93.21	0.31
11N40SISO	Ant1	2422	0.94	1.10	85.45	0.68

Maximum Conducted Output Power


Test Result and Data

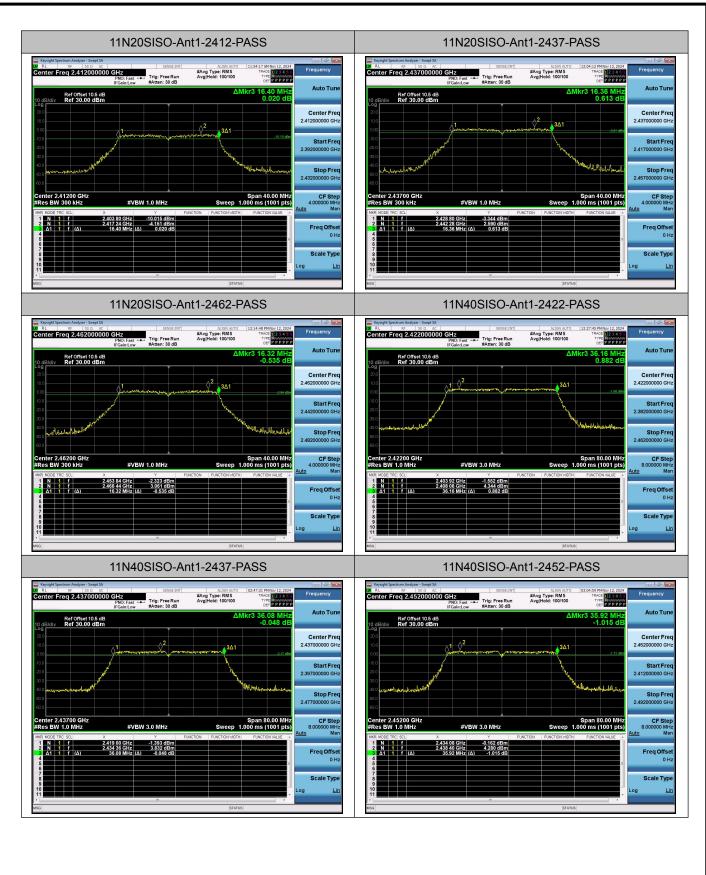
Test Mode	Antenna	Frequency[MHz]	Average Power [dBm]	DC Factor	Result	Limit [dBm]	Verdict
11B	Ant1	2412	14.41	0.63	15.04	≤30.00	PASS
11B	Ant1	2437	13.95	0.63	14.58	≤30.00	PASS
11B	Ant1	2462	13.96	0.63	14.59	≤30.00	PASS
11G	Ant1	2412	10.61	0.00	10.61	≤30.00	PASS
11G	Ant1	2437	10.86	0.00	10.86	≤30.00	PASS
11G	Ant1	2462	10.64	0.00	10.64	≤30.00	PASS
11N20SISO	Ant1	2412	11.11	0.31	11.42	≤30.00	PASS
11N20SISO	Ant1	2437	11.14	0.31	11.45	≤30.00	PASS
11N20SISO	Ant1	2462	11.10	0.31	11.41	≤30.00	PASS
11N40SISO	Ant1	2422	9.84	0.68	10.52	≤30.00	PASS
11N40SISO	Ant1	2437	10.04	0.68	10.72	≤30.00	PASS
11N40SISO	Ant1	2452	9.68	0.68	10.36	≤30.00	PASS


Note: Conducted Output Power has added duty cycle factor.

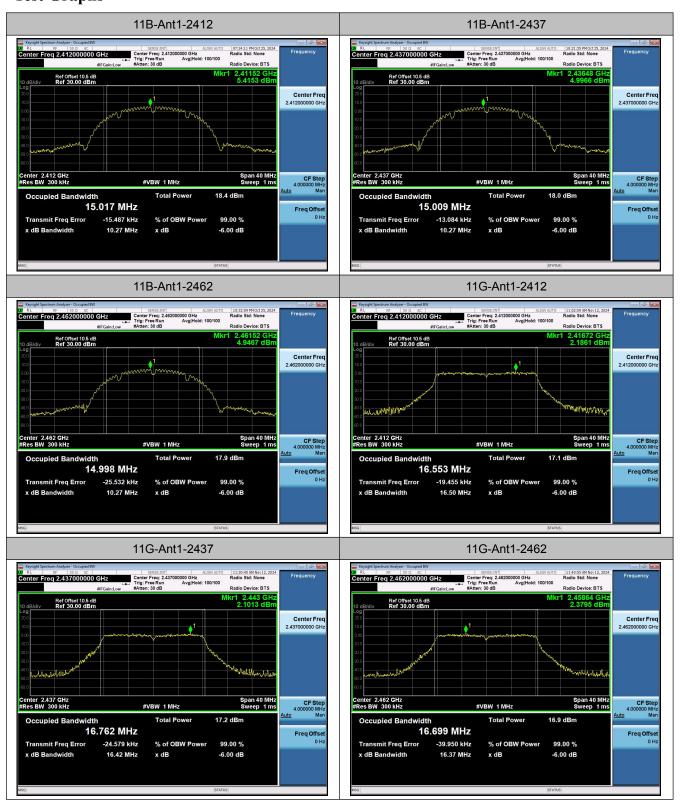
Test Graphs

6dB Bandwidth

Test Result and Data


Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	Limit[MHz]	Verdict
11B	Ant1	2412	10.240	0.5	PASS
11B	Ant1	2437	10.240	0.5	PASS
11B	Ant1	2462	10.240	0.5	PASS
11G	Ant1	2412	16.320	0.5	PASS
11G	Ant1	2437	16.360	0.5	PASS
11G	Ant1	2462	16.320	0.5	PASS
11N20SISO	Ant1	2412	16.400	0.5	PASS
11N20SISO	Ant1	2437	16.360	0.5	PASS
11N20SISO	Ant1	2462	16.320	0.5	PASS
11N40SISO	Ant1	2422	36.160	0.5	PASS
11N40SISO	Ant1	2437	36.080	0.5	PASS
11N40SISO	Ant1	2452	35.920	0.5	PASS

Test Graphs


99% Occupied Bandwidth

Test Result and Data

Test Mode	Antenna	Frequency[MHz]	99% OBW[MHz]	Limit[MHz]	Verdict
11B	Ant1	2412	15.017		
11B	Ant1	2437	15.009		
11B	Ant1	2462	14.998		
11G	Ant1	2412	16.553		
11G	Ant1	2437	16.762		
11G	Ant1	2462	16.699		
11N20SISO	Ant1	2412	16.733		
11N20SISO	Ant1	2437	16.678		
11N20SISO	Ant1	2462	16.722		
11N40SISO	Ant1	2422	36.410		
11N40SISO	Ant1	2437	36.446		
11N40SISO	Ant1	2452	36.382		

Test Graphs

