

# Certification Test Report

# CFR 47 FCC Part 2 and Part 24, Subparts C and E

# Model: Node C1943, Node M1943

# FCC ID NO.: BCR-RPT-NCM1943

# Project Code: W6397

**Revision: 0** 

| Prepared for: | Andrew Corporation<br>108 Rand Park Drive<br>Garner, North Carolina 27529 |
|---------------|---------------------------------------------------------------------------|
| Author:       | Tom Tidwell, Manager of Wireless Services                                 |
| Issued:       | 28 November, 2006                                                         |
|               |                                                                           |

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



# Report Summary

# **NTS Plano**

| Accreditation Numbers:   | FCC:<br>IC: | 101741<br>46405-4319                                 | File # IC-4319A-1 |
|--------------------------|-------------|------------------------------------------------------|-------------------|
| Applicant:               | 108 Ra      | w Corporation<br>and Park Drive<br>r, North Carolina | a 27529           |
| Customer Representative: | Michae      | el Williamson                                        |                   |

#### **EUT Description:**

| EUT Description                                                                                                                                  | Manufacturer                    | Model                                   | Revision | Serial Number |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------|----------|---------------|
| The EUT is an in-building<br>repeater system designed to<br>repeat both IS-95 CDMA and<br>W-CDMA signals in the North<br>American PCS 1900 band. | Andrew Wireless<br>Systems Gmbh | Node C 1943 IS-95<br>Node M 1943 W-CDMA | 0        | 12            |

Variations in models: The Node C1943 and Node M1943 are electrically identical devices. The software mode options for channel filter settings are reduced to two 5 MHz channels on the Node M1943 model to accommodate up to two W-CDMA carriers, while the Node C1943 allows additional channel filter settings for single 1.23 MHz channels for IS-95 CDMA.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



## **Test Summary**

| ndix     | Test/Requirement                           | Deviations from: |               | Pass / Fail      | Appliachia Dula Darta |                                                               |
|----------|--------------------------------------------|------------------|---------------|------------------|-----------------------|---------------------------------------------------------------|
| Appendix | Description                                | Base<br>Standard | Test<br>Basis | NTS<br>Procedure | Fass/Faii             | Applicable Rule Parts                                         |
| А        | RF Power Output                            | No               | No            | No               | PASS                  | CFR 47, Part 2, Para. 2.1046<br>CFR 47, Part 24, Para.24.232  |
| В        | Modulation<br>Characteristics              | No               | No            | No               | PASS                  | CFR 47, Part 2, Para. 2.1047                                  |
| С        | Occupied Bandwidth                         | No               | No            | No               |                       | CFR 47, Part 2, Para. 2.1049<br>CFR 47, Part 24, Para. 24.238 |
| D        | Spurious Emissions at<br>Antenna Terminals | No               | No            | No               | PASS                  | CFR 47, Part 2, Para. 2.1051<br>CFR 47, Part 24, Para. 24.238 |
| Е        | Field Strength of<br>Spurious Radiation    | No               | No            | No               |                       | CFR 47, Part 2, Para. 2.1053<br>CFR 47, Part 24, Para. 24.238 |
| F        | Frequency Stability                        | No               | No            | No               |                       | CFR 47, Part 2, Para. 2.1055<br>CFR 47, Part 24, Para. 24.235 |

Test Result: The product presented for testing complied with test requirements as shown above.

This is to certify that the preceding report is true and correct to the best of my knowledge.

levens

Robert Stevens, Quality Assurance Manager

Tóm Tidwell, <sup>(</sup> Wireless Test Engineer

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



# **Table of Contents**

| REPORT SUMMARY                                                  | 2       |
|-----------------------------------------------------------------|---------|
| TEST SUMMARY                                                    | 3       |
| REGISTER OF REVISIONS                                           | 5       |
| INTRODUCTION                                                    | 6       |
| 1.1   Purpose     2.0   EUT DESCRIPTION                         |         |
| 2.1 CONFIGURATION                                               |         |
| 3.1 CONFIGURATION   3.2 TEST BED/PERIPHERAL CABLES   APPENDICES | 9<br>10 |
| APPENDIX A: 2.1046 RF POWER OUTPUT                              | 11      |
| APPENDIX B: 2.1047 MODULATION CHARACTERISTICS                   | 14      |
| APPENDIX C: 2.10.49 OCCUPIED BANDWIDTH                          | 16      |
| APPENDIX D: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS      | 33      |
| APPENDIX E: 2.1053 FIELD STRENGTH OF SPURIOUS RADIATION         | 86      |
| APPENDIX F: 2.1053 FILTER PLOTS                                 | 90      |
| APPENDIX G: 2.1055 FREQUENCY STABILITY                          | 124     |
| APPENDIX H: TEST EQUIPMENT LIST                                 | 126     |
| END OF DOCUMENT                                                 | 127     |

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



### **Register of revisions**

| Revision | Reason for Revision | Release Date |
|----------|---------------------|--------------|
| 0        | Original            | 11/28/06     |
|          |                     |              |
|          |                     |              |

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



# INTRODUCTION

#### 1.1 **PURPOSE**

The purpose of this document is to describe the tests applied by NTS Plano to demonstrate compliance of the Node C1943 and Node M1943 to FCC Part 24 Subparts C and E in accordance with the certification requirements of CFR 47, Part 2.

## 2.0 EUT DESCRIPTION

#### 2.1 CONFIGURATION

#### Description of EUT

|                               | Name                                                                                                                                                                                                                                                                                                          | Model                                                                                                  | Revision | Serial Number |  |  |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|---------------|--|--|
| EUT                           | Node C / Node M                                                                                                                                                                                                                                                                                               | C1943 / M1943                                                                                          | 2        | 11            |  |  |
| RF Exposure<br>Classification | Fixed. The antenna is mounted using a wall or pole mounting kit provided by the manufacturer. See page 8 of this report for a description of the 3 applications for this device. In applications A and B, a separately approved indoor distributed antenna system is used on the coverage side of the system. |                                                                                                        |          |               |  |  |
| Channels/Frequency<br>Range   | 1850 - 1910 MHz, 1930 ·                                                                                                                                                                                                                                                                                       | – 1990 MHz                                                                                             |          |               |  |  |
| Power                         | <b>Downlink:</b> +43 dBm (20 at antenna port.                                                                                                                                                                                                                                                                 | <b>Downlink:</b> +43 dBm (20 watts) at antenna port <b>Uplink:</b> +23 dBm (0.2 watts at antenna port. |          |               |  |  |
| Emission Designator:          | <b>F9W</b><br>F9W is the emission designator for both IS-95 CDMA and W-CDMA. The necessary bandwidth for IS-95 CDMA is 1.23 MHz while the necessary bandwidth for W-CDMA is 4.10 MHz (4.096 MHz).                                                                                                             |                                                                                                        |          |               |  |  |
| TX antenna details            | Maximum antenna directional gain 17 dBi per Install Manual                                                                                                                                                                                                                                                    |                                                                                                        |          |               |  |  |
| Functional Description        | The Node C / Node M is used to enhance coverage of a cellular network within a building. Node C is designed to repeat IS-95 CDMA (CDMA800) signals while M1943 is designed to repeat W-CDMA (UMTS800) signals.                                                                                                |                                                                                                        |          |               |  |  |

#### 2.1.1 EUT POWER

| Voltage         | 120 Vac, 60 Hz                |
|-----------------|-------------------------------|
| Number of Feeds | Single phase (L1 and Neutral) |

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### 2.2 EUT CABLES

| Quantity | Model/Type | Routin              | g             | Shielded /         | Description   | Cable         |
|----------|------------|---------------------|---------------|--------------------|---------------|---------------|
| Quai     | Model/Type | From                | То            | Unshielded         | Description   | Length<br>(m) |
| 1        |            | EUT                 | AC power main | Unshielded         | Power cord    | 1.25          |
| 1        | Gore       | IQ Signal Generator | EUT           | Shielded (coaxial) | Coaxial cable | 1.5           |
| 1        | Gore       | EUT                 | 50 ohm load   | Shielded (coaxial) | Coaxial cable | 2             |

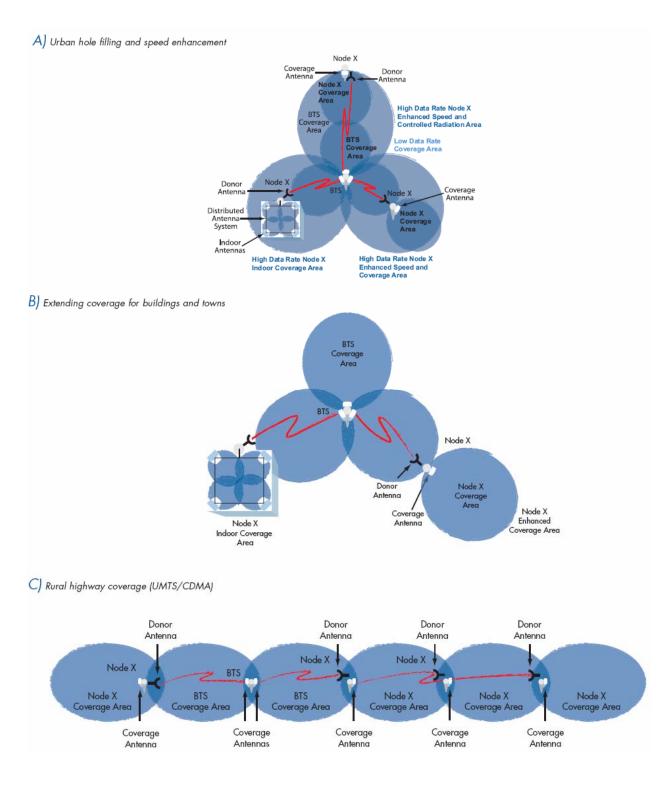
#### 2.3 MODE OF OPERATION DURING TESTS

The device was tested in two basic operating modes:

- Downlink, maximum rf output power (+43 dBm, 20 watts)
- Uplink, maximum rf output power (+23 dBm, 0.2 watts)

While operating in these modes, the device was tested with variations in the following parameters:

- RF filter configurations
  - Normal and High Attenuation settings
  - o Single channel and multiple channel filter settings
- Gain configurations
  - Lowest gain setting
  - Highest gain setting


The rf power output of the device can be set in two different ways:

- RF power
  - In this mode a fixed rf output power target is set. The device uses the detected power of the rf pilot channel within the received waveform and adjusts the amplifier gain automatically to maintain the selected rf output power.
- Fixed gain
  - In this mode, a fixed rf gain is chosen. The rf gain is adjusted by the device only if the rf input level continues to increase after the maximum rated rf output power has been reached (AGC). In this way, the device prevents non-linear operation of the rf amplifiers.

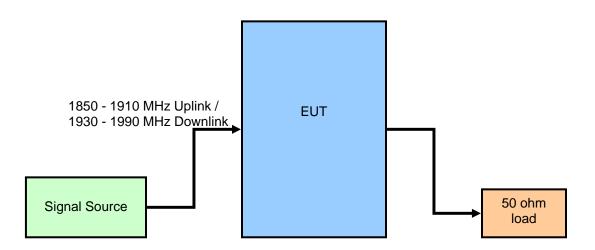
The device was operated in the fixed gain mode for the purposes of this testing since it allows for various input level/gain variations to be tested. It was determined that the worst-case spurious levels occurred with the gain set to maximum and rf input level adjusted to obtain maximum rf output power.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.





This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.




## 3.0 SUPPORT EQUIPMENT

#### 3.1 CONFIGURATION

The radio was activated using customer-supplied test software. The software allowed the test engineer to change modulation modes and data rates as well as transmit channel.

#### 3.2 TEST BED/PERIPHERAL CABLES



This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



# **APPENDICES**

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



## APPENDIX A: 2.1046 RF POWER OUTPUT

#### A.1. Base Standard & Test Basis

| Base Standard | FCC PART 2.1046 |
|---------------|-----------------|
| Test Basis    | TIA 603-C, 2004 |
| Test Method   | TIA 603-C, 2004 |

#### A.2. Specifications

24.232 Power and antenna height limits.

(a) Base stations are limited to 1640 watts peak equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT, except as described in paragraph 24.232(b).

(b) Base stations that are located in counties with population densities of 100 persons or fewer per square mile, based upon the most recently available population statistics from the Bureau of the Census, are limited to 3280 watts peak equivalent isotropically radiated power (EIRP) with an antenna height up to 300 meters HAAT.

(c) Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

### Applicable RF Power Limit from Above: 1640 watts EIRP

#### A.3. Deviations

| Deviation Time & |      | Description and               |                  | Deviation Reference |                  |          |
|------------------|------|-------------------------------|------------------|---------------------|------------------|----------|
| Number           | Date | Justification of<br>Deviation | Base<br>Standard | Test Basis          | NTS<br>Procedure | Approval |
| None             |      |                               |                  |                     |                  |          |

#### A.4. Test Procedure

TIA 603-C, 2004 and 24.232(d)

#### A.5. Test Results

The EUT is in compliance with the limits as specified above. The maximum rf output power at the antenna terminals is 20 watts (downlink) and 0.201 watts (uplink).

#### A.6. Operating Mode During Test

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



The transmitter was tested while in a continuous transmit mode. The EUT was tuned to a low, middle, and high channel in both the downlink (base to mobile) and uplink (mobile to base) directions. In the course of this testing, it was found that operating the device with a fixed rf gain and adjusting rf input signal to obtain maximum rf output power produced the worst-case results.

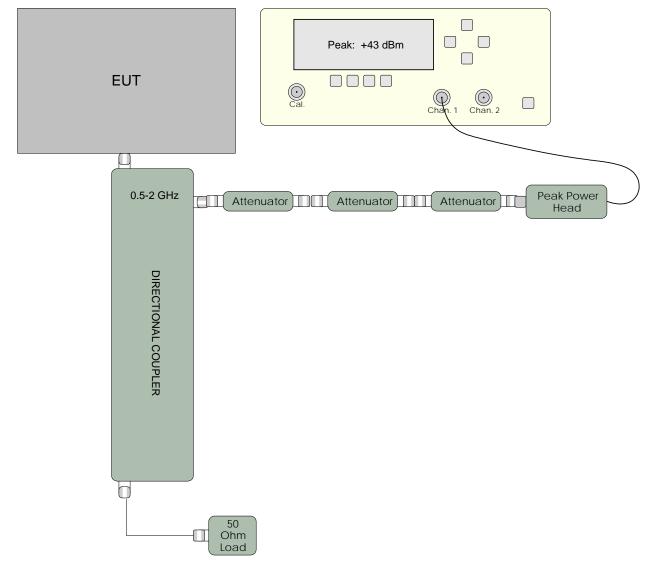
#### A.7. Sample Calculation

Rf power(watts) =  $10^{(rf power(dBm)/10)} \times 1000$ 

#### A.8. Test Data

| Channel            | Signal Path | Modulation Mode  | RF Power Output at<br>Antenna Terminals<br>(dBm) |
|--------------------|-------------|------------------|--------------------------------------------------|
| 25 (1931.25 MHz)   | DL          | F9W (IS-95 CDMA) | 42.96                                            |
| 600 (1960.00 MHz)  | DL          | F9W (IS-95 CDMA) | 42.69                                            |
| 1175 (1988.75 MHz) | DL          | F9W (IS-95 CDMA) | 43.07                                            |
| 62 (1933.10 MHz)   | DL          | F9W (W-CDMA)     | 42.91                                            |
| 600 (1960.00 MHz)  | DL          | F9W (W-CDMA)     | 42.77                                            |
| 1138 (1986.90 MHz) | DL          | F9W (W-CDMA)     | 43.00                                            |
| 25 (1851.25 MHz)   | UL          | F9W (IS-95 CDMA) | 22.90                                            |
| 600 (1880.00 MHz)  | UL          | F9W (IS-95 CDMA) | 22.74                                            |
| 1175 (1908.75 MHz) | UL          | F9W (IS-95 CDMA) | 22.88                                            |
| 62 (1853.10 MHz)   | UL          | F9W (W-CDMA)     | 22.79                                            |
| 600 (1880.00 MHz)  | UL          | F9W (W-CDMA)     | 22.81                                            |
| 1138 (1906.90 MHz) | UL          | F9W (W-CDMA)     | 22.92                                            |

Note: RF power output was measured using a peak rf power meter designed to quantify the true peak power using a high number of samples (10 Ms).


\*DL = Downlink (BTS to Mobile) path, UL = Uplink (Mobile to BTS) path

Test Date: November 20, 2006

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### A.9. Test Diagram



#### A.10. Tested By

| Name:     | Tom Tidwell,                 |
|-----------|------------------------------|
| Function: | Manager of Wireless Services |

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



# APPENDIX B: 2.1047 MODULATION CHARACTERISTICS

#### B.1. Base Standard & Test Basis

| Base Standard | FCC 2.1047                            |
|---------------|---------------------------------------|
| Test Basis    | FCC 2.1047 Modulation Characteristics |
| Test Method   | TIA 603-C, 2004                       |

#### B.2. Specifications

#### 2.1047 - Modulation Characteristics

(a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.

(b) Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

(c) Single sideband and independent sideband radiotelephone transmitters which employ a device or circuit to limit peak envelope power. A curve showing the peak envelope power output versus the modulation input voltage shall be supplied. The modulating signals shall be the same in frequency as specified in paragraph (c) of §2.1049 for the occupied bandwidth tests.

(d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

#### B.3. Deviations

| Deviation | Time & | Description and               | De               | viation Referen | се               |          |
|-----------|--------|-------------------------------|------------------|-----------------|------------------|----------|
| Number    | Date   | Justification of<br>Deviation | Base<br>Standard | Test Basis      | NTS<br>Procedure | Approval |
| none      |        |                               |                  |                 |                  |          |

#### B.4. Test Method

This device does not generate any modulation signals but only repeats a modulated rf waveform.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or impliced, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### B.5. Test Results

Not applicable – The device does not produce a baseband signal but simply repeats a modulated rf waveform.

#### **Test Data Summary**

**Emission Designators** 

#### IS-95 CDMA: F9W W-CDMA: F9W

#### B.6. Test Diagram

N/A

#### B.7. Tested By

Name:Tom TidwellFunction:Manager of Wireless Services

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



# APPENDIX C: 2.10.49 OCCUPIED BANDWIDTH

#### C.1. Base Standard & Test Basis

| Base<br>Standard | FCC 2.1049                    |
|------------------|-------------------------------|
| Test Basis       | FCC 2.1049 Occupied Bandwidth |
| Test Method      | TIA 603-C, 2004               |

#### C.2. Specifications

24.238 Emission limitations for Broadband PCS equipment

(a) *Out of band emissions.* The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

(b) *Measurement procedure.* Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (*i.e.* 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

#### C.3. Deviations

| Deviation | Time & | Description and               | De               |            |                  |          |
|-----------|--------|-------------------------------|------------------|------------|------------------|----------|
| Number    | Date   | Justification of<br>Deviation | Base<br>Standard | Test Basis | NTS<br>Procedure | Approval |
| none      |        |                               |                  |            |                  |          |

### C.4. Test Method

TIA 603-C, 2004 and 24.238(b)

The modulated rf carrier fed to the device during testing is described below:

#### IS-95 CDMA carrier:

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### <u>Downlink</u>

Data source: PRBS (Pseudo-Random Bit Sequence) Modulation: QPSK 2 b/sym Symbol Rate: 1.2288 Msym/sec Filter: IS-95 + Equalizer Coding: None

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

#### Channel Mapping

| Chan. | Walsh | Power | Data | Chan. | Walsh | Power | Data | Chan. | Walsh | Power | Data |
|-------|-------|-------|------|-------|-------|-------|------|-------|-------|-------|------|
| No.   | Code  | (dB)  |      | No.   | Code  | (dB)  |      | No.   | Code  | (dB)  |      |
| 0     | 0     | -7    | 0000 | 22    | 22    | -19   | PRBS | 44    | 44    | -19   | PRBS |
| 1     | 1     | -19   | PRBS | 23    | 23    | -19   | PRBS | 45    | 45    | -19   | PRBS |
| 2     | 2     | -19   | PRBS | 24    | 24    | -19   | PRBS | 46    | 46    | -19   | PRBS |
| 3     | 3     | -19   | PRBS | 25    | 25    | -19   | PRBS | 47    | 47    | -19   | PRBS |
| 4     | 4     | -19   | PRBS | 26    | 26    | -19   | PRBS | 48    | 48    | -19   | PRBS |
| 5     | 5     | -19   | PRBS | 27    | 27    | -19   | PRBS | 49    | 49    | -19   | PRBS |
| 6     | 6     | -19   | PRBS | 28    | 28    | -19   | PRBS | 50    | 50    | -19   | PRBS |
| 7     | 7     | -19   | PRBS | 29    | 29    | -19   | PRBS | 51    | 51    | -19   | PRBS |
| 8     | 8     | -19   | PRBS | 30    | 30    | -19   | PRBS | 52    | 52    | -19   | PRBS |
| 9     | 9     | -19   | PRBS | 31    | 31    | -19   | PRBS | 53    | 53    | -19   | PRBS |
| 10    | 10    | -19   | PRBS | 32    | 32    | -19   | PRBS | 54    | 54    | -19   | PRBS |
| 11    | 11    | -19   | PRBS | 33    | 33    | -19   | PRBS | 55    | 55    | -19   | PRBS |
| 12    | 12    | -19   | PRBS | 34    | 34    | -19   | PRBS | 56    | 56    | -19   | PRBS |
| 13    | 13    | -19   | PRBS | 35    | 35    | -19   | PRBS | 57    | 57    | -19   | PRBS |
| 14    | 14    | -19   | PRBS | 36    | 36    | -19   | PRBS | 58    | 58    | -19   | PRBS |
| 15    | 15    | -19   | PRBS | 37    | 37    | -19   | PRBS | 59    | 59    | -19   | PRBS |
| 16    | 16    | -19   | PRBS | 38    | 38    | -19   | PRBS | 60    | 60    | -19   | PRBS |
| 17    | 17    | -19   | PRBS | 39    | 39    | -19   | PRBS | 61    | 61    | -19   | PRBS |
| 18    | 18    | -19   | PRBS | 40    | 40    | -19   | PRBS | 62    | 62    | -19   | PRBS |
| 19    | 19    | -19   | PRBS | 41    | 41    | -19   | PRBS | 63    | 63    | -19   | PRBS |
| 20    | 20    | -19   | PRBS | 42    | 42    | -19   | PRBS |       |       |       |      |
| 21    | 21    | -19   | PRBS | 43    | 43    | -19   | PRBS |       |       |       |      |

#### <u>Uplink</u>

Data source: PRBS (Pseudo-Random Bit Sequence) Modulation: OQPSK 2 b/sym Symbol Rate: 1.2288 Msym/sec Filter: IS-95 Coding: None Channel Type: Traffic Data Rate: 14, 400 b/sec Convolution Encoder: On Block Interleaver: On Erasure Bit: 1

#### W-CDMA carrier: .

Data source: PRBS(Pseudo-Random Bit Sequence) Modulation: OQPSK Symbol Rate: 4.096 MHz Sequence Length: 65536 sym Filter: Root Cosine Roll Off: 0.1 Window Function: Hanning

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



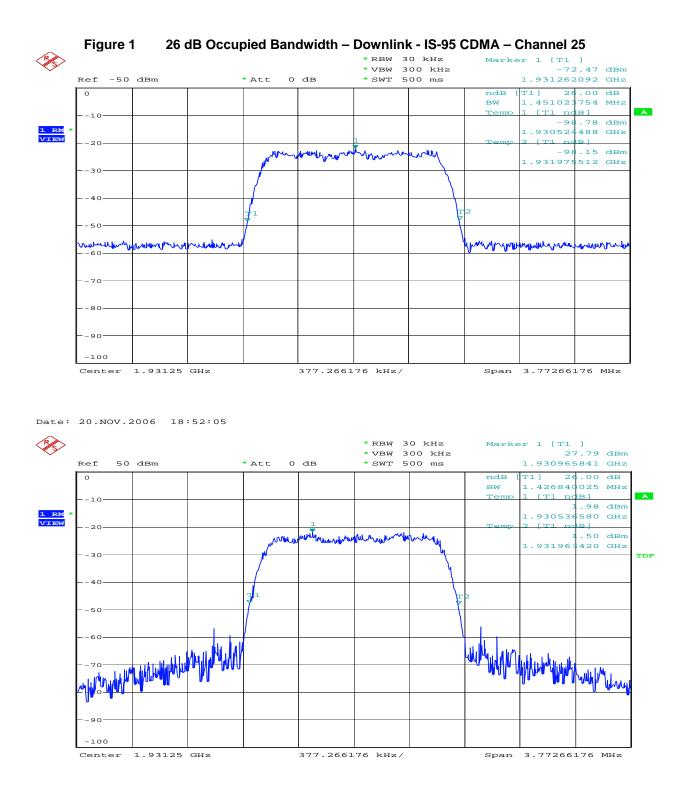
### C.5. Test Results

Compliant. The rf input and output of the device was plotted to demonstrate that the modulated carrier is not degraded as a result of processing by the device under test.

#### C.6. Deviations from Normal Operating Mode During Test

None.

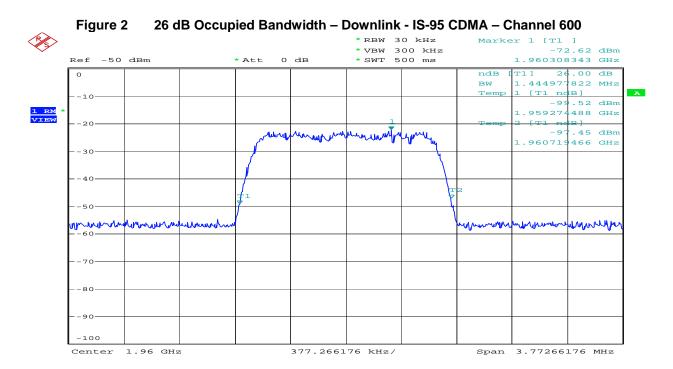
C.7. Sample Calculation


None.

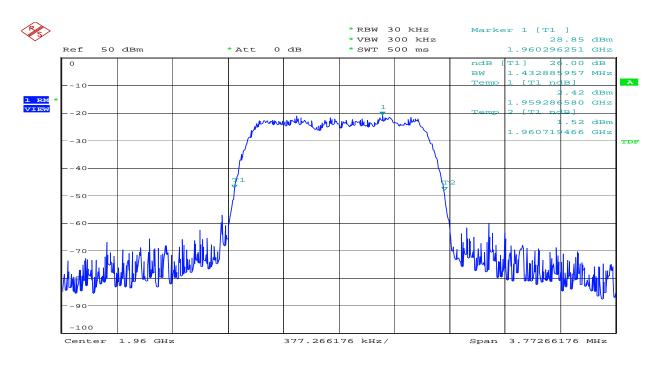
C.8. Test Data

See plots following.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



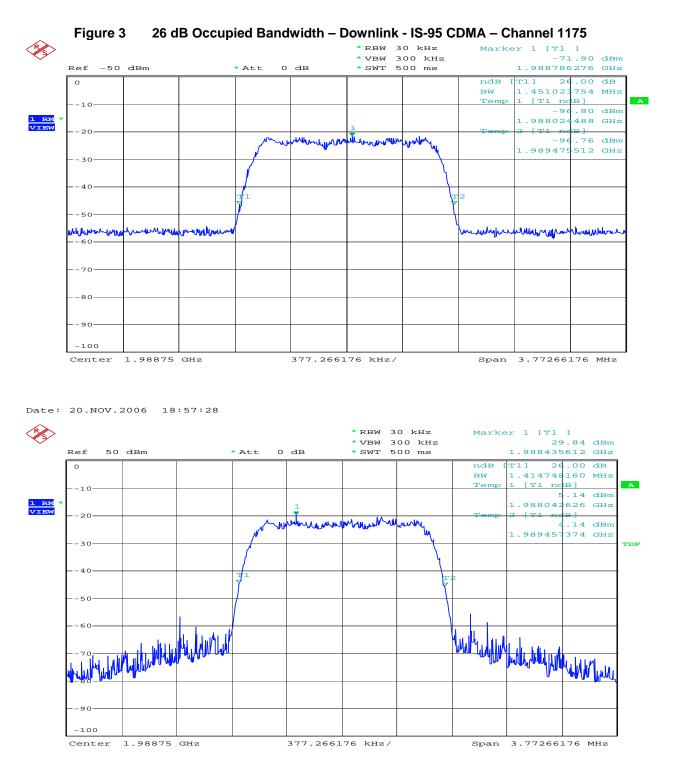




Date: 20.NOV.2006 19:08:08

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



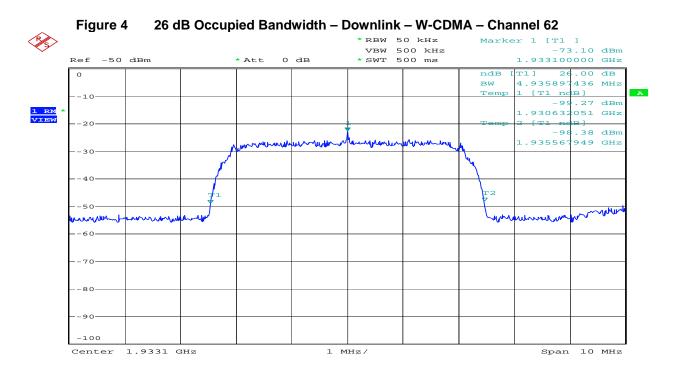



Date: 20.NOV.2006 18:55:10

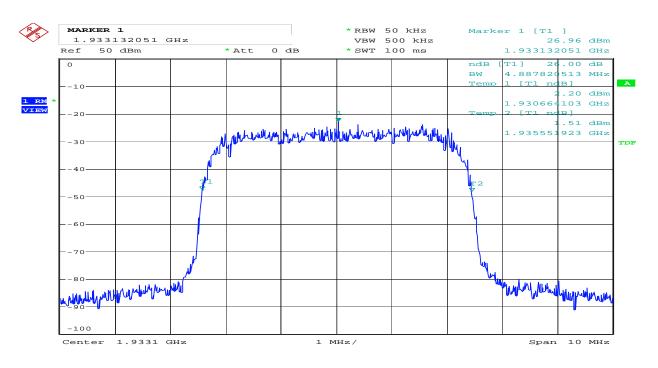


Date: 20.NOV.2006 19:00:42

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



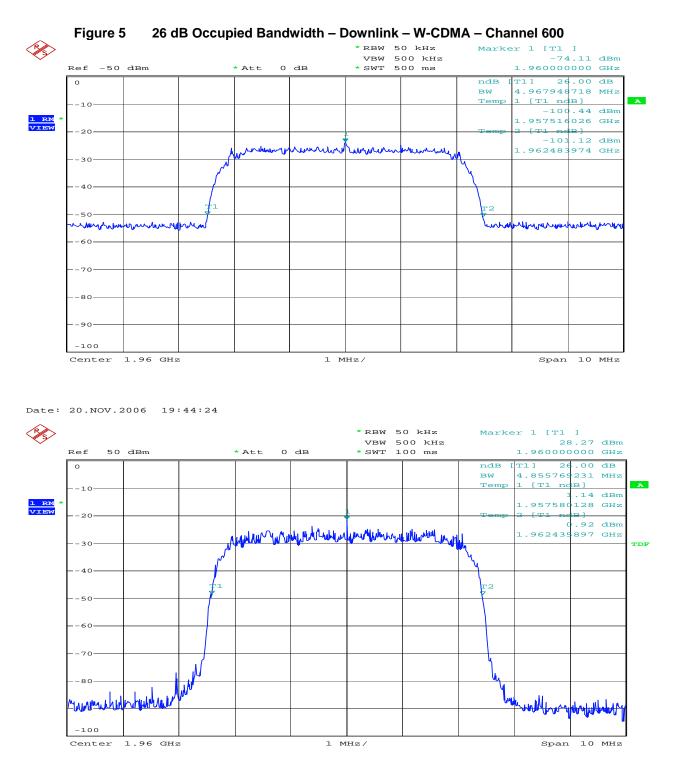




Date: 20.NOV.2006 19:05:36

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



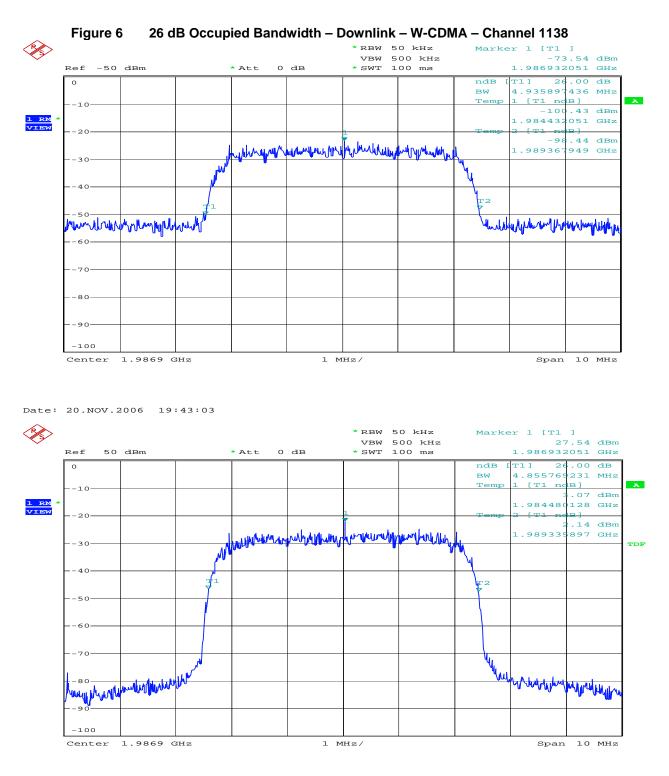



Date: 20.NOV.2006 19:45:42



Date: 20.NOV.2006 19:23:51

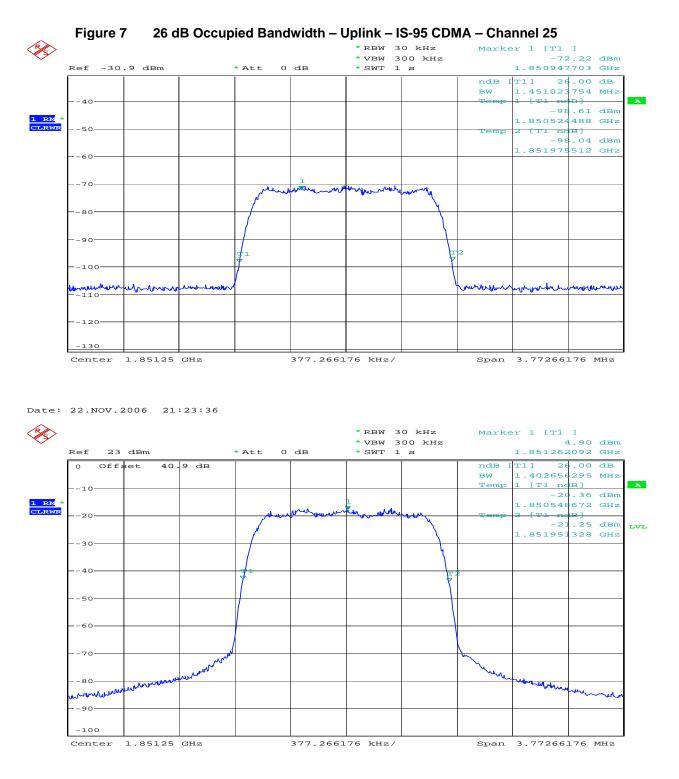
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 20.NOV.2006 19:35:52

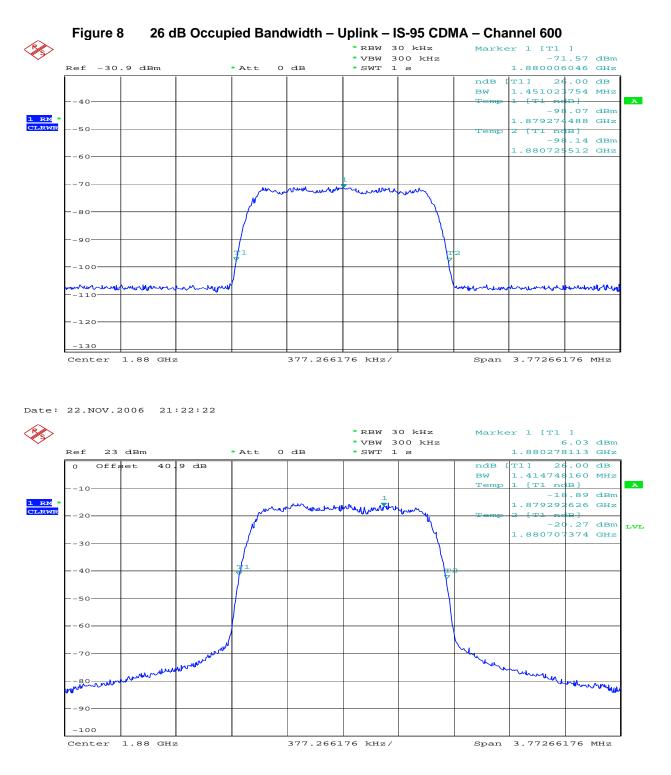
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 20.NOV.2006 19:38:48

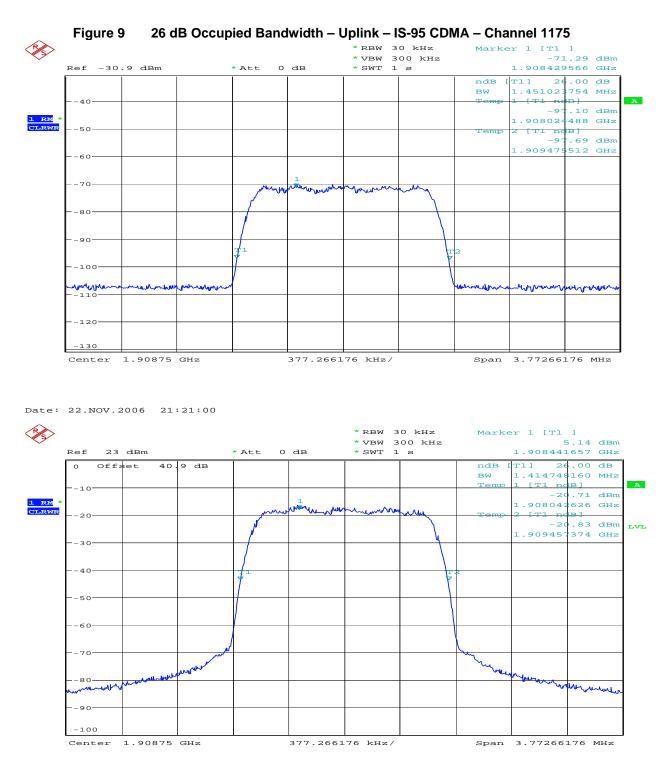
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 22.NOV.2006 21:13:00

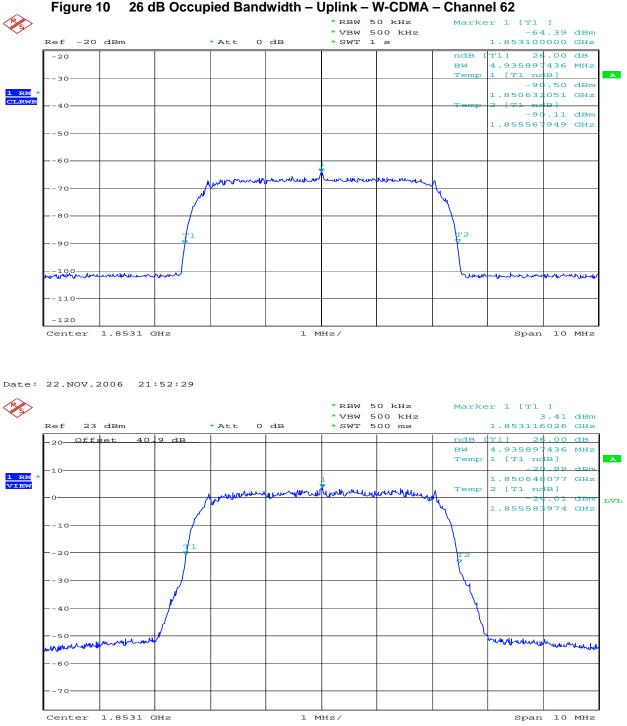
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 22.NOV.2006 21:08:11

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

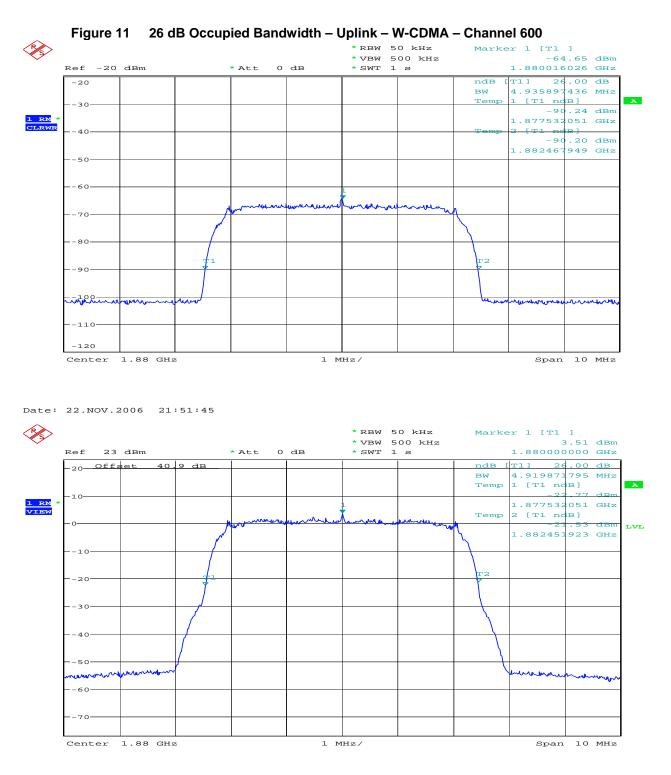





Date: 22.NOV.2006 21:15:20

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

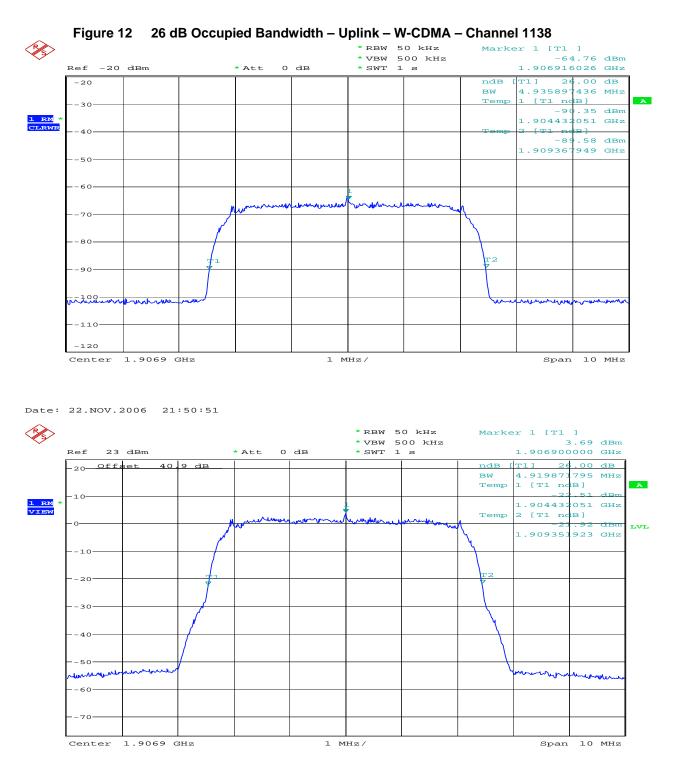





26 dB Occupied Bandwidth – Uplink – W-CDMA – Channel 62 Figure 10

Date: 22.NOV.2006 22:00:09

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

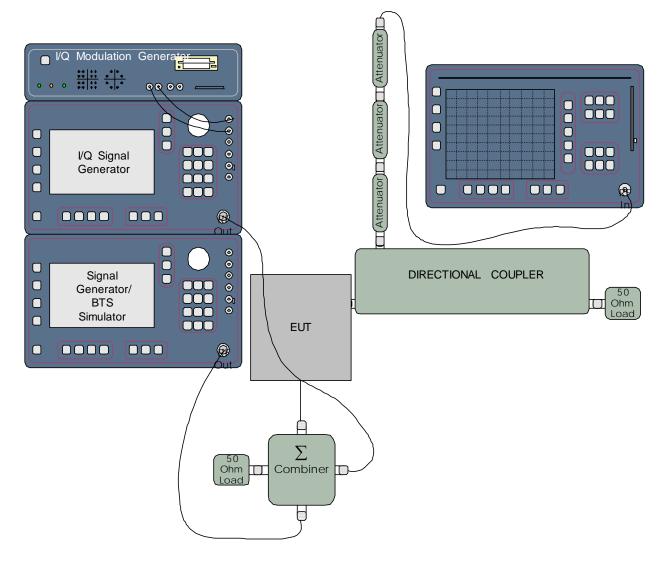





Date: 22.NOV.2006 21:58:23

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 22.NOV.2006 21:56:15

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### C.9. Test Diagram



#### C.10. Tested By

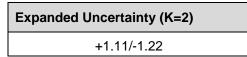
| Name:     | Tom Tidwell,                 |
|-----------|------------------------------|
| Function: | Manager of Wireless Services |

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



## APPENDIX D: 2.1051 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

#### D.1. Base Standard & Test Basis


| Base<br>Standard | FCC 2.1051                                         |
|------------------|----------------------------------------------------|
| Test Basis       | FCC 2.1051 Spurious Emissions at Antenna Terminals |
| Test Method      | TIA 603-C, 2004                                    |

#### D.2. Specifications

24.238 Emission limitations for Broadband PCS equipment

(a) *Out of band emissions.* The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

### D.3. Measurement Uncertainty

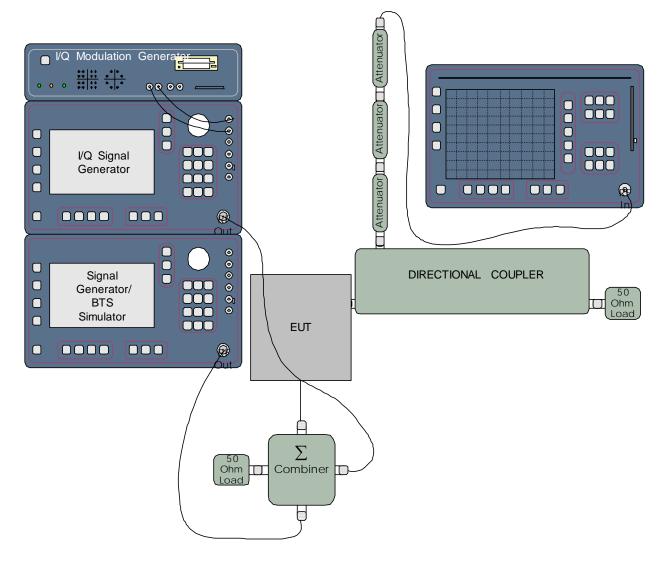


#### D.4. Deviations

| Deviation | on Time & | Description and               | De               |            |                  |          |
|-----------|-----------|-------------------------------|------------------|------------|------------------|----------|
| Numb      |           | Justification of<br>Deviation | Base<br>Standard | Test Basis | NTS<br>Procedure | Approval |
| none      | )         |                               |                  |            |                  |          |

#### D.5. Test Results

Complies. All emissions meet the out of band limits.


Out-of-Band Emissions limit is 43 + 10 log(P) which relates to -13 dBm absolute power.

Attenuation limit =  $43 + 10 \log(20) = 56 \text{ dB}$ 

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### D.6. Test Diagram



#### D.7. Test Data

See following pages.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|                                         |           |         |              | 100 kHz          | Mark              | er 1 [T1        |                      |
|-----------------------------------------|-----------|---------|--------------|------------------|-------------------|-----------------|----------------------|
| Ref 43 dBm                              | Att       | 20 dB   |              | 300 kHz<br>50 ms | 3                 | -2<br>78.28525  | 5.66 dBm<br>6410 MHz |
| 0 Offset 48.6 dB                        |           |         |              |                  |                   |                 |                      |
| 10                                      |           |         |              |                  |                   |                 |                      |
| 20                                      |           |         |              |                  |                   |                 |                      |
| 30                                      |           |         |              |                  |                   |                 |                      |
| 40                                      |           |         |              |                  |                   |                 |                      |
|                                         |           |         |              |                  |                   |                 |                      |
| D1 -56 dB                               |           |         |              |                  |                   |                 |                      |
| wingsthemakensterentiterentationstation | Jon Marth | Multuri | ward and the | hunderen         | L<br>Uhmer Lunder | http://www.hole | muhante              |
|                                         |           |         |              |                  |                   |                 |                      |
|                                         |           |         |              |                  |                   |                 |                      |
| -100                                    |           |         |              |                  |                   |                 |                      |

igure 13 - Antenna Conducted Spurious - Downlink – IS-95 – Channel 25

Date: 15.NOV.2006 22:50:30

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

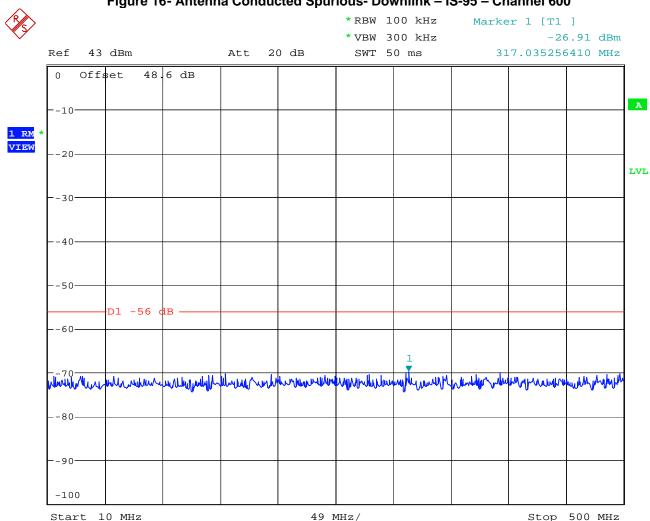


|   |                         |        |         |           |        |     |        | * RBW   |    |      | Marke | er 1 [T1         |      |    |
|---|-------------------------|--------|---------|-----------|--------|-----|--------|---------|----|------|-------|------------------|------|----|
|   |                         |        |         |           |        |     |        | * VBW   |    |      |       |                  | 3.55 |    |
|   | Ref                     | 43     | dBm     |           | Att    | 10  | ) dB   | SWT     | 2. | 5 ms |       | 1.956730         | 0769 | GH |
|   | 0                       |        |         |           |        |     |        |         |    |      |       |                  |      |    |
|   | -10-                    |        |         |           |        |     |        |         |    |      |       |                  |      | -  |
| • | 20-                     |        |         |           |        |     |        |         |    |      |       |                  |      |    |
| - | 30-                     |        |         |           |        |     |        |         |    |      |       |                  |      |    |
|   |                         |        |         |           |        |     |        |         |    |      |       |                  |      |    |
| ľ | 40-                     |        |         |           |        |     |        |         |    |      |       |                  |      |    |
|   | 50-                     |        |         |           |        |     |        |         |    |      |       |                  |      |    |
|   | 60-                     |        | D1 -56. | 043 dB -  |        |     |        |         |    |      |       |                  |      | 1  |
| 1 | <b>ummul</b><br>— - 70- | Lunder | mhermon | and maken | mmknem | ~~~ | Murman | mh.m.me | m  | when | man   | Junhandar Martin | m    |    |
|   |                         |        |         |           |        |     |        |         |    |      |       |                  |      |    |
|   |                         |        |         |           |        |     |        |         |    |      |       |                  |      |    |
|   | -90-                    |        |         |           |        |     |        |         |    |      |       |                  |      |    |
|   | -100                    | )      |         |           |        |     |        |         |    |      |       |                  |      |    |

Date: 16.NOV.2006 00:01:26

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.




|                 |        |       |       | * RB                                   | 8W 1  | MHz  |     | Marker 1 [T1 ] |          |
|-----------------|--------|-------|-------|----------------------------------------|-------|------|-----|----------------|----------|
|                 |        |       |       | VB                                     | W 1   | 0 МН | z   | -23.18 d       | Βn       |
| Ref 43 dBm      |        | Att 3 | 10 dB | SW                                     | т 1   | 05 m | s   | 18.036746472 G | Hz       |
|                 |        |       |       |                                        |       |      | 10  | GHz            |          |
| -40             |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     |                |          |
| -30             |        |       |       |                                        |       |      |     |                |          |
| *               |        |       |       |                                        |       |      |     |                |          |
| -20             |        |       |       |                                        |       |      |     |                |          |
| 20              |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     |                |          |
| -10             |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     |                |          |
| -0              |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     |                |          |
| 10              |        |       |       |                                        |       |      |     |                |          |
| -10<br>PCS_SPUR |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     | 1              |          |
|                 |        |       |       |                                        |       |      |     | mm minument    | <b>A</b> |
| -30             | hannah |       | han   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ~~~~/ | m    | ~~~ |                |          |
| have the second |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     |                |          |
|                 |        |       |       |                                        |       |      |     |                |          |

Stop 20 GHz

Date: 27.NOV.2006 19:28:48

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.





## Figure 16- Antenna Conducted Spurious- Downlink - IS-95 - Channel 600

Date: 15.NOV.2006 22:51:16

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|               |        |              |          | *RBW  | 1 MHz  | Marke | er 1 [T1 | ]         |          |
|---------------|--------|--------------|----------|-------|--------|-------|----------|-----------|----------|
|               |        |              |          |       | 10 MHz |       | -2       | 5.84      | dBı      |
| Ref 43        | dBm    | Att          | 10 dB    | SWT ! | 5 ms   |       | 2.00000  | 0000      | GH       |
| -40           |        |              |          |       |        |       |          |           | <u> </u> |
|               |        |              |          |       |        |       |          |           |          |
| -30           |        |              |          |       |        |       |          |           |          |
| 50            |        |              |          |       |        |       |          |           |          |
|               |        |              |          |       |        |       |          |           |          |
| -20           |        |              |          |       |        |       |          |           |          |
|               |        |              |          |       |        |       |          |           |          |
| -10           |        |              |          |       |        |       |          |           | H        |
|               |        |              |          |       |        |       |          |           |          |
| -0            |        |              |          |       |        |       |          |           |          |
|               |        |              |          |       |        |       |          |           |          |
|               |        |              |          |       |        |       |          |           |          |
| 10<br>PCS_SPU | R      |              |          |       |        |       |          |           |          |
|               |        |              |          |       |        |       |          |           |          |
| 20            |        |              |          |       |        |       |          |           | ╢        |
|               |        |              |          |       |        |       |          | . It have | با کرما  |
| wy mill       | undulu | millingenter | www.www. | uu    |        |       |          |           |          |
|               |        |              |          |       |        |       |          |           |          |
| 40            |        |              |          |       |        |       |          |           |          |
|               |        |              |          |       |        |       |          |           |          |
| L F0.         |        |              |          |       |        |       |          |           |          |
|               |        |              |          |       |        |       |          |           | _        |
|               |        |              |          |       |        |       |          |           |          |

# Figure 47 Automa Conducted Country Doumlink 10.05 Channel 600

Date: 27.NOV.2006 19:20:54

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|                 |           | *RBW 1 MHz | Marker 1 [T1 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------|-----------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |           | VBW 10 MHz | -23.21 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Ref 43 dBm      | Att 10 dB | SWT 105 ms | 18.508709944 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -40             |           | 1          | ) GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -30             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -20             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -10             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -0              |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -10<br>PCS_SPUR |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 |           |            | and the second sec |
|                 |           | m          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| t-30            | man       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -50             |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

stad C 40 . ... Line L 1 000 0 

Start 2 GHz

Stop 20 GHz

Date: 27.NOV.2006 19:27:05

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                          | * RBW     | 100 kHz          | Marke            | er 1 [T1       | ]        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|-----------|------------------|------------------|----------------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                          | * VBW     | 300 kHz          |                  | -2             | 5.58 dBm |
| Ref 43 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Att          | 20 dB                    | SWT       | 50 ms            | 33               | 39.80769       | 2308 MHz |
| 0 Offset 48.6 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                          |           |                  |                  |                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                          |           |                  |                  |                |          |
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                          |           |                  |                  |                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                          |           |                  |                  |                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                          |           |                  |                  |                |          |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                          |           |                  |                  |                |          |
| 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                          |           |                  |                  |                |          |
| D1 -56 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                          |           |                  |                  |                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                          |           | 1                |                  |                |          |
| until Roman and Marked a | ul dun de la | unput the second content | uk www.me | mit with harding | leven and an and | <b>Munnund</b> | there    |
| 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                          |           |                  |                  |                |          |
| 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                          |           |                  |                  |                | <u> </u> |
| -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |                          |           |                  |                  |                |          |

## 10 4 -~ -1-..... 4 0. link 1 4 4 7 5 -:

Date: 15.NOV.2006 22:56:40

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



| F                 | igure 20   | - Anten    | na Con  | ldu           | cted Sp      |       | Downlin | k – IS-95 | 5 – Chan | nel 117 | 75 |
|-------------------|------------|------------|---------|---------------|--------------|-------|---------|-----------|----------|---------|----|
|                   |            |            |         |               |              | * RBW | 1 MHz   | Mark      | er 1 [T1 | ]       |    |
|                   |            |            |         |               |              | VBW   | 10 MHz  |           | -2       | 1.11 d  | lB |
| Ref 43            | dBm        |            | Att     | 10            | dB           | SWT   | 5 ms    |           | 1.96875  | 0000 G  | Η  |
| -40               |            |            |         |               |              |       |         |           |          |         |    |
| 10                |            |            |         |               |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
| -30               |            |            | _       | $\rightarrow$ |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
| 2.0               |            |            |         |               |              |       |         |           |          |         |    |
| -20               |            |            |         |               |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
| -10               |            |            |         | $\rightarrow$ |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
| -0                |            |            |         |               |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
| -10<br>PCS_SPU    |            |            |         |               |              |       |         |           |          |         |    |
| PCS_SPU           | R          |            |         | —             |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         | 1  |
|                   |            |            |         | -             |              |       |         |           |          |         | -  |
|                   |            |            |         |               |              |       |         |           |          | p^^     | W  |
| when when we will | delaning m | Milulionul | muchily | min           | ymer hand it | ummen | wytherm | howwww.   | handhar  | neulin  |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
| 40                |            |            |         | +             |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |
|                   |            |            |         |               |              |       |         |           |          |         |    |

Date: 27.NOV.2006 19:22:32

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|                |                   | *RBW 1 MHz | Marker 1 [T1 ]   |
|----------------|-------------------|------------|------------------|
|                |                   | VBW 10 MHz | -23.08 dBi       |
| Ref 43 dBm     | Att 10 dB         | SWT 105 ms | 18.103425741 GH  |
| 4.0            |                   | 10         | GHz              |
| -40            |                   |            |                  |
|                |                   |            |                  |
| -30            |                   |            |                  |
| 50             |                   |            |                  |
|                |                   |            |                  |
| -20            |                   |            |                  |
|                |                   |            |                  |
|                |                   |            |                  |
| -10            |                   |            |                  |
|                |                   |            |                  |
|                |                   |            |                  |
| -0             |                   |            |                  |
|                |                   |            |                  |
|                |                   |            |                  |
| 10<br>PCS_SPUR |                   |            |                  |
|                |                   |            |                  |
|                |                   |            |                  |
|                |                   |            | 1                |
|                |                   |            | a mar an annound |
|                | -                 |            |                  |
| t-30           | the second second |            |                  |
|                |                   |            |                  |
| 4.0            |                   |            |                  |
| 40             |                   |            |                  |
|                |                   |            |                  |
|                |                   |            |                  |
| -50            |                   |            |                  |
|                |                   |            |                  |

Stop 20 GHz

Date: 27.NOV.2006 19:25:51

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|       | Figure 22 | 2- Antenn  | a Cond | ucted Spur |       | wnlink – W |        |          |           |
|-------|-----------|------------|--------|------------|-------|------------|--------|----------|-----------|
|       |           |            |        |            | * RBW | 30 kHz     | Mark   | er 1 [T1 | ]         |
|       |           |            |        |            | * VBW | 300 kHz    |        | - 3      | 7.08 dBm  |
| Ref 4 | 3 dBm     |            | Att    | 20 dB      | SWT   | 560 ms     | 2      | 40.86538 | 4615 MHz  |
| 0 Of  | set 48    | .6 dB      |        |            |       |            |        |          |           |
| 10    |           |            |        |            |       |            |        |          |           |
| *     |           |            |        |            |       |            |        |          |           |
| 20    |           |            |        |            |       |            |        |          |           |
| 30    |           |            |        |            |       |            |        |          |           |
| 40    |           |            |        |            |       |            |        |          |           |
| 50    |           |            |        |            |       |            |        |          |           |
| 60    | D1 -56 (  | ав ———     |        |            |       |            |        |          |           |
| 00    |           |            |        |            |       |            |        |          |           |
| 70    |           |            |        |            |       |            |        |          |           |
|       | mmmuhanga | -en marine | munhe  | 1          | mahre | hummanau   | malion | mmmm     | amendades |
|       |           |            |        |            |       |            |        |          |           |
| 90    |           |            |        |            |       |            |        |          |           |
| -100  |           |            |        |            |       |            |        |          |           |

Date: 15.NOV.2006 23:29:27

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



| <b>R</b>       |            |          |          |       |       |            | 5 MHz           |   |                 |              |                    |     |
|----------------|------------|----------|----------|-------|-------|------------|-----------------|---|-----------------|--------------|--------------------|-----|
| $\checkmark$   | Ref 43     | 3 dBm    |          | Att 1 | 0 dB  |            | 0 MHz<br>2.5 ms |   | -19<br>1.985576 | 9.45<br>5923 |                    |     |
|                | 0          |          |          |       |       |            |                 |   |                 |              |                    |     |
|                | 10         |          |          |       |       |            |                 |   |                 |              |                    | A   |
| 1 RM *<br>VIEW |            |          |          |       |       |            |                 |   |                 |              |                    |     |
|                | 20         |          |          |       |       |            |                 |   |                 |              |                    |     |
|                | 30         |          |          |       |       |            |                 |   |                 |              | $\left  - \right $ | TDI |
|                |            |          |          |       |       |            |                 |   |                 |              |                    |     |
|                | 10         |          |          |       |       |            |                 |   |                 |              |                    |     |
|                | -50        |          |          |       |       |            |                 |   |                 |              |                    |     |
|                | 60         | -D1 -56. | 043 dB — |       |       |            |                 |   |                 |              | 1                  |     |
|                | her alwala | Mullen   | manul    | Muhan | hanna | um mulum m | - Ander Marken  | m | hernelinnen     |              | - M                |     |
|                | 70         | ·        |          |       |       |            |                 |   |                 |              |                    |     |
|                |            |          |          |       |       |            |                 |   |                 |              |                    | -   |
|                |            |          |          |       |       |            |                 |   |                 |              |                    |     |
|                | 90         |          |          |       |       |            |                 |   |                 |              |                    |     |
|                | -100       |          |          |       |       |            |                 |   |                 |              |                    | J   |
|                | Start      | 500 MHz  |          |       | 150   | MHz/       |                 |   | Sto             | p 2          | GHz                |     |

# Figure 23- Antenna Conducted Spurious- Downlink – W-CDMA – Channel 62

Date: 15.NOV.2006 23:44:20

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     | BW 5  |      |    | Marker 1 [T1 ] |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|-----|-------|-----|-------|------|----|----------------|------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       | * V | BW 1  | 0 MH | Z  | -22.28         | dBr  |
| Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 43 dBm |            | Att | 10 dB | S   | WT 2  | 5 ms |    | 2.00000000     | GH:  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |            |     |       |     |       |      | 10 | GHz            |      |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |            |     |       |     |       |      |    |                |      |
| _ 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |            |     |       |     |       |      |    |                |      |
| 10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |            |     |       |     |       |      |    |                |      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |            |     |       |     |       |      |    |                |      |
| 40-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D1 -5  | 6.043 dB - |     |       |     |       |      |    |                |      |
| 60-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |            |     |       |     |       |      |    |                |      |
| The second secon |        |            |     |       |     |       |      |    | ······         | ~~~~ |
| l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |            |     |       |     | ~~~~~ |      |    |                |      |
| 70-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | lund       |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
| -080-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
| -90-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |            |     |       |     |       |      |    |                |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |            |     |       |     |       |      |    |                |      |
| -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | )      |            |     | 1     |     |       |      |    |                |      |

Stop 20 GHz

Date: 16.NOV.2006 00:03:23

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|      |      |         |               |                |      |     | * RBW              | 30 kHz                    | Marke   | er 1 [T1                     | 1             |
|------|------|---------|---------------|----------------|------|-----|--------------------|---------------------------|---------|------------------------------|---------------|
|      |      |         |               |                |      |     | * VBW              | 300 kHz                   |         | -3                           | 7.01 dBr      |
| Ref  | 43   | dBm     |               | Att            | 20 d | В   | SWT                | 560 ms                    | 19      | 94.53525                     | 6410 MH       |
| 0    | Offs | set 48  | 3.6 dB        |                |      |     |                    |                           |         |                              |               |
| 10   |      |         |               |                |      |     |                    |                           |         |                              |               |
| -10  |      |         |               |                |      |     |                    |                           |         |                              |               |
| 20   |      |         |               |                |      |     |                    |                           |         |                              |               |
|      |      |         |               |                |      |     |                    |                           |         |                              |               |
| 30   |      |         |               |                |      |     |                    |                           |         |                              |               |
|      |      |         |               |                |      |     |                    |                           |         |                              |               |
| 40   |      |         |               |                |      |     |                    |                           |         |                              | -             |
| 50   |      |         |               |                |      |     |                    |                           |         |                              |               |
|      |      | D1 -56  | <b>ф</b> в —— |                |      |     |                    |                           |         |                              |               |
| 60   |      |         |               |                |      |     |                    |                           |         |                              |               |
|      |      |         |               |                |      |     |                    |                           |         |                              |               |
| 70·  |      |         |               |                |      |     |                    |                           |         |                              |               |
|      |      |         |               | the set the st | 1    |     | M. M. a. L. An. Jn |                           | - umunu | 4                            | An hold to Ma |
| have | man  | www.www | - Marine      |                |      | (M) |                    | A CARACTER AND A CARACTER |         | an fra second and a final of |               |
| 90   |      |         |               |                |      |     |                    |                           |         |                              |               |
| -10  | 0    |         |               |                |      |     |                    |                           |         |                              |               |

Date: 15.NOV.2006 23:30:06

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



| • |       |    |               |          |           |           | * RBW   |         | Marke  | er 1 [T1    | ]        |     |
|---|-------|----|---------------|----------|-----------|-----------|---------|---------|--------|-------------|----------|-----|
|   |       |    |               |          |           |           | * VBW   | 10 MHz  |        | -2          | 0.62 0   | lBn |
|   | Ref · | 43 | dBm           |          | Att       | 10 dB     | SWT     | 2.5 ms  |        | 1.98798     | 0769 0   | 3H2 |
|   | 0     |    |               |          |           |           |         |         |        |             |          |     |
|   |       |    |               |          |           |           |         |         |        |             |          |     |
|   | 10    |    |               |          |           |           |         |         |        |             |          | ╈   |
| * |       |    |               |          |           |           |         |         |        |             |          |     |
|   | 20    |    |               |          |           |           |         |         |        |             | <u> </u> | ╨   |
|   |       |    |               |          |           |           |         |         |        |             |          |     |
|   | 2.0   |    |               |          |           |           |         |         |        |             |          |     |
|   |       |    |               |          |           |           |         |         |        |             |          | Т   |
|   |       |    |               |          |           |           |         |         |        |             |          |     |
|   | 40    |    |               |          |           |           |         |         |        |             |          | ╫   |
|   |       |    |               |          |           |           |         |         |        |             |          |     |
|   | 50    |    |               |          |           |           |         |         |        |             |          | ╢   |
|   |       |    | D1 -56.       | 143 dB - |           |           |         |         |        |             |          |     |
|   | 60    |    | 50.           | - 15 QD  |           |           |         |         |        |             |          |     |
|   |       |    |               |          |           |           |         |         |        |             | ~        | Л   |
|   | heren | m  | milliteration | maninal  | unkloh mm | mbermhand | unumunu | menenne | manden | and mehanne | mm       |     |
|   | 70    |    |               |          |           |           |         |         |        |             |          |     |
|   |       |    |               |          |           |           |         |         |        |             |          |     |
|   | 80    |    |               |          |           |           |         |         |        |             |          |     |
|   |       |    |               |          |           |           |         |         |        |             |          |     |
|   | -90   |    |               |          |           |           |         |         |        |             | <u> </u> |     |
|   |       |    |               |          |           |           |         |         |        |             |          |     |
|   | -100  |    |               |          |           |           |         |         |        |             |          |     |

Date: 15.NOV.2006 23:46:47

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|     |                                        |         |     |      |      | * R | BW 5  | MHz  |      | Marker 1 [T1 ]                         |       |
|-----|----------------------------------------|---------|-----|------|------|-----|-------|------|------|----------------------------------------|-------|
|     |                                        |         |     |      |      | * V | BW 10 | О МН | Z    | -19.45                                 | dBn   |
| Ref | 43 dBm                                 |         | Att | : 10 | ) dB | S   | WT 25 | 5 ms |      | 18.103425741                           | GHz   |
| 0   |                                        |         |     |      |      |     |       |      | 10   | GHz                                    |       |
| 10- |                                        |         |     |      |      |     |       |      |      |                                        |       |
| 20- |                                        |         |     |      |      |     |       |      |      |                                        |       |
| 30- |                                        |         |     |      |      |     |       |      |      |                                        |       |
| 40- |                                        |         |     |      |      |     |       |      |      |                                        |       |
| 50- |                                        |         | _   |      |      |     |       |      |      |                                        |       |
| 60- | D1 -56                                 | 0.043 d | в — |      |      |     |       |      |      |                                        | 1     |
|     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |         |     |      |      |     |       |      | ~~~~ | ······································ | Mini- |
| 70- |                                        |         |     |      |      |     |       |      |      |                                        |       |
| 80- |                                        |         |     |      |      |     |       |      |      |                                        |       |
| 90- |                                        |         |     |      |      |     |       |      |      |                                        |       |
|     |                                        |         |     |      |      |     |       |      |      |                                        |       |

Stop 20 GHz

Date: 16.NOV.2006 00:04:22

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|    |             |        |      |      |      |      |     |   |             | * RBW   | 30   | kHz   | Marke    | er 1 [T1 | 1             |
|----|-------------|--------|------|------|------|------|-----|---|-------------|---------|------|-------|----------|----------|---------------|
|    |             |        |      |      |      |      |     |   |             | * VBW   | 300  | kHz   |          |          | 7.18 dBm      |
| Re | f           | 43     | dBm  |      |      |      | Att | 2 | 0 dB        | SWT     |      |       | 45       | 55.24038 |               |
| 0  | C           | Offs   | et   | 48.  | 6 dB |      |     |   |             |         |      |       |          |          |               |
| :  | 10—         |        |      |      |      |      |     |   |             |         |      |       |          |          |               |
| *  | 2.0         |        |      |      |      |      |     |   |             |         |      |       |          |          |               |
|    | 20—         |        |      |      |      |      |     |   |             |         |      |       |          |          |               |
| :  | 30—         |        |      |      |      |      |     |   |             |         |      |       |          |          |               |
|    | 40—         |        |      |      |      |      |     |   |             |         |      |       |          |          |               |
| !  | 50—         |        |      |      |      |      |     |   |             |         |      |       |          |          |               |
|    | 60—         |        | D1 - | 56 c | lв — |      |     |   |             |         |      |       |          |          |               |
|    | 00          |        |      |      |      |      |     |   |             |         |      |       |          |          |               |
| '  | 70—         |        |      |      |      |      |     |   |             |         |      |       |          |          |               |
|    | 80—<br>~~~~ | Normal | um_~ | mu   | mala | يربس | Mun | M | untrementer | mantina | ~~~~ | under | monenter | - Munuph | 1<br>Adamente |
|    | 90—         |        |      |      |      |      |     |   |             |         |      |       |          |          |               |
| -: | 100         |        |      |      |      |      |     |   |             |         |      |       |          |          |               |

## 20 1. . . . ~ -1-.... 4 0 ...... link Ch 1 4 4 2 0 -:

Date: 15.NOV.2006 23:30:50

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



| > |      |     |           |              |       |      | *RBW 5  | 5 MHz  | Marke  | er 1 [T1 | ]        |
|---|------|-----|-----------|--------------|-------|------|---------|--------|--------|----------|----------|
|   |      |     |           |              |       |      | * VBW 1 | 0 MHz  |        | -19      | 9.70 dBr |
|   | Ref  | 43  | dBm       |              | Att 1 | 0 dB | SWT 2   | 2.5 ms |        | 1.966346 | 5154 GH2 |
|   | 0    |     |           |              |       |      |         |        |        |          |          |
|   | 10   |     |           |              |       |      |         |        |        |          |          |
| * | 20   |     |           |              |       |      |         |        |        |          |          |
|   | 30-  |     |           |              |       |      |         |        |        |          |          |
|   | 40   |     |           |              |       |      |         |        |        |          |          |
|   | 50-  |     |           |              |       |      |         |        |        |          |          |
|   | 60   |     | D1 -56.   | 043 dB —     |       |      |         |        |        |          | 1        |
|   |      | unh | ulman men | when when wh | huhan | mm   | umenn   | mmmm   | nuluna | un       | munu     |
|   | 80   |     |           |              |       |      |         |        |        |          |          |
|   | 90   |     |           |              |       |      |         |        |        |          |          |
|   | -100 |     |           |              |       |      |         |        |        |          |          |

Date: 15.NOV.2006 23:51:29

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|      |        |          |     |       | * R | BW 5  | MHz   |        | Marker 1                               | [T1 ]    |       |
|------|--------|----------|-----|-------|-----|-------|-------|--------|----------------------------------------|----------|-------|
|      |        |          |     |       | * V | BW 10 | 0 MHz | :      |                                        | -25.44   | dBn   |
| Ref  | 43 dBm |          | Att | 10 dB | S   | WT 25 | 5 ms  |        | 3.9                                    | 72893459 | GHz   |
| 0    |        |          |     |       |     |       |       | 10 GH  | Z                                      |          |       |
| 10-  |        |          |     |       |     |       |       |        |                                        |          |       |
| 20-  |        |          |     |       |     |       |       |        |                                        |          |       |
| 30-  |        |          |     |       |     |       |       |        |                                        |          |       |
| 40-  |        |          |     |       |     |       |       |        |                                        |          |       |
| 50-  |        |          |     |       |     |       |       |        |                                        |          |       |
| 60-  | D1 -56 | 6.043 dB |     |       |     |       |       |        |                                        |          |       |
|      |        |          | 1   |       |     |       |       | ~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          | ····· |
|      |        | L        |     |       |     |       |       |        |                                        |          |       |
|      |        |          |     |       |     |       |       |        |                                        |          |       |
| -90- |        |          |     |       |     |       |       |        |                                        |          |       |
| -100 |        |          |     |       |     |       |       |        |                                        |          |       |

Stop 20 GHz

Date: 16.NOV.2006 00:06:02

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|     | Figure 31            | Anter        | nna Conc         | ducted Sp | ourious - | - Uplink – | IS-95 CI    | DMA – Cł | hann                   | el 25  |
|-----|----------------------|--------------|------------------|-----------|-----------|------------|-------------|----------|------------------------|--------|
| >   |                      |              |                  |           | RBW       | 3 MHz      | Marke       | er 1 [T1 | ]                      |        |
|     |                      |              |                  |           | VBW       | 10 MHz     |             | -34      | 4.52                   | dBm    |
|     | Ref 23 dBm           |              | Att 1            | 0 dB      | SWT       | 5 ms       |             | 1.99681  | 0897                   | GHz    |
|     | 20 Offset            | 40.9 dB      |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
| M * | -10                  |              |                  |           |           |            |             |          |                        |        |
| M   |                      |              |                  |           |           |            |             |          |                        |        |
|     | -0                   |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     | -10<br>PCS_SPUR      |              |                  |           |           |            |             |          |                        |        |
|     | PCS_SPUR             |              |                  |           |           |            |             |          | $\left  \cdot \right $ | μ      |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     |                      | unliknumment | MARK INSK 11 JAN | unununu   | hallingen | -unnum     | here makely | manne    | in he                  | Marker |
|     | <u>unmlun unlinu</u> |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     | 60                   |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     |                      |              |                  |           |           |            |             |          |                        |        |
|     | Start 10 MHz         |              |                  | 199       |           |            |             |          | p 2                    |        |

Date: 22.NOV.2006 22:47:26

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|            |          | RBW 3 MHz  | Marker 1 [T1 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |          | VBW 10 MHz | -24.00 dBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ref 23 dBm | Att 5 dB | SWT 105 ms | 18.103425741 GH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            |          | 10         | GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -20        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -10        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -0         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PCS_SPUR   |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -20        |          |            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |          |            | and the second s |
| -30        |          | m          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| haman man  | hammen   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60         |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -70        |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Stop 20 GHz

Date: 22.NOV.2006 22:55:00

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



| R      |                     | -      |        |       |       | RBW         | 3 MHz    | Mark      | er 1 [T1  | ]    |       |    |
|--------|---------------------|--------|--------|-------|-------|-------------|----------|-----------|-----------|------|-------|----|
| <<br>Y |                     |        |        |       |       |             | 10 MHz   |           |           |      | 5 dBm |    |
|        | Ref 23              | dBm    |        | Att   | 10 dB | SWT         | 5 ms     |           | 1.99681   | 0897 | / GHz |    |
|        | _ <sub>20</sub> Off | set 40 | 9 dB   |       |       |             |          |           |           |      |       |    |
|        | -                   |        |        |       |       |             |          |           |           |      |       |    |
|        |                     |        |        |       |       |             |          |           |           |      |       | A  |
| l RM * | -10                 |        |        |       |       |             |          |           |           |      |       | -  |
| VIEW   |                     |        |        |       |       |             |          |           |           |      |       |    |
|        | - 0                 |        |        |       |       |             |          |           |           |      |       | LV |
|        |                     |        |        |       |       |             |          |           |           |      |       |    |
|        | 10                  |        |        |       |       |             |          |           |           |      |       |    |
|        | PCS_SPU             | JR     |        |       |       |             |          |           |           |      |       |    |
|        |                     |        |        |       |       |             |          |           |           |      |       |    |
|        |                     |        |        |       |       |             |          |           |           |      |       | -  |
|        |                     |        |        |       |       |             |          |           |           |      |       |    |
|        |                     |        |        |       |       |             |          |           |           |      |       |    |
|        |                     |        |        |       |       |             |          |           |           |      | hun   |    |
|        |                     | mmunu  | munham | mound | munne | Muhaha Jawa | monument | when when | Mulhululu |      |       |    |
|        | 40                  |        |        |       |       |             |          |           |           | -    |       | 1  |
|        |                     |        |        |       |       |             |          |           |           |      |       |    |
|        |                     |        |        |       |       |             |          |           |           |      |       | -  |
|        |                     |        |        |       |       |             |          |           |           |      |       |    |
|        | 60                  |        |        |       |       |             |          |           |           |      |       |    |
|        |                     |        |        |       |       |             |          |           |           |      |       |    |
|        |                     |        |        |       |       |             |          |           |           |      |       |    |
|        | -70                 |        |        |       |       |             | _        |           |           | +    |       | 1  |
|        |                     |        |        |       |       |             |          |           |           |      |       | ]  |
|        | Start 1             | 0 MHz  |        |       | 199   | MHz/        |          |           | Sto       | 2 qc | 2 GHz |    |

# Figure 33 Antenna Conducted Spurious – Uplink – IS-95 CDMA – Channel 600

Date: 22.NOV.2006 22:45:02

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



|                    |       |       | RBI | ₹ 3 | MHz  |     | Marker 1 [T1 ]                          |
|--------------------|-------|-------|-----|-----|------|-----|-----------------------------------------|
|                    |       |       | VBI | v 1 | 0 MH | Z   | -23.94 dBm                              |
| Ref 23 dBm         | Att 5 | dB    | SW  | r 1 | 05 m | 5   | 18.103425741 GHz                        |
| -20                |       |       |     |     |      | _10 | "<br>GHz                                |
| -10                |       |       |     |     |      |     |                                         |
| - 0                |       |       |     |     |      |     |                                         |
|                    |       |       |     |     |      |     |                                         |
| PCS_SPUR           |       |       |     |     |      |     |                                         |
|                    |       |       |     |     |      |     |                                         |
| -30                |       |       |     | مهد | m    |     | when when when when when when when when |
| harmon and har har | m     | ~~~~~ |     |     |      |     |                                         |
|                    |       |       |     |     |      |     |                                         |
|                    |       |       |     |     |      |     |                                         |
| 60                 |       |       |     |     |      |     |                                         |
| - 70               |       |       |     |     |      |     |                                         |

Stop 20 GHz

Date: 22.NOV.2006 22:53:46

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



| _      |         |           |          |         |       | 10 MHz |       |                  | 4.40     |     |
|--------|---------|-----------|----------|---------|-------|--------|-------|------------------|----------|-----|
| Ref 2  |         |           | Att      | 10 dB   | SWT S | 5 ms   |       | 1.99681          | 0897     | GH  |
| O      | fset 40 | 9 dB      |          |         |       |        |       |                  | –        | _   |
|        |         |           |          |         |       |        |       |                  |          |     |
|        |         |           |          |         |       |        |       |                  |          |     |
| -10    |         |           |          |         |       |        |       |                  |          |     |
|        |         |           |          |         |       |        |       |                  |          |     |
| - 0    |         |           |          |         |       |        |       |                  |          | ╟─  |
|        |         |           |          |         |       |        |       |                  |          |     |
| -10    |         |           |          |         |       |        |       |                  |          |     |
| PCS_SF | VUR     |           |          |         |       |        |       |                  |          | U   |
|        |         |           |          |         |       |        |       |                  |          |     |
| 20     |         |           |          |         |       |        |       |                  |          |     |
|        |         |           |          |         |       |        |       |                  |          |     |
|        |         |           |          |         |       |        |       |                  |          |     |
|        |         |           |          |         |       | Limme  | mound | المعادية والمعاد | hum      | llm |
| -40-   | munulum | www.www.w | an march | Madaman |       |        |       |                  |          |     |
| -40-   |         |           |          |         |       |        |       |                  |          |     |
|        |         |           |          |         |       |        |       |                  |          |     |
|        |         |           |          |         |       |        |       |                  | +        |     |
|        |         |           |          |         |       |        |       |                  |          |     |
| 60     |         |           |          |         |       |        |       |                  | <b> </b> |     |
|        |         |           |          |         |       |        |       |                  |          |     |
|        |         |           |          |         |       |        |       |                  |          |     |
| 70     |         |           |          |         |       |        |       |                  |          |     |

# Figure 35 Antenna Conducted Spurious – Uplink – IS-95 CDMA – Channel 1175

Date: 22.NOV.2006 22:49:15

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



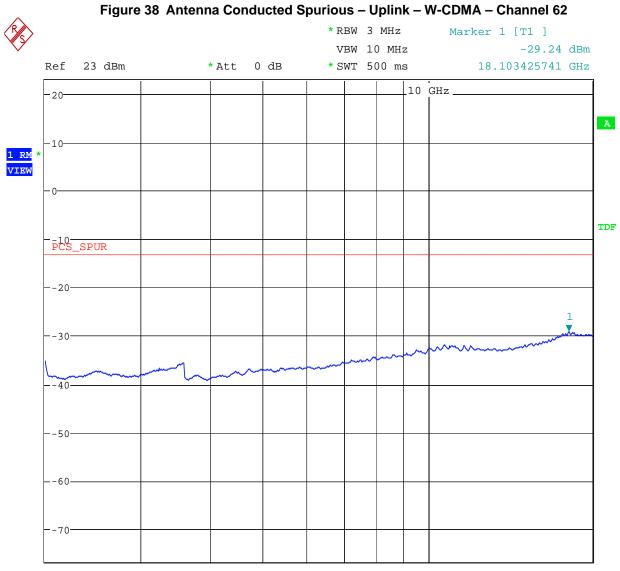
|            |                                        | RBW 3 MHz  | Marker 1 [T1 ]                         |
|------------|----------------------------------------|------------|----------------------------------------|
|            |                                        | VBW 10 MHz | -23.95 dBr                             |
| Ref 23 dBm | Att 5 dB                               | SWT 105 ms | 18.103425741 GH:                       |
| -20        |                                        |            | 10 GHz                                 |
|            |                                        |            |                                        |
| -10        |                                        |            |                                        |
|            |                                        |            |                                        |
| -0         |                                        |            |                                        |
|            |                                        |            |                                        |
| PCS_SPUR   |                                        |            |                                        |
| PCS_SPUR   |                                        |            |                                        |
|            |                                        |            |                                        |
|            |                                        |            |                                        |
| -30        |                                        |            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| -so        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |            |                                        |
|            |                                        |            |                                        |
|            |                                        |            |                                        |
|            |                                        |            |                                        |
|            |                                        |            |                                        |
|            |                                        |            |                                        |
|            |                                        |            |                                        |
|            |                                        |            |                                        |
| -70        |                                        |            |                                        |

Center 6.32455532 GHz

Span 18 GHz

Date: 22.NOV.2006 22:52:22

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.




|        | Figure 37 | Antenna | a Conc | lucted S | spurious | – Uplink – | - W-CDM | A – Chan | nel 62  |    |
|--------|-----------|---------|--------|----------|----------|------------|---------|----------|---------|----|
|        |           |         |        |          | * RBW    | 3 MHz      | Mark    | er 1 [T1 | 1       |    |
|        |           |         |        |          | VBW      | 10 MHz     |         | -4       | 2.00 dH | Bm |
| Ref 23 | 3 dBm     | * ]     | Att (  | ) dB     | * SWT    | 500 ms     |         | 1.89475  | 9615 GH | Hz |
| 0 Off  | set 40.9  | dB      |        |          |          |            |         |          |         |    |
| -10    |           |         |        |          |          |            |         |          |         |    |
| *20    |           |         |        |          |          |            |         |          |         |    |
|        |           |         |        |          |          |            |         |          |         |    |
| PCS_SP | UR        |         |        |          |          |            |         |          |         |    |
|        |           |         |        |          |          |            |         |          |         |    |
| 50     |           |         |        |          |          |            |         |          |         |    |
| 60     |           |         |        |          |          |            |         |          | 1       |    |
| 70     |           |         | ~      |          |          |            |         |          |         |    |
|        |           |         |        |          |          |            |         |          |         |    |
| 90     |           |         |        |          |          |            |         |          |         |    |
| -100   |           |         |        |          |          |            |         |          |         |    |

Date: 22.NOV.2006 22:11:59

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



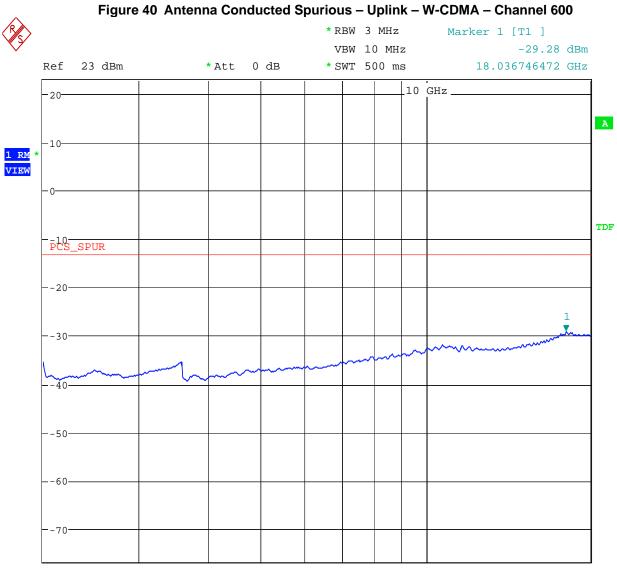


Stop 20 GHz

Date: 22.NOV.2006 22:19:00

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.




|                                              |           |       |        |        |            | 3 MHz  | Marke | er 1 [T1 |      |     |
|----------------------------------------------|-----------|-------|--------|--------|------------|--------|-------|----------|------|-----|
|                                              |           |       |        |        | VBW        | 10 MHz |       | -34      | 4.50 | dBr |
| Ref 23                                       | dBm       |       | Att    | 10 dB  | SWT        | 5 ms   |       | 1.99681  | 0897 | GHz |
| _ <sub>20</sub> 0ff                          | set 40    | 9 dB  |        |        |            |        |       |          |      |     |
| 20                                           |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
| -10                                          |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
| - 0                                          |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
| PCS_SPI                                      | JR        |       |        |        |            |        |       |          |      | U   |
|                                              |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
| 30                                           |           |       |        |        |            |        |       |          |      |     |
| healthand                                    | man Lalle | manne | mourne | un mar | Menter ano | mound  | manul | hunder   | w    | hum |
| 40                                           |           |       |        |        |            |        |       |          |      |     |
| -                                            |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
| 60                                           |           |       |        |        |            |        |       |          |      |     |
| 60                                           |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
| -70                                          |           |       |        |        |            |        |       |          |      |     |
|                                              |           |       |        |        |            |        |       |          |      |     |
| <u>.                                    </u> |           |       |        |        |            |        |       |          |      |     |

## 40 Inlink 20 A ... 4 ~ -1 - 4 -... 1 000

Date: 22.NOV.2006 22:43:20

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



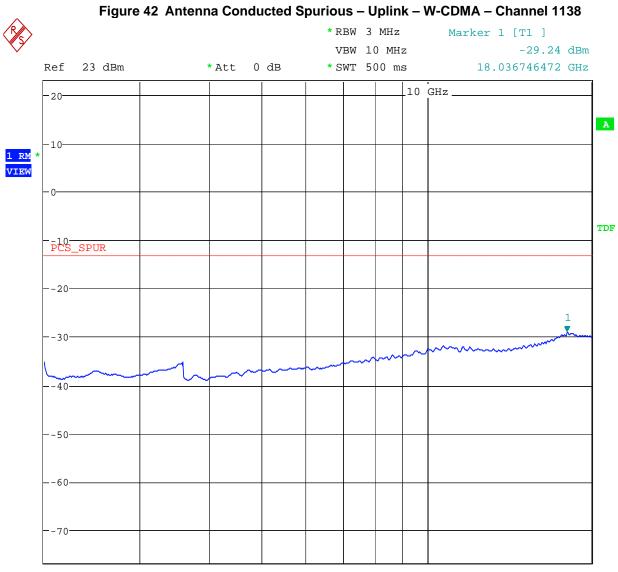


Stop 20 GHz

Date: 22.NOV.2006 22:21:08

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



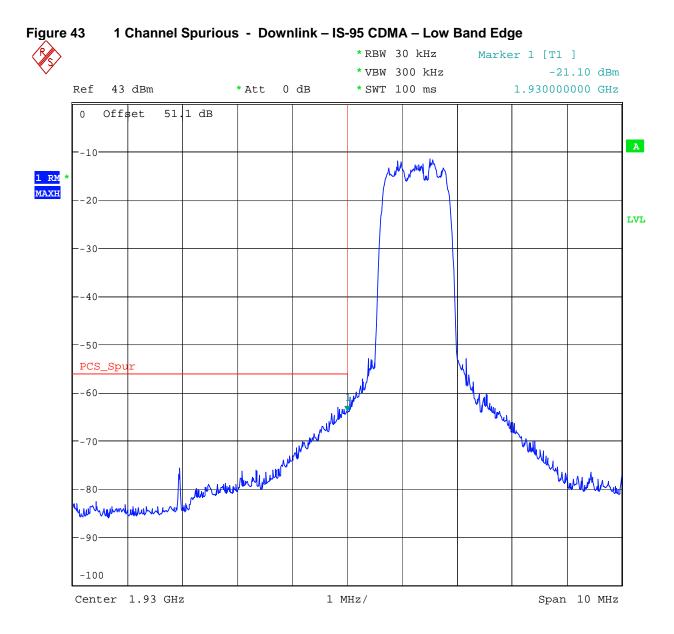

|      |       |       |        |       |      |    |             |     |   | MHz   | Marke |      |      |       |     |
|------|-------|-------|--------|-------|------|----|-------------|-----|---|-------|-------|------|------|-------|-----|
|      |       |       |        |       |      |    |             |     |   | 0 MHz |       |      |      | 1.93  |     |
| Ref  | 23    | dBm   |        |       | Att  | 1( | ) dB        | SWT | 5 | ms    |       | 1.99 | 6810 | )897  | GH: |
|      | Off   | set   | 40.    | 9 dB  |      |    |             |     |   |       |       |      |      |       |     |
| 20   |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
| -10- |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
| 1    |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
| -0-  |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
| -=10 | S_SPU | TD I  |        |       |      |    |             |     | _ |       |       |      |      |       | ╫┼─ |
| PC.  | S_SPU | IR.   |        |       |      |    |             |     |   |       |       |      |      |       | μ   |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
| 20   | )     |       |        |       |      |    |             |     | _ |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
| 30   | )     |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        | manun |      |    |             |     |   | munth |       |      |      | Marta | Ilm |
|      |       | MUNUM | L WILL |       | umun | mw | www.www.www | mun | ~ |       |       |      | ~~~  |       |     |
| 40   | )     |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
| 50   |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
| 50   |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
| 60   | )     |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
| 70   | )     |       |        |       |      |    |             |     | _ |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |
|      |       |       |        |       |      |    |             |     |   |       |       |      |      |       |     |

# Figure 41 Antenna Conducted Spurious – Uplink – W-CDMA – Channel 1138

Date: 22.NOV.2006 22:41:48

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

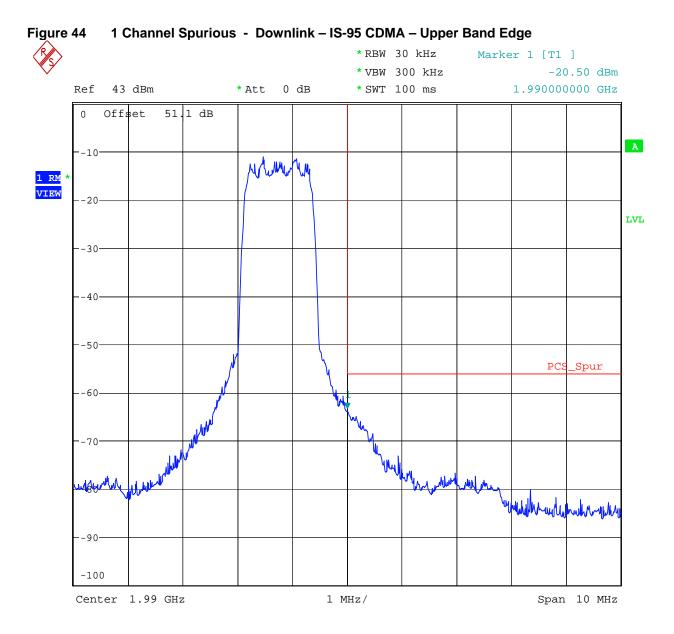





Stop 20 GHz

Date: 22.NOV.2006 22:22:37

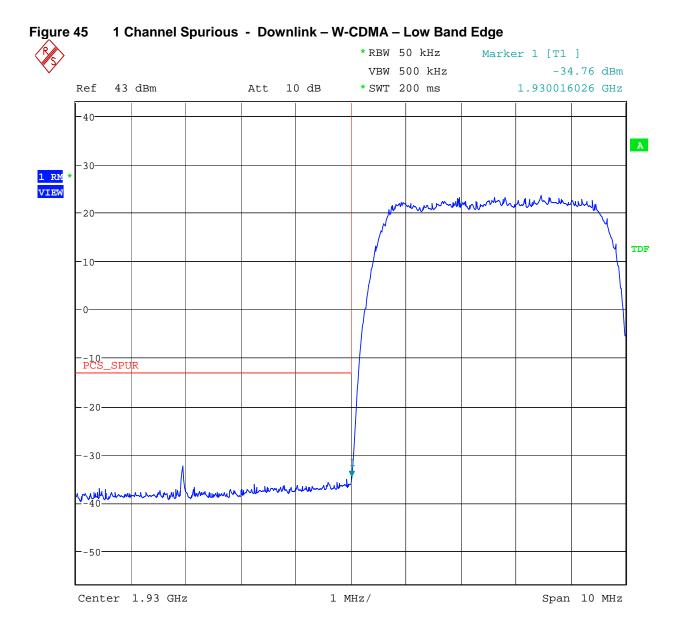
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 20.NOV.2006 23:45:25

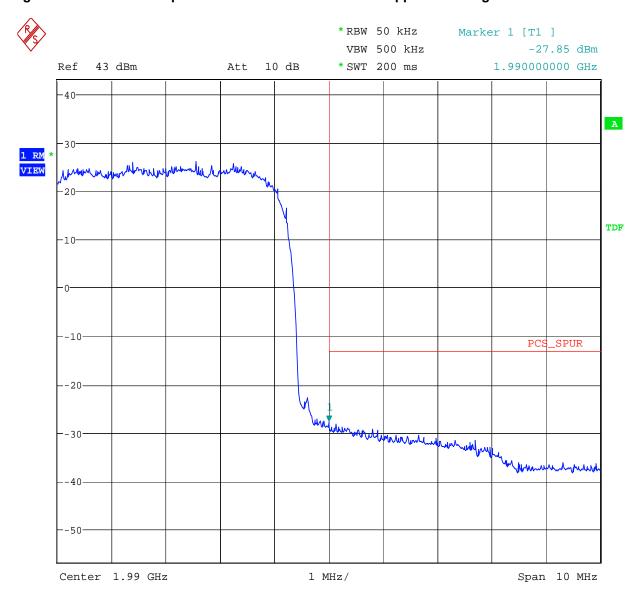
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 20.NOV.2006 23:58:25

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

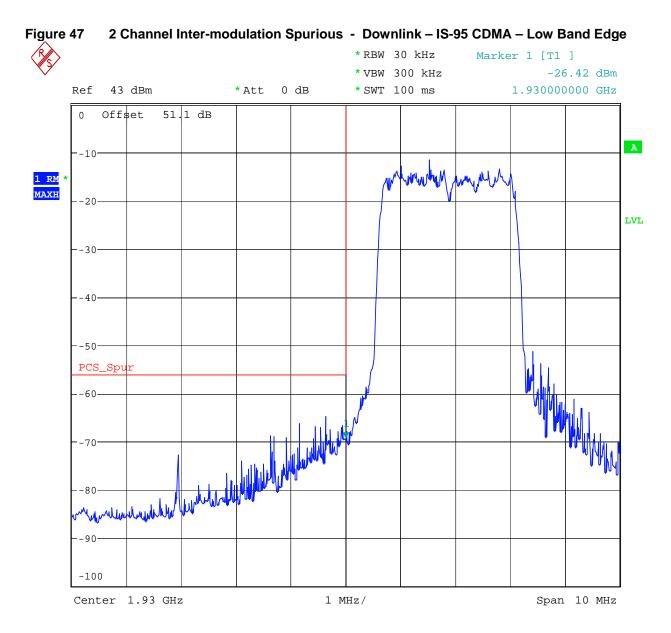





Date: 28.NOV.2006 18:17:35

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

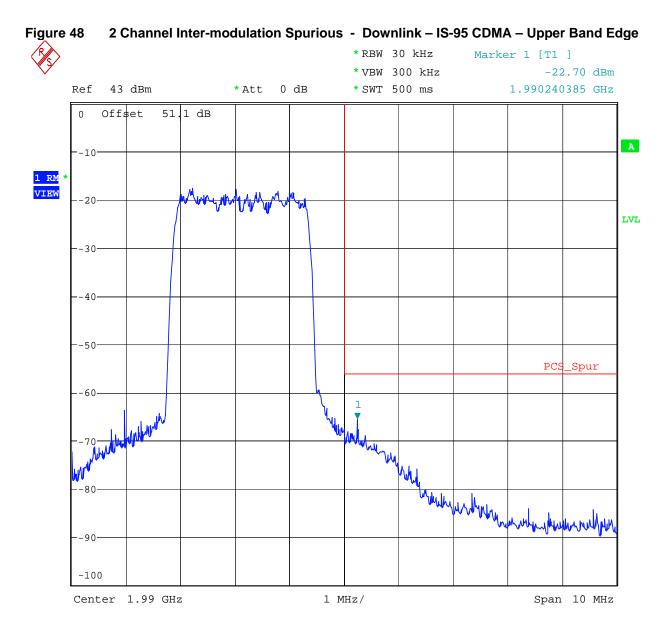





# Figure 46 1 Channel Spurious - Downlink – W-CDMA – Upper Band Edge

Date: 28.NOV.2006 18:21:34

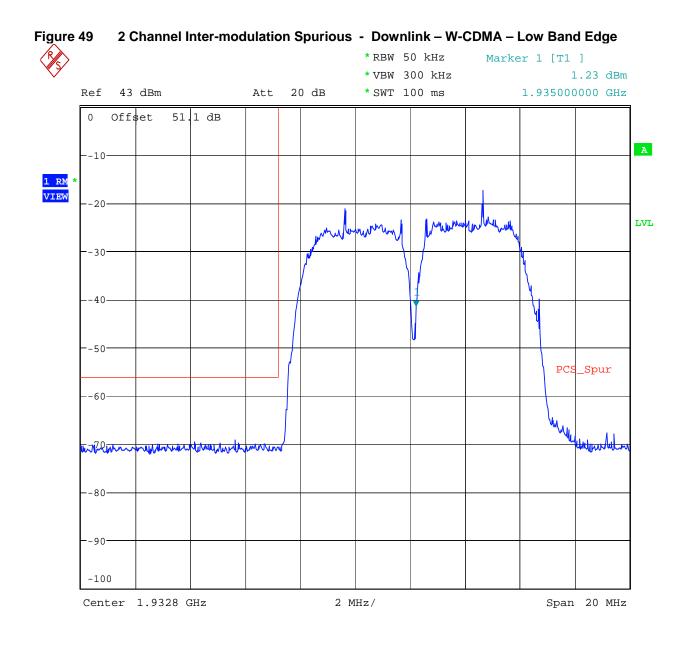
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 20.NOV.2006 23:39:15

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 21.NOV.2006 15:10:07

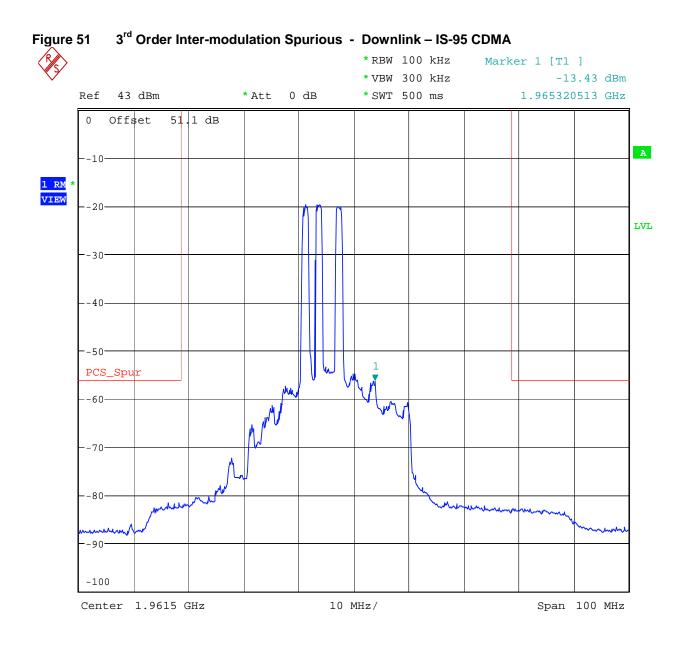
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.





Date: 20.NOV.2006 22:48:07

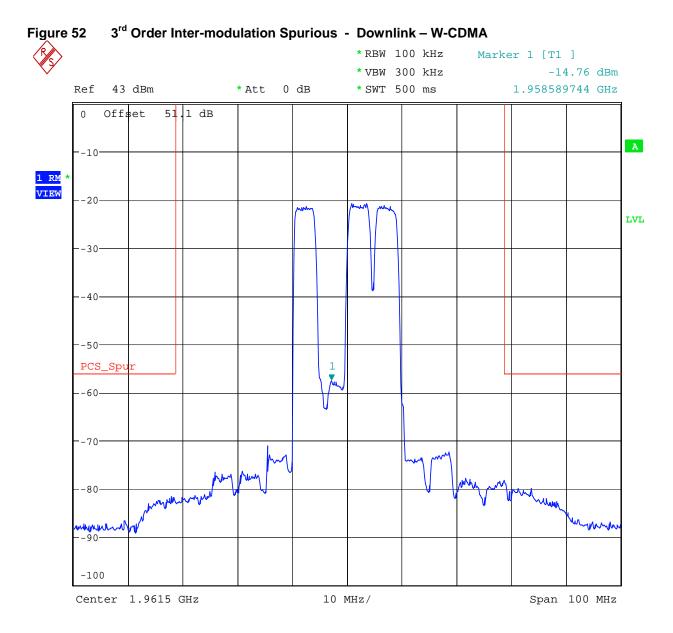
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.




|            |        |        |      |            |      |                      | *RBW 50 kHz  |              | CDMA – Upper Band Edge<br>Marker 1 [T1 ] |                                                                                                                 |            |  |
|------------|--------|--------|------|------------|------|----------------------|--------------|--------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------|--|
|            |        |        |      |            |      |                      |              | *VBW 300 kHz |                                          | -25.76 dB                                                                                                       |            |  |
| Ref        | 43 dBm |        |      | Att 20 dB  |      |                      | * SWT 100 ms |              | 1.990000000 GH                           |                                                                                                                 |            |  |
| 0          | Offset | 51.    | 1 dB |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
| 10-        |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
|            |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
| 20-        |        |        |      |            | -    |                      |              |              |                                          |                                                                                                                 |            |  |
| Mr         | Annua  | Umbran | lum  | which here | Manh | ١                    |              |              |                                          |                                                                                                                 |            |  |
| 30-        |        |        |      |            |      | $\left\{ - \right\}$ |              |              |                                          |                                                                                                                 |            |  |
|            |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
| 40-        |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
|            |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
| 50-<br>PCS | _Spur  |        | V    |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
| 60-        |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
|            |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
|            |        |        |      |            |      |                      | -            | uptur Monte  | www.                                     | nter the formation of the second s | houter     |  |
|            |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
|            |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
|            |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
| -90-       |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
| -100       |        |        |      |            |      |                      |              |              |                                          |                                                                                                                 |            |  |
| L          | er 1.  |        |      |            |      | L.5                  |              | 1            |                                          |                                                                                                                 | і<br>15 МН |  |

Date: 20.NOV.2006 23:03:20

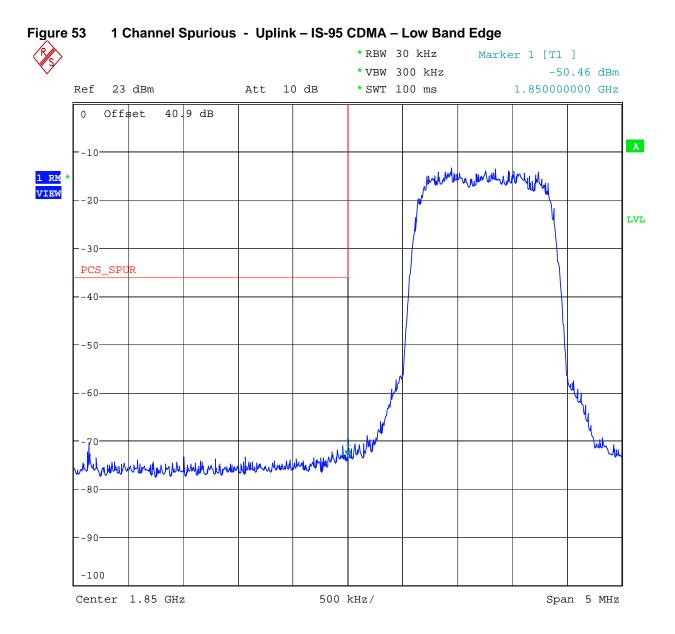
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 21.NOV.2006 16:06:09

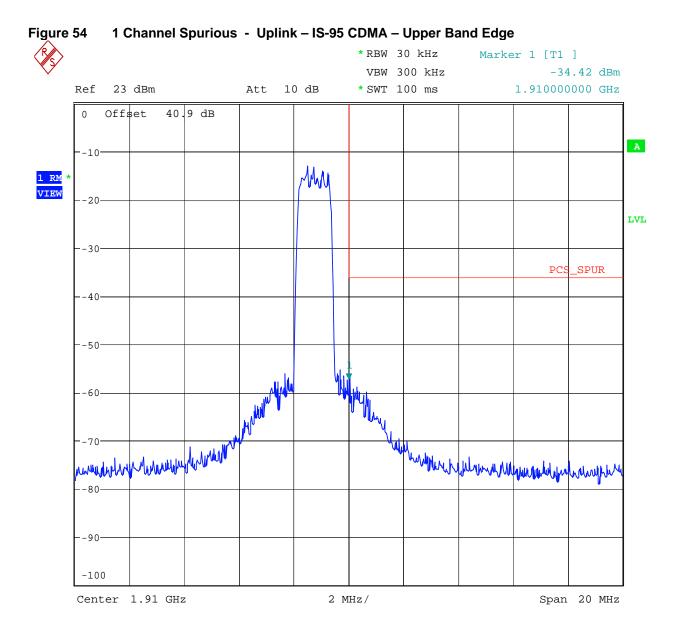
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 21.NOV.2006 16:17:31

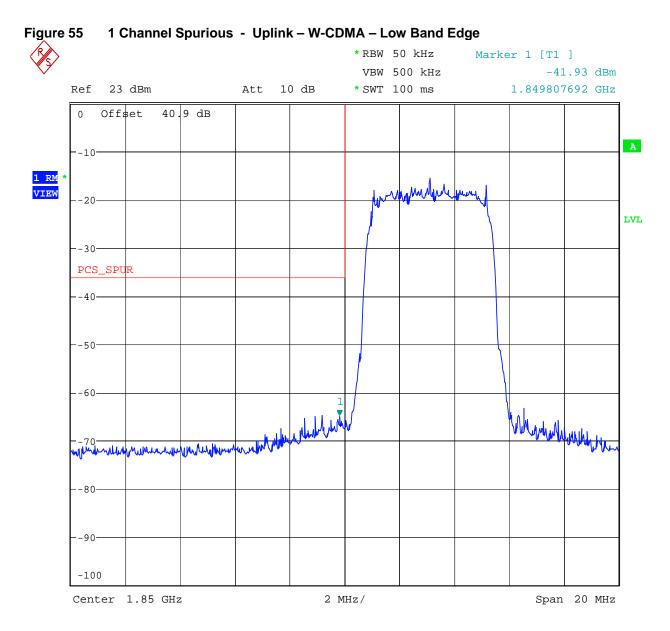
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 22.NOV.2006 23:09:34

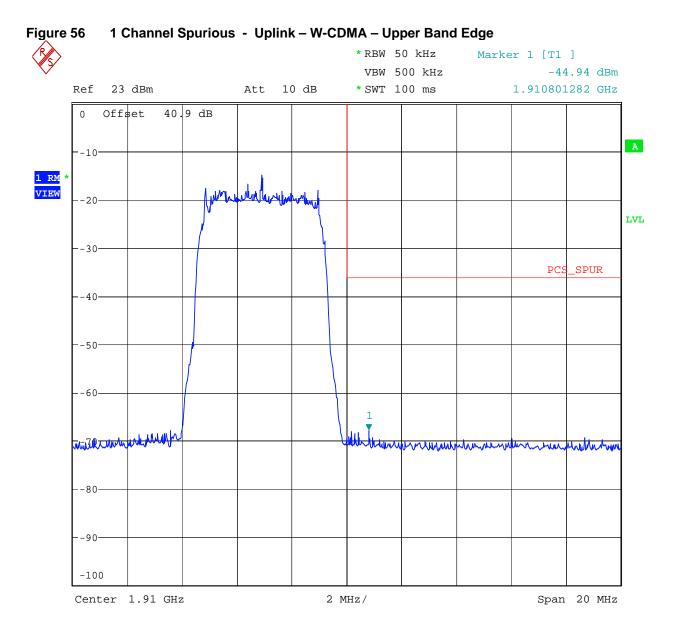
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 22.NOV.2006 23:18:34

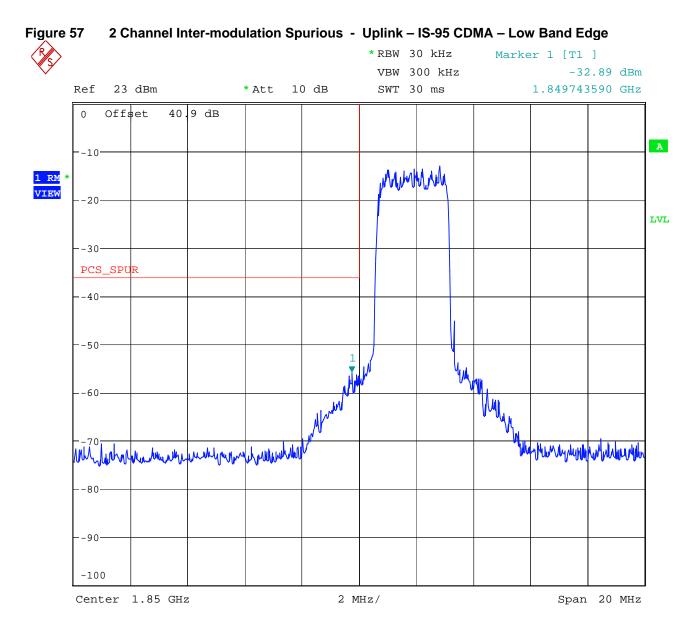
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 22.NOV.2006 23:13:12

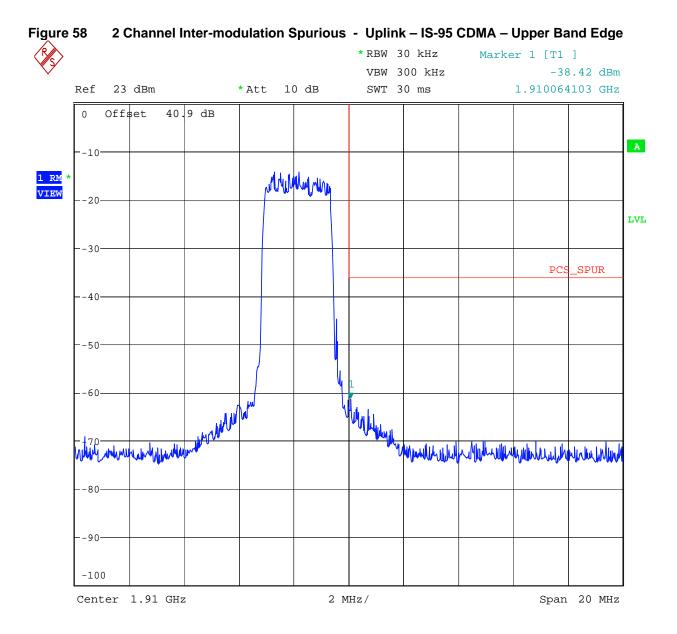
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 22.NOV.2006 23:14:48

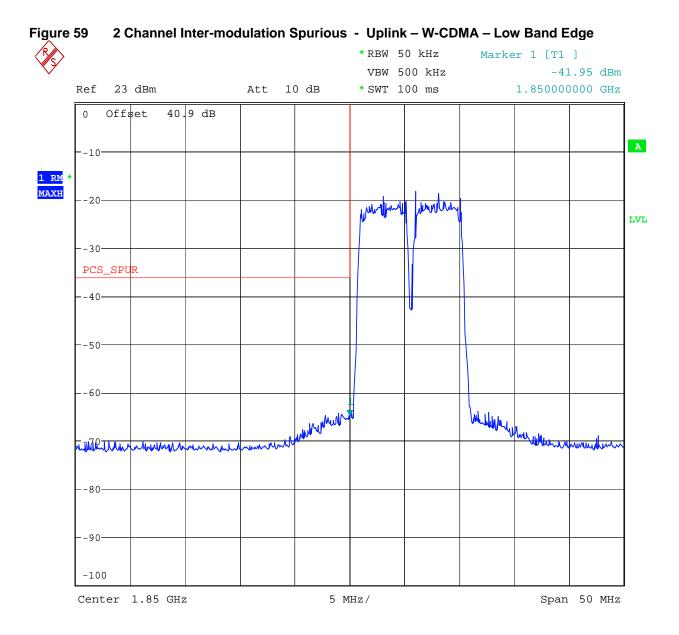
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 27.NOV.2006 16:49:00

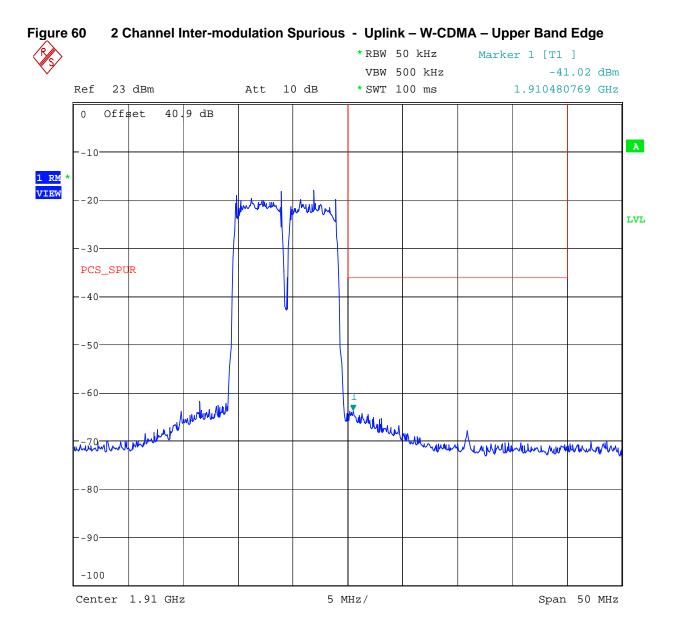
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 27.NOV.2006 16:54:48

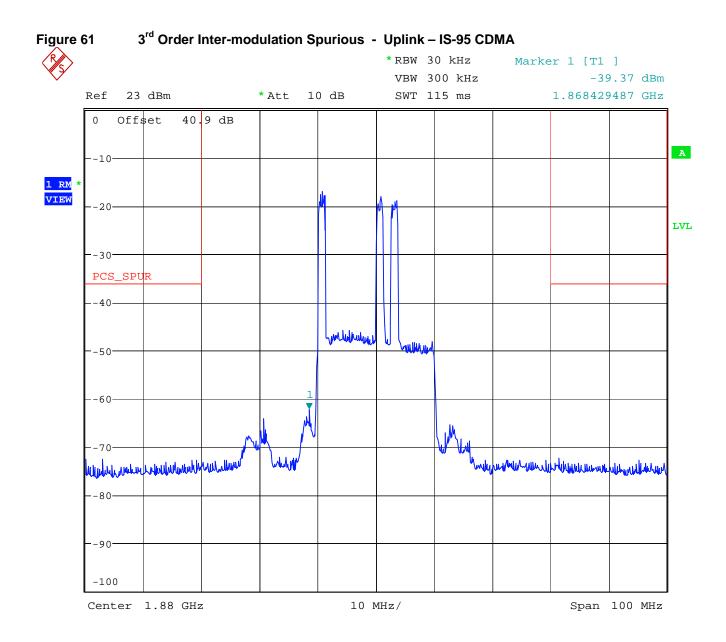
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 22.NOV.2006 23:39:18

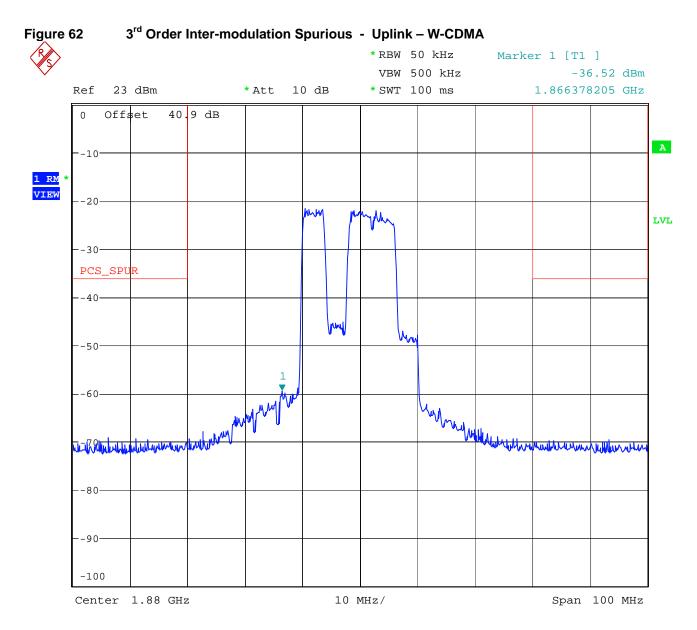
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 22.NOV.2006 23:37:24

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 27.NOV.2006 17:28:14

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.





Date: 27.NOV.2006 17:56:32

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



## D.8. Tested By

Name:Tom Tidwell,Function:Manager of Wireless ServicesDate:11/28/2006

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



## APPENDIX E: 2.1053 FIELD STRENGTH OF SPURIOUS RADIATION

## E.1. Base Standard & Test Basis

| Base<br>Standard | FCC 2.1053                                      |  |  |  |  |  |  |
|------------------|-------------------------------------------------|--|--|--|--|--|--|
| Test Basis       | FCC 2.1053 Field Strength of Spurious Radiation |  |  |  |  |  |  |
| Test Method      | TIA 603-C, 2004 Substitution Antenna Method     |  |  |  |  |  |  |

#### E.2. Limits

24.238 Emission limitations for Broadband PCS equipment

(a) *Out of band emissions.* The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

## E.3. Test Results

Compliant. The worst-case spurious emission level was -25.9 dBm at 3977.5 MHz. This level is 12.9 dB below the specification limit of -13 dBm. The spectrum was searched up to 20 GHz with the device operating on three channels in the Uplink direction and three channels in the Downlink direction.

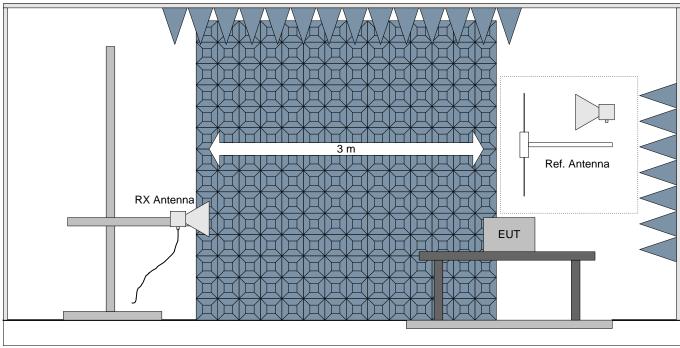
### E.4. Deviations from Normal Operating Mode During Test

None.

E.5. Sample Calculation

### Final measured value (dBm) = Substitution level (dBm) + Antenna Gain (dBi)

Minimum attenuation limit (dB) = 43 + 10 log(P) where P = Peak power of the carrier in watts.


Min. Atten. Limit dB) = 43 + 10 \* log(20 watts) = 43 + 10 \* 1.3 = 43 + 13 = 56 dB

43 dBm - 56 dB = -13 dBm

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or impliced, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



## E.6. Test Diagram



Note: The EUT is set to repeat a signal at maximum rf output power into a coaxial load for this testing.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



### E.7. Test Data

|  | Project No: | Andrew Corporation W6397                                       |
|--|-------------|----------------------------------------------------------------|
|  | Model:      | Node C/M 1943                                                  |
|  | Comments:   | Transmit at full rf output power (20 watts), Ch. 25, 600, 1175 |
|  | Date:       | 11/28/2006                                                     |

| Distance: | 3 m | Standard: | CFR 47, Part 2.1043 | RBW: (unless < 1 GHz = 120 kHz<br>noted) > 1 GHz = 1 MHz | VBW: (unless <sub>Peak</sub> = RBW Avg. = RBW noted) |
|-----------|-----|-----------|---------------------|----------------------------------------------------------|------------------------------------------------------|
|           | -   |           | Curbodiitu dia      |                                                          | D /linium una                                        |

| Antenna                                                                                                                                                                                                                                                                                                                         | Polarization | Frequency | Measured | Substitution<br>Level | Antenna<br>Gain | Final Measured Value |          | Peak Carrier Power |         | Attenuation | Margin |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------|----------|-----------------------|-----------------|----------------------|----------|--------------------|---------|-------------|--------|
|                                                                                                                                                                                                                                                                                                                                 | (V/H)        | (MHz)     | (dBm)    | (dBm)                 | (dBi)           | (dBm)                | (watts)  | (dBm)              | (watts) | (dBc)       | (dB)   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | V            | 3862.5    | -113.7   | -39.662               | 7.71            | -32.0                | 6.38E-07 | 43                 | 20      | 56          | 19.0   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | Н            | 3862.5    | -115.1   | -41.062               | 7.71            | -33.4                | 4.62E-07 | 43                 | 20      | 56          | 20.4   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | V            | 3920      | -115.3   | -41.334               | 7.71            | -33.6                | 4.34E-07 | 43                 | 20      | 56          | 20.6   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | Н            | 3920      | -115.3   | -41.334               | 7.71            | -33.6                | 4.34E-07 | 43                 | 20      | 56          | 20.6   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | V            | 3977.5    | -107.5   | -33.601               | 7.71            | -25.9                | 2.58E-06 | 43                 | 20      | 56          | 12.9   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | Н            | 3977.5    | -110.4   | -36.501               | 7.71            | -28.8                | 1.32E-06 | 43                 | 20      | 56          | 15.8   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | V            | 5793.75   | -112.8   | -40.475               | 8.68            | -31.8                | 6.61E-07 | 43                 | 20      | 56          | 18.8   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | Н            | 5793.75   | -113.1   | -40.775               | 8.68            | -32.1                | 6.17E-07 | 43                 | 20      | 56          | 19.1   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | V            | 7725      | -113.4   | -42.568               | 9.15            | -33.4                | 4.55E-07 | 43                 | 20      | 56          | 20.4   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | Н            | 7725      | -114.1   | -43.268               | 9.15            | -34.1                | 3.87E-07 | 43                 | 20      | 56          | 21.1   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | V            | 9656.25   | -113.7   | -44.084               | 9.85            | -34.2                | 3.77E-07 | 43                 | 20      | 56          | 21.2   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | Н            | 9656.25   | -113.7   | -44.084               | 9.85            | -34.2                | 3.77E-07 | 43                 | 20      | 56          | 21.2   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | V            | 11587.50  | -113.7   | -45.62                | 10.59           | -35.0                | 3.14E-07 | 43                 | 20      | 56          | 22.0   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | Н            | 11587.50  | -113.7   | -45.62                | 10.59           | -35.0                | 3.14E-07 | 43                 | 20      | 56          | 22.0   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | V            | 19312.50  | -111.6   | -48.052               | 5.7             | -42.4                | 5.82E-08 | 43                 | 20      | 56          | 29.4   |
| Ref. E1019                                                                                                                                                                                                                                                                                                                      | Н            | 19312.50  | -111.6   | -48.052               | 5.7             | -42.4                | 5.82E-08 | 43                 | 20      | 56          | 29.4   |
| Notes: (1) A positive margin indicates a passing result   (2) If duty cycle correction is indicated, plots are included in the test report to validate the factor used.   (3) The minimum threshold of sensitivity was sufficient to detect signals within 20 dB of the -13 dBm limit over the frequency range 30 MHz - 10 GHz. |              |           |          |                       |                 |                      |          |                    |         |             |        |

NOTE: Measurements were made with the device operating in the following modes:

Downlink, 20 W rf output, Channel 25 Downlink, 20 W rf output, Channel 600 Downlink, 20 W rf output, Channel 1175 Uplink, 0.2 W rf output, Channel 25 Uplink, 0.2 W rf output, Channel 600 Uplink, 0.2 W rf output, Channel 1175

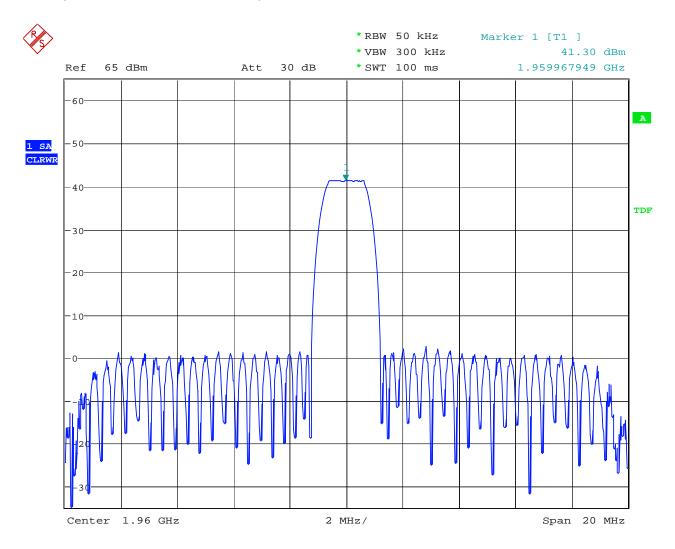
This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### E.8. Test Photo



## E.9. Tested By

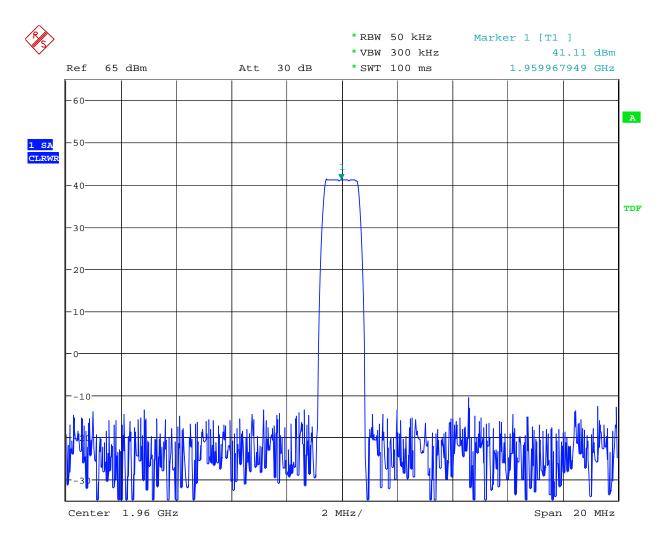

Name: Function: Date: 11/28/2006 Tom Tidwell, Manager of Wireless Services

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

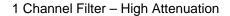


# **APPENDIX F: 2.1053 FILTER PLOTS**

These plots demonstrate the filter band pass characteristics of the device.

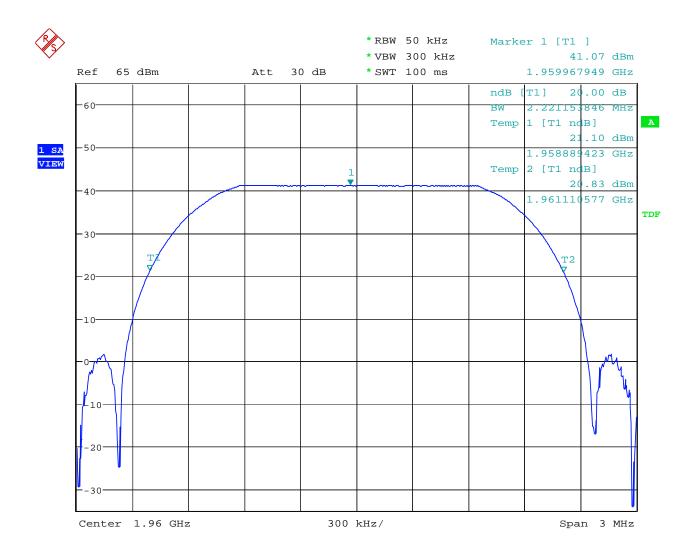



Date: 8.NOV.2006 23:03:50


One Channel Filter – Normal Attenuation

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



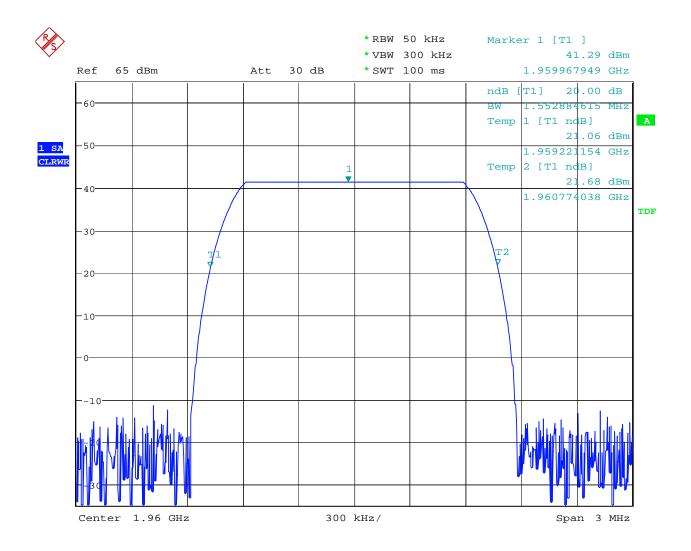



Date: 8.NOV.2006 23:06:23



This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



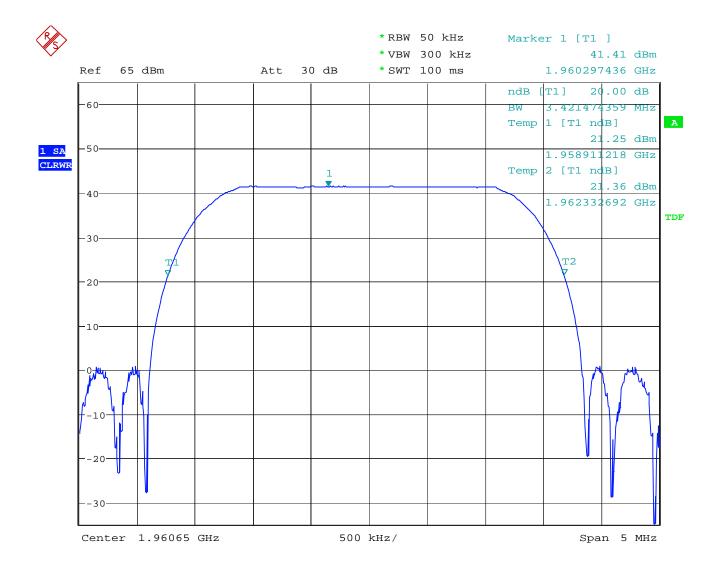



Date: 8.NOV.2006 23:14:09

1 Channel Filter – Normal Attenuation

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



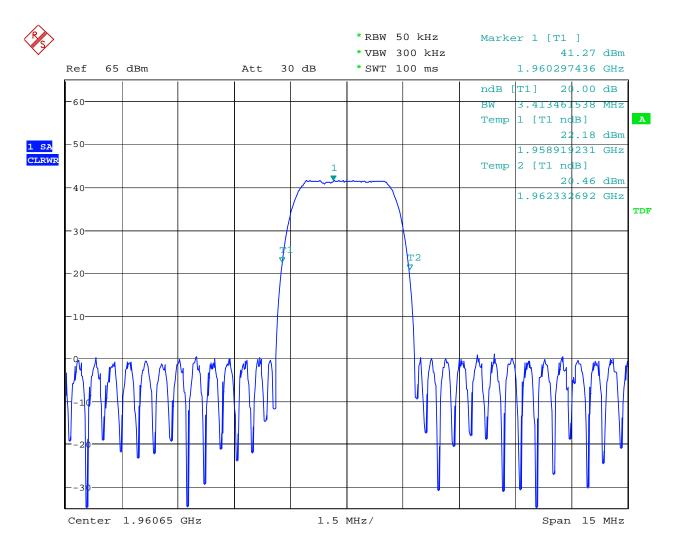



Date: 8.NOV.2006 23:18:33

1 Channel Filter – High Attenuation

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



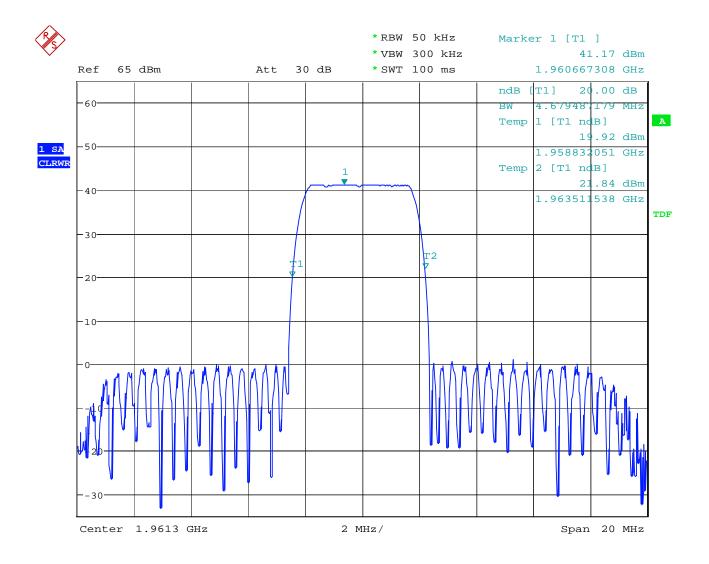



Date: 8.NOV.2006 23:25:20

2 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



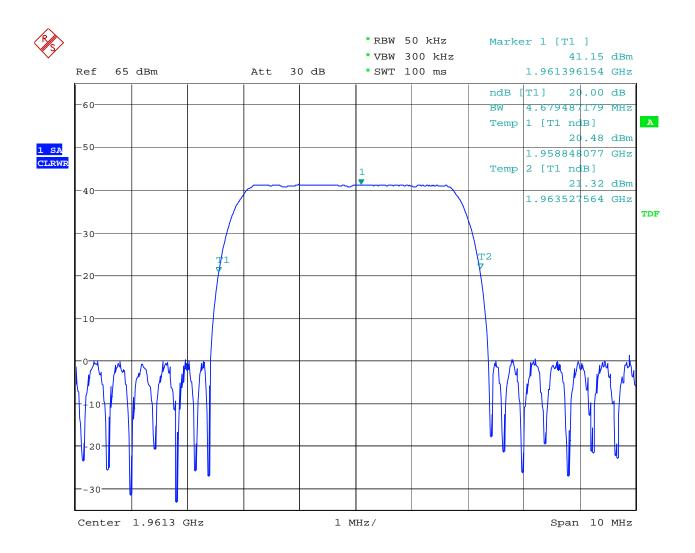



Date: 8.NOV.2006 23:28:37

2 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



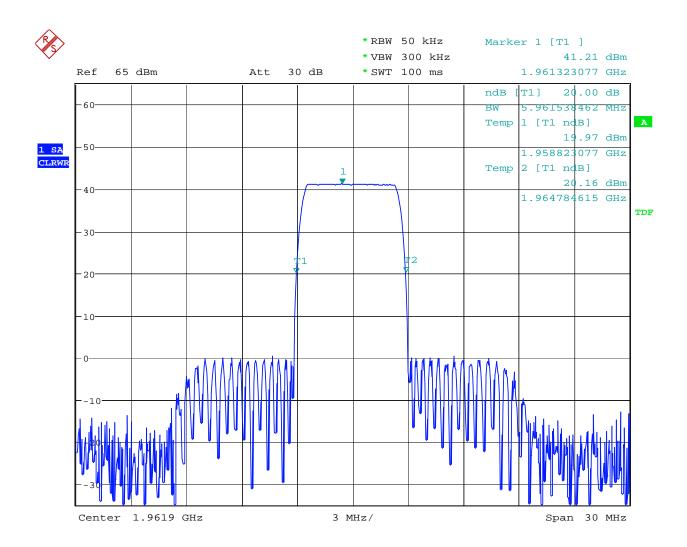



Date: 8.NOV.2006 23:34:20

**3 Channel Filter** 

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



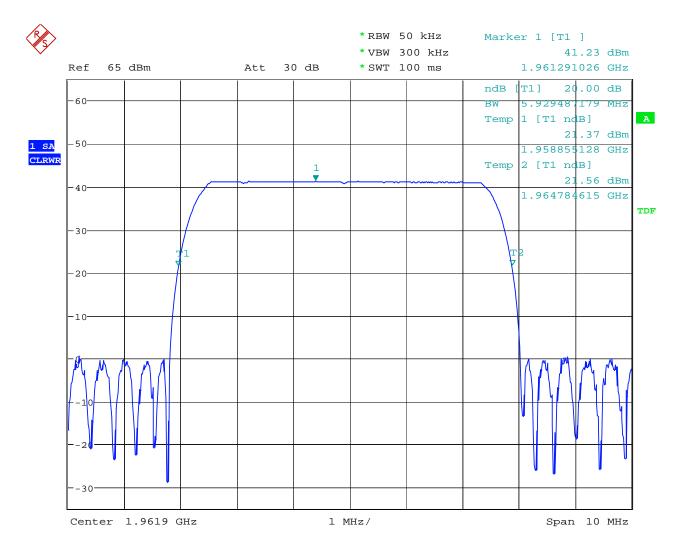



Date: 8.NOV.2006 23:35:48

3 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



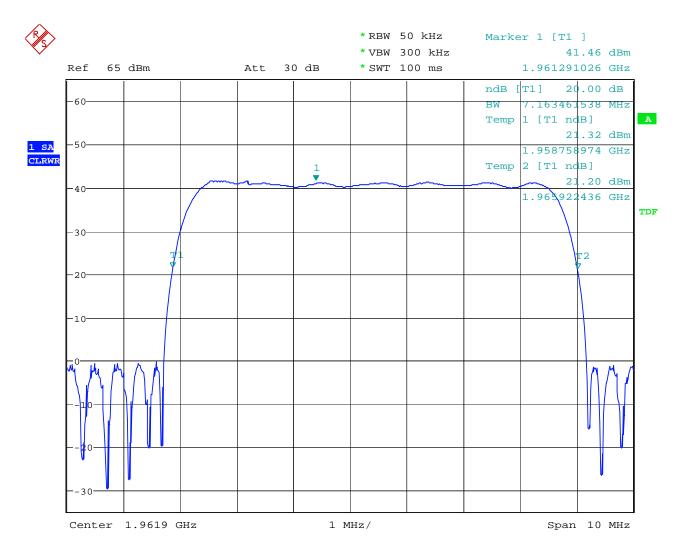



Date: 8.NOV.2006 23:38:52

4 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



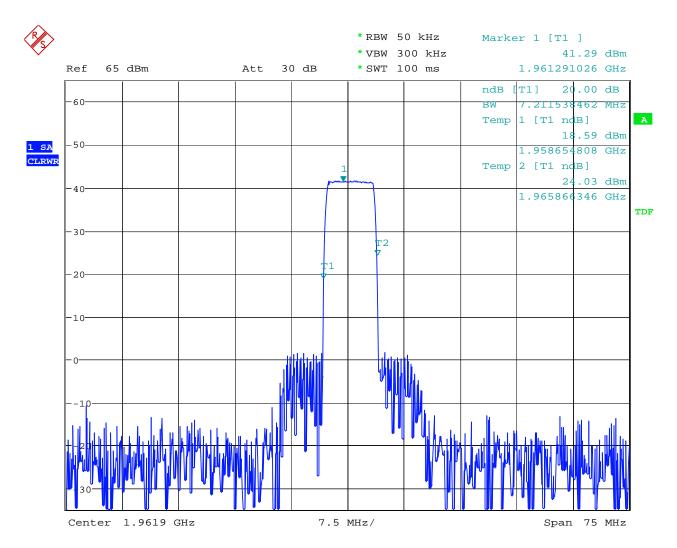



Date: 8.NOV.2006 23:42:44

4 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



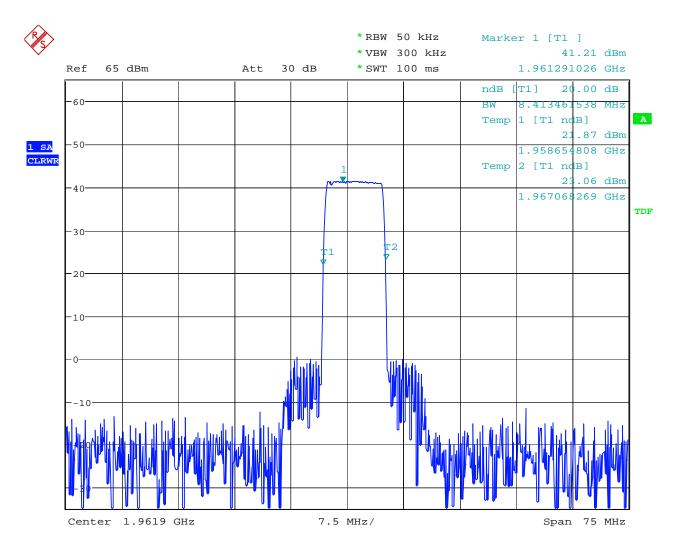



Date: 8.NOV.2006 23:46:22

5 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 8.NOV.2006 23:47:32

**5** Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



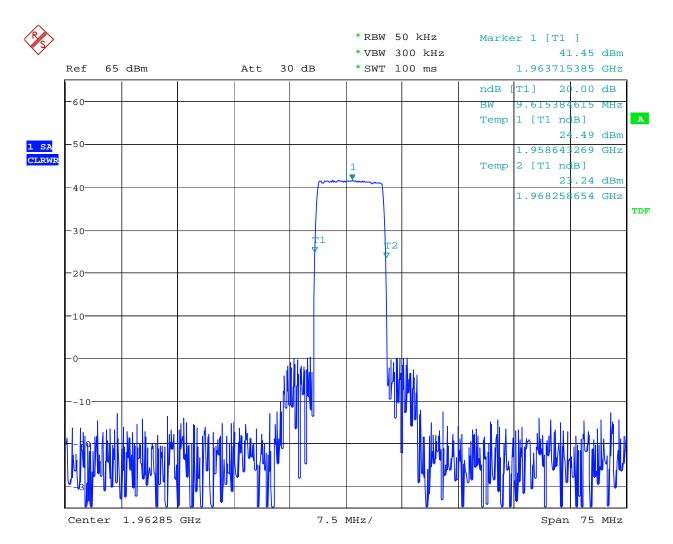



Date: 8.NOV.2006 23:49:17

6 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



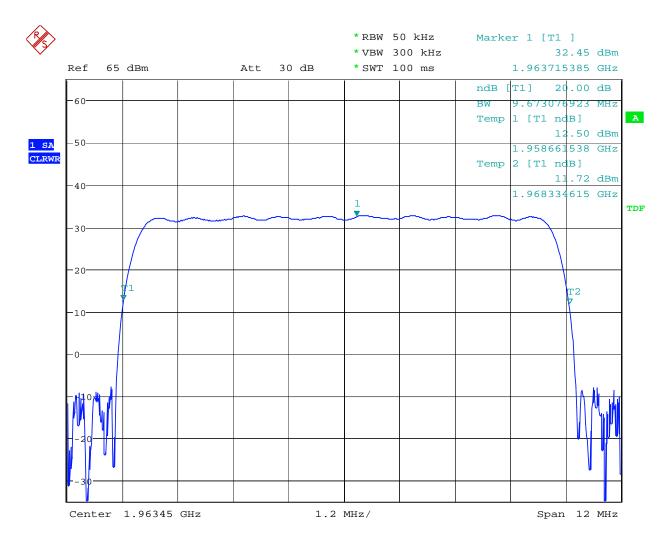



Date: 8.NOV.2006 23:51:05

6 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 8.NOV.2006 23:53:07

7 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



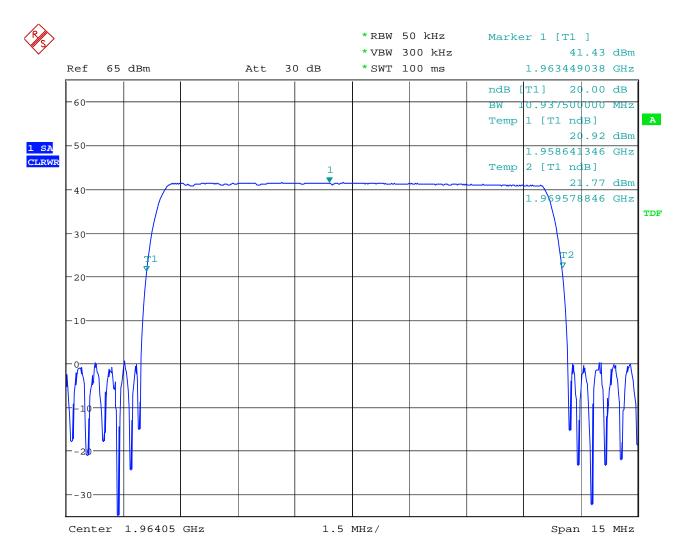


Date: 8.NOV.2006 23:54:33

7 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



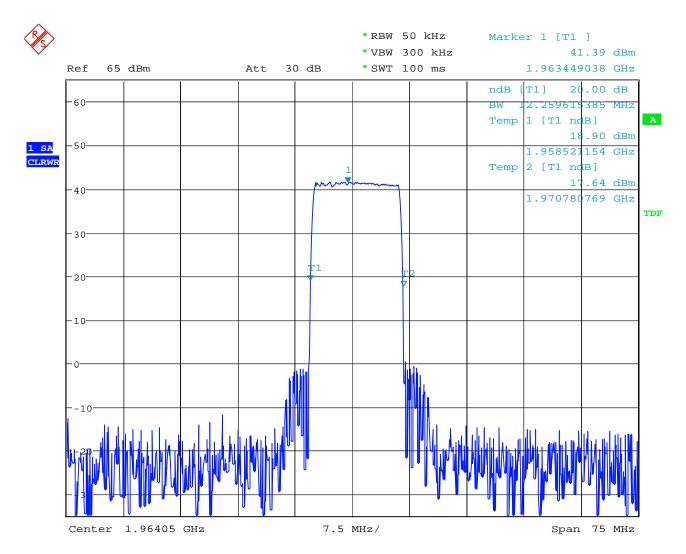



Date: 8.NOV.2006 23:57:06

8 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



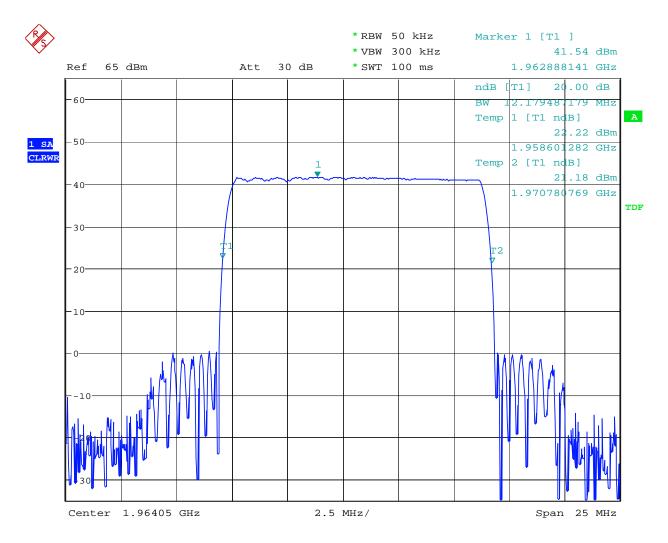



Date: 8.NOV.2006 23:58:01

8 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



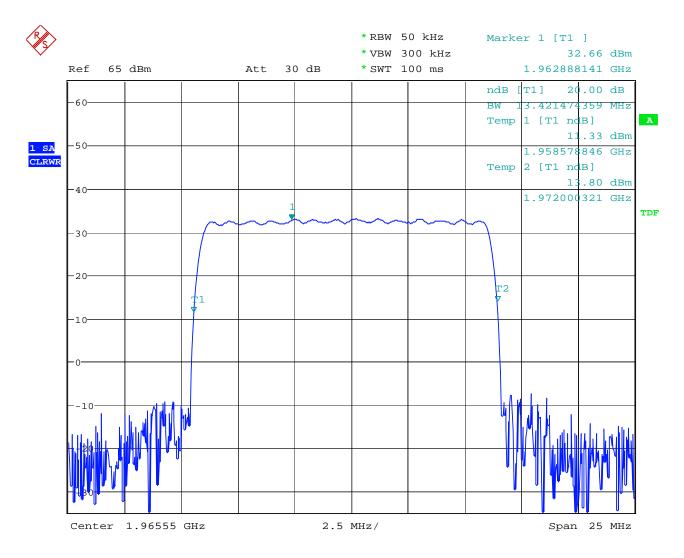



Date: 9.NOV.2006 00:00:42

9 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



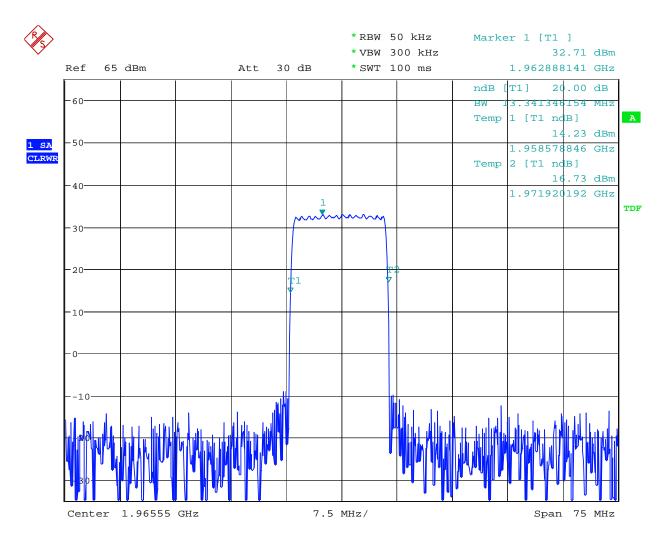



Date: 9.NOV.2006 00:01:25

9 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



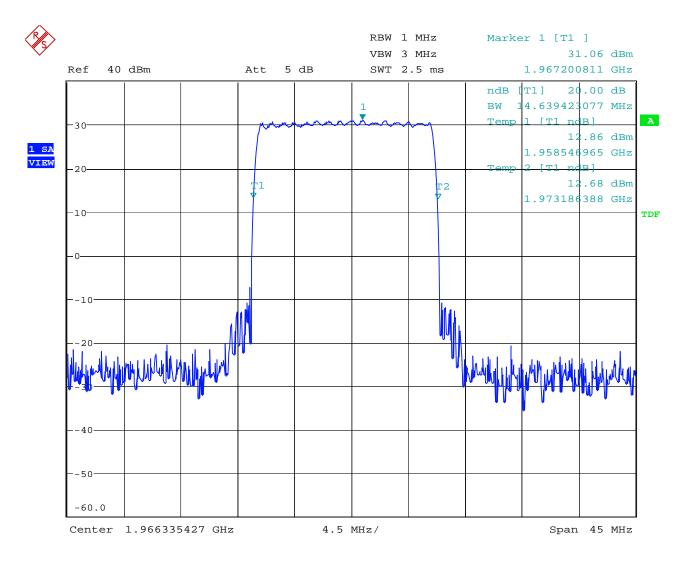



Date: 9.NOV.2006 16:48:37

10 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



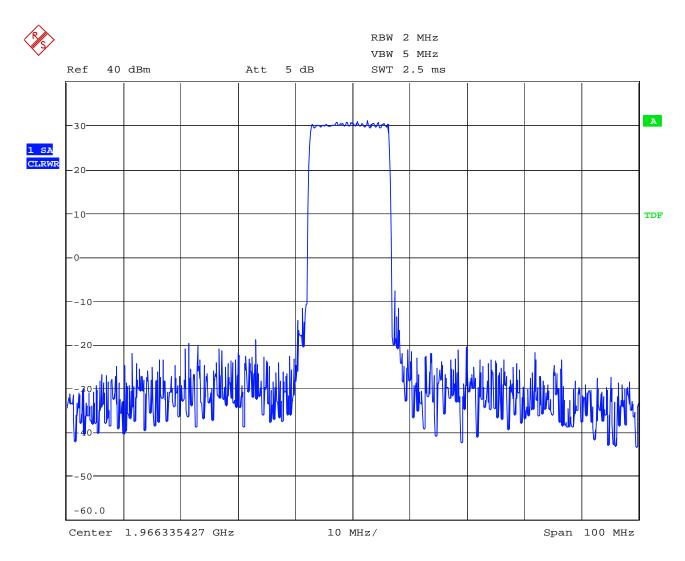



Date: 9.NOV.2006 16:49:46

10 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



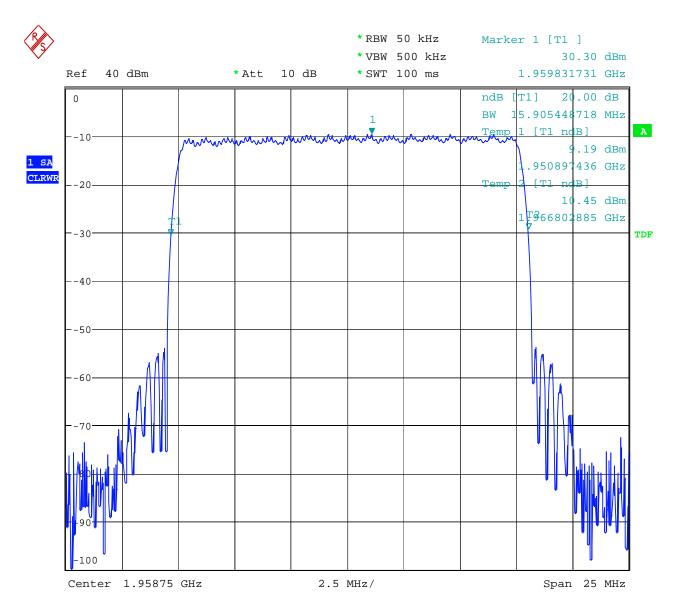



Date: 15.NOV.2006 16:09:40

11 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



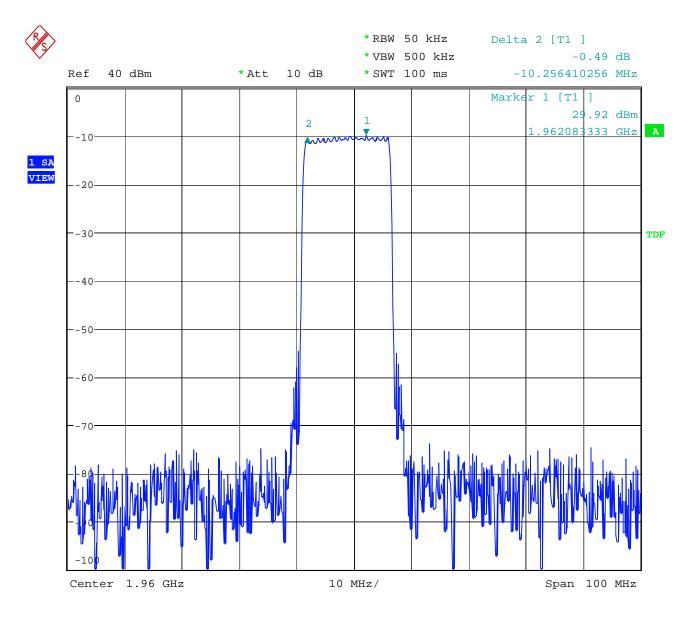



Date: 15.NOV.2006 16:08:03

11 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor integration or any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



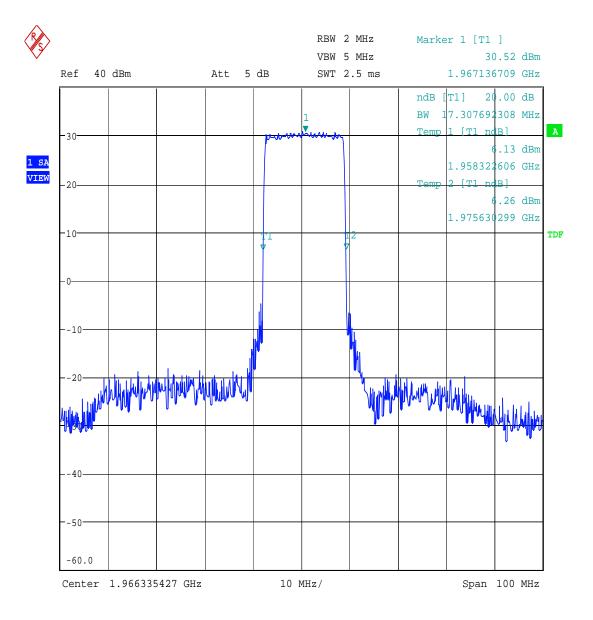



Date: 27.NOV.2006 18:59:11

12 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



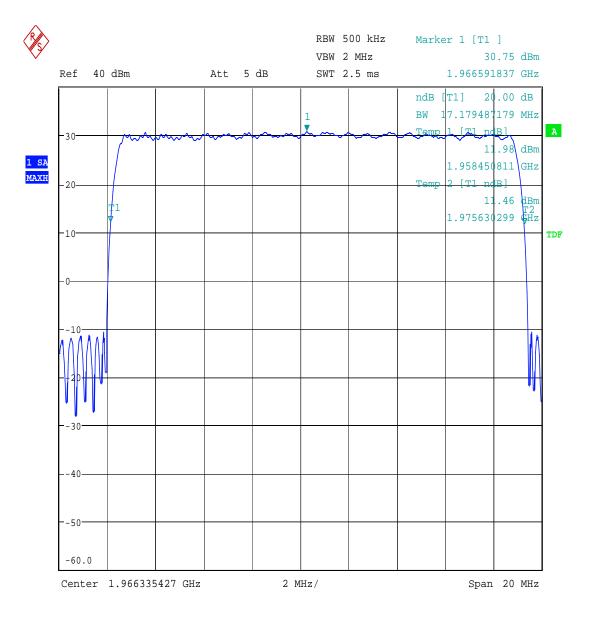



Date: 27.NOV.2006 18:53:23

12 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor integration or any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 15.NOV.2006 16:18:43

13 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



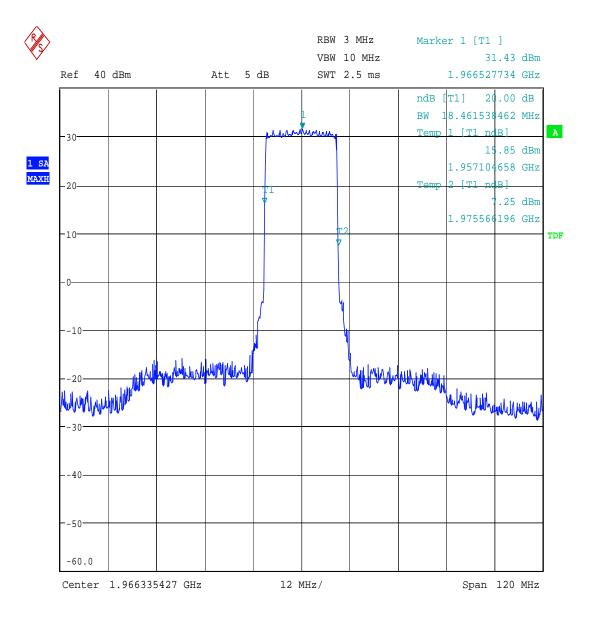


Date: 15.NOV.2006 16:19:54

13 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



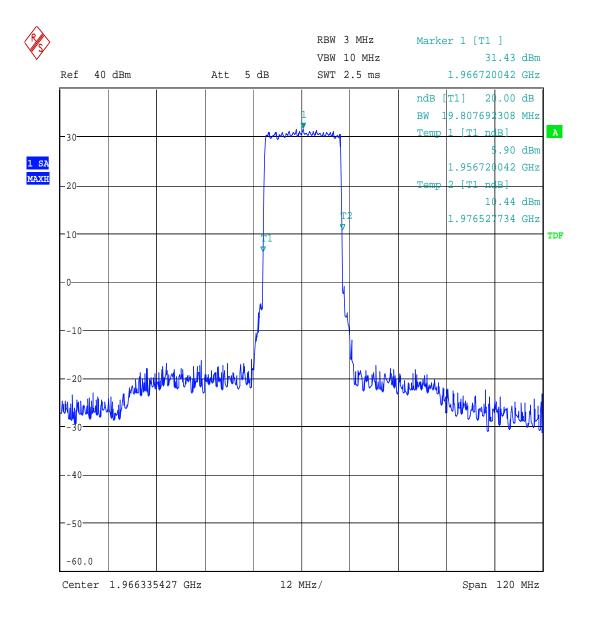



Date: 15.NOV.2006 16:34:10

14 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



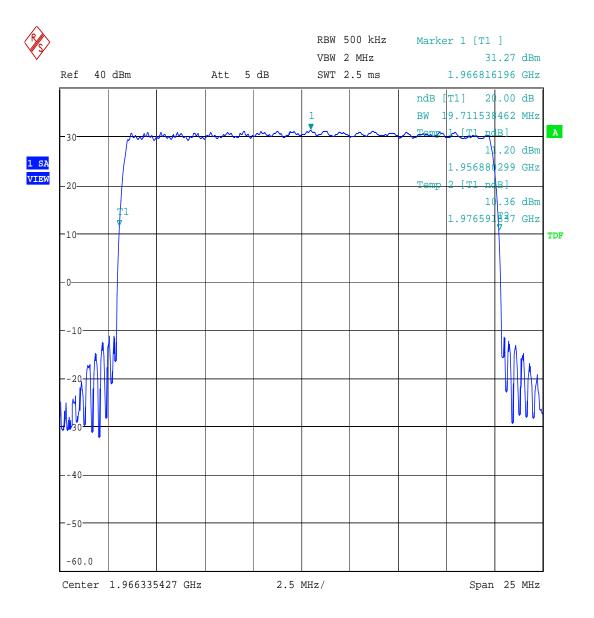



Date: 15.NOV.2006 16:35:12

14 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



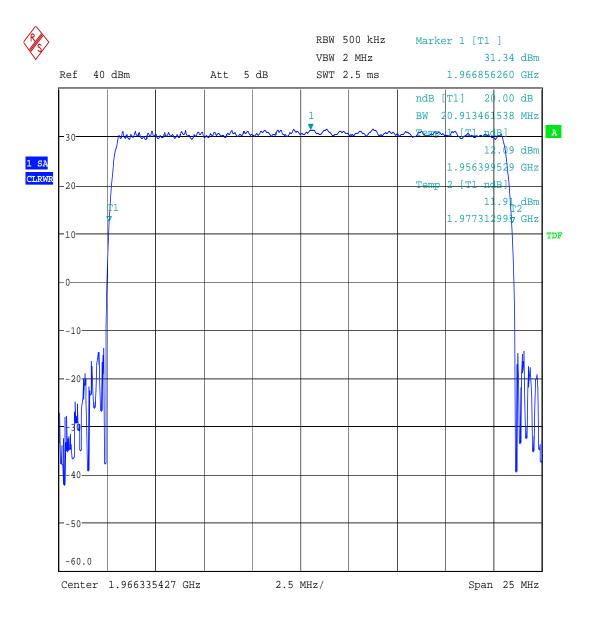



Date: 15.NOV.2006 16:36:38

15 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



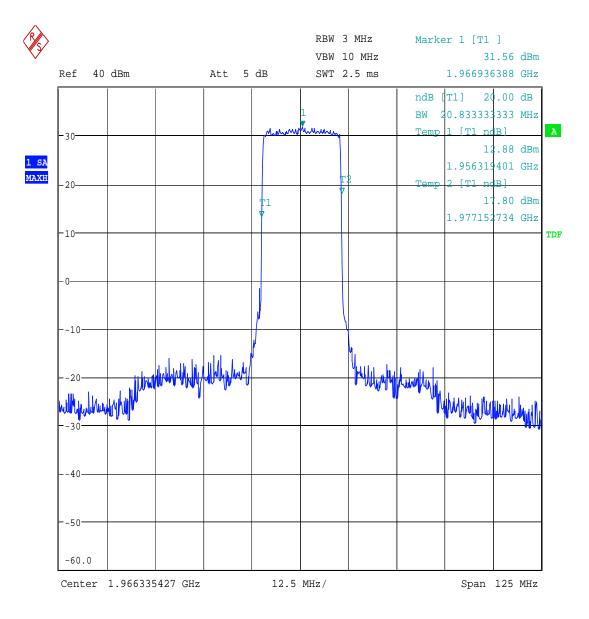



Date: 15.NOV.2006 16:37:43

15 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.






Date: 15.NOV.2006 16:38:50

16 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.





Date: 15.NOV.2006 16:39:52

16 Channel Filter

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



### APPENDIX G: 2.1055 FREQUENCY STABILITY

#### G.1. Base Standard & Test Basis

| Base Standard | FCC 2.1055      |
|---------------|-----------------|
| Test Method   | TIA 603-C, 2004 |

#### **Specifications**

24.235 Frequency Stability

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

#### G.2. Deviations

| Deviation<br>Number | Time &<br>Date | Description and<br>Justification of<br>Deviation | Deviation Reference |            |                  |          |
|---------------------|----------------|--------------------------------------------------|---------------------|------------|------------------|----------|
|                     |                |                                                  | Base<br>Standard    | Test Basis | NTS<br>Procedure | Approval |
| none                |                |                                                  |                     |            |                  |          |

#### G.3. Test Results

**Not Applicable.** This device uses a common oscillator to down-convert and up-convert the modulated rf carrier so that the output frequency tracks the input frequency. This was determined by inspection of the schematics provided by the client.

#### G.4. Observations

None

#### G.5. Deviations from Normal Operating Mode During Test

None.

#### G.6. Sample Calculation

Frequency drift (ppm) = Frequency Drift (Hz)/Authorized frequency (MHz)

#### G.7. Test Data

None

#### G.8. Test Diagram

None

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



#### G.9. Tested By

Name:Tom Tidwell,Function:Manager of Wireless Services

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

# APPENDIX H: TEST EQUIPMENT LIST

| Description              | Manufacturer    | Type/Model             | Calibration<br>Frequency | Cal Due | NTS Control<br>No. |  |  |  |
|--------------------------|-----------------|------------------------|--------------------------|---------|--------------------|--|--|--|
| 3m ANECHOIC CHAMBER      |                 |                        |                          |         |                    |  |  |  |
| RX Bilog Antenna         | ETS             | 3142C                  | 12 Months                | 8/17/07 | E1288P             |  |  |  |
| Ref. Horn Antenna        | ETS             | 3115                   | 12 Months                | 11/1/07 | E1019P             |  |  |  |
| RX Horn Antenna          | ETS             | 3115                   | 12 Months                |         | E1022P             |  |  |  |
| High Frequency - Cable 1 | MegaPhase       | TM26-3135-<br>144      | 12 Months                | 8/23/07 | W1010P             |  |  |  |
| Tunable Notch Filter     | K&L Microwave   | 3TNF-<br>1000/2000-N/N | N/A*                     | N/A*    | S/N 614            |  |  |  |
| Reference Antenna        | ETS             | 3121 Dipole<br>Set     | 12 months                | 8/8/07  | S/N. 274           |  |  |  |
| CONTROL ROOM             |                 |                        |                          |         |                    |  |  |  |
| Test Receiver            | Rohde & Schwarz | z FSQ 26               | 12 Months                | 9/21/07 | W1020P             |  |  |  |
| High Frequency - Cable 2 | MegaPhase       | NA                     | 12 Months                | 8/23/07 | W1011P             |  |  |  |
| Amplifier                | HP              | 8449B                  | 12 Months                | 5/4/07  | E1010P             |  |  |  |

## H.1. Field Strength of Spurious Emissions 30 MHz – 26.5 GHz Measurement Equipment

#### H.2. Antenna Conducted Emissions Measurement Equipment

|                             |                 | Model             | Calibration | Calibration |  |  |
|-----------------------------|-----------------|-------------------|-------------|-------------|--|--|
| Instrument                  | Manufacturer    |                   | Frequency   | Due         |  |  |
| ANTENNA CONDUCTED EMISSIONS |                 |                   |             |             |  |  |
| Spectrum Analyzer           | Rohde & Schwarz | FSQ 26            | 12 Months   | 9/21/07     |  |  |
| High Frequency - Cable 1    | MegaPhase       | TM26-3135-<br>144 | 12 Months   | 8/23/07     |  |  |
| Directional Coupler         | Narda           | 3020A             | 12 Months   | 8/28/07     |  |  |
| Directional Coupler         | Narda           | 4242-10           | 12 Months   | 8/28/07     |  |  |
| 50 ohm loads                | Amphenol        | 50R               | 12 Months   | 8/28/07     |  |  |
| I/Q Signal Generator        | Rohde & Schwarz | SMIQ 03           | 12 Months   | 8/25/07     |  |  |
| I/Q Modulation Generator    | Rohde & Schwarz | AMIQ              | 12 Months   | 8/28/07     |  |  |
| Combiner                    | Mini-Circuits   | ZFSC-2-2500       | N/A*        | N/A*        |  |  |
| IS-95 CDMA BTS<br>simulator | Rohde & Schwarz | CMD80             | N/A*        | N/A*        |  |  |

\*This device was not used for calibrated measurements.

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implicit, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.



# END OF DOCUMENT

This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.