# Automaton Inc. dba RADAR

**TEST REPORT FOR** 

RFID Sensor Operating in the UHF Band Model: RS550

**Tested to The Following Standards:** 

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928 MHz)

Report No.: 110388-10

Date of issue: March 13, 2025



Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 107 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.



#### TABLE OF CONTENTS

| Administrative Information                                                                                     | 3      |
|----------------------------------------------------------------------------------------------------------------|--------|
| Test Report Information                                                                                        | 3      |
| Report Authorization                                                                                           | 3      |
| Test Facility Information                                                                                      | 4      |
| Software Versions                                                                                              | 4      |
| Site Registration & Accreditation Information                                                                  | 4      |
| Summary of Results                                                                                             | 5      |
| Standard / Specification:                                                                                      | 5      |
| FCC Part 15 Subpart C – 15.207 & 15.247 (FHSS 902-928MHz)                                                      | 5      |
| Modifications During Testing                                                                                   | 5      |
| Conditions During Testing                                                                                      | 5      |
| Equipment Under Test (EUT)                                                                                     | 6      |
| General Product Information:                                                                                   | 7      |
| FCC Part 15 Subpart C                                                                                          | 16     |
| 15.247(a) Transmitter Characteristics                                                                          | 16     |
| 15.247(a)(1) 20 dB Bandwidth                                                                                   | 17     |
| 15.247(a)(1) Carrier Separation                                                                                | 30     |
| 15.247(a)(1)(i) Number of Hopping Channels                                                                     | 31     |
| 15.247(a)(1)(i) Time of Occupancy                                                                              | 32     |
| 15.247(b)(2) Output Power                                                                                      | 40     |
| 15.247(d) RF Conducted Emissions & Band Edge                                                                   | 69     |
| 15.247(d) Radiated Emissions & Band Edge                                                                       | 79     |
| 15.207 AC Conducted Emissions                                                                                  | 95     |
| Supplemental Information                                                                                       |        |
| Measurement Uncertainty                                                                                        |        |
| Emissions Test Details                                                                                         | 106    |
| 15.207 AC Conducted Emissions<br>Supplemental Information<br>Measurement Uncertainty<br>Emissions Test Details | 95<br> |



# **Administrative Information**

## **Test Report Information**

#### **REPORT PREPARED FOR:**

Automaton Inc. dba RADAR 15150 Avenue of Science, Ste. 200 San Diego, CA 92121

Representative: Craig Owens Customer Reference Number: 2845-SD1

DATE OF EQUIPMENT RECEIPT: DATE(S) OF TESTING: **REPORT PREPARED BY:** 

Stacey Noriega CKC Laboratories, Inc. 5046 Sierra Pines Drive Mariposa, CA 95338

Project Number: 110388

December 12, 2024 January 28 & 30. 2025 and February 4, 7, 17 & 18, 2025

### **Report Authorization**

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve -7 Bel

Steve Behm Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.



### **Test Facility Information**



Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 110 North Olinda Place Brea, CA 92823

### **Software Versions**

| <b>CKC Laboratories Proprietary Software</b> | Version |
|----------------------------------------------|---------|
| EMITest Emissions                            | 5.03.20 |

## **Site Registration & Accreditation Information**

| Location                 | *NIST CB # | FCC    | Canada | Japan  |
|--------------------------|------------|--------|--------|--------|
| Canyon Park, Bothell, WA | US0103     | US1024 | 3082C  | A-0136 |
| Brea, CA                 | US0103     | US1024 | 3082D  | A-0136 |
| Fremont, CA              | US0103     | US1024 | 3082B  | A-0136 |
| Mariposa, CA             | US0103     | US1024 | 3082A  | A-0136 |

\*CKC's list of NIST designated countries can be found at: <u>https://standards.gov/cabs/designations.html</u>



## Summary of Results

### Standard / Specification: FCC Part 15 Subpart C – 15.207 & 15.247 (FHSS 902-928MHz)

| Test Procedure  | Description                        | Modifications | Results |
|-----------------|------------------------------------|---------------|---------|
| 15.247(a)(1)(i) | Occupied Bandwidth                 | NA            | Pass    |
| 15.247(a)(1)    | Carrier Separation                 | NA            | Pass    |
| 15.247(a)(1)(i) | Number of Hopping Channels         | NA            | Pass    |
| 15.247(a)(1)(i) | Average Time of Occupancy          | NA            | Pass    |
| 15.247(b)(2)    | Output Power                       | NA            | Pass    |
| 15.247(d)       | RF Conducted Emissions & Band Edge | NA            | Pass    |
| 15.247(d)       | Radiated Emissions & Band Edge     | NA            | Pass    |
| 15.207          | AC Conducted Emissions             | NA            | Pass    |

NA = Not Applicable

#### ISO/IEC 17025 Decision Rule

The equipment sample utilized for testing is selected by the manufacturer. The declaration of pass or fail herein is a binary statement for simple acceptance rule (ILAC G8) based upon assessment to the specification(s) listed above, without consideration of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

## **Modifications During Testing**

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

### **Conditions During Testing**

This list is a summary of the conditions noted to the equipment during testing.

#### **Summary of Conditions**

None



# **Equipment Under Test (EUT)**

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

| Configuration 1          |                    |                   |                              |
|--------------------------|--------------------|-------------------|------------------------------|
| Equipment Tested:        |                    |                   |                              |
| Device                   | Manufacturer       | Model #           | S/N                          |
| RFID sensor operating in | Automaton Inc. dba | RS550             | 000761                       |
| the UHF band             | RADAR              |                   |                              |
| Support Equipment:       |                    |                   |                              |
| Device                   | Manufacturer       | Model #           | S/N                          |
| PoE+ Switch              | Netgear            | GS308PP           | 76G12BDK030A9                |
| NUC                      | Intel              | NUC8HN            | BTHN009003HU                 |
| USB to Ethernet Adapter  | LIONWEI            | LIUC0517          | 24239                        |
| Laptop                   | Dell               | Inspiron 16 76109 | NA                           |
| Wired Keyboard           | Dell               | KB216t3           | CN-0081N8-LO300-25G-0EJ9-A01 |
| LED Monitor              | ViewSonic          | VA2246MH-LEC      | V1W2135A1003                 |
|                          |                    |                   |                              |

#### **Configuration 2**

#### Equipment Tested:

LED Monitor

| Equipment resteu.        |                    |                   |                              |
|--------------------------|--------------------|-------------------|------------------------------|
| Device                   | Manufacturer       | Model #           | S/N                          |
| RFID sensor operating in | Automaton Inc. dba | RS550             | 000765                       |
| the UHF band             | RADAR              |                   |                              |
| Support Equipment:       |                    |                   |                              |
| Device                   | Manufacturer       | Model #           | S/N                          |
| PoE+ Switch              | Netgear            | GS308PP           | 76G12BDK030A9                |
| NUC                      | Intel              | NUC8HN            | BTHN009003HU                 |
| USB to Ethernet Adapter  | LIONWEI            | LIUC0517          | 24239                        |
| Laptop                   | Dell               | Inspiron 16 76109 | NA                           |
| Wired Keyboard           | Dell               | KB216t3           | CN-0081N8-LO300-25G-0EJ9-A01 |

VA2246MH-LEC

ViewSonic

V1W2135A1003



#### **Configuration 3**

| Manufacturer       | Model #                                                                                                                       | S/N                                                                                                                                                                               |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Automaton Inc. dba | RS550                                                                                                                         | 000761                                                                                                                                                                            |
| RADAR              |                                                                                                                               |                                                                                                                                                                                   |
|                    |                                                                                                                               |                                                                                                                                                                                   |
| Manufacturer       | Model #                                                                                                                       | S/N                                                                                                                                                                               |
| Tycon Systems      | POE-INJ-1000-WT                                                                                                               | 23520113                                                                                                                                                                          |
| Intel              | NUC8HN                                                                                                                        | BTHN009003HU                                                                                                                                                                      |
| LIONWEI            | LIUC0517                                                                                                                      | 24239                                                                                                                                                                             |
| Dell               | Inspiron 16 76109                                                                                                             | NA                                                                                                                                                                                |
| Dell               | KB216t3                                                                                                                       | CN-0081N8-LO300-25G-0EJ9-A01                                                                                                                                                      |
| ViewSonic          | VA2246MH-LEC                                                                                                                  | V1W2135A1003                                                                                                                                                                      |
|                    | Manufacturer<br>Automaton Inc. dba<br>RADAR<br>Manufacturer<br>Tycon Systems<br>Intel<br>LIONWEI<br>Dell<br>Dell<br>ViewSonic | ManufacturerModel #Automaton Inc. dba<br>RADARRS550ManufacturerModel #Tycon SystemsPOE-INJ-1000-WTIntelNUC8HNLIONWEILIUC0517DellInspiron 16 76109DellKB216t3ViewSonicVA2246MH-LEC |

## **General Product Information:**

| Description of EUT                    |  |
|---------------------------------------|--|
| RFID sensor operating in the UHF band |  |
|                                       |  |

| Product Information                                                 | Product Information Manufacturer-Provided Details                       |  |  |  |
|---------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| Operating Frequencies Tested:                                       | 902.75MHz to 927.25MHz                                                  |  |  |  |
| Equipment Type:                                                     | Stand-Alone Equipment                                                   |  |  |  |
| Type of Wideband System:                                            | FHSS                                                                    |  |  |  |
| Maximum Duty Cycle:                                                 | 98% or better                                                           |  |  |  |
| Modulation Type(s):                                                 | PR-ASK *                                                                |  |  |  |
| Number of TX Chains:                                                | 7                                                                       |  |  |  |
| Beamforming Type:                                                   | Digital                                                                 |  |  |  |
|                                                                     | Patch Array 5.4 dBi to 6.6 dBi                                          |  |  |  |
| Antenna Type(s) and Gain:                                           | (measured ant gain + beamforming gain as provided by the                |  |  |  |
|                                                                     | manufacturer)                                                           |  |  |  |
| Antenna Connection Type:                                            | Integral (External connector provided to facilitate testing)            |  |  |  |
| Nominal Input Voltage:                                              | 48 VDC from PoE                                                         |  |  |  |
| Firmware / Software Version(s):                                     | 2.127.0                                                                 |  |  |  |
| Firmware / Software Description:                                    | Real Time Operating System : Controls all functions related to reading  |  |  |  |
| Finnware / Software Description.                                    | the price tag and communication with the system host.                   |  |  |  |
| Firmware / Software Setting(s):                                     | RTOS reads onboard EEPROM for calibration constants and serial          |  |  |  |
|                                                                     | number                                                                  |  |  |  |
| Tupe-up or Adjustment(s):                                           | NONE: Each sensor has its own unique serial number and calibration file |  |  |  |
|                                                                     | stored on board within an eeprom.                                       |  |  |  |
| Receiver Bandwidth and                                              | The manufacturer declares the receiver input bandwidth matches the      |  |  |  |
| Synchronization:                                                    | transmit channel bandwidth and shifts frequencies in synchronization    |  |  |  |
|                                                                     | with the transmitter.                                                   |  |  |  |
| The validity o                                                      | of results is dependent on the stated product details,                  |  |  |  |
| the accuracy of which the manufacturer assumes full responsibility. |                                                                         |  |  |  |

\*Phase reversal ASK., TARI set at 6.25us



### EUT Photo(s)



View 1



View 2





View 3



View 4





View 5



View 6



#### Support Equipment Photo(s)



Laptop



LED Monitor





NUC



PoE Injector





PoE Switch



USB Adapter





Wired Keyboard

Page 14 of 107 Report No.: 110388-10



#### Block Diagram of Test Setup(s)

| Configuration# | Setup Description of Block Diagram |
|----------------|------------------------------------|
| 1              | Conducted testing                  |
| 2              | Radiated testing                   |

#### Test Setup Block Diagram







# FCC Part 15 Subpart C

# **15.247(a)** Transmitter Characteristics

| Test Setup/Conditions |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                            |                                                                                                                                                                                                |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Test Location:        | Brea Lab D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test Engineer:                                                                                                                                                                                                             | E. Wong S. Yamamoto                                                                                                                                                                            |  |  |
| Test Method:          | ANSI C63.10 (2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test Date(s):                                                                                                                                                                                                              | 1/28/2025 2/4/2025                                                                                                                                                                             |  |  |
| Configuration:        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                            |                                                                                                                                                                                                |  |  |
| Test Setup:           | The equipment under test (EUT) i<br>unshielded cat 6 network cable (r<br>remotely located POE Injector. Co<br>and to the NUC a laptop compute<br>frequency hopping, and modulati<br>hop on the same channel. For thi<br>below.<br>Frequency range of EUT: 902.75M<br>TX Low 902.75MHz, Middle 914.7<br>LO Freq = 915MHz<br>TARI = 6.25us<br>Firmware = 2.127.0<br>Low Power setting. Streams 0, 1,<br>Site D<br>ANSI C63.10 2020<br>Test Environment Conditions:<br>Temperature: 25°C, Humidity: 449 | s set on a test bench.<br>iominal voltage 48Vdc<br>onnected to the POE In<br>r. The computer is use<br>on of the EUT. The EU<br>s test, it is the low, mi<br>//Hz to 927.25MHz<br>5MHz, High 927.25MH<br>2, 3 and 0,4,5,6. | The EUT is powered via a<br>) which is connected to a<br>njector via cat 6 cable is a NUC<br>ed to set frequency channel,<br>T is programmed to continuously<br>ddle, and high channels listed |  |  |

| Environmental Conditions                   |  |  |  |  |
|--------------------------------------------|--|--|--|--|
| Temperature (°C)25Relative Humidity (%):44 |  |  |  |  |

| Test Equipment |                   |                    |                              |           |           |
|----------------|-------------------|--------------------|------------------------------|-----------|-----------|
| Asset#         | Description       | Manufacturer       | Model                        | Cal Date  | Cal Due   |
| 03834          | Spectrum Analyzer | Agilent            | E4448A                       | 5/6/2024  | 5/6/2026  |
| 03634          | Spectrum Analyzer | Agilent            | E4445A                       | 3/21/2024 | 3/21/2025 |
| 03432          | Attenuator        | Aeroflex/Weinschel | 90-30-34                     | 11/1/2023 | 11/1/2025 |
| 07657          | Cable             | Astrolab, Inc.     | 32022-29094K-<br>29094K-24TC | 7/3/2024  | 7/3/2026  |



# 15.247(a)(1) 20 dB Bandwidth

| Test Data Summary  |                 |            |                   |                |         |
|--------------------|-----------------|------------|-------------------|----------------|---------|
| Frequency<br>(MHz) | Antenna<br>Port | Modulation | Measured<br>(kHz) | Limit<br>(kHz) | Results |
| 902.75             | 0               | PR-ASK     | 186.007           | ≤500           | Pass    |
| 914.75             | 0               | PR-ASK     | 186.032           | ≤500           | Pass    |
| 927.25             | 0               | PR-ASK     | 186.250           | ≤500           | Pass    |
| 902.75             | 1               | PR-ASK     | 186.121           | ≤500           | Pass    |
| 914.75             | 1               | PR-ASK     | 186.178           | ≤500           | Pass    |
| 927.25             | 1               | PR-ASK     | 186.302           | ≤500           | Pass    |
| 902.75             | 2               | PR-ASK     | 186.650           | ≤500           | Pass    |
| 914.75             | 2               | PR-ASK     | 186.164           | ≤500           | Pass    |
| 927.25             | 2               | PR-ASK     | 186.442           | ≤500           | Pass    |
| 902.75             | 3               | PR-ASK     | 186.166           | ≤500           | Pass    |
| 914.75             | 3               | PR-ASK     | 186.208           | ≤500           | Pass    |
| 927.25             | 3               | PR-ASK     | 186.513           | ≤500           | Pass    |
| 902.75             | 0               | PR-ASK     | 186.003           | ≤500           | Pass    |
| 914.75             | 0               | PR-ASK     | 186.025           | ≤500           | Pass    |
| 927.25             | 0               | PR-ASK     | 186.411           | ≤500           | Pass    |
| 902.75             | 4               | PR-ASK     | 186.023           | ≤500           | Pass    |
| 914.75             | 4               | PR-ASK     | 186.000           | ≤500           | Pass    |
| 927.25             | 4               | PR-ASK     | 186.287           | ≤500           | Pass    |
| 902.75             | 5               | PR-ASK     | 186.227           | ≤500           | Pass    |
| 914.75             | 5               | PR-ASK     | 186.083           | ≤500           | Pass    |
| 927.25             | 5               | PR-ASK     | 186.248           | ≤500           | Pass    |
| 902.75             | 6               | PR-ASK     | 186.250           | ≤500           | Pass    |
| 914.75             | 6               | PR-ASK     | 186.000           | ≤500           | Pass    |
| 927.25             | 6               | PR-ASK     | 186.166           | ≤500           | Pass    |

Measured in hopping mode instead of constant transmit on one channel due to limitation of test script in single channel constant transmit mode.



#### Plot(s)



Antenna 0, 0123, Low Power, High Channel



Antenna 0, 0123, Low Power, Low Channel





Antenna 0, 0123, Low Power, Middle Channel









Antenna 0, 0456, Low Power, Low Channel









Antenna 1, 0123, Low Power, High Channel



Antenna 1, 0123, Low Power, Low Channel





Antenna 1, 0123, Low Power, Middle Channel



Antenna 2, 0123, Low Power, High Channel





Antenna 2, 0123, Low Power, Low Channel









Antenna 3, 0123, Low Power, High Channel









Antenna 3, 0123, Low Power, Middle Channel



Antenna 4, 0456, Low Power, High Channel





Antenna 4, 0456, Low Power, Low Channel









Antenna 5, 0456, Low Power, High Channel









Antenna 5, 0456, Low Power, Middle Channel









Antenna 6, 0456, Low Power, Low Channel







## 15.247(a)(1) Carrier Separation

| Test Data Summary                                     |                  |                   |                |         |
|-------------------------------------------------------|------------------|-------------------|----------------|---------|
| Limit applied: 20dB bandwidth of the hopping channel. |                  |                   |                |         |
| Antenna<br>Port                                       | Operational Mode | Measured<br>(kHz) | Limit<br>(kHz) | Results |
| 0                                                     | PR-ASK           | 505.505           | > 186.7        | Pass    |

#### Plot(s)



**Channel Separation** 



# 15.247(a)(1)(i) Number of Hopping Channels

| Test Data Summary                                   |                                                                   |                        |                     |         |
|-----------------------------------------------------|-------------------------------------------------------------------|------------------------|---------------------|---------|
| $Limit = \begin{cases} 50 & 0\\ 25 & 0 \end{cases}$ | Channels  20 dB BW < $250kHz$<br>Channels  20 dB BW $\geq 250kHz$ |                        |                     |         |
| Antenna<br>Port                                     | Operational Mode                                                  | Measured<br>(Channels) | Limit<br>(Channels) | Results |
| 0                                                   | PR-ASK                                                            | 50                     | ≥ 50                | Pass    |

#### Plot(s)



Number of Hopping Channels



### 15.247(a)(1)(i) Time of Occupancy

| Test Data Summary                                                             |                                                         |            |                        |         |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------|------------|------------------------|---------|--|
| Observation Pe                                                                | Observation Period, Pobs is derived from the following: |            |                        |         |  |
| $_{p}$ _ (20 Seconds  20 dB BW < 250kHz                                       |                                                         |            |                        |         |  |
| $\Gamma_{Obs} = (10 \text{ Seconds}   20 \text{ dB } BW \ge 250 \text{ kHz})$ |                                                         |            |                        |         |  |
| Antenna                                                                       | Onevetional Made                                        | Measured   | Limit                  | Desults |  |
| Port                                                                          | Operational Wode                                        | (ms)       | (ms/P <sub>obs</sub> ) | Results |  |
| 0                                                                             | PR-ASK                                                  | 391.437088 | ≤400                   | 0       |  |

Measured results are calculated as follows:

$$Dwell time = \left( \sum_{Bursts} RF Burst On Time + \sum_{Control} Control Signal On time \right) \Big|_{P_{obs}}$$

Actual Values:

| Parameter                                  | Value       |
|--------------------------------------------|-------------|
| Observation Time:                          | 100 seconds |
| Number of RF Bursts / Observation Time:*   | 4.9         |
| On time of one RF Burst:                   | 399.4256ms  |
| Number of Control or other signals / Pobs: | NA          |
| On time of Control or other Signals:       | NA          |
| Total Measured On Time:**                  | 0.391437088 |

\* This value is the average number of RF bursts occurring in 100 seconds (calculated from ten 100 second sweeps)

\*\*(Number of RF Bursts/Pobs x On time RF Burst) or 0.98 x 399.4256ms = 391.437088ms



#### Plot(s)



#### Single Burst









Time of Occupancy 2, 4 Burst



Time of Occupancy 3, 10 Burst





Time of Occupancy 4, 8 Burst



Time of Occupancy 5, 2 Burst





Time of Occupancy 6, 4 Burst



Time of Occupancy 7, 7 Burst




Time of Occupancy 8, 2 Burst



Time of Occupancy 9, 2 Burst





Time of Occupancy 10, 2 Burst



## Test Setup Photo(s)





# 15.247(b)(2) Output Power

|                 | Test Setup/Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Test Location:  | Brea Lab D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Test Engineer:                                                                                                                                                                                                                                        | S. Yamamoto                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |  |
| Test Method:    | ANSI C63.10 (2020) Test Date(s): 2/4/2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |
| Configurations: | 1, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |  |
| Test Setup:     | The equipment under test (EUT) is<br>unshielded cat 6 network cable (m<br>remotely located POE Injector. Co<br>and to the NUC a laptop compute<br>frequency hopping, and modulation<br>hop on the same channel. For this<br>below.<br>Frequency range of EUT: 902.75M<br>TX Low 902.75MHz, Middle 914.7<br>LO freq = 915MHz<br>TARI = 6.25us<br>Firmware = 2.127.0<br>Low and High Power settings. Stre<br>Site D<br>ANSI C63.10 2020<br>Test Environment Conditions:<br>Temperature: 25°C, Humidity: 445 | s set on a test bench.<br>cominal voltage 48Vdc<br>onnected to the POE In<br>r. The computer is use<br>on of the EUT. The EU<br>s test, it is the low, mi<br>/Hz to 927.25MHz<br>5MHz, High 927.25MH<br>eams 0, 1, 2, 3 and 0,4<br>%, Pressure: 99kPa | The EUT is powered via an<br>) which is connected to a<br>njector via cat 6 cable is a NUC<br>ed to set frequency channel,<br>T is programmed to continuously<br>ddle, and high channels listed<br>dz |  |  |  |  |  |  |  |  |  |  |

| Environmental Conditions      |    |                        |    |  |  |  |  |  |
|-------------------------------|----|------------------------|----|--|--|--|--|--|
| Temperature ( <sup>o</sup> C) | 25 | Relative Humidity (%): | 44 |  |  |  |  |  |

| Test Equipment |                   |                    |                              |           |           |  |  |  |  |  |  |
|----------------|-------------------|--------------------|------------------------------|-----------|-----------|--|--|--|--|--|--|
| Asset#         | Description       | Manufacturer       | Model                        | Cal Date  | Cal Due   |  |  |  |  |  |  |
| 03834          | Spectrum Analyzer | Agilent            | E4448A                       | 5/6/2024  | 5/6/2026  |  |  |  |  |  |  |
| 03432          | Attenuator        | Aeroflex/Weinschel | 90-30-34                     | 11/1/2023 | 11/1/2025 |  |  |  |  |  |  |
| 07657          | Cable             | Astrolab, Inc.     | 32022-29094K-<br>29094K-24TC | 7/3/2024  | 7/3/2026  |  |  |  |  |  |  |
| 07164          | Multimeter        | Fluke              | 8845A/G                      | 8/21/2023 | 8/21/2025 |  |  |  |  |  |  |
| 01438          | DC Power Supply   | Topward            | 6306D                        | 4/4/2023  | 4/4/2025  |  |  |  |  |  |  |

|                    | Test Data Summary - Voltage Variations |                               |                               |                               |                                                 |  |  |  |  |  |  |  |
|--------------------|----------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------------------------|--|--|--|--|--|--|--|
| Frequency<br>(MHz) | Modulation / Ant Port                  | V <sub>Minimum</sub><br>(dBm) | V <sub>Nominal</sub><br>(dBm) | V <sub>Maximum</sub><br>(dBm) | Max Deviation<br>from V <sub>Nominal</sub> (dB) |  |  |  |  |  |  |  |
| 902.75             | PR-ASK                                 | 23.28                         | 23.37                         | 23.26                         | 0.11                                            |  |  |  |  |  |  |  |
| 914.75             | PR-ASK                                 | 23.30                         | 23.17                         | 23.21                         | 0.13                                            |  |  |  |  |  |  |  |
| 927.25             | PR-ASK                                 | 22.95                         | 22.85                         | 22.89                         | 0.10                                            |  |  |  |  |  |  |  |

Test performed using operational mode with the highest output power, representing worst case. ANTO Low Gain (5.4 dBi) High Power



### Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification.

| Parameter              | Value |
|------------------------|-------|
| V <sub>Nominal</sub> : | 48    |
| V <sub>Minimum</sub> : | 42    |
| V <sub>Maximum</sub> : | 57    |

| Test Data Summary - RF Conducted Measurement                                                                           |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| $(30dBm Conducted/36dBm EIRP   \ge 50 Channels$                                                                        |  |  |  |  |  |  |  |  |
| $Limit = \{24dBm Conducted/30dBm EIRP   < 50 Channels (min 25)\}$                                                      |  |  |  |  |  |  |  |  |
| This equipment has seven output ports. Stream 0 antenna port 0, Stream 1 antenna ports 1, 2. Stream 2 antenna ports 3, |  |  |  |  |  |  |  |  |
| 4, Stream 3 antenna ports 5, 6. There is a switch between ports 1 and 4, 2 and 5, and 3 and 6.                         |  |  |  |  |  |  |  |  |

| A pt Dort |      | 0      |      | 1      |      | 0      |      | 2      | Linear sum |      | Ant gain<br>Beamforming | Total |
|-----------|------|--------|------|--------|------|--------|------|--------|------------|------|-------------------------|-------|
| AntPort   |      | U      |      | 1      | 4    | 2      |      | ა<br>  | Lineai     | Sum  | gain                    |       |
| Freq      | dBm  | Watts  | dBm  | Watts  | dBm  | Watts  | dBm  | Watts  | w att      | dBm  | dBi                     | dBm   |
| 902.75    | 22.7 | 0.1871 | 22.7 | 0.1845 | 22.6 | 0.1832 | 22.5 | 0.1782 | 0.7330     | 28.7 | 6.6                     | 35.3  |
| 914.75    | 22.6 | 0.1824 | 22.6 | 0.1820 | 22.4 | 0.1754 | 22.5 | 0.1795 | 0.7192     | 28.6 | 6.6                     | 35.2  |
| 927.25    | 22.2 | 0.1671 | 22.3 | 0.1702 | 22.1 | 0.1633 | 22.2 | 0.1648 | 0.6654     | 28.2 | 6.6                     | 34.8  |

| Frequency<br>(MHz) | Modulation                                           | Ant. Type / Gain | RF Conducted<br>(dBm) | EIF<br>(dB | Results |      |  |  |  |
|--------------------|------------------------------------------------------|------------------|-----------------------|------------|---------|------|--|--|--|
|                    |                                                      | (аы)             | Measured              | Calculated | Limit   |      |  |  |  |
|                    | Highest antenna gain, lowest power setting, stream 1 |                  |                       |            |         |      |  |  |  |
| 902.75             | PR-ASK                                               | Patch array/ 6.6 | 28.7                  | 35.3       | ≤36     | Pass |  |  |  |
| 914.75             | PR-ASK                                               | Patch array/ 6.6 | 28.6                  | 35.2       | ≤36     | Pass |  |  |  |
| 927.25             | PR-ASK                                               | Patch array/ 6.6 | 28.2                  | 34.8       | ≤36     | Pass |  |  |  |

Measured in hopping mode instead of constant transmit on one channel due to limitation of test script in single channel constant transmit mode

EIRP is calculated as RF conducted power (dBm) + antenna gain (dBi)



|          |      |        |       |        |       |        |       |        |            |      | Ant gain    |       |
|----------|------|--------|-------|--------|-------|--------|-------|--------|------------|------|-------------|-------|
|          |      |        |       |        |       |        |       |        |            |      | Beamforming | Total |
| Ant Port | 0    |        | 4     | 4      |       | 5      |       | 6      | Linear sum |      | gain        | EIRP  |
| Freq     | dBm  | Watts  | dBm   | Watts  | dBm   | Watts  | dBm   | Watts  | w att      | dBm  | dBi         | dBm   |
| 902.75   | 22.8 | 0.1892 | 22.56 | 0.1803 | 22.55 | 0.1799 | 22.5  | 0.1778 | 0.7273     | 28.6 | 6.6         | 35.2  |
| 914.75   | 22.6 | 0.1828 | 22.54 | 0.1795 | 22.39 | 0.1734 | 22.53 | 0.1791 | 0.7147     | 28.5 | 6.6         | 35.1  |
| 927.25   | 22.4 | 0.1730 | 22.37 | 0.1726 | 22.27 | 0.1687 | 22.27 | 0.1687 | 0.6829     | 28.3 | 6.6         | 34.9  |

| Frequency<br>(MHz) | Modulation                                           | Ant. Type /      | RF Conducted<br>(dBm) | EII<br>(dB | Results |      |  |  |  |
|--------------------|------------------------------------------------------|------------------|-----------------------|------------|---------|------|--|--|--|
|                    |                                                      | Gain (GBI)       | Measured              | Calculated | Limit   |      |  |  |  |
|                    | Highest antenna gain, lowest power setting, stream 2 |                  |                       |            |         |      |  |  |  |
| 902.75             | PR-ASK                                               | Patch array/ 6.6 | 28.6                  | 35.2       | ≤36     | Pass |  |  |  |
| 914.75             | PR-ASK                                               | Patch array/ 6.6 | 28.5                  | 35.1       | ≤36     | Pass |  |  |  |
| 927.25             | PR-ASK                                               | Patch array/ 6.6 | 28.3                  | 34.9       | ≤36     | Pass |  |  |  |

Measured in hopping mode instead of constant transmit on one channel due to limitation of test script in single channel constant transmit mode

EIRP is calculated as RF conducted power (dBm) + antenna gain (dBi)

|          |      |        |      |        |      |        |      |        |        |      | Ant gain    |       |
|----------|------|--------|------|--------|------|--------|------|--------|--------|------|-------------|-------|
|          |      |        |      |        |      |        |      |        |        |      | Beamforming | Total |
| Ant Port |      | 0      |      | 1      |      | 2      |      | 3      | Linear | sum  | gain        | EIRP  |
| Freq     | dBm  | Watts  | dBm  | Watts  | dBm  | Watts  | dBm  | Watts  | w att  | dBm  | dBi         | dBm   |
| 902.75   | 23.4 | 0.2173 | 23.1 | 0.2056 | 23.1 | 0.2018 | 23.0 | 0.2014 | 0.8261 | 29.2 | 5.4         | 34.6  |
| 914.75   | 23.2 | 0.2075 | 23.0 | 0.2014 | 23.0 | 0.2014 | 23.1 | 0.2037 | 0.8139 | 29.1 | 5.4         | 34.5  |
| 927.25   | 22.9 | 0.1928 | 23.0 | 0.1986 | 22.7 | 0.1862 | 22.7 | 0.1854 | 0.7629 | 28.8 | 5.4         | 34.2  |

| Lowest antenna gain, highest power setting, stream 1 |            |                           |                       |            |         |      |  |  |  |  |  |
|------------------------------------------------------|------------|---------------------------|-----------------------|------------|---------|------|--|--|--|--|--|
| Frequency<br>(MHz)                                   | Modulation | Ant. Type /<br>Gain (dBi) | RF Conducted<br>(dBm) | EII<br>(dB | Results |      |  |  |  |  |  |
|                                                      |            |                           | Measured              | Calculated | Limit   |      |  |  |  |  |  |
| 902.75                                               | PR-ASK     | Patch array/ 5.4          | 29.2                  | 34.6       | ≤36     | Pass |  |  |  |  |  |
| 914.75                                               | PR-ASK     | Patch array/ 5.4          | 29.1                  | 34.5       | ≤36     | Pass |  |  |  |  |  |
| 927.25                                               | PR-ASK     | Patch array/ 5.4          | 28.8                  | 34.2       | ≤36     | Pass |  |  |  |  |  |

Measured in hopping mode instead of constant transmit on one channel due to limitation of test script in single channel constant transmit mode

EIRP is calculated as RF conducted power (dBm) + antenna gain (dBi)



|          |      |        |       |        |       |        |       |        |        |      | Ant gain    |       |
|----------|------|--------|-------|--------|-------|--------|-------|--------|--------|------|-------------|-------|
|          |      |        |       |        |       |        |       |        |        |      | Beamforming | Total |
| Ant Port | 0    |        | 4     | 1      |       | 5      |       | 6      | Linea  | rsum | gain        | EIRP  |
| Freq     | dBm  | Watts  | dBm   | Watts  | dBm   | Watts  | dBm   | Watts  | w att  | dBm  | dBi         | dBm   |
| 902.75   | 23.5 | 0.2213 | 23.18 | 0.2080 | 23.09 | 0.2037 | 23.09 | 0.2037 | 0.8367 | 29.2 | 5.4         | 34.6  |
| 914.75   | 23.2 | 0.2075 | 23.18 | 0.2080 | 23.09 | 0.2037 | 23.12 | 0.2051 | 0.8243 | 29.2 | 5.4         | 34.6  |
| 927.25   | 23.0 | 0.1995 | 22.98 | 0.1986 | 22.91 | 0.1954 | 22.91 | 0.1954 | 0.7890 | 29.0 | 5.4         | 34.4  |

| Lowest antenna gain, highest power setting, stream 2 |            |                  |                       |            |         |      |  |  |  |
|------------------------------------------------------|------------|------------------|-----------------------|------------|---------|------|--|--|--|
| Frequency                                            | Modulation | Ant. Type / Gain | RF Conducted<br>(dBm) | EII<br>(dB | Results |      |  |  |  |
|                                                      |            | (UDI)            | Measured              | Calculated | Limit   |      |  |  |  |
| 902.75                                               | PR-ASK     | Patch array/ 5.4 | 29.2                  | 34.6       | ≤36     | Pass |  |  |  |
| 914.75                                               | PR-ASK     | Patch array/ 5.4 | 29.2                  | 34.6       | ≤36     | Pass |  |  |  |
| 927.25                                               | PR-ASK     | Patch array/ 5.4 | 29.0                  | 34.4       | ≤36     | Pass |  |  |  |

Measured in hopping mode instead of constant transmit on one channel due to limitation of test script in single channel constant transmit mode

EIRP is calculated as RF conducted power (dBm) + antenna gain (dBi)





Antenna 0, 0123, High Power, High Channel



Antenna 0, 0123, High Power, Low Channel

Plots





Antenna 0, 0123, High Power, Middle Channel



Antenna 0, 0456, High Power, High Channel





Antenna 0, 0456, High Power, Low Channel



Antenna 0, 0456, High Power, Middle Channel





Antenna 0, 0456, Low Power, High Channel



Antenna 0, 0456, Low Power, Low Channel





Antenna 0, 0456, Low Power, Middle Channel



Antenna 0, Low Power, High Channel





Antenna 0, Low Power, Low Channel



Antenna 0, Low Power, Middle Channel





Antenna 1, 0123, High Power, High Channel



Antenna 1, 0123, High Power, Low Channel





Antenna 1, 0123, High Power, Middle Channel



Antenna 1, 0123, Low Power, High Channel





Antenna 1, 0123, Low Power, Low Channel



Antenna 1, 0123, Low Power, Middle Channel





Antenna 2, 0123, High Power, High Channel



Antenna 2, 0123, High Power, Low Channel





Antenna 2, 0123, High Power, Middle Channel



Antenna 2, Low Power, High Channel





Antenna 2, Low Power, Low Channel



Antenna 2, Low Power, Middle Channel





Antenna 3, 0123, High Power, High Channel



Antenna 3, 0123, High Power, Low Channel





Antenna 3, 0123, High Power, Middle Channel



Antenna 3, Low Power, High Channel





Antenna 3, Low Power, Low Channel



Antenna 3, Low Power, Middle Channel





Antenna 4, 0456, High Power, High Channel



Antenna 4, 0456, High Power, Low Channel





Antenna 4, 0456, High Power, Middle Channel



Antenna 4, 0456, Low Power, High Channel





Antenna 4, 0456, Low Power, Low Channel



Antenna 4, 0456, Low Power, Middle Channel





Antenna 5, 0456, High Power, High Channel



Antenna 5, 0456, High Power, Low Channel





Antenna 5, 0456, High Power, Middle Channel



Antenna 5, 0456, Low Power, High Channel





Antenna 5, 0456, Low Power, Low Channel



Antenna 5, 0456, Low Power, Middle Channel





Antenna 6, 0456, High Power, High Channel



Antenna 6, 0456, High Power, Low Channel





Antenna 6, 0456, High Power, Middle Channel



Antenna 6, 0456, Low Power, High Channel





Antenna 6, 0456, Low Power, Low Channel



Antenna 6, 0456, Low Power, Middle Channel



### Test Setup / Conditions / Data



Page 68 of 107 Report No.: 110388-10



# **15.247(d) RF Conducted Emissions & Band Edge**

| Test Setup/Conditions |                    |                |           |  |  |  |  |  |
|-----------------------|--------------------|----------------|-----------|--|--|--|--|--|
| Test Location:        | Brea Lab A         | Test Engineer: | E. Wong   |  |  |  |  |  |
| Test Method:          | ANSI C63.10 (2020) | Test Date(s):  | 1/30/2025 |  |  |  |  |  |
| Configuration:        | 1                  |                |           |  |  |  |  |  |

| Environmental Conditions      |    |                        |    |  |  |  |  |
|-------------------------------|----|------------------------|----|--|--|--|--|
| Temperature ( <sup>o</sup> C) | 25 | Relative Humidity (%): | 44 |  |  |  |  |

### Test Setup / Conditions / Data

| Test Location: | CKC Laboratories, Inc • 110 N. Olinda Place • | Brea, CA • (7 | 714) 993- 6112 |
|----------------|-----------------------------------------------|---------------|----------------|
| Customer:      | Automaton Inc. dba RADAR                      |               |                |
| Specification: | 15.247(d) Conducted Spurious Emissions        |               |                |
| Work Order #:  | 110388                                        | Date:         | 2/4/2025       |
| Test Type:     | Conducted Emissions                           | Time:         | 15:17:27       |
| Tested By:     | S. Yamamoto                                   | Sequence#:    | 1              |
| Software:      | EMITest 5.03.20                               |               | 48VDC          |

### **Equipment Tested:**

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 1 |              |         |     |  |

| Support Equipment: |              |         |     |
|--------------------|--------------|---------|-----|
| Device             | Manufacturer | Model # | S/N |
| Configuration 1    |              |         |     |

#### Test Conditions / Notes:

The equipment under test (EUT) is set on a test bench.

The EUT is powered via a unshielded cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a NUC and to the NUC a laptop computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT. The EUT is set to continuously hop on the same channel. For this test purpose it is the low, middle, and high channels listed below.

Frequency range of data sheet and test 9kHz to 9.28GHz. RBW=100kHz VBW=300kHz

Frequency range of EUT: 902.75MHz to 927.25MHz

TX Low 902.75MHz, Middle 914.75MHz, High 927.25MHz

LO freg = 915MHz

TARI = 6.25us



Firmware = 2.127.0

High Power setting. Streams 0, 1, 2, 3 setting. Worst case setting. This data represents compliance for the following possible configurations: High power 0,1,2,3 High power 0,4,5,6 Low power 0,1,2,3 Low power 0,4,5,6

Test Environment Conditions: Temperature: 25°C Humidity: 44% Pressure: 99kPa

Site D

Test Method: ANSI C63.10 2020



Automaton Inc. dba RADAR WO#: 110388 Sequence#: 1 Date: 2/4/2025 15.247(d) Conducted Spurious Emissions Test Lead: 48VDC Antenna port



#### Test Equipment:

| ID | Asset #  | Description       | Model         | <b>Calibration Date</b> | Cal Due Date |
|----|----------|-------------------|---------------|-------------------------|--------------|
| T1 | AN03834  | Spectrum Analyzer | E4448A        | 5/6/2024                | 5/6/2026     |
| T2 | AN03432  | Attenuator        | 90-30-34      | 11/1/2023               | 11/1/2025    |
| Т3 | ANP07657 | Cable             | 32022-29094K- | 7/3/2024                | 7/3/2026     |
|    |          |                   | 29094K-24TC   |                         |              |



| Measu | rement Data: | R    | eading lis | ted by ma | argin. |    |       | Test Lea | d: Antenna | ı port |       |
|-------|--------------|------|------------|-----------|--------|----|-------|----------|------------|--------|-------|
| #     | Freq         | Rdng | T1         | T2        | T3     |    | Dist  | Corr     | Spec       | Margin | Polar |
|       | MHz          | dBµV | dB         | dB        | dB     | dB | Table | dBµV     | dBµV       | dB     | Ant   |
| 1     | 951.750M     | 43.9 | +0.0       | +29.6     | +0.3   |    | +0.0  | 73.8     | 110.4      | -36.6  | Anten |
| 2     | 951.743M     | 40.1 | +0.0       | +29.6     | +0.3   |    | +0.0  | 70.0     | 110.4      | -40.4  | Anten |
| 3     | 951.743M     | 37.4 | +0.0       | +29.6     | +0.3   |    | +0.0  | 67.3     | 110.4      | -43.1  | Anten |
| 4     | 939.500M     | 35.9 | +0.0       | +29.6     | +0.3   |    | +0.0  | 65.8     | 110.4      | -44.6  | Anten |
| 5     | 951.756M     | 33.3 | +0.0       | +29.6     | +0.3   |    | +0.0  | 63.2     | 110.4      | -47.2  | Anten |
| 6     | 1829.505M    | 32.8 | +0.0       | +29.6     | +0.4   |    | +0.0  | 62.8     | 110.4      | -47.6  | Anten |
| 7     | 939.500M     | 32.9 | +0.0       | +29.6     | +0.3   |    | +0.0  | 62.8     | 110.4      | -47.6  | Anten |
| 8     | 878.266M     | 31.6 | +0.0       | +29.6     | +0.3   |    | +0.0  | 61.5     | 110.4      | -48.9  | Anten |
| 9     | 1805.483M    | 31.4 | +0.0       | +29.7     | +0.4   |    | +0.0  | 61.5     | 110.4      | -48.9  | Anten |
| 10    | 939.520M     | 31.5 | +0.0       | +29.6     | +0.3   |    | +0.0  | 61.4     | 110.4      | -49.0  | Anten |
| 11    | 1805.497M    | 31.3 | +0.0       | +29.7     | +0.4   |    | +0.0  | 61.4     | 110.4      | -49.0  | Anten |
| 12    | 878.290M     | 31.2 | +0.0       | +29.6     | +0.3   |    | +0.0  | 61.1     | 110.4      | -49.3  | Anten |
| 13    | 1854.508M    | 30.8 | +0.0       | +29.6     | +0.4   |    | +0.0  | 60.8     | 110.4      | -49.6  | Anten |
| 14    | 939.500M     | 30.4 | +0.0       | +29.6     | +0.3   |    | +0.0  | 60.3     | 110.4      | -50.1  | Anten |
| 15    | 1805.508M    | 29.9 | +0.0       | +29.7     | +0.4   |    | +0.0  | 60.0     | 110.4      | -50.4  | Anten |
| 16    | 1829.478M    | 29.9 | +0.0       | +29.6     | +0.4   |    | +0.0  | 59.9     | 110.4      | -50.5  | Anten |
| 17    | 939.475M     | 29.9 | +0.0       | +29.6     | +0.3   |    | +0.0  | 59.8     | 110.4      | -50.6  | Anten |
| 18    | 1854.495M    | 29.8 | +0.0       | +29.6     | +0.4   |    | +0.0  | 59.8     | 110.4      | -50.6  | Anten |
| 19    | 939.533M     | 29.7 | +0.0       | +29.6     | +0.3   |    | +0.0  | 59.6     | 110.4      | -50.8  | Anten |
| 20    | 1829.504M    | 29.4 | +0.0       | +29.6     | +0.4   |    | +0.0  | 59.4     | 110.4      | -51.0  | Anten |
| 21    | 878.283M     | 29.4 | +0.0       | +29.6     | +0.3   |    | +0.0  | 59.3     | 110.4      | -51.1  | Anten |
| 22    | 1829.511M    | 28.6 | +0.0       | +29.6     | +0.4   |    | +0.0  | 58.6     | 110.4      | -51.8  | Anten |
| 23    | 939.490M     | 28.6 | +0.0       | +29.6     | +0.3   |    | +0.0  | 58.5     | 110.4      | -51.9  | Anten |
| 24    | 1854.523M    | 28.5 | +0.0       | +29.6     | +0.4   |    | +0.0  | 58.5     | 110.4      | -51.9  | Anten |


| 25 | 878.283M  | 28.5 | +0.0 | +29.6 | +0.3 | +0.0 | 58.4 | 110.4 | -52.0 | Anten |
|----|-----------|------|------|-------|------|------|------|-------|-------|-------|
| 26 | 1805.502M | 28.3 | +0.0 | +29.7 | +0.4 | +0.0 | 58.4 | 110.4 | -52.0 | Anten |
| 27 | 24.500M   | 28.1 | +0.0 | +29.5 | +0.1 | +0.0 | 57.7 | 110.4 | -52.7 | Anten |
| 28 | 932.267M  | 27.2 | +0.0 | +29.6 | +0.3 | +0.0 | 57.1 | 110.4 | -53.3 | Anten |
| 29 | 24.480M   | 27.5 | +0.0 | +29.5 | +0.1 | +0.0 | 57.1 | 110.4 | -53.3 | Anten |
| 30 | 890.450M  | 27.1 | +0.0 | +29.6 | +0.3 | +0.0 | 57.0 | 110.4 | -53.4 | Anten |
| 31 | 951.750M  | 26.9 | +0.0 | +29.6 | +0.3 | +0.0 | 56.8 | 110.4 | -53.6 | Anten |
| 32 | 878.270M  | 26.7 | +0.0 | +29.6 | +0.3 | +0.0 | 56.6 | 110.4 | -53.8 | Anten |
| 33 | 930.550M  | 26.6 | +0.0 | +29.6 | +0.3 | +0.0 | 56.5 | 110.4 | -53.9 | Anten |
| 34 | 1854.519M | 26.1 | +0.0 | +29.6 | +0.4 | +0.0 | 56.1 | 110.4 | -54.3 | Anten |



## Band Edge

| Band Edge Summary – Single Channel Mode |            |                   |                |         |  |  |  |
|-----------------------------------------|------------|-------------------|----------------|---------|--|--|--|
| Frequency<br>(MHz)                      | Modulation | Measured<br>(dBm) | Limit<br>(dBm) | Results |  |  |  |
| 902                                     | PR-ASK     | -40.8             | < 3.4          | Pass    |  |  |  |
| 928                                     | PR-ASK     | -42.2             | < 3.4          | Pass    |  |  |  |

| Band Edge Summary – Hopping Mode |            |                   |                |         |  |  |  |
|----------------------------------|------------|-------------------|----------------|---------|--|--|--|
| Frequency<br>(MHz)               | Modulation | Measured<br>(dBm) | Limit<br>(dBm) | Results |  |  |  |
| 902                              | PR-ASK     | -40.1             | < 3.4          | Pass    |  |  |  |
| 928                              | PR-ASK     | -42.3             | < 3.4          | Pass    |  |  |  |

## **Band Edge Plots**















## Test Setup / Conditions / Data

| Test Location: | CKC Laboratories, Inc • 110 N. Olinda Place • | Brea, CA • ( | 714) 993- 6112 |
|----------------|-----------------------------------------------|--------------|----------------|
| Customer:      | Automaton Inc dba RADAR                       |              |                |
| Specification: | 15.247(d) Conducted Band Edge                 |              |                |
| Work Order #:  | 110388                                        | Date:        | 2/4/2025       |
| Test Type:     | Conducted Emissions                           | Time:        | 16:47:22       |
| Tested By:     | E. Wong                                       | Sequence#:   | 2              |
| Software:      | EMITest 5.03.20                               | -            | 48VDC          |

| Equipment Tested:  |              |         |     |  |
|--------------------|--------------|---------|-----|--|
| Device             | Manufacturer | Model # | S/N |  |
| Configuration 1    |              |         |     |  |
| Support Equipment: |              |         |     |  |

Device
Manufacturer
Model #
S/N

Configuration 1

<td

Test Conditions / Notes:

The equipment under test (EUT) is set on a test bench.

The EUT is powered via a unshielded cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a NUC and to the NUC a laptop computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT. The EUT is set to continuously hop on the same channel for the low, middle, and high channels listed below. The EUT is set to hop on all channels for the hopping data.

Frequency range of EUT: 902.75MHz to 927.25MHz TX Low 902.75MHz, Middle 914.75MHz, High 927.25MHz LO freg = 915MHz TARI = 6.25us Firmware = 2.127.0

High Power setting. Stream 0.

Test Environment Conditions: Temperature: 25°C Humidity: 44% Pressure: 99kPa

Site A

Test Method: ANSI C63.10 2020



## Test Equipment:

| ID | Asset #  | Description       | Model                        | <b>Calibration Date</b> | Cal Due Date |
|----|----------|-------------------|------------------------------|-------------------------|--------------|
|    | AN03834  | Spectrum Analyzer | E4448A                       | 5/6/2024                | 5/6/2026     |
| T1 | AN03432  | Attenuator        | 90-30-34                     | 11/1/2023               | 11/1/2025    |
| T2 | ANP07657 | Cable             | 32022-29094K-<br>29094K-24TC | 7/3/2024                | 7/3/2026     |

| Measu | rement Data: | Re   | eading lis | ted by ma | argin. |    |       | Test Lead | d: Antenna | ı port |       |
|-------|--------------|------|------------|-----------|--------|----|-------|-----------|------------|--------|-------|
| #     | Freq         | Rdng | T1         | T2        |        |    | Dist  | Corr      | Spec       | Margin | Polar |
|       | MHz          | dBµV | dB         | dB        | dB     | dB | Table | dBµV      | dBµV       | dB     | Ant   |
| 1     | 902.000M     | 40.4 | +29.6      | +0.3      |        |    | +0.0  | 70.3      | 110.4      | -40.1  | Anten |
| 2     | 902.000M     | 39.7 | +29.6      | +0.3      |        |    | +0.0  | 69.6      | 110.4      | -40.8  | Anten |
| 3     | 928.000M     | 38.3 | +29.6      | +0.3      |        |    | +0.0  | 68.2      | 110.4      | -42.2  | Anten |
| 4     | 928.000M     | 38.2 | +29.6      | +0.3      |        |    | +0.0  | 68.1      | 110.4      | -42.3  | Anten |

## Test Setup Photo(s)





# 15.247(d) Radiated Emissions & Band Edge

| Test Setup/Conditions |                    |                |             |  |  |  |  |
|-----------------------|--------------------|----------------|-------------|--|--|--|--|
| Test Location:        | Brea Lab D         | Test Engineer: | S. Yamamoto |  |  |  |  |
| Test Method:          | ANSI C63.10 (2020) | Test Date(s):  | 2/18/2025   |  |  |  |  |
| Configuration:        | 2                  |                |             |  |  |  |  |

| Environmental Conditions |    |                        |    |  |  |  |
|--------------------------|----|------------------------|----|--|--|--|
| Temperature (ºC)         | 17 | Relative Humidity (%): | 44 |  |  |  |

## Test Setup / Conditions / Data

| Test Location: | CKC Laboratories, Inc • 11 | 0 N. Olinda Place • Brea, CA • ( | 714) 993- 6112 |
|----------------|----------------------------|----------------------------------|----------------|
| Customer:      | Automaton Inc dba RADA     | AR                               |                |
| Specification: | 15.247(d) / 15.209 Radiate | d Spurious Emissions             |                |
| Work Order #:  | 110388                     | Date:                            | 2/10/2025      |
| Test Type:     | Radiated Scan              | Time:                            | 10:57:06       |
| Tested By:     | S. Yamamoto                | Sequence#:                       | 6              |
| Software:      | EMITest 5.03.20            | _                                |                |

## **Equipment Tested:**

| Device          | Manufacturer | Model # | S/N |  |
|-----------------|--------------|---------|-----|--|
| Configuration 2 |              |         |     |  |
|                 |              |         |     |  |

| Support Equipment: |              |         |     |  |
|--------------------|--------------|---------|-----|--|
| Device             | Manufacturer | Model # | S/N |  |
| Configuration 2    |              |         |     |  |

Test Conditions / Notes:

The equipment under test (EUT) is set stand alone on the Styrofoam table top.

The EUT is powered via a unshielded cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a NUC and to the NUC a laptop computer. The computer is used to set frequency channel, frequency hopping, and modulation of the EUT.

The EUT is set to continuously hop on the same channel. For this test purpose it is the low, middle, and high channels listed below.

The EUT is tested both oriented horizontally facing downward and vertically facing outward.

Frequency range of data sheet and test 9kHz to 9.28GHz. For RB, RBW=1MHz VBW=3MHz For NRB, RBW=100kHz VBW=300kHz

Frequency range of EUT: 902.75MHz to 927.25MHz

TX Low 902.75MHz, Middle 914.75MHz, High 927.25MHz

TARI = 6.25us

Firmware = 2.127.0

High Power setting. Streams 0, 1, 2, 3 setting.



Test Environment Conditions: Temperature: 17°C Humidity: 44% Pressure: 99kPa

Site D

Test Method: ANSI C63.10 2020





| ID | Asset #  | Description       | Model         | <b>Calibration Date</b> | Cal Due Date |
|----|----------|-------------------|---------------|-------------------------|--------------|
|    | AN03834  | Spectrum Analyzer | E4448A        | 5/6/2024                | 5/6/2026     |
| T1 | ANP04382 | Cable             | LDF-50        | 6/4/2024                | 6/4/2026     |
| T2 | ANP08191 | Cable             | ANDL1-        | 11/11/2024              | 11/11/2026   |
|    |          |                   | PNMNM-50      |                         |              |
| Т3 | AN01646  | Horn Antenna      | 3115          | 3/8/2024                | 3/8/2026     |
| T4 | AN00787  | Preamp            | 83017A        | 6/27/2023               | 6/27/2025    |
| T5 | ANP07655 | Cable             | 32022-29094K- | 7/20/2024               | 7/20/2026    |
|    |          |                   | 29094K-24TC   |                         |              |
| Т6 | ANP07660 | Cable             | 32022-29094K- | 7/20/2024               | 7/20/2026    |
|    |          |                   | 29094K-24TC   |                         |              |
| T7 | ANP08079 | Band Pass Filter  | BRC50722      | 11/2/2023               | 11/2/2025    |
| Т8 | AN03385  | High Pass Filter  | 11SH10-       | 5/15/2023               | 5/15/2025    |
|    |          |                   | 3000/T10000-  |                         |              |
|    |          |                   | 0/0           |                         |              |
|    | AN00010  | Preamp            | 8447D         | 1/2/2024                | 1/2/2026     |
|    | AN00314  | Loop Antenna      | 6502          | 5/3/2024                | 5/3/2026     |
|    | AN03628  | Biconilog Antenna | CBL6111C      | 5/16/2024               | 5/16/2026    |
|    | ANP01911 | Cable-Amplitude   | RG214/U       | 1/4/2024                | 1/4/2026     |
|    |          | +15C to +45C (dB) |               |                         |              |
|    | ANP01911 | Cable-Amplitude - | RG214/U       | 1/4/2024                | 1/4/2026     |
|    |          | 15C to +15C (dB)  |               |                         |              |
|    | ANP06985 | Cable             | Sucoflex 104A | 9/12/2024               | 9/12/2026    |
|    | ANP07657 | Cable             | 32022-29094K- | 7/3/2024                | 7/3/2026     |
|    |          |                   | 29094K-24TC   |                         |              |

| Meast | urement Data: | Re   | eading lis | ted by ma | argin. |       | Τe    | est Distance | e: 3 Meters |        |       |
|-------|---------------|------|------------|-----------|--------|-------|-------|--------------|-------------|--------|-------|
| #     | Freq          | Rdng | T1         | T2        | T3     | T4    | Dist  | Corr         | Spec        | Margin | Polar |
|       |               |      | T5         | T6        | T7     | T8    |       |              |             |        |       |
|       | MHz           | dBµV | dB         | dB        | dB     | dB    | Table | dBµV/m       | dBµV/m      | dB     | Ant   |
| 1     | 2744.250M     | 42.6 | +5.8       | +3.7      | +28.8  | -39.8 | +0.0  | 50.6         | 54.0        | -3.4   | Vert  |
|       | Ave           |      | +0.4       | +0.0      | +0.0   | +9.1  |       |              |             |        |       |
| ^     | 2744.250M     | 47.1 | +5.8       | +3.7      | +28.8  | -39.8 | +0.0  | 55.1         | 54.0        | +1.1   | Vert  |
|       |               |      | +0.4       | +0.0      | +0.0   | +9.1  |       |              |             |        |       |
| ^     | 2744.242M     | 44.1 | +5.8       | +3.7      | +28.8  | -39.8 | +0.0  | 52.1         | 54.0        | -1.9   | Vert  |
|       |               |      | +0.4       | +0.0      | +0.0   | +9.1  |       |              |             |        |       |
| 4     | 2708.253M     | 38.6 | +5.8       | +3.7      | +28.7  | -39.8 | +0.0  | 50.5         | 54.0        | -3.5   | Vert  |
|       | Ave           |      | +0.4       | +0.0      | +0.0   | +13.1 |       |              |             |        |       |
| ^     | 2708.253M     | 48.7 | +5.8       | +3.7      | +28.7  | -39.8 | +0.0  | 60.6         | 54.0        | +6.6   | Vert  |
|       |               |      | +0.4       | +0.0      | +0.0   | +13.1 |       |              |             |        |       |
| ^     | 2708.250M     | 42.8 | +5.8       | +3.7      | +28.7  | -39.8 | +0.0  | 54.7         | 54.0        | +0.7   | Vert  |
|       |               |      | +0.4       | +0.0      | +0.0   | +13.1 |       |              |             |        |       |



| 7 2744.250M     | 42.0  | +5.8              | +3.7 | +28.8  | -39.8         | +0.0 | 50.0 | 54.0  | -4.0       | Horiz  |
|-----------------|-------|-------------------|------|--------|---------------|------|------|-------|------------|--------|
| Ave             |       | +0.4              | +0.0 | +0.0   | +9.1          |      |      |       |            |        |
| ^ 2744.250M     | 46.1  | +5.8              | +3.7 | +28.8  | -39.8         | +0.0 | 54.1 | 54.0  | +0.1       | Horiz  |
| A 2744 272M     | 41.0  | +0.4              | +0.0 | +0.0   | +9.1          |      | 40.9 | 54.0  | 4.0        | Hawle  |
| ~ 2/44.2/2M     | 41.8  | +3.8              | +3.7 | +20.0  | -39.8         | +0.0 | 49.8 | 54.0  | -4.2       | HOLIZ  |
| 10 0701 75014   | 4.4.1 | +0.4              | +0.0 | +0.0   | +9.1          | .0.0 | 40.4 | 510   | 1.0        | II.    |
| 10 2/81./50M    | 44.1  | +5.9              | +3.7 | +28.9  | -39.8         | +0.0 | 49.4 | 54.0  | -4.0       | Horiz  |
| Ave             | 40.9  | +0.4              | +0.0 | +0.0   | +0.2          |      | 55 1 | 54.0  | .1.1       | Harin  |
| ~ 2/81./50M     | 49.8  | +5.9              | +3.7 | +28.9  | -39.8         | +0.0 | 55.1 | 54.0  | +1.1       | HOLIZ  |
| A 2701 740M     | 12.5  | +0.4              | +0.0 | +0.0   | +0.2          |      | 17 0 | 54.0  | 60         | Homin  |
| ~ 2/01./40M     | 42.3  | +3.9              | +3.7 | +28.9  | -39.8         | +0.0 | 47.8 | 54.0  | -0.2       | HOLIZ  |
| 12 2709 24914   | 27.4  | +0.4              | +0.0 | +0.0   | +0.2          |      | 40.2 | 54.0  | 47         | Hawle  |
| 15 2/08.248M    | 57.4  | +3.8              | +3.7 | +28.7  | -39.8         | +0.0 | 49.5 | 54.0  | -4./       | HOLIZ  |
| AVC             | 44.0  | +0.4              | +0.0 | +0.0   | +13.1         |      | 40.2 | 54.0  | 47         | Vort   |
| 14 2/01./JUM    | 44.0  | +3.9<br>$\pm 0.4$ | +3.7 | +20.9  | -39.8<br>+6.2 | +0.0 | 49.5 | 54.0  | -4./       | ven    |
| A 2781 750M     | 50.6  | +0.4              | +0.0 | + 28.0 | 20.8          |      | 55.0 | 54.0  | +1.0       | Vort   |
| 2701.750101     | 50.0  | +3.9              | +0.0 | +20.9  | -39.8<br>+6.2 | +0.0 | 55.9 | 54.0  | 71.9       | ven    |
| ^ 2781 750M     | 15.6  | +5.9              | +3.7 | ±28.9  | _39.8         | +0.0 | 50.9 | 54.0  | -3.1       | Vert   |
| 2701.750101     | чJ.0  | +0.4              | +0.0 | +0.0   | +6.2          | 10.0 | 50.7 | 54.0  | -5.1       | ven    |
| 17 1829 /97M    | 53.8  | ±/1 9             | ±2.9 | +26.7  | -39.6         | +0.0 | /03  | 54.0  | -17        | Vert   |
| 17 1027.477101  | 55.0  | +0.3              | +0.3 | +0.0   | +0.0          | 10.0 | 77.5 | 54.0  |            | vent   |
| 18 8232 745M    | 31.8  | +11.7             | +6.4 | +37.3  | -39.6         | +0.0 | 48.9 | 54.0  | -5.1       | Vert   |
| 10 020217 10101 | 51.0  | +0.8              | +0.0 | +0.0   | +0.5          | 10.0 | 10.5 | 5 110 | 5.1        | vert   |
| 19 8345 246M    | 30.9  | +11.7             | +6.4 | +37.6  | -39.5         | +0.0 | 48 5 | 54.0  | -5.5       | Horiz  |
|                 | 2007  | +0.9              | +0.0 | +0.0   | +0.5          |      |      | 0.110 | 0.10       | 110112 |
| 20 9027.494M    | 28.6  | +12.3             | +6.7 | +38.5  | -39.3         | +0.0 | 48.5 | 54.0  | -5.5       | Vert   |
|                 |       | +0.9              | +0.0 | +0.0   | +0.8          |      |      |       |            |        |
| 21 3658.999M    | 43.7  | +7.3              | +4.4 | +31.6  | -39.8         | +0.0 | 48.4 | 54.0  | -5.6       | Vert   |
|                 |       | +0.5              | +0.0 | +0.0   | +0.7          |      |      |       |            |        |
| 22 7418.059M    | 32.9  | +11.3             | +6.1 | +36.5  | -39.5         | +0.0 | 48.3 | 54.0  | -5.7       | Vert   |
|                 |       | +0.7              | +0.0 | +0.0   | +0.3          |      |      |       |            |        |
| 23 7417.997M    | 32.8  | +11.3             | +6.1 | +36.5  | -39.5         | +0.0 | 48.2 | 54.0  | -5.8       | Vert   |
|                 |       | +0.7              | +0.0 | +0.0   | +0.3          |      |      |       |            |        |
| 24 9147.495M    | 28.1  | +12.4             | +6.8 | +38.4  | -39.3         | +0.0 | 48.1 | 54.0  | -5.9       | Horiz  |
|                 |       | +0.9              | +0.0 | +0.0   | +0.8          |      |      |       |            |        |
| 25 9027.495M    | 28.2  | +12.3             | +6.7 | +38.5  | -39.3         | +0.0 | 48.1 | 54.0  | -5.9       | Horiz  |
|                 |       | +0.9              | +0.0 | +0.0   | +0.8          |      |      |       |            |        |
| 26 9147.494M    | 28.1  | +12.4             | +6.8 | +38.4  | -39.3         | +0.0 | 48.1 | 54.0  | -5.9       | Vert   |
|                 |       | +0.9              | +0.0 | +0.0   | +0.8          |      |      |       |            |        |
| 27 7317.998M    | 32.8  | +11.2             | +6.0 | +36.5  | -39.5         | +0.0 | 48.1 | 54.0  | -5.9       | Horiz  |
|                 |       | +0.8              | +0.0 | +0.0   | +0.3          |      |      |       |            |        |
| 28 8124.745M    | 31.2  | +11.6             | +6.4 | +37.2  | -39.6         | +0.0 | 48.0 | 54.0  | -6.0       | Vert   |
|                 |       | +0.8              | +0.0 | +0.0   | +0.4          |      |      |       |            |        |
| 29 9027.494M    | 28.1  | +12.3             | +6.7 | +38.5  | -39.3         | +0.0 | 48.0 | 54.0  | -6.0       | Horiz  |
|                 |       | +0.9              | +0.0 | +0.0   | +0.8          | 0.7  | 15 - |       |            |        |
| 30 8345.245M    | 30.4  | +11.7             | +6.4 | +37.6  | -39.5         | +0.0 | 48.0 | 54.0  | -6.0       | Vert   |
| 24.04/7/007     |       | +0.9              | +0.0 | +0.0   | +0.5          | 0.0  |      |       |            |        |
| 31 9147.494M    | 27.6  | +12.4             | +6.8 | +38.4  | -39.3         | +0.0 | 47.6 | 54.0  | -6.4       | Horiz  |
| 22. 2700.00015  | 10.5  | +0.9              | +0.0 | +0.0   | +0.8          | .0.0 | 17 - | 54.0  | <i>c</i> 1 | X7 ·   |
| 32 3708.998M    | 42.5  | +7.4              | +4.4 | +32.0  | -39.8         | +0.0 | 47.6 | 54.0  | -6.4       | Vert   |
|                 |       | +0.5              | +0.0 | +0.0   | +0.6          |      |      |       |            |        |



| 33 9027.492M     | 27.7 | +12.3 | +6.7         | +38.5  | -39.3         | +0.0      | 47.6  | 54.0  | -6.4       | Vert         |
|------------------|------|-------|--------------|--------|---------------|-----------|-------|-------|------------|--------------|
|                  |      | +0.9  | +0.0         | +0.0   | +0.8          |           |       |       |            |              |
| 34 7222.000M     | 32.5 | +11.2 | +6.0         | +36.1  | -39.4         | +0.0      | 47.4  | 54.0  | -6.6       | Vert         |
|                  |      | +0.8  | +0.0         | +0.0   | +0.2          |           |       |       |            |              |
| 35 7221.995M     | 32.4 | +11.2 | +6.0         | +36.1  | -39.4         | +0.0      | 47.3  | 54.0  | -6.7       | Horiz        |
|                  |      | +0.8  | +0.0         | +0.0   | +0.2          |           |       |       |            |              |
| 36 9272.495M     | 27.2 | +12.5 | +6.8         | +38.3  | -39.2         | +0.0      | 47.2  | 54.0  | -6.8       | Vert         |
|                  |      | +0.9  | +0.0         | +0.0   | +0.7          |           |       |       |            |              |
| 37 8124.744M     | 30.4 | +11.6 | +6.4         | +37.2  | -39.6         | +0.0      | 47.2  | 54.0  | -6.8       | Horiz        |
|                  |      | +0.8  | +0.0         | +0.0   | +0.4          |           |       |       |            |              |
| 38 8232.745M     | 30.0 | +11.7 | +6.4         | +37.3  | -39.6         | +0.0      | 47.1  | 54.0  | -6.9       | Horiz        |
|                  |      | +0.8  | +0.0         | +0.0   | +0.5          |           |       |       |            |              |
| 39 2250.190M     | 49.5 | +5.4  | +3.3         | +27.6  | -39.7         | +0.0      | 46.9  | 54.0  | -7.1       | Vert         |
|                  |      | +0.4  | +0.4         | +0.0   | +0.0          |           |       |       |            |              |
| 40 9147.496M     | 26.9 | +12.4 | +6.8         | +38.4  | -39.3         | +0.0      | 46.9  | 54.0  | -7.1       | Vert         |
|                  |      | +0.9  | +0.0         | +0.0   | +0.8          |           |       |       |            |              |
| 41 7317.996M     | 31.4 | +11.2 | +6.0         | +36.5  | -39.5         | +0.0      | 46.7  | 54.0  | -7.3       | Vert         |
|                  |      | +0.8  | +0.0         | +0.0   | +0.3          |           |       |       |            |              |
| 42 9272.495M     | 26.7 | +12.5 | +6.8         | +38.3  | -39.2         | +0.0      | 46.7  | 54.0  | -7.3       | Horiz        |
|                  |      | +0.9  | +0.0         | +0.0   | +0.7          | 0.0       | 1.5.5 |       |            |              |
| 43 7417.996M     | 31.2 | +11.3 | +6.1         | +36.5  | -39.5         | +0.0      | 46.6  | 54.0  | -7.4       | Horiz        |
| 44 2610 00014    | 40.4 | +0.7  | +0.0         | +0.0   | +0.3          | .0.0      | 16.6  | 54.0  | 7.4        | <b>X</b> 7 ( |
| 44 3610.999M     | 42.4 | +1.2  | +4.3         | +31.3  | -39.9         | +0.0      | 46.6  | 54.0  | -/.4       | Vert         |
| 45 2221 21014    | 40.1 | +0.5  | +0.0         | +0.0   | +0.8          | . 0. 0    | 45.0  | 54.0  | 0.0        |              |
| 45 2321.310M     | 48.1 | +5.5  | +3.4         | +27.8  | -39.8         | +0.0      | 45.8  | 54.0  | -8.2       | Horiz        |
| 16 2708 008M     | 40.5 | +0.4  | +0.4         | +0.0   | +0.0          | +0.0      | 15 6  | 54.0  | Q /        | Vort         |
| 40 5708.998101   | 40.3 | +/.4  | +4.4         | +52.0  | -39.8         | +0.0      | 43.0  | 54.0  | -0.4       | ven          |
| 47 7317 006M     | 30.3 | +0.3  | +0.0         | +0.0   | +0.0          |           | 15.6  | 54.0  | <b>Q</b> / | Vort         |
| 47 7517.990101   | 50.5 | +11.2 | +0.0         | +30.5  | -39.3<br>±0.3 | $\pm 0.0$ | 45.0  | 54.0  | -0.4       | ven          |
| 48 2344 100M     | 17.3 | +0.0  | +0.0         | + 28 1 | 20.8          |           | 15 1  | 54.0  | 86         | Vort         |
| 40 2344.100101   | 47.5 | +0.4  | +0.4         | +20.1  | +0.0          | $\pm 0.0$ | 43.4  | 54.0  | -0.0       | VCIT         |
| /9_3658.998M     | 40.3 | +7.3  | ±4.4         | +31.6  | _39.8         | +0.0      | 45.0  | 54.0  | -9.0       | Horiz        |
| 49 5050.990101   | 40.5 | +7.3  | ++.+<br>⊥0.0 | +31.0  | -39.8<br>±0.7 | $\pm 0.0$ | 45.0  | 54.0  | -9.0       | TIOTIZ       |
| 50_3708.999M     | 39.8 | +7.4  | +4.4         | +32.0  | _39.8         | +0.0      | 44.9  | 54.0  | -91        | Horiz        |
| 50 5700.9991vi   | 57.0 | +0.5  | +0.0         | +0.0   | +0.6          | 10.0      |       | 54.0  | 7.1        | HOLL         |
| 51 6319 248M     | 33.4 | +9.8  | +5.7         | +34.4  | -39.5         | +0.0      | 44.8  | 54.0  | -9.2       | Vert         |
| 51 0519.210101   | 55.1 | +0.7  | +0.0         | +0.0   | +0.3          | 10.0      | 11.0  | 51.0  | 7.2        | ven          |
| 52 5416.496M     | 35.4 | +8.8  | +5.0         | +34.1  | -39.4         | +0.0      | 44.8  | 54.0  | -9.2       | Vert         |
| 02 0 110119 0111 |      | +0.6  | +0.0         | +0.0   | +0.3          | 1010      |       | 0.110 | , <u> </u> |              |
| 53 5416.496M     | 35.0 | +8.8  | +5.0         | +34.1  | -39.4         | +0.0      | 44.4  | 54.0  | -9.6       | Horiz        |
|                  | 2210 | +0.6  | +0.0         | +0.0   | +0.3          |           |       | 0.110 | 2.0        | 110112       |
| 54 2321.200M     | 46.6 | +5.5  | +3.4         | +27.8  | -39.8         | +0.0      | 44.3  | 54.0  | -9.7       | Vert         |
|                  |      | +0.4  | +0.4         | +0.0   | +0.0          |           |       |       |            |              |
| 55 3658.983M     | 39.5 | +7.3  | +4.4         | +31.6  | -39.8         | +0.0      | 44.2  | 54.0  | -9.8       | Horiz        |
|                  |      | +0.5  | +0.0         | +0.0   | +0.7          |           |       |       |            |              |
| 56 2708.248M     | 32.0 | +5.8  | +3.7         | +28.7  | -39.8         | +0.0      | 43.9  | 54.0  | -10.1      | Horiz        |
| Ave              |      | +0.4  | +0.0         | +0.0   | +13.1         |           |       |       |            |              |
| ^ 2708.248M      | 48.2 | +5.8  | +3.7         | +28.7  | -39.8         | +0.0      | 60.1  | 54.0  | +6.1       | Horiz        |
|                  |      | +0.4  | +0.0         | +0.0   | +13.1         |           |       |       |            |              |
| ^ 2708.248M      | 41.3 | +5.8  | +3.7         | +28.7  | -39.8         | +0.0      | 53.2  | 54.0  | -0.8       | Horiz        |
|                  |      | +0.4  | +0.0         | +0.0   | +13.1         |           |       |       |            |              |



| 59 7417.998N       | A 28.5        | +11.3        | +6.1                      | +36.5  | -39.5         | +0.0      | 43.9           | 54.0  | -10.1 | Horiz        |
|--------------------|---------------|--------------|---------------------------|--------|---------------|-----------|----------------|-------|-------|--------------|
|                    |               | +0.7         | +0.0                      | +0.0   | +0.3          |           |                |       |       |              |
| 60 2344.460N       | A 45.7        | +5.6         | +3.4                      | +28.1  | -39.8         | +0.0      | 43.8           | 54.0  | -10.2 | Horiz        |
|                    |               | +0.4         | +0.4                      | +0.0   | +0.0          |           |                |       |       |              |
| 61 3708.998N       | A 38.7        | +7.4         | +4.4                      | +32.0  | -39.8         | +0.0      | 43.8           | 54.0  | -10.2 | Horiz        |
|                    |               | +0.5         | +0.0                      | +0.0   | +0.6          |           |                |       |       |              |
| 62 3610.998N       | A 39.5        | +7.2         | +4.3                      | +31.3  | -39.9         | +0.0      | 43.7           | 54.0  | -10.3 | Horiz        |
| (2, 2, 5, 0, 1, 2) |               | +0.5         | +0.0                      | +0.0   | +0.8          | 0.0       | 10.6           |       | 10.4  | **           |
| 63 3659.013N       | A 38.9        | +7.3         | +4.4                      | +31.6  | -39.8         | +0.0      | 43.6           | 54.0  | -10.4 | Vert         |
| (4 1105 010)       | <u> </u>      | +0.5         | +0.0                      | +0.0   | +0.7          | .0.0      | 12.5           | 54.0  | 10.7  | <b>X</b> 7 4 |
| 64 1125.010M       | A 52.5        | +3.7         | +2.3                      | +24.9  | -40.8         | +0.0      | 43.5           | 54.0  | -10.5 | vert         |
| (5. 2(10.009)      | 1 20.2        | +0.2         | +0.5                      | +0.4   | +0.0          |           | 12 5           | 54.0  | 10.5  | Hania        |
| 03 3010.9981       | 1 39.3        | +7.2         | +4.5                      | +51.5  | -39.9         | +0.0      | 45.5           | 54.0  | -10.5 | HOLIZ        |
| 66 4513 726        | 1 363         | +0.5         | +0.0                      | + 22.3 | -0.0<br>20.6  | +0.0      | 12.8           | 54.0  | 11.2  | Vort         |
| 00 4515.7201       | n 50.5        | +0.5         | + <del>4</del> .0<br>+0.0 | +32.3  | +0.3          | $\pm 0.0$ | 42.0           | 54.0  | -11.2 | VCIT         |
| 67 2375 040N       | 1 43.9        | +5.7         | +3.4                      | +28.4  | _39.8         | +0.0      | 42.4           | 54.0  | -11.6 | Vert         |
| 07 2375.0101       | 1 15.9        | +0.4         | +0.4                      | +0.0   | +0.0          | 10.0      | 12.1           | 51.0  | 11.0  | vert         |
| 68 4636.248        | 1 35.3        | +8.4         | +4.7                      | +32.6  | -39.5         | +0.0      | 42.3           | 54.0  | -11.7 | Vert         |
|                    |               | +0.6         | +0.0                      | +0.0   | +0.2          |           |                |       |       |              |
| 69 2249.620N       | A 44.8        | +5.4         | +3.3                      | +27.6  | -39.7         | +0.0      | 42.2           | 54.0  | -11.8 | Horiz        |
|                    |               | +0.4         | +0.4                      | +0.0   | +0.0          |           |                |       |       |              |
| 70 4573.748N       | A 35.5        | +8.3         | +4.7                      | +32.4  | -39.6         | +0.0      | 42.1           | 54.0  | -11.9 | Horiz        |
|                    |               | +0.6         | +0.0                      | +0.0   | +0.2          |           |                |       |       |              |
| 71 4636.2491       | A 35.0        | +8.4         | +4.7                      | +32.6  | -39.5         | +0.0      | 42.0           | 54.0  | -12.0 | Horiz        |
|                    |               | +0.6         | +0.0                      | +0.0   | +0.2          |           |                |       |       |              |
| 72 5416.497N       | А 32.6        | +8.8         | +5.0                      | +34.1  | -39.4         | +0.0      | 42.0           | 54.0  | -12.0 | Horiz        |
|                    |               | +0.6         | +0.0                      | +0.0   | +0.3          |           |                |       |       |              |
| 73 4573.747N       | А 35.3        | +8.3         | +4.7                      | +32.4  | -39.6         | +0.0      | 41.9           | 54.0  | -12.1 | Vert         |
|                    |               | +0.6         | +0.0                      | +0.0   | +0.2          |           |                |       |       |              |
| 74 1125.010N       | A 50.1        | +3.7         | +2.3                      | +24.9  | -40.8         | +0.0      | 41.1           | 54.0  | -12.9 | Horiz        |
|                    |               | +0.2         | +0.3                      | +0.4   | +0.0          | 0.0       | 44.0           |       | 12.0  |              |
| 75 1125.010N       | A 50.0        | +3.7         | +2.3                      | +24.9  | -40.8         | +0.0      | 41.0           | 54.0  | -13.0 | Horiz        |
| 76 4512 740        | 1 245         | +0.2         | +0.3                      | +0.4   | +0.0          | .0.0      | 41.0           | 540   | 12.0  | II.          |
| /6 4513./491       | /1 34.5       | +8.3         | +4.0                      | +32.3  | -39.6         | +0.0      | 41.0           | 54.0  | -13.0 | Horiz        |
| 77 5416 4071       | 1 21.4        | +0.0         | +0.0                      | +0.0   | +0.5          | +0.0      | 10.9           | 54.0  | 12.0  | Vort         |
| // 3410.49/1       | 1 51.4        | +0.0<br>+0.6 | +3.0                      | +34.1  | -39.4<br>±0.3 | +0.0      | 40.8           | 54.0  | -15.2 | ven          |
| 78 2375 021        | 1 121         | +5.7         | +3.4                      | +28.4  | _39.8         | +0.0      | 40.6           | 54.0  | -13/  | Horiz        |
| 70 2373.0211       | <b>τ</b> Δ.1  | +0.4         | +0.4                      | +0.0   | +0.0          | 10.0      | - <del>-</del> | 57.0  | 13.4  | TIOUL        |
| 79 4513 747        | A 34.0        | +8.3         | +4.6                      | +32.3  | -39.6         | +0.0      | 40.5           | 54.0  | -135  | Horiz        |
| // 10101/1/1       | <b>1</b> 5110 | +0.6         | +0.0                      | +0.0   | +0.3          | 10.0      | 10.5           | 5 110 | 10.0  | HOLL         |
| 80 3610.997        | A 36.1        | +7.2         | +4.3                      | +31.3  | -39.9         | +0.0      | 40.3           | 54.0  | -13.7 | Vert         |
|                    |               | +0.5         | +0.0                      | +0.0   | +0.8          |           |                |       |       |              |
| 81 4636.247N       | A 33.2        | +8.4         | +4.7                      | +32.6  | -39.5         | +0.0      | 40.2           | 54.0  | -13.8 | Horiz        |
|                    |               | +0.6         | +0.0                      | +0.0   | +0.2          |           |                |       |       |              |
| 82 4513.752N       | A 33.6        | +8.3         | +4.6                      | +32.3  | -39.6         | +0.0      | 40.1           | 54.0  | -13.9 | Vert         |
|                    |               | +0.6         | +0.0                      | +0.0   | +0.3          |           |                |       |       |              |
| 83 4636.247N       | A 33.0        | +8.4         | +4.7                      | +32.6  | -39.5         | +0.0      | 40.0           | 54.0  | -14.0 | Vert         |
|                    |               | +0.6         | +0.0                      | +0.0   | +0.2          |           |                |       |       |              |
| 84 1500.013N       | A 47.0        | +4.3         | +2.6                      | +25.4  | -39.9         | +0.0      | 40.0           | 54.0  | -14.0 | Vert         |
|                    |               | +0.3         | +0.3                      | +0.0   | +0.0          |           |                |       |       |              |



| 85 45 | 573.747M | 33.2 | +8.3 | +4.7 | +32.4 | -39.6 | +0.0 | 39.8 | 54.0 | -14.2 | Horiz |
|-------|----------|------|------|------|-------|-------|------|------|------|-------|-------|
|       |          |      | +0.6 | +0.0 | +0.0  | +0.2  |      |      |      |       |       |
| 86 45 | 573.748M | 33.2 | +8.3 | +4.7 | +32.4 | -39.6 | +0.0 | 39.8 | 54.0 | -14.2 | Vert  |
|       |          |      | +0.6 | +0.0 | +0.0  | +0.2  |      |      |      |       |       |
| 87 15 | 500.013M | 45.6 | +4.3 | +2.6 | +25.4 | -39.9 | +0.0 | 38.6 | 54.0 | -15.4 | Horiz |
|       |          |      | +0.3 | +0.3 | +0.0  | +0.0  |      |      |      |       |       |
| 88 13 | 374.991M | 45.4 | +4.1 | +2.5 | +25.4 | -40.0 | +0.0 | 38.5 | 54.0 | -15.5 | Vert  |
|       |          |      | +0.3 | +0.3 | +0.5  | +0.0  |      |      |      |       |       |
| 89 13 | 375.012M | 45.0 | +4.1 | +2.5 | +25.4 | -40.0 | +0.0 | 38.1 | 54.0 | -15.9 | Horiz |
|       |          |      | +0.3 | +0.3 | +0.5  | +0.0  |      |      |      |       |       |
| 90 16 | 525.013M | 43.8 | +4.5 | +2.7 | +25.5 | -39.7 | +0.0 | 37.4 | 54.0 | -16.6 | Vert  |
|       |          |      | +0.3 | +0.3 | +0.0  | +0.0  |      |      |      |       |       |
| 91 16 | 625.014M | 43.5 | +4.5 | +2.7 | +25.5 | -39.7 | +0.0 | 37.1 | 54.0 | -16.9 | Horiz |
|       |          |      | +0.3 | +0.3 | +0.0  | +0.0  |      |      |      |       |       |
| 92 27 | 730.217M | 26.6 | +5.8 | +3.7 | +28.8 | -39.8 | +0.0 | 36.1 | 54.0 | -17.9 | Horiz |
| Av    | /e       |      | +0.4 | +0.0 | +0.0  | +10.6 |      |      |      |       |       |
| ^ 27  | 730.217M | 55.3 | +5.8 | +3.7 | +28.8 | -39.8 | +0.0 | 64.8 | 54.0 | +10.8 | Horiz |
|       |          |      | +0.4 | +0.0 | +0.0  | +10.6 |      |      |      |       |       |



## Band Edge

|                    | Band Edge Summary – Single Channel Mode |             |                                |                       |         |  |  |  |  |  |  |  |
|--------------------|-----------------------------------------|-------------|--------------------------------|-----------------------|---------|--|--|--|--|--|--|--|
| Frequency<br>(MHz) | Modulation                              | Ant. Type   | Field Strength<br>(dBuV/m @3m) | Limit<br>(dBuV/m @3m) | Results |  |  |  |  |  |  |  |
| 614                |                                         |             | 42.0                           | <46                   | Pass    |  |  |  |  |  |  |  |
| 902                |                                         | Patch Array | 68.2                           | <109.6                | Pass    |  |  |  |  |  |  |  |
| 928                | PR-ASK                                  |             | 65.5                           | < 109.6               | Pass    |  |  |  |  |  |  |  |
| 960                |                                         |             | 47.8                           | <54                   | Pass    |  |  |  |  |  |  |  |

|                    | Band Edge Summary – Hopping Mode |             |                                |                       |         |  |  |  |  |  |  |
|--------------------|----------------------------------|-------------|--------------------------------|-----------------------|---------|--|--|--|--|--|--|
| Frequency<br>(MHz) | Modulation                       | Ant. Type   | Field Strength<br>(dBuV/m @3m) | Limit<br>(dBuV/m @3m) | Results |  |  |  |  |  |  |
| 614                |                                  |             | 41.2                           | <46                   | Pass    |  |  |  |  |  |  |
| 902                |                                  | Patch Array | 68.9                           | <109.6                | Pass    |  |  |  |  |  |  |
| 928                | PR-ASK                           |             | 66.0                           | < 109.6               | Pass    |  |  |  |  |  |  |
| 960                |                                  |             | 46.1                           | <54                   | Pass    |  |  |  |  |  |  |

## **Band Edge Plots**









Page 87 of 107 Report No.: 110388-10













Page 89 of 107 Report No.: 110388-10







## Test Setup / Conditions / Data

| Test Location: | CKC Laboratories, Inc • 110 N. Olinda Place | Brea, CA • (7 | 714) 993- 6112 |
|----------------|---------------------------------------------|---------------|----------------|
| Customer:      | Automaton Inc dba RADAR                     |               |                |
| Specification: | Radiated Band Edge                          |               |                |
| Work Order #:  | 110388                                      | Date:         | 2/17/2025      |
| Test Type:     | Radiated Scan                               | Time:         | 09:44:12       |
| Tested By:     | S. Yamamoto                                 | Sequence#:    | 8              |
| Software:      | EMITest 5.03.20                             | -             |                |

#### **Equipment Tested:**

| Device             | Manufacturer | Model # | S/N |  |
|--------------------|--------------|---------|-----|--|
| Configuration 2    |              |         |     |  |
| Support Equipment: |              |         |     |  |
| Device             | Manufacturer | Model # | S/N |  |
| Configuration 2    |              |         |     |  |

#### Test Conditions / Notes:

The equipment under test (EUT) is set stand alone on the Styrofoam table top.

The EUT is powered via a unshielded cat 6 network cable (nominal voltage 48Vdc) which is connected to a remotely located POE Injector. Connected to the POE Injector via cat 6 cable is a NUC and to the NUC a laptop computer. The computer is used to set frequency channel, frequency, hopping, and modulation of the EUT. The EUT is tested at the LH channels and also when hopping. For the LH channels the EUT is set to continuously hop on the same channel. For this test purpose it is the low, and high channels listed below. The EUT is oriented horizontally facing downward.

Frequency range of data sheet and test 1GHz to 9.28GHz. For RB, RBW=120kHz VBW=360kHz For NRB, RBW=100kHz VBW=300kHz

Frequency range of EUT: 902.75MHz to 927.25MHz

TX Low 902.75MHz, High 927.25MHz

TARI = 6.25us

Firmware = 2.127.0

High Power setting. Streams 0, 1, 2, 3 setting.

Test Environment Conditions: Temperature: 22°C Humidity: 43% Pressure: 99kPa

Site D

Test Method: ANSI C63.10 2020



| ID | Asset #  | Description       | Model         | <b>Calibration Date</b> | Cal Due Date |
|----|----------|-------------------|---------------|-------------------------|--------------|
|    | AN03834  | Spectrum Analyzer | E4448A        | 5/6/2024                | 5/6/2026     |
| T1 | ANP04382 | Cable             | LDF-50        | 6/4/2024                | 6/4/2026     |
| T2 | ANP01911 | Cable-Amplitude   | RG214/U       | 1/4/2024                | 1/4/2026     |
|    |          | +15C to +45C (dB) |               |                         |              |
| Т3 | AN03628  | Biconilog Antenna | CBL6111C      | 5/16/2024               | 5/16/2026    |
| T4 | ANP08079 | Band Pass Filter  | BRC50722      | 11/2/2023               | 11/2/2025    |
| T5 | ANP06985 | Cable             | Sucoflex 104A | 9/12/2024               | 9/12/2026    |
| Т6 | AN00010  | Preamp            | 8447D         | 1/2/2024                | 1/2/2026     |
| T7 | ANP07655 | Cable             | 32022-29094K- | 7/20/2024               | 7/20/2026    |
|    |          |                   | 29094K-24TC   |                         |              |
| Т8 | ANP07657 | Cable             | 32022-29094K- | 7/3/2024                | 7/3/2026     |
|    |          |                   | 29094K-24TC   |                         |              |

| Measu | rement Data: | Re   | eading lis | ted by ma | argin. |      | Τe    | est Distance | e: 3 Meters |        |       |
|-------|--------------|------|------------|-----------|--------|------|-------|--------------|-------------|--------|-------|
| #     | Freq         | Rdng | T1         | T2        | T3     | T4   | Dist  | Corr         | Spec        | Margin | Polar |
|       |              |      | T5         | T6        | T7     | T8   |       |              |             |        |       |
|       | MHz          | dBµV | dB         | dB        | dB     | dB   | Table | dBµV/m       | $dB\mu V/m$ | dB     | Ant   |
| 1     | 614.000M     | 36.9 | +2.6       | +2.4      | +27.1  | +0.3 | +0.0  | 42.0         | 46.0        | -4.0   | Horiz |
|       |              |      | +0.3       | -28.0     | +0.1   | +0.3 |       |              |             |        |       |
| 2     | 614.000M     | 36.1 | +2.6       | +2.4      | +27.1  | +0.3 | +0.0  | 41.2         | 46.0        | -4.8   | Horiz |
|       |              |      | +0.3       | -28.0     | +0.1   | +0.3 |       |              |             |        |       |
| 3     | 960.000M     | 37.0 | +3.3       | +3.2      | +30.2  | +0.7 | +0.0  | 47.8         | 54.0        | -6.2   | Horiz |
|       |              |      | +0.3       | -27.4     | +0.2   | +0.3 |       |              |             |        |       |
| 4     | 960.000M     | 35.3 | +3.3       | +3.2      | +30.2  | +0.7 | +0.0  | 46.1         | 54.0        | -7.9   | Horiz |
|       |              |      | +0.3       | -27.4     | +0.2   | +0.3 |       |              |             |        |       |
| 5     | 902.000M     | 33.7 | +3.3       | +3.1      | +28.8  | +0.0 | +0.0  | 68.9         | 109.6       | -40.7  | Horiz |
|       |              |      | +0.0       | +0.0      | +0.0   | +0.0 |       |              |             |        |       |
| 6     | 902.000M     | 33.0 | +3.3       | +3.1      | +28.8  | +0.0 | +0.0  | 68.2         | 109.6       | -41.4  | Horiz |
|       |              |      | +0.0       | +0.0      | +0.0   | +0.0 |       |              |             |        |       |
| 7     | 928.000M     | 29.6 | +3.3       | +3.2      | +29.9  | +0.0 | +0.0  | 66.0         | 109.6       | -43.6  | Horiz |
|       |              |      | +0.0       | +0.0      | +0.0   | +0.0 |       |              |             |        |       |
| 8     | 928.000M     | 29.1 | +3.3       | +3.2      | +29.9  | +0.0 | +0.0  | 65.5         | 109.6       | -44.1  | Horiz |
|       |              |      | +0.0       | +0.0      | +0.0   | +0.0 |       |              |             |        |       |



# Test Setup Photo(s)



Below 1GHz, Front View



Below 1GHz, Back View





Above 1GHz

Page 94 of 107 Report No.: 110388-10



# 15.207 AC Conducted Emissions

| Test Setup/Conditions |                    |                |             |  |  |  |  |  |  |  |
|-----------------------|--------------------|----------------|-------------|--|--|--|--|--|--|--|
| Test Location:        | Brea Lab D         | Test Engineer: | S. Yamamoto |  |  |  |  |  |  |  |
| Test Method:          | ANSI C63.10 (2020) | Test Date(s):  | 2/7/2025    |  |  |  |  |  |  |  |
| Configuration:        | 2                  |                |             |  |  |  |  |  |  |  |

| Environmental Conditions |    |                        |    |  |  |  |  |  |
|--------------------------|----|------------------------|----|--|--|--|--|--|
| Temperature (ºC)         | 23 | Relative Humidity (%): | 55 |  |  |  |  |  |

## Test Setup / Conditions / Data

| Test Location:  | CKC Laboratories, Inc • 110 N. ( | Olinda Place • Brea, CA • ( | 714) 993- 6112 |  |
|-----------------|----------------------------------|-----------------------------|----------------|--|
| Customer:       | Automaton Inc. dba RADAR         |                             |                |  |
| Specification:  | 15.207 AC Mains - Average        |                             |                |  |
| Work Order #:   | 110388                           | Date:                       | 2/7/2025       |  |
| Test Type:      | Conducted Emissions              | Time:                       | 09:11:30       |  |
| Tested By:      | S. Yamamoto                      | Sequence#:                  | 3              |  |
| Software:       | EMITest 5.03.20                  | -                           | 120/60Hz       |  |
|                 |                                  |                             |                |  |
| Equipment Test  | ed:                              |                             |                |  |
| Device          | Manufacturer                     | Model #                     | S/N            |  |
| Configuration 2 |                                  |                             |                |  |
| Support Equipm  | ient:                            |                             |                |  |
| Device          | Manufacturer                     | Model #                     | S/N            |  |
| Configuration 2 |                                  |                             |                |  |

Test Conditions / Notes:

The equipment under test and support equipment are placed adjacent to each other on the table top. The connections are as follows: Support laptop is connected to NUC via unshielded cat 6 cable. NUC is connected to PoE+ switch via unshielded cat 6 cable. PoE+ switch is connected to EUT via unshielded cat 6 cable.

The EUT is setup with high power, low gain. Streams 0123. Modulation: tari 6.25us. Frequency hopping on all channels (902.75MHz to 927.25MHz).

Frequency range of measurement = 150kHz to 30MHz. RBW=9 kHz VBW=30kHz

Test Environment Conditions: Temperature: 23°C Humidity: 55% Pressure: 99kPa

Site D

Test Method: ANSI C63.10-2020



Automaton Inc. dba RADAR WO#: 110388 Sequence#: 3 Date: 2/7/2025 15.207 AC Mains - Average Test Lead: 120/60Hz Line



| ID | Asset #   | Description       | Model        | <b>Calibration Date</b> | Cal Due Date |
|----|-----------|-------------------|--------------|-------------------------|--------------|
|    | AN03834   | Spectrum Analyzer | E4448A       | 5/6/2024                | 5/6/2026     |
| T1 | AN02343   | High Pass Filter  | HE9615-150K- | 1/10/2025               | 1/10/2027    |
|    |           |                   | 50-720B      |                         |              |
| T2 | ANP07336  | Cable             | 2249-Y-240   | 1/10/2025               | 1/10/2027    |
| T3 | ANP06085  | Attenuator        | SA18N10W-09  | 10/28/2024              | 10/28/2026   |
| T4 | AN00847.1 | 50uH LISN-Line 1  | 3816/2NM     | 5/8/2024                | 5/8/2025     |
|    | AN00847.1 | 50uH LISN-Line    | 3816/2NM     | 5/8/2024                | 5/8/2025     |
|    |           | 2(N)              |              |                         |              |



| Measu | rement Data:   | Re   | eading lis | ted by ma | argin. |      |       | Test Lead: Line |      |        |       |
|-------|----------------|------|------------|-----------|--------|------|-------|-----------------|------|--------|-------|
| #     | Freq           | Rdng | T1         | T2        | T3     | T4   | Dist  | Corr            | Spec | Margin | Polar |
| 1     | MHz            | dBµV | dB         | dB        | dB     | dB   | Table | dBµ V           | dBµV | dB     | Ant   |
| 1     | 13.598M        | 39.9 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 46.3            | 50.0 | -3.7   | Line  |
| 2     | 12.842M        | 39.6 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 46.0            | 50.0 | -4.0   | Line  |
| 3     | 6.896M         | 39.7 | +0.1       | +0.2      | +5.8   | +0.1 | +0.0  | 45.9            | 50.0 | -4.1   | Line  |
| 4     | 5.517M         | 39.7 | +0.1       | +0.2      | +5.8   | +0.0 | +0.0  | 45.8            | 50.0 | -4.2   | Line  |
| 5     | 17.382M        | 39.3 | +0.2       | +0.4      | +5.8   | +0.1 | +0.0  | 45.8            | 50.0 | -4.2   | Line  |
| 6     | 12.094M        | 39.3 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 45.7            | 50.0 | -4.3   | Line  |
| 7     | 7.589M         | 39.5 | +0.1       | +0.2      | +5.8   | +0.1 | +0.0  | 45.7            | 50.0 | -4.3   | Line  |
| 8     | 20.400M        | 39.2 | +0.2       | +0.4      | +5.8   | +0.1 | +0.0  | 45.7            | 50.0 | -4.3   | Line  |
| 9     | 19.643M        | 39.1 | +0.2       | +0.4      | +5.8   | +0.1 | +0.0  | 45.6            | 50.0 | -4.4   | Line  |
| 10    | 29.472M        | 38.8 | +0.3       | +0.5      | +5.8   | +0.1 | +0.0  | 45.5            | 50.0 | -4.5   | Line  |
| 11    | 18.896M        | 39.0 | +0.2       | +0.4      | +5.8   | +0.1 | +0.0  | 45.5            | 50.0 | -4.5   | Line  |
| 12    | 14.357M<br>Ave | 38.8 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 45.2            | 50.0 | -4.8   | Line  |
| ۸     | 14.357M        | 41.2 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 47.6            | 50.0 | -2.4   | Line  |
| ۸     | 14.355M        | 40.1 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 46.5            | 50.0 | -3.5   | Line  |
| 15    | 15.868M<br>Ave | 38.5 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 44.9            | 50.0 | -5.1   | Line  |
| ٨     | 15.868M        | 43.2 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 49.6            | 50.0 | -0.4   | Line  |
| 17    | 15.112M<br>Ave | 38.4 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 44.8            | 50.0 | -5.2   | Line  |
| ^     | 15.112M        | 43.5 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 49.9            | 50.0 | -0.1   | Line  |
| ^     | 15.112M        | 39.6 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 46.0            | 50.0 | -4.0   | Line  |
| 20    | 13.853M<br>Ave | 37.3 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 43.7            | 50.0 | -6.3   | Line  |
| ^     | 13.854M        | 39.6 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 46.0            | 50.0 | -4.0   | Line  |
| ^     | 13.853M        | 38.7 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 45.1            | 50.0 | -4.9   | Line  |
| 23    | 13.097M<br>Ave | 37.0 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 43.4            | 50.0 | -6.6   | Line  |
| ۸     | 13.097M        | 45.2 | +0.2       | +0.3      | +5.8   | +0.1 | +0.0  | 51.6            | 50.0 | +1.6   | Line  |



| 25 | 11.084M         | 36.0 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 42.3 | 50.0 | -7.7  | Line |
|----|-----------------|------|------|------|------|------|------|------|------|-------|------|
| 26 | 12.341M         | 35.7 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 42.1 | 50.0 | -7.9  | Line |
| ^  | 12.341M         | 40.5 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 46.9 | 50.0 | -3.1  | Line |
| 28 | 9.570M          | 34.9 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 41.2 | 50.0 | -8.8  | Line |
| 29 | 20.652M         | 34.2 | +0.2 | +0.4 | +5.8 | +0.1 | +0.0 | 40.7 | 50.0 | -9.3  | Line |
| ^  | 20.652M         | 41.2 | +0.2 | +0.4 | +5.8 | +0.1 | +0.0 | 47.7 | 50.0 | -2.3  | Line |
| 31 | 8.311M          | 33.2 | +0.1 | +0.2 | +5.8 | +0.1 | +0.0 | 39.4 | 50.0 | -10.6 | Line |
| 32 | 318.627k<br>Ave | 32.9 | +0.2 | +0.0 | +5.8 | +0.0 | +0.0 | 38.9 | 49.7 | -10.8 | Line |
| ^  | 318.627k        | 41.3 | +0.2 | +0.0 | +5.8 | +0.0 | +0.0 | 47.3 | 49.7 | -2.4  | Line |
| 34 | 10.328M<br>Ave  | 26.5 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 32.8 | 50.0 | -17.2 | Line |
| ^  | 10.328M         | 41.1 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 47.4 | 50.0 | -2.6  | Line |
| 36 | 4.824M<br>Ave   | 17.8 | +0.1 | +0.2 | +5.8 | +0.0 | +0.0 | 23.9 | 46.0 | -22.1 | Line |
| ^  | 4.824M          | 38.4 | +0.1 | +0.2 | +5.8 | +0.0 | +0.0 | 44.5 | 46.0 | -1.5  | Line |
| 38 | 9.643M<br>Ave   | 17.5 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 23.8 | 50.0 | -26.2 | Line |
| ^  | 9.643M          | 42.4 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 48.7 | 50.0 | -1.3  | Line |
| 40 | 12.418M<br>Ave  | 17.4 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 23.8 | 50.0 | -26.2 | Line |
| ^  | 12.418M         | 49.6 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 56.0 | 50.0 | +6.0  | Line |
| 42 | 14.454M<br>Ave  | 17.3 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 23.7 | 50.0 | -26.3 | Line |
| ^  | 14.454M         | 45.9 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 52.3 | 50.0 | +2.3  | Line |
| 44 | 13.788M<br>Ave  | 17.2 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 23.6 | 50.0 | -26.4 | Line |
| ^  | 13.788M         | 49.5 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 55.9 | 50.0 | +5.9  | Line |
| 46 | 22.049M<br>Ave  | 16.1 | +0.2 | +0.4 | +5.8 | +0.2 | +0.0 | 22.7 | 50.0 | -27.3 | Line |
| ^  | 22.049M         | 41.3 | +0.2 | +0.4 | +5.8 | +0.2 | +0.0 | 47.9 | 50.0 | -2.1  | Line |
| 48 | 13.085M<br>Ave  | 16.2 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 22.6 | 50.0 | -27.4 | Line |
| ^  | 13.085M         | 48.1 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 54.5 | 50.0 | +4.5  | Line |



| 50 | 14.481M | 16.2 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 22.6 | 50.0 | -27.4 | Line |
|----|---------|------|------|------|------|------|------|------|------|-------|------|
|    | Ave     |      |      |      |      |      |      |      |      |       |      |
| ^  | 14.481M | 43.6 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 50.0 | 50.0 | +0.0  | Line |
|    |         |      |      |      |      |      |      |      |      |       |      |
| 52 | 11.040M | 15.7 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 22.0 | 50.0 | -28.0 | Line |
|    | Ave     |      |      |      |      |      |      |      |      |       |      |
| ^  | 11.040M | 45.2 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 51.5 | 50.0 | +1.5  | Line |
|    |         |      |      |      |      |      |      |      |      |       |      |
| 54 | 11.716M | 15.4 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 21.7 | 50.0 | -28.3 | Line |
|    | Ave     |      |      |      |      |      |      |      |      |       |      |
| ^  | 11.716M | 44.8 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 51.1 | 50.0 | +1.1  | Line |
|    |         |      |      |      |      |      |      |      |      |       |      |
| 56 | 13.806M | 15.3 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 21.7 | 50.0 | -28.3 | Line |
|    | Ave     |      |      |      |      |      |      |      |      |       |      |
| ^  | 13.806M | 49.2 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 55.6 | 50.0 | +5.6  | Line |
|    |         |      |      |      |      |      |      |      |      |       |      |
| 58 | 15.184M | 13.5 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 19.9 | 50.0 | -30.1 | Line |
|    | Ave     |      |      |      |      |      |      |      |      |       |      |
| ^  | 15.184M | 46.2 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 52.6 | 50.0 | +2.6  | Line |
|    |         |      |      |      |      |      |      |      |      |       |      |
| 60 | 8.274M  | 13.6 | +0.1 | +0.2 | +5.8 | +0.1 | +0.0 | 19.8 | 50.0 | -30.2 | Line |
|    | Ave     |      |      |      |      |      |      |      |      |       |      |
| ^  | 8.274M  | 44.1 | +0.1 | +0.2 | +5.8 | +0.1 | +0.0 | 50.3 | 50.0 | +0.3  | Line |
|    |         |      |      |      |      |      |      |      |      |       |      |
| 62 | 15.842M | 12.5 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 18.9 | 50.0 | -31.1 | Line |
|    | Ave     |      |      |      |      |      |      |      |      |       |      |
| ^  | 15.842M | 42.0 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 48.4 | 50.0 | -1.6  | Line |
|    |         |      |      |      |      |      |      |      |      |       |      |



| Test Location: | CKC Laboratories, Inc • 110 N. Olinda Place • | Brea, CA • ( | 714) 993- 6112 |
|----------------|-----------------------------------------------|--------------|----------------|
| Customer:      | Automaton Inc. dba RADAR                      |              |                |
| Specification: | 15.207 AC Mains - Average                     |              |                |
| Work Order #:  | 110388                                        | Date:        | 2/7/2025       |
| Test Type:     | Conducted Emissions                           | Time:        | 09:43:55       |
| Tested By:     | S. Yamamoto                                   | Sequence#:   | 4              |
| Software:      | EMITest 5.03.20                               |              | 120/60Hz       |

#### **Equipment Tested:**

| Device             | Manufacturer | Model # | S/N |  |
|--------------------|--------------|---------|-----|--|
| Configuration 2    |              |         |     |  |
| Support Equipment: |              |         |     |  |
| Device             | Manufacturer | Model # | S/N |  |
| Configuration 2    |              |         |     |  |

Test Conditions / Notes:

The equipment under test and support equipment are placed adjacent to each other on the table top. The connections are as follows: Support laptop is connected to NUC via unshielded cat 6 cable. NUC is connected to PoE+ switch via unshielded cat 6 cable. PoE+ switch is connected to EUT via unshielded cat 6 cable.

The EUT is setup with high power, low gain. Streams 0123. Modulation: tari 6.25us. Frequency hopping on all channels (902.75MHz to 927.25MHz).

Frequency range of measurement = 150kHz to 30MHz. RBW=9 kHz VBW=30kHz

Test Environment Conditions: Temperature: 23°C Humidity: 55% Pressure: 99kPa

Site D

Test Method: ANSI C63.10-2020



Automaton Inc. dba RADAR WO#: 110388 Sequence#: 4 Date: 2/7/2025 15.207 AC Mains - Average Test Lead: 120/60Hz Neutral



| ID | Asset #   | Description       | Model        | <b>Calibration Date</b> | Cal Due Date |
|----|-----------|-------------------|--------------|-------------------------|--------------|
|    | AN03834   | Spectrum Analyzer | E4448A       | 5/6/2024                | 5/6/2026     |
| T1 | AN02343   | High Pass Filter  | HE9615-150K- | 1/10/2025               | 1/10/2027    |
|    |           |                   | 50-720B      |                         |              |
| T2 | ANP07336  | Cable             | 2249-Y-240   | 1/10/2025               | 1/10/2027    |
| Т3 | ANP06085  | Attenuator        | SA18N10W-09  | 10/28/2024              | 10/28/2026   |
|    | AN00847.1 | 50uH LISN-Line 1  | 3816/2NM     | 5/8/2024                | 5/8/2025     |
| T4 | AN00847.1 | 50uH LISN-Line    | 3816/2NM     | 5/8/2024                | 5/8/2025     |
|    |           | 2(N)              |              |                         |              |



| Measu | rement Data:   | Re           | eading lis | ted by ma | argin.   |          | Test Lead: Neutral |              |              |              |              |
|-------|----------------|--------------|------------|-----------|----------|----------|--------------------|--------------|--------------|--------------|--------------|
| #     | Freq<br>MHz    | Rdng<br>dBµV | T1<br>dB   | T2<br>dB  | T3<br>dB | T4<br>dB | Dist<br>Table      | Corr<br>dBµV | Spec<br>dBµV | Margin<br>dB | Polar<br>Ant |
| 1     | 12.418M        | 40.5         | +0.2       | +0.3      | +5.8     | +0.1     | +0.0               | 46.9         | 50.0         | -3.1         | Neutr        |
| 2     | 17.373M        | 40.1         | +0.2       | +0.4      | +5.8     | +0.2     | +0.0               | 46.7         | 50.0         | -3.3         | Neutr        |
| 3     | 19.643M        | 40.1         | +0.2       | +0.4      | +5.8     | +0.2     | +0.0               | 46.7         | 50.0         | -3.3         | Neutr        |
| 4     | 20.400M        | 40.0         | +0.2       | +0.4      | +5.8     | +0.2     | +0.0               | 46.6         | 50.0         | -3.4         | Neutr        |
| 5     | 18.887M        | 39.9         | +0.2       | +0.4      | +5.8     | +0.2     | +0.0               | 46.5         | 50.0         | -3.5         | Neutr        |
| 6     | 745.581k       | 36.4         | +0.2       | +0.1      | +5.8     | +0.0     | +0.0               | 42.5         | 46.0         | -3.5         | Neutr        |
| 7     | 21.157M        | 39.8         | +0.2       | +0.4      | +5.8     | +0.2     | +0.0               | 46.4         | 50.0         | -3.6         | Neutr        |
| 8     | 18.130M        | 39.8         | +0.2       | +0.4      | +5.8     | +0.2     | +0.0               | 46.4         | 50.0         | -3.6         | Neutr        |
| 9     | 13.851M        | 39.6         | +0.2       | +0.3      | +5.8     | +0.1     | +0.0               | 46.0         | 50.0         | -4.0         | Neutr        |
| 10    | 15.111M<br>Ave | 39.4         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 45.9         | 50.0         | -4.1         | Neutr        |
| ٨     | 15.111M        | 45.8         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 52.3         | 50.0         | +2.3         | Neutr        |
| 12    | 14.354M<br>Ave | 39.3         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 45.8         | 50.0         | -4.2         | Neutr        |
| 13    | 15.866M<br>Ave | 39.1         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 45.6         | 50.0         | -4.4         | Neutr        |
| ^     | 15.866M        | 41.9         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 48.4         | 50.0         | -1.6         | Neutr        |
| 15    | 14.354M<br>Ave | 39.1         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 45.6         | 50.0         | -4.4         | Neutr        |
| ٨     | 14.354M        | 40.8         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 47.3         | 50.0         | -2.7         | Neutr        |
| ^     | 14.354M        | 40.3         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 46.8         | 50.0         | -3.2         | Neutr        |
| 18    | 13.598M<br>Ave | 39.1         | +0.2       | +0.3      | +5.8     | +0.1     | +0.0               | 45.5         | 50.0         | -4.5         | Neutr        |
| ٨     | 13.598M        | 41.3         | +0.2       | +0.3      | +5.8     | +0.1     | +0.0               | 47.7         | 50.0         | -2.3         | Neutr        |
| 20    | 16.621M<br>Ave | 38.9         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 45.4         | 50.0         | -4.6         | Neutr        |
| 21    | 16.621M<br>Ave | 38.7         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 45.2         | 50.0         | -4.8         | Neutr        |
| ^     | 16.621M        | 41.3         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 47.8         | 50.0         | -2.2         | Neutr        |
| ^     | 16.621M        | 41.1         | +0.2       | +0.3      | +5.8     | +0.2     | +0.0               | 47.6         | 50.0         | -2.4         | Neutr        |
| 24    | 11.081M        | 38.3         | +0.1       | +0.3      | +5.8     | +0.1     | +0.0               | 44.6         | 50.0         | -5.4         | Neutr        |



| 25 | 11.585M         | 38.1 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 44.4 | 50.0 | -5.6  | Neutr |
|----|-----------------|------|------|------|------|------|------|------|------|-------|-------|
| 26 | 12.842M<br>Ave  | 37.9 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 44.3 | 50.0 | -5.7  | Neutr |
| ^  | 12.842M         | 40.6 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 47.0 | 50.0 | -3.0  | Neutr |
| 28 | 13.095M<br>Ave  | 37.0 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 43.4 | 50.0 | -6.6  | Neutr |
| ^  | 13.095M         | 45.6 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 52.0 | 50.0 | +2.0  | Neutr |
| 30 | 12.341M<br>Ave  | 35.6 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 42.0 | 50.0 | -8.0  | Neutr |
| ^  | 12.341M         | 43.2 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 49.6 | 50.0 | -0.4  | Neutr |
| 32 | 9.569M          | 34.7 | +0.1 | +0.3 | +5.8 | +0.2 | +0.0 | 41.1 | 50.0 | -8.9  | Neutr |
| 33 | 23.420M<br>Ave  | 34.2 | +0.2 | +0.4 | +5.8 | +0.2 | +0.0 | 40.8 | 50.0 | -9.2  | Neutr |
| ^  | 23.422M         | 41.7 | +0.2 | +0.4 | +5.8 | +0.2 | +0.0 | 48.3 | 50.0 | -1.7  | Neutr |
| ^  | 23.420M         | 40.9 | +0.2 | +0.4 | +5.8 | +0.2 | +0.0 | 47.5 | 50.0 | -2.5  | Neutr |
| 36 | 318.848k<br>Ave | 33.0 | +0.2 | +0.0 | +5.8 | +0.0 | +0.0 | 39.0 | 49.7 | -10.7 | Neutr |
| ^  | 318.848k        | 40.9 | +0.2 | +0.0 | +5.8 | +0.0 | +0.0 | 46.9 | 49.7 | -2.8  | Neutr |
| 38 | 4.819M<br>Ave   | 19.5 | +0.1 | +0.2 | +5.8 | +0.1 | +0.0 | 25.7 | 46.0 | -20.3 | Neutr |
| ^  | 4.819M          | 39.8 | +0.1 | +0.2 | +5.8 | +0.1 | +0.0 | 46.0 | 46.0 | +0.0  | Neutr |
| 40 | 13.779M<br>Ave  | 18.6 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 25.0 | 50.0 | -25.0 | Neutr |
| ^  | 13.779M         | 50.5 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 56.9 | 50.0 | +6.9  | Neutr |
| 42 | 12.391M<br>Ave  | 18.0 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 24.4 | 50.0 | -25.6 | Neutr |
| ^  | 12.391M         | 49.1 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 55.5 | 50.0 | +5.5  | Neutr |
| 44 | 9.643M<br>Ave   | 17.5 | +0.1 | +0.3 | +5.8 | +0.2 | +0.0 | 23.9 | 50.0 | -26.1 | Neutr |
| ^  | 9.643M          | 44.6 | +0.1 | +0.3 | +5.8 | +0.2 | +0.0 | 51.0 | 50.0 | +1.0  | Neutr |
| 46 | 11.679M<br>Ave  | 17.4 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 23.7 | 50.0 | -26.3 | Neutr |
| ^  | 11.679M         | 44.0 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 50.3 | 50.0 | +0.3  | Neutr |
| 48 | 13.067M<br>Ave  | 16.7 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 23.1 | 50.0 | -26.9 | Neutr |
| ^  | 13.067M         | 47.7 | +0.2 | +0.3 | +5.8 | +0.1 | +0.0 | 54.1 | 50.0 | +4.1  | Neutr |



| 50 | 14.436M        | 16.4 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 22.9 | 50.0 | -27.1 | Neutr |
|----|----------------|------|------|------|------|------|------|------|------|-------|-------|
| ^  | 14.436M        | 46.6 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 53.1 | 50.0 | +3.1  | Neutr |
| 52 | 22.022M<br>Ave | 16.2 | +0.2 | +0.4 | +5.8 | +0.2 | +0.0 | 22.8 | 50.0 | -27.2 | Neutr |
| ^  | 22.022M        | 42.3 | +0.2 | +0.4 | +5.8 | +0.2 | +0.0 | 48.9 | 50.0 | -1.1  | Neutr |
| 54 | 10.310M<br>Ave | 16.1 | +0.1 | +0.3 | +5.8 | +0.2 | +0.0 | 22.5 | 50.0 | -27.5 | Neutr |
| ^  | 10.310M        | 41.2 | +0.1 | +0.3 | +5.8 | +0.2 | +0.0 | 47.6 | 50.0 | -2.4  | Neutr |
| 56 | 15.815M<br>Ave | 15.5 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 22.0 | 50.0 | -28.0 | Neutr |
| ^  | 15.815M        | 42.3 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 48.8 | 50.0 | -1.2  | Neutr |
| 58 | 14.472M<br>Ave | 15.3 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 21.8 | 50.0 | -28.2 | Neutr |
| ٨  | 14.472M        | 42.2 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 48.7 | 50.0 | -1.3  | Neutr |
| 60 | 11.022M<br>Ave | 15.2 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 21.5 | 50.0 | -28.5 | Neutr |
| ^  | 11.022M        | 47.4 | +0.1 | +0.3 | +5.8 | +0.1 | +0.0 | 53.7 | 50.0 | +3.7  | Neutr |
| 62 | 8.265M<br>Ave  | 15.2 | +0.1 | +0.2 | +5.8 | +0.1 | +0.0 | 21.4 | 50.0 | -28.6 | Neutr |
| ^  | 8.265M         | 43.3 | +0.1 | +0.2 | +5.8 | +0.1 | +0.0 | 49.5 | 50.0 | -0.5  | Neutr |
| 64 | 15.157M<br>Ave | 14.5 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 21.0 | 50.0 | -29.0 | Neutr |
| ^  | 15.157M        | 46.9 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 53.4 | 50.0 | +3.4  | Neutr |
| 66 | 16.535M<br>Ave | 14.3 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 20.8 | 50.0 | -29.2 | Neutr |
| ^  | 16.535M        | 43.5 | +0.2 | +0.3 | +5.8 | +0.2 | +0.0 | 50.0 | 50.0 | +0.0  | Neutr |
| 68 | 6.887M<br>Ave  | 13.5 | +0.1 | +0.2 | +5.8 | +0.1 | +0.0 | 19.7 | 50.0 | -30.3 | Neutr |
| ^  | 6.887M         | 41.8 | +0.1 | +0.2 | +5.8 | +0.1 | +0.0 | 48.0 | 50.0 | -2.0  | Neutr |



# Test Setup Photo(s)



Front View



Back View



# **Supplemental Information**

## **Measurement Uncertainty**

| Uncertainty Value        | Parameter                 |
|--------------------------|---------------------------|
| 5.77 dB                  | Radiated Emissions        |
| 0.673 dB                 | RF Conducted Measurements |
| 5.77 x 10 <sup>-10</sup> | Frequency Deviation       |
| 0.00005 s                | Time Deviation            |
| 3.18 dB                  | Mains Conducted Emissions |

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

## **Emissions Test Details**

#### **TESTING PARAMETERS**

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

#### **CORRECTION FACTORS**

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in dB $\mu$ V/m, the spectrum analyzer reading in dB $\mu$ V was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

| SAMPLE CALCULATIONS |                     |          |  |  |  |
|---------------------|---------------------|----------|--|--|--|
|                     | Meter reading       | (dBµV)   |  |  |  |
| +                   | Antenna Factor      | (dB/m)   |  |  |  |
| +                   | Cable Loss          | (dB)     |  |  |  |
| -                   | Distance Correction | (dB)     |  |  |  |
| -                   | Preamplifier Gain   | (dB)     |  |  |  |
| =                   | Corrected Reading   | (dBµV/m) |  |  |  |



## **TEST INSTRUMENTATION AND ANALYZER SETTINGS**

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

| MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE |                     |                  |                   |  |  |  |
|------------------------------------------------------------|---------------------|------------------|-------------------|--|--|--|
| TEST                                                       | BEGINNING FREQUENCY | ENDING FREQUENCY | BANDWIDTH SETTING |  |  |  |
| CONDUCTED EMISSIONS                                        | 150 kHz             | 30 MHz           | 9 kHz             |  |  |  |
| RADIATED EMISSIONS                                         | 9 kHz               | 150 kHz          | 200 Hz            |  |  |  |
| RADIATED EMISSIONS                                         | 150 kHz             | 30 MHz           | 9 kHz             |  |  |  |
| RADIATED EMISSIONS                                         | 30 MHz              | 1000 MHz         | 120 kHz           |  |  |  |
| RADIATED EMISSIONS                                         | 1000 MHz            | >1 GHz           | 1 MHz             |  |  |  |

## SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

#### Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

## **Quasi-Peak**

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

## Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

\*End of Report\*