

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE191201803

FCC REPORT

Applicant: SWAGTEK

Address of Applicant: 10205 NW 19th St. Suite 101, Miami, FL, 33172

Equipment Under Test (EUT)

Product Name: 5.5 inch 3G Smart Phone

Model No.: X55 PLUS, ATLAS, W55 PLUS

Trade mark: LOGIC, iSWAG, UNONU

FCC ID: 055554319

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 04 Dec., 2019

Date of Test: 05 Dec., 2019 to 09 Jan., 2020

Date of report issued: 10 Jan., 2020

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	10 Jan., 2020	Original

Tested by:	YT Yang	Date:	10 Jan., 2020
	Test Engineer		
Reviewed by:	Winner thang	Date:	10 Jan., 2020
	Project Engineer		

3 Contents

			Page
1	COVER PAG	GE	1
2	VERSION		2
3		3	
4	TEST SUMM	MARY	4
5	GENERAL II	INFORMATION	5
	5.1 CLIENT I	INFORMATION	5
		AL DESCRIPTION OF E.U.T.	
		NVIRONMENT AND TEST MODE	
	5.4 DESCRIF	IPTION OF SUPPORT UNITS	6
	5.5 MEASUR	REMENT UNCERTAINTY	6
		ONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
		ATORY FACILITY	
		ATORY LOCATION	
	5.9 Test Ins	NSTRUMENTS LIST	7
6	TEST RESU	JLTS AND MEASUREMENT DATA	8
	6.1 ANTENN	NA REQUIREMENT:	8
		ICTED EMISSION	
		ICTED OUTPUT POWER	
		PY BANDWIDTH	
		R SPECTRAL DENSITY	
		EDGE	
		ducted Emission Method	
		liated Emission Method	
		ducted Emission Method	
		liated Emission Method	
7		JP PHOTO	
1	IESI SEIUI	P PNU I U	32
Ω	FUT CONST	TDUCTIONAL DETAILS	22

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

5 General Information

5.1 Client Information

Applicant:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172
Manufacturer/ Factory:	SWAGTEK
Address:	10205 NW 19th St. Suite 101, Miami, FL, 33172

5.2 General Description of E.U.T.

3.2 General Description	. 6. 2.6
Product Name:	5.5 inch 3G Smart Phone
Model No.:	X55 PLUS, ATLAS, W55 PLUS
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.2 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2000mAh
AC adapter:	Model: SSB-LW-001
	Input: AC100-240V, 50/60Hz, 0.1A
	Output: DC 5.0V, 1A
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remark:	The Model No.: X55 PLUS, ATLAS, W55 PLUS were identical inside, the electrical circuit design, layout, components used and internal wiring, The only difference between them is as follows:
	The trademark LOGIC correspond model X55 PLUS;
	The trademark iSWAG correspond model ATLAS;
	The trademark UNONU correspond model W55 PLUS.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation

Report No: CCISE191201803

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 6 of 33

5.9 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2019	11-20-2020
EMI Test Software	AUDIX	E3	\	Version: 6.110919b	
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2019	11-20-2020
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-18-2019	03-17-2020
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-18-2019	03-17-2020
LISN	CHASE	MN2050D	1447	03-18-2019	03-17-2020
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2019	07-20-2020
Cable	HP	10503A	N/A	03-18-2019	03-17-2020
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b

Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

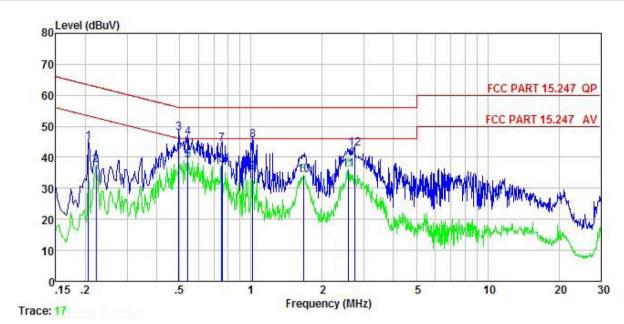
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

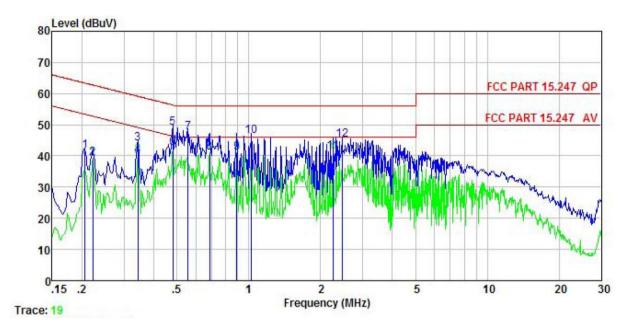
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.2 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	Fraguency ronge (MHz)	Limit (dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5			
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarithm			
Test procedure	 The E.U.T and simulators line impedance stabilization 500hm/50uH coupling impounded at 1. ISN that provides a 500lm. 	on network (L.I.S.N.), wh pedance for the measuriing also connected to the in	ich provides a ng equipment. main power through a	
	 LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 			
Test setup:	Reference Plane			
	AUX Equipment E.U.T	80cm LISN Filter Filter Receiver	– AC power	
	Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Net Test table height=0.8m	twork		
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details	<u> </u>		
Test results:	Passed			

Measurement Data:

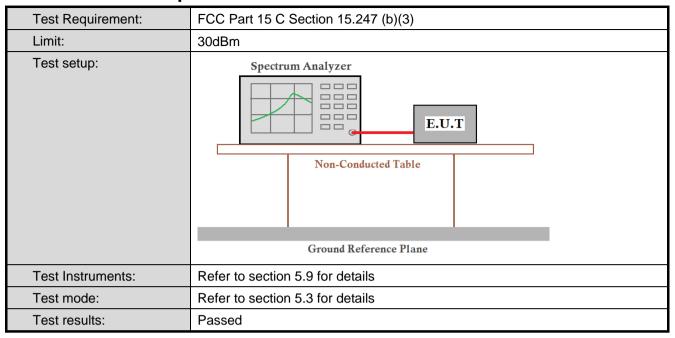
Product name:	5.5 inch 3G Smart Phone	Product model:	X55 PLUS
Test by:	YT	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∇	<u>ab</u>	<u>ā</u> B	dB	dBu∇	dBu₹	<u>ab</u>	
1 2	0.206 0.222	34.66 27.37	-0.41 -0.40	-0.17 -0.19	10.76 10.76	44.84 37.54		-18.52 -15.20	QP Average
2 3 4 5 6 7	0.497 0.541	37.66 36.21	-0.39 -0.39	-0.32	10.76 10.76	47.71 46.22	56.05 56.00	-8.34	QP
5	0.541	28.94	-0.39	-0.36	10.76	38.95	46.00	-7.05	Average
7	0.751 0.755	27.23 34.07	-0.38 -0.38	-0.22	10.79 10.79	37.40 44.26		-11.74	
8	1.016 1.016	34.57 24.10	-0.38 -0.38	0.44	10.87 10.87	45.50 35.03	46.00		Average
10 11	1.662 2.581	23.79 25.88	-0.40 -0.43		10.94 10.93	34.22 36.13			Average Average
12	2.736	32.55	-0.43	-0.23	10.93	42.82		-13.18	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

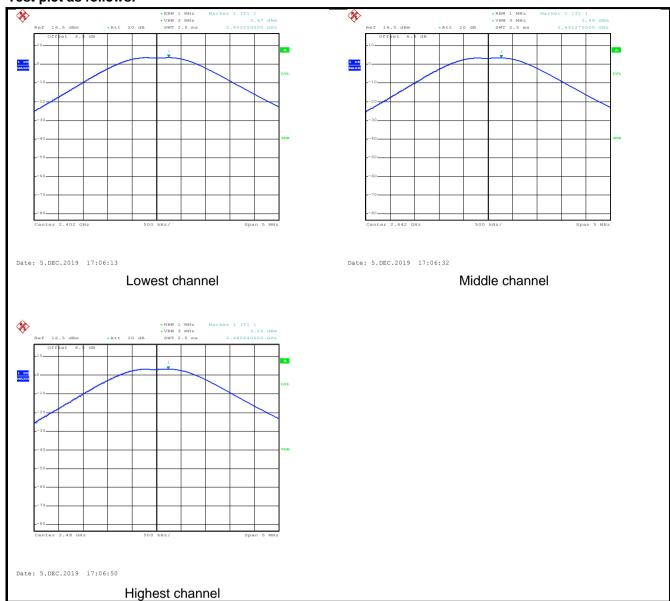
Product name:	5.5 inch 3G Smart Phone	Product model:	X55 PLUS
Test by:	YT	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u></u>	MHz	dBu∇	₫₿	₫B	dB	dBu₹	dBu√	<u>ab</u>	
1	0.206	31.46	-0.69	0.00	10.76	41.53	63.36	-21.83	QP
2	0.222	29.11	-0.67	0.00	10.76	39.20	52.74	-13.54	Average
3	0.343	33.83	-0.63	-0.02	10.73	43.91	59.13	-15.22	QP
4	0.343	29.95	-0.63	-0.02	10.73	40.03	49.13	-9.10	Average
1 2 3 4 5 6 7 8 9	0.481	38.80	-0.65	0.02	10.75	48.92	56.32		
6	0.481	32.51	-0.65	0.02	10.75	42.63	46.32	-3.69	Average
7	0.555	37.42	-0.65	0.03	10.76	47.56	56.00	-8.44	QP
8	0.686	31.00	-0.64	0.04	10.77	41.17	46.00	-4.83	Average
9	0.890	30.61	-0.63	0.07	10.84	40.89	46.00	-5.11	Average
10	1.027	35.95	-0.63	0.08	10.87	46.27	56.00	-9.73	QP
11	2.261	30.72	-0.67	0.21	10.95	41.21	46.00	-4.79	Average
12	2.461	34.54	-0.67	0.24	10.94	45.05	56.00	-10.95	QP

Notes:

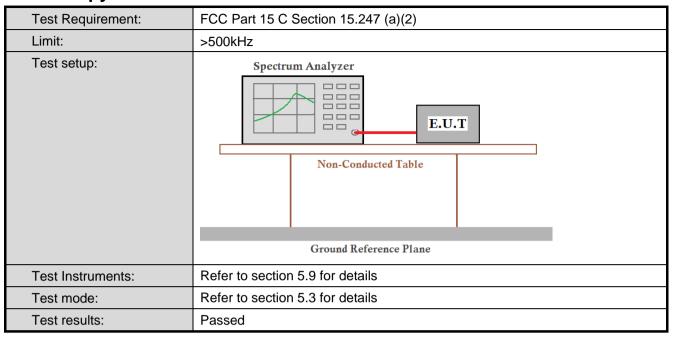
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power



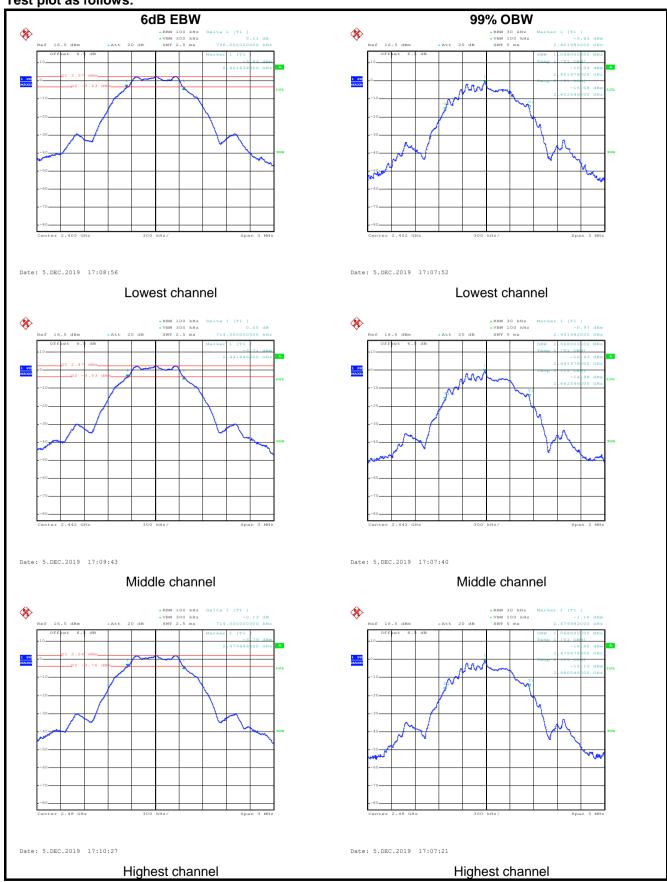
Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result	
Lowest	3.67			
Middle	3.49	30.00	Pass	
Highest	3.26			



Test plot as follows:

6.4 Occupy Bandwidth

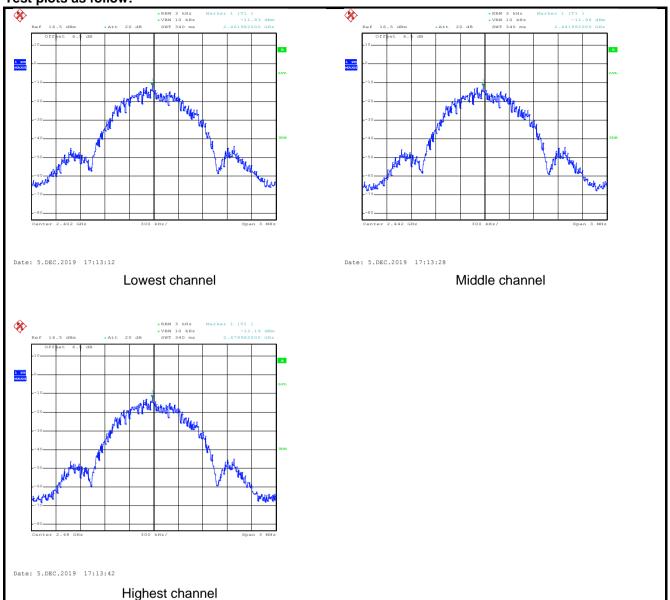


Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	0.726				
Middle	0.714	>500	Pass		
Highest	0.714				
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	1.068				
Middle	Middle 1.068		N/A		
Highest	1.068				

Test plot as follows:

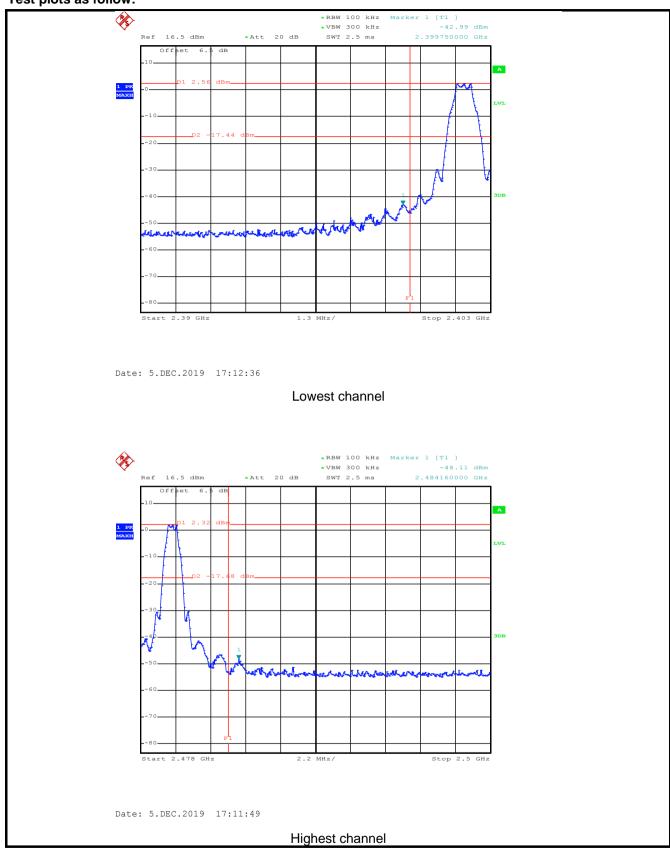
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)			
Limit:	8 dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

modouromont Batar			
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-11.83		
Middle	-11.96	8.00	Pass
Highest	-12.19		

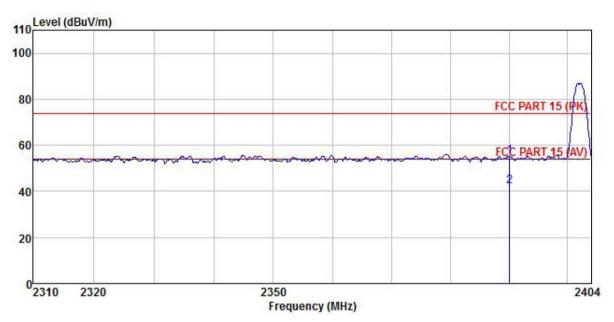
Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)			
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.9 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

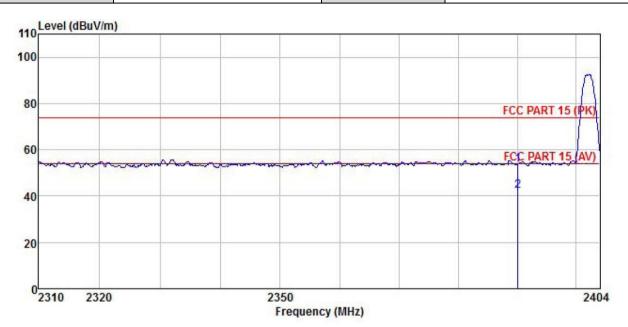
Test plots as follow:



6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20)5 and 15.209					
Test Frequency Range:	2.3GHz to 2.5	2.3GHz to 2.5GHz						
Test Distance:	3m	3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		RMS	1MHz	3MHz	Average Value			
Limit:	Frequer	ncy Lir	nit (dBuV/m @3		Remark			
	Above 10	GHz —	54.00 74.00		verage Value Peak Value			
Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet. 							
Test setup:	AE Washington	Ground Test Receiver	Horn Anienna Reference Plane Pre- Amplifier Contr	Antenna Tower				
Test Instruments:	Refer to section	on 5.9 for detail	S					
Test mode:	Refer to section	Refer to section 5.3 for details						
Test results:	Passed							

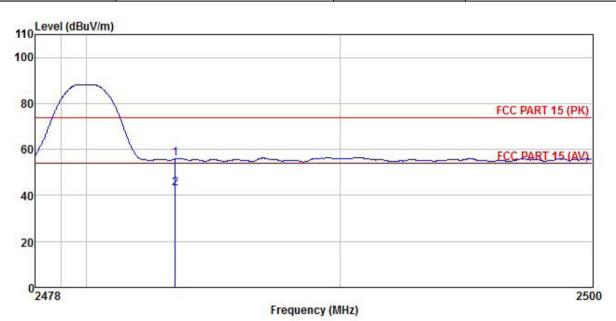
Product Name:	5.5 inch 3G Smart Phone	Product Model:	X55 PLUS
Test By:	YT	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



Freq				Cable Preamp Loss Factor Level			Over Limit		
	MHz	dBu∜	<u>d</u> B/m		<u>ab</u>	$\overline{dB}\overline{uV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2390.000 2390.000							-18.73 -11.72	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

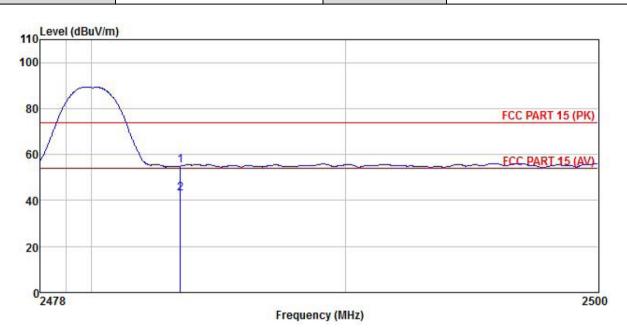
Product Name:	5.5 inch 3G Smart Phone	Product Model:	X55 PLUS
Test By:	YT	Test mode:	BLE Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%



	Freq		Antenna Factor						
	MHz	dBu∀	dB/m	₫B	dB	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000			17.50.00		53.74 42.37			HER WELLEN TO THE STATE OF THE

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.5 inch 3G Smart Phone	Product Model:	X55 PLUS
Test By:	YT	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor					
	MHz	dBu∜	dB/m	 <u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500							

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.5 inch 3G Smart Phone	Product Model:	X55 PLUS
Test By:	YT	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor						Remark
	MHz	dBu∇		<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

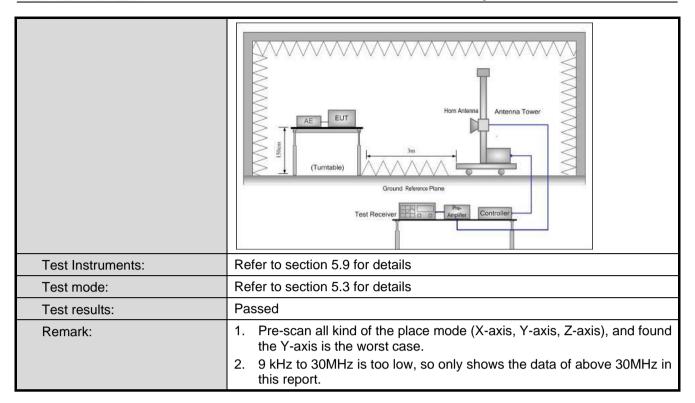
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

6.7 Spurious Emission

6.7.1 Conducted Emission Method

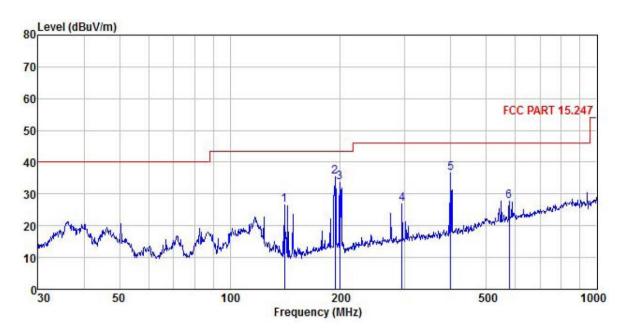
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:



6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.2	05 and 15.209			
Test Frequency Range:	9kHz to 25GHz					
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VBW		Remark
	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value
	Above 1GHz	Peak	1MHz	3M	Hz	Peak Value
	Above IGIIZ	RMŞ	1MHz	3M	Hz	Average Value
Limit:	Frequency	/ L	imit (dBuV/m @	23m)		Remark
	30MHz-88M		40.0			Quasi-peak Value
	88MHz-216M		43.5			Quasi-peak Value
	216MHz-960N		46.0			Quasi-peak Value
	960MHz-1G	Hz	54.0		C	Quasi-peak Value
	Above 1GH	lz 🖳	54.0			Average Value
Test Procedure:			74.0	•		Peak Value table 0.8m(below
	highest rad The EUT antenna, w tower. The antenn the ground Both horize make the n For each s case and t meters and to find the n The test-re Specified E If the emiss the limit sp of the EUT have 10 dE	iation. was set 3 r hich was mo na height is to determine that and veneasurement suspected en the anter the rota tab maximum reaseceiver system sion level of ecified, then the maximum be reased to the mould	neters away united on the to varied from one the maximurtical polarization. The enna was tuned ading. The was turned ading. The was set the EUT in petesting could be ported. Other lid be re-tested	from the top of a top	ne intervariant of the areas arranged areas areas degree areas ped	the position of the efference-receiving ble-height antenna four meters above the field strength. antenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees tect Function and is 10 dB lower than and the peak values ssions that did not using peak, quasi-reported in a data
Test setup:	EUT	3m < 4m			Antenna Search Antenn Test ceiver —	1

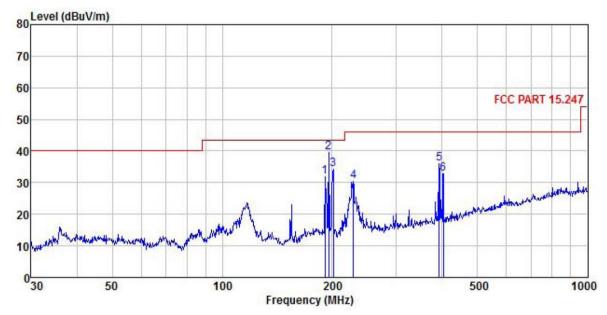


Measurement Data (worst case):

Below 1GHz:

Product Name:	5.5 inch 3G Smart Phone	Product Model:	X55 PLUS
Test By:	YT	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Antenna Factor				Limit Line		Remark
-	MHz	dBu∜			<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	140.835	43.95	9.46	2.41	29.27	26.55	43.50	-16.95	QP
2	193.095	51.03	10.38	2.82	28.88	35.35	43.50	-8.15	QP
3	199.286	49.02	10.58	2.86	28.83	33.63	43.50	-9.87	QP
4	294.114	38.94	13.52	2.92	28.46	26.92	46.00	-19.08	QP
5	399.030	47.02	15.28	3.08	28.77	36.61	46.00	-9.39	QP
4 5 6	576.644	33.97	19.00	3.92	29.01	27.88	46.00	-18.12	QP


Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	5.5 inch 3G Smart Phone	Product Model:	X55 PLUS
Test By:	YT	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq	ReadA Level			Preamp Factor		Limit Line		Remark
-	MHz	dBu₹		dB	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>db</u>	
1	191.074	47.59	10.33	2.81	28.89	31.84	43.50	-11.66	QP
2	195.822	55.02	10.48	2.84	28.86	39.48	43.50	-4.02	QP
3	201.393	49.50	10.64	2.87	28.82	34.19	43.50	-9.31	QP
1 2 3 4 5	228.490	44.40	11.83	2.84	28.66	30.41	46.00	-15.59	QP
5	392.095	46.46	15.19	3.08	28.75	35.98	46.00	-10.02	QP
6	403.250	43.08	15.39	3.09		32.77			

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

(MHz) (dBuV) (dB/m) (dB) (dB) (dBuV/m) (dBuV/m) (dB) 4804.00 49.62 30.85 6.80 41.81 45.46 74.00 -28.54 Vertical 4804.00 48.52 30.85 6.80 41.81 44.36 74.00 -29.64 Horizontal Detector: Average Value Frequency Read Antenna Cable Preamp Level Limit Line Over	Test channel: Lowest channel									
Frequency (MHz)	Detector: Peak Value									
A804.00		Level	Factor	Loss	Factor			Limit	Polarization	
Prequency (MHz) Read Level (dBuV) (dB) CdBle (dBuV/m) CdBuV (dB) CdBuV/m) CdBuV (dB) CdBuV/m)	4804.00	49.62	30.85	6.80	41.81	45.46	74.00	-28.54	Vertical	
Frequency (MHz) Read Level Factor (dBuV) (dB/m) (dB) Preamp Factor (dBuV/m) Level (dBuV/m) Cover	4804.00	48.52	30.85	6.80	41.81	44.36	74.00	-29.64	Horizontal	
Frequency (MHz) Level Factor (dB/m) (dB) Factor (dB) Limit Line (dBuV/m) Limit (dB) Polarization	Detector: Average Value									
4804.00 40.52 30.85 6.80 41.81 36.36 54.00 -17.64 Vertical		Level	Factor	Loss	Factor			Limit	Polarization	
	4804.00	40.52	30.85	6.80	41.81	36.36	54.00	-17.64	Vertical	
4804.00 41.58 30.85 6.80 41.81 37.42 54.00 -16.58 Horizontal	4804.00	41.58	30.85	6.80	41.81	37.42	54.00	-16.58	Horizontal	
Test channel: Middle channel										

Test channel: Middle channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	50.52	31.20	6.86	41.84	46.74	74.00	-27.26	Vertical	
4884.00	49.97	31.20	6.86	41.84	46.19	74.00	-27.81	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4884.00	41.52	31.20	6.86	41.84	37.74	54.00	-16.26	Vertical	
4884.00	40.77	31.20	6.86	41.84	36.99	54.00	-17.01	Horizontal	

Test channel: Highest channel									
Detector: Peak Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	52.62	31.63	6.91	41.87	49.29	74.00	-24.71	Vertical	
4960.00	49.79	31.63	6.91	41.87	46.46	74.00	-27.54	Horizontal	
Detector: Average Value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
4960.00	42.52	31.63	6.91	41.87	39.19	54.00	-14.81	Vertical	
4960.00	41.98	31.63	6.91	41.87	38.65	54.00	-15.35	Horizontal	
1									

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.