

FCC TEST REPORT

Test report
On Behalf of
Shenzhen Zidoo Technology Co.,Ltd
For
SMART TV BOX
Model No.: X9, X9 II

FCC ID: 2AGN7-X9

Prepared for: Shenzhen Zidoo Technology Co.,Ltd

Central Avenue building A m, Unit 12D Xixiang Ave, BaoAn District, Shenzhen.

Prepared By: WST Certification & Testing (HK) Limited

12/F., San Toi Building,137-139 Connaught Road Central,HongKong

Date of Test: Mar. 13, 2016 ~ Mar. 22, 2016

Date of Report: Mar. 22, 2016

Report Number: WST160303017-E

TEST RESULT CERTIFICATION

Applicant's name	Shenzhen Zidoo Technology Co.,Ltd
Address	Central Avenue building A m, Unit 12D Xixiang Ave, BaoAn District, Shenzhen.
Manufacture's Name	Shenzhen Zidoo Technology Co.,Ltd
Address	Central Avenue building A m, Unit 12D Xixiang Ave, BaoAn District, Shenzhen.
Product description	
Trade Mark:	ZIDOO
Product name	SMART TV BOX
Model and/	Х9, Х9 ІІ
or type reference	
Standards	FCC Rules and Regulations Part 15 Subpart C Section 15.247
	ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the WST Certification & Testing (HK) Limited is acknowledged as copyright owner and source of the material. WST Certification & Testing (HK) Limited takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

 Date of Test
 Mar. 13, 2016 ~ Mar. 22, 2016

 Date (s) of performance of tests
 Mar. 13, 2016 ~ Mar. 22, 2016

 Date of Issue
 Mar. 22, 2016

 Test Result
 Pass

Technical Manager

Testing Engineer : (Fric Xie)

(Elic XIII

(Dora Qin)

Authorized Signatory:

(Kait Chen)

Table of Contents	Page
1. TEST SUMMARY	5
1.1 TEST FACILITY	6
1.2 MEASUREMENT UNCERTAINTY	6
2 . GENERAL INFORMATION	7
2.1 General description of EUT	7
2.2 Carrier frequency of channels	8
2.3 Operation of EUT during testing	8
2.4 Description of test setup	9
2.5 Measurement instruments list	10
3 . 6DB BANDWIDTH MEASUREMENT	12
3.1 Block diagram of test setup	12
3.2 Limit	12
3.3 Block diagram of test setup	12
3.4 Test result	12
4 . MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER	20
4.1 Block diagram of test setup	20
4.2 Limits	20
4.3 Test procedure	20
4.4 Test result	20
5 . POWER SPECTRAL DENSITY TEST	26
5.1 Block diagram of test setup	26
5.2 Limits	26
5.3 Test procedure	26
5.4 Test result	26
6 . BAND EDGE COMPLIANCE TEST	32
6.1 Block diagram of test setup	32
6.2 Limits	32
6.3 Test procedure	32
6.4 Test result	32
7 . RADIATED SPURIOUS EMISSION TEST	39
7.1 Block diagram of test setup	39

Table of Contents	Page
7.2 Limits	40
7.3 Restricted bands of operation	40
7.4 Test procedure	40
7.5 Test result	41
8 . CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST	46
8.1 Block diagram of test setup	46
8.2 Limits	46
8.3 Test procedure	46
8.4 Test Result	46
9 . AC POWER LINE CONDUCTED EMISSION	48
9.1 Block diagram of test setup	48
9.2 Limits	48
9.3 Test procedure	48
9.4 Test Result	48
10 . ANTENNA REQUIREMENT	50
11 . POTOGRAPH OF TEST	51
11.1 Radiated Emission	51
11.2 Conducted Emission	53

1. TEST SUMMARY

FCC Rules	Description of Test	Result
Section 15.247(a)(2)	6dB Bandwidth Test	Compliant
Section 15.247(e)	Power Spectral Density Test	Compliant
Section 15.247(b)(3)	Maximum Peak Output Power Test	Compliant
Section 15.247(d)	Band Edge Compliance Tes	Compliant
Section 15.247(d)		
Section 15.209)	Radiated Spurious Emission Test	Compliant
Section 15.247(d)	Conducted Spurious Emission Test	Compliant
Section 15.207	AC Power Line Conducted Emission Test	Compliant
Section 15.203	Antenna Requirement	Compliant

1.1 TEST FACILITY

Test Firm : Shenzhen WST Testing Technology Co., Ltd.

Certificated by FCC, Registration No.: 939433

Address : 1F,No.9 Building,TGK Science & Technology Park,Yangtian Rd.,

NO.72 Bao'an Dist., Shenzhen, Guangdong, China. 518101

Tel : (86)755-33916437 Fax : (86)755-27822175

1.2 MEASUREMENT UNCERTAINTY

Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2. GENERAL INFORMATION

2.1 General description of EUT

Equipment	SMART TV BOX
Model Name	Х9, Х9 П
Serial No	N/A
FCC ID	2AGN7-X9
Model Difference	All model's the function, software and electric circuit are the same, only with a product color and model named different. Test sample model: X9
Modulation Type	WIFI:DBPSK,DQPSK,CCK,BPSK,
Antenna Type	External antenna
WLA□ Operation frequency	802.11b: 2412-2462MHz 802.11g: 2412-2462MHz 802.11n HT20: 2412-2462MHz 802.11n HT40: 2422-2452MHz
Number of Channels	802.11b/g/n (HT20):11 802.11n (HT40): 7
Data Rate	802.11b: 11, 5.5, 2, 1 Mbps 802.11g: 54, 48, 36, 24, 18, 12, 9, 6 Mbps 802.11n: up to 150Mbps
Modulation Type	CCK, OFDM
Power Source	DC Voltage
Power Rating	DC 12V from adapter Input: AC 100-240V ,1.5A, 50/60Hz, Output: DC12V ,2A
Adapter Model	CS-1202000

2.2 Carrier frequency of channels

	. ,						
	Channel List for 802.11b/g/n(20 MHz)						
Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz)							
01 2412 04 2427 07 2442 10 2457						2457	
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452		

	Channel List for 802.11n(40MHz)						
Channel Frequency (MHz)						Frequency (MHz)	
03	2422	06	2437	09	2452		
04	2427	07	2442				
05	2432	80	2447				

2.3 Operation of EUT during testing

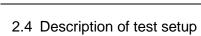
Operating Mode

The mode is used: **802.11b Transmitting mode**

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

802.11g Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz


802.11n (HT20) Transmitting mode

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

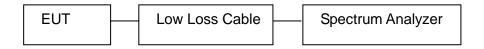
802.11n (HT40) Transmitting mode

Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

₩stlab

2.5 Measurement instruments list

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
2.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
4.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
5.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
6.	Trilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	May 17, 2015	1 Year
7.	Pre-amplifier	Compliance Direction	PAP-0203	22008	May 19, 2015	1 Year
8.	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A	N/A
9.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
10.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
11.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
12.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
13.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
14.	EMI Receiver	Rohde & Schwarz	ESCI	100627	May 19, 2015	1 Year
15.	LISN	SchwarzBeck	NSLK 8126	8126377	May 19, 2015	1 Year
16.	RF Switching Unit	Compliance Direction	RSU-M2	38303	May 19, 2015	1 Year
17.	EMI Test Software ES-K1	Rohde & Schwarz	N/A	N/A	N/A	N/A
18.	Programmable AC Power source	SOPH POWER	PAG-1050	630250	May 26, 2015	1 Year
19.	Harmonic and Flicker Analyzer	LAPLACE	AC2000A	272629	May 26, 2015	1 Year
20.	Harmonic and Flicker Test Software AC 2000A	LAPLACE	N/A	N/A	N/A	N/A
21.	ESD Simulators	KIKUSUI	KES4021	LJ003477	May 25, 2015	1 Year
22.	EFT Generator	EMPEK	EFT-4040B	0430928N	May 19, 2015	1 Year
23.	Shielding Room	ChangZhou ZhongYu	JB88	SEL0166	May 19, 2015	1 Year
24.	Signal Generator 9KHz~2.2GHz	R&S	SML02	SEL0143	May 19, 2015	1 Year
25.	Signal Generator 9KHz~1.1GHz	R&S	SML01	SEL0135	May 19, 2015	1 Year
26.	Power Meter	R&S	NRVS	SEL0144	May 19, 2015	1 Year
27.	RF Level Meter		URV35	SEL0137	May 19, 2015	1 Year
28.	Audio Analyzer	R&S	UPL	SEL0136	May 19, 2015	1 Year



RF-Amplifier **BONN Elektronik** BSA1515-25 SEL0157 29. 150KHz~150MH May 19, 2015 1 Year Erika Fiedler VDE0872 SEL0167 N/A Stripline Test Cell 30. N/A TV Test Transmitter R&S SFM SEL0159 May 17, 2015 1 Year 31. SGPF TV Generator PAL R&S SEL0138 32. May 19, 2015 1 Year TV Generator Ntsc R&S **SGMF** SEL0140 33. May 19, 2015 1 Year TV Generator R&S SGSF SEL0139 34. May 19, 2015 1 Year Secam TV Test Transmitter R&S **SFQ** SEL0142 35. May 19, 2015 1 Year 0.3MHz~3300MHz MPEG2 R&S DVG SEL0141 36. Measurement May 19, 2015 1 Year Generator Spectrum Analyzer R&S FSP SEL0177 May 19, 2015 37. 1 Year Matching R&S RAM SEL0146 N/A N/A 38. Matching R&S RAM SEL0148 N/A N/A 39. May 17, 2015 Absorbing Clamp R&S MDS21 SEL0158 40. 1 Year SEL0149 Coupling Set Erika Fiedler Rco, Rci, N/A N/A 41. MC, AC, LC N/A Filters SEL0150 Erika Fiedler Sr, LBS 42. N/A N/A N/A Matching Network SEL0151 43. Erika Fiedler MN, X9 Fully Anechoic ChangZhou SEL0169 Jun. 10, 2015 44. 854 1 Year Room ZhongYu Signal Generator May 17, 2015 SEL0068 1 Year 45. R&S SML03 RF-Amplifier Amplifier SEL0066 Oct. 24, 2015 46. 250W1000A 1 Year 30M~1GHz Reasearch RF-Amplifier Amplifier SEL0065 Oct. 24, 2015 1 Year 47. 60S1G3 0.8~3.0GHz Reasearch Power Meter NRVD SEL0069 May 17, 2015 R&S 48. 1 Year Power Sensor R&S SEL0071 May 17, 2015 1 Year 49. URV5-Z2 Power Sensor R&S May 17, 2015 SEL0072 URV5-Z2 50. 1 Year Software R&S SEL0082 N/A N/A 51. EMC32-S EMC32 Log-periodic **Amplifier** SEL0073 N/A 52. AX9080 N/A Antenna Reasearch SEL0074 N/A N/A Antenna Tripod **Amplifier** 53. TP1000A Reasearch High Gain Horn N/A SEL0075 54. Amplifier Antenna(0.8-5G AT4002A N/A Reasearch Hz)

3. 6DB BANDWIDTH MEASUREMENT

3.1 Block diagram of test setup

3.2 Limit

Section 15.247(a)(2): Systems using digital modulation techniques may operate in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz

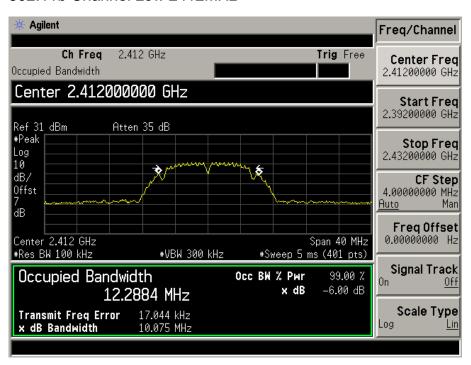
- 3.3 Block diagram of test setup
 - 3.3.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
 - 3.3.2. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz
 - 3.3.3. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

3.4 Test result

Antenna port 1 is worst

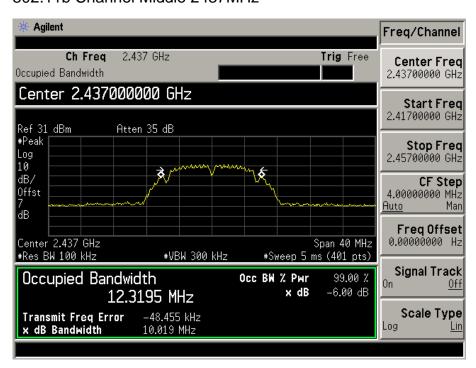
802.11b			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2412	10.075	>0.5MHz
Middle	2437	10.019	>0.5MHz
High	2462	10.081	>0.5MHz

802.11g			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2412	16.533	>0.5MHz
Middle	2437	16.446	>0.5MHz
High	2462	16.472	>0.5MHz

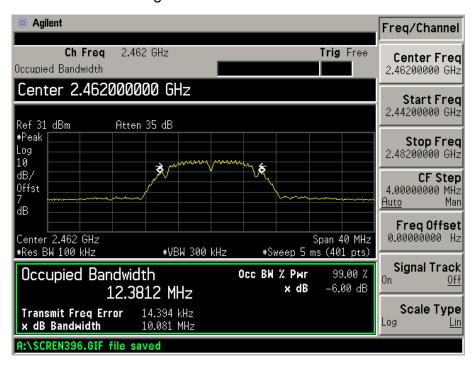


802.11n (HT20)			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2412	17.670	>0.5MHz
Middle	2437	17.193	>0.5MHz
High	2462	17.415	>0.5MHz

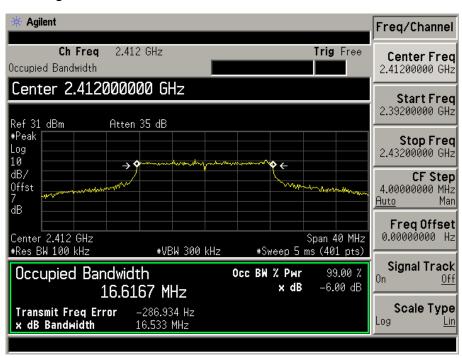
802.11n (HT40)			
Channel	Frequency (MHz)	6DB Bandwidth(MHz)	Limit(MHz)
Low	2422	36.667	>0.5MHz
Middle	2437	36.458	>0.5MHz
High	2452	36.523	>0.5MHz


The spectrum analyzer plots are attached as below.

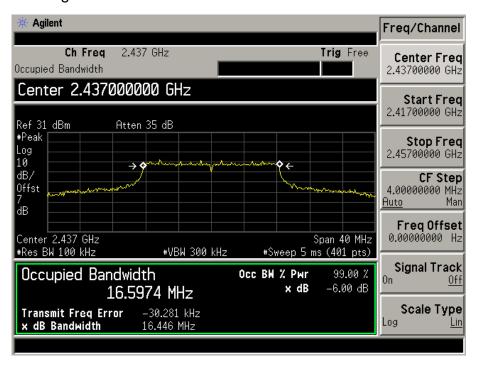
802.11b Channel Low 2412MHz



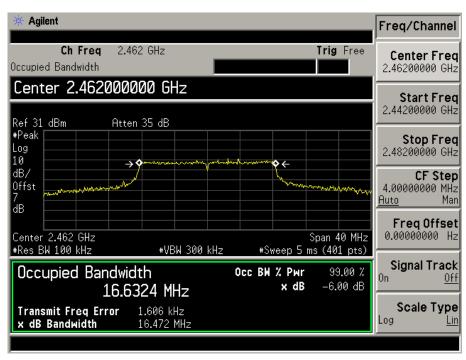
802.11b Channel Middle 2437MHz



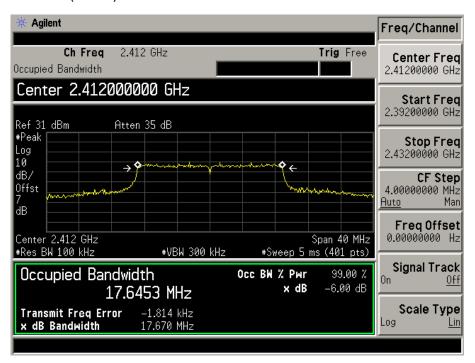
802.11b Channel High 2462MHz



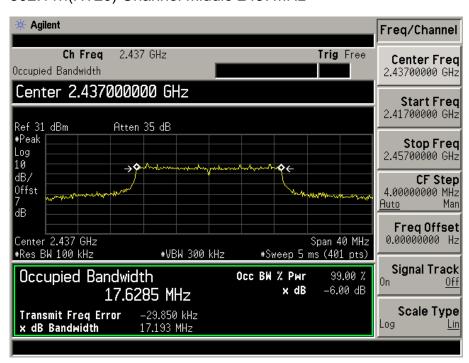
802.11g Channel Low 2412MHz



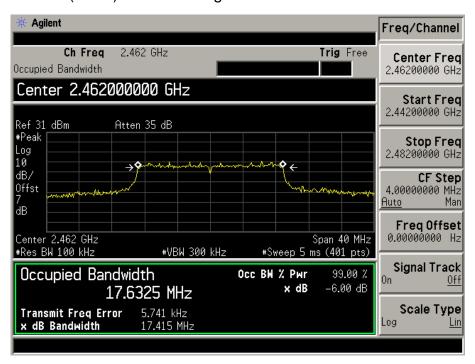
802.11g Channel Middle 2437MHz



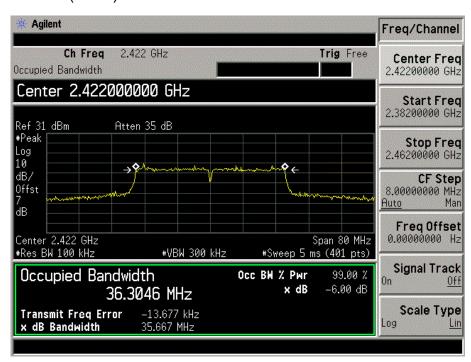
802.11g Channel High 2462MHz



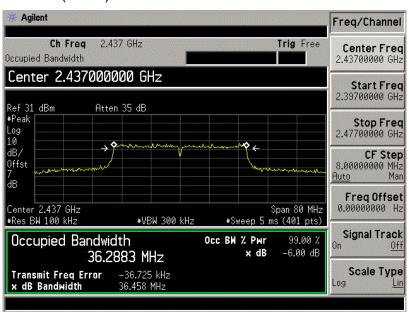
802.11n(HT20) Channel Low 2412MHz



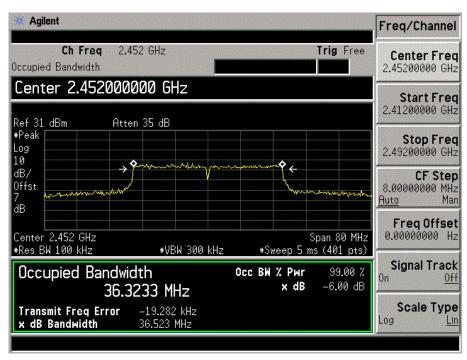
802.11n(HT20) Channel Middle 2437MHz



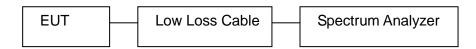
802.11n(HT20) Channel High 2462MHz



802.11n(HT40) Channel Low 2422MHz



802.11n(HT40) Channel Middle 2437MHz



802.11n(HT40) Channel High 2452MHz

4. MAXIMUM CONDUCTED (AVERAGE) OUTPUT POWER

4.1 Block diagram of test setup

4.2 Limits

Section 15.247(b)(3): For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz, and 5725-5850MHz bands: 1 Watt.

4.3 Test procedure

- 1. According to section 15.247(b)-power output of the KDB NO. 558074 DTS D01 Meas. Guidance v03r04.(channel integration method) When this option is exercised, the measured power is to be referenced to the OBW rather than the DTS bandwidth
- 2. Set span to at least 1.5 times the OBW
- 3. Set RBW = 1-5% of the OBW, not to exceed 1 MHz.
- 4. Set VBW ≥ 3 x RBW
- 5. Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This gives bin-to-bin spacing $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- 6. Sweep time = auto
- 7. Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- 8. If transmit duty cycle < 98 %, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \geq 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run"
- 9. Trace average at least 100 traces in power averaging (i.e., RMS) mode.
- 10. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

4.4 Test result **Pass**

302.11b				
Channel	Frequency	Antenna 1	Antenna 2	Limit
	(MHz)	output power(average)	output power(average)	(dBm)
		(dBm)	(dBm)	
Low	2412	15.76	13.31	30
Middle	2437	16.60	13.72	30
High	2462	15.51	14.24	30

802.11g				
Channel	Frequency	Antenna 1	Antenna 2	Limit
	(MHz)	output power(average)	output power(average)	(dBm)
		(dBm)	(dBm)	
Low	2412	14.96	9.83	30
Middle	2437	15.24	10.02	30
High	2462	14.71	9.75	30

802.11n HT20					
Channel	Frequency	Antenna 1	Antenna 2	Total output	Limit
	(MHz)	output	output	power(average)	(dBm)
		power(average)	power(average)	(dBm)	
		(dBm)	(dBm)		
Low	2412	13.37	9.25	14.78	30
Middle	2437	13.68	9.92	15.20	30
High	2462	13.10	10.27	14.92	30

802.11n HT40					
Channel	Frequency	Antenna 1	Antenna 2	Total output	Limit
	(MHz)	output	output	power(average)	(dBm)
		power(average)	power(average)	(dBm)	
		(dBm)	(dBm)		
Low	2422	9.14	8.45	11.81	30
Middle	2437	9.61	8.82	12.24	30
High	2452	9.77	9.21	12.50	30

Pls. refer to the following test plots:

Power Spectral Density

-57.80 dBm/Hz

Blank

Antenna 1 Antenna 2 802.11b Channel Low 2412MHz 802.11b Channel Low 2412MHz # Agilent # Agilent Freq/Channel Freq/Channel Ch Freq 2.412 GHz Ch Freq 2.412 GHz Center Freq 2.41200000 GHz Center Freq 2.41200000 GHz Trig Free Averages: 100 Averages: 100 Center 2.412000000 GHz Center 2.412000000 GHz Start Freq 2.40225000 GHz Start Freq 2.39700000 GHz Stop Freq 2.42700000 GHz **CF Step** 1.95000000 MHz <u>Auto</u> Man **CF Step** 3.00000000 MHz <u>Auto</u> Man Freq Offset 0.00000000 Hz Freq Offset 0.00000000 Hz Center 2.412 GHz *Res BW 1 MHz #VBW 1 MHz Span 30 MHz Sweep 8 ms (401 pts) #VBN 3 MHz Signal Track Channel Power Power Spectral Density Signal Track Channel Power Power Spectral Density 15.76 dBm /13.0000 MHz -55.38 dBm/Hz Scale Type 13.31 dBm /16.0000 MHz -58.74 dBm/Hz Scale Type 802.11b Channel Middle 2437MHz 802.11b Channel Middle 2437MHz # Agilent Agilent Freq/Channel Trace/View Ch Freq 2.437 GHz Trig Free Ch Freq 2.437 GHz Center Freq .43700000 GHz Trig Free Trace Center 2.437000000 GHz Center 2.437000000 GHz Start Freq 2.42725000 GHz Clear Write Stop Freq 2.44675000 GHz Max Hold Log 10 dB/ **CF Step** 1.95000000 MHz <u>Auto</u> Man 0ffst Min Hold Freq Offset 0.00000000 Hz View Signal Track #VBN 3 MHz Power Spectral Density Channel Power Channel Power Power Spectral Density Blank -55.08 dBm/Hz 16.06 dBm /13.0000 MHz Scale Type 13.72 dBm /16.0000 MHz -58.32 dBm/Hz More 1 of 2 802.11b Channel High 2462MHz 802.11b Channel High 2462MHz 🔅 Agilent Freq/Channel Trace/View Ch Freq 2,462 GHz Trig Free Ch Freq 2.482 GHz Trig Free Center Freq 2.46200000 GHz Trace Center 2.462000000 GHz Center 2.462000000 GHz Start Freq 2.45225000 GHz Clear Write Atten 30 dB Atten 25 dB Stop Freq 2.47175000 GHz Max Hold)ffst Min Hold Freq Offset 0.00000000 Hz View #VBW 1 MHz

Signal Track

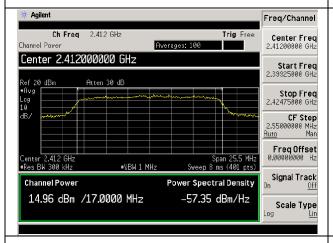
Scale Type

Channel Power

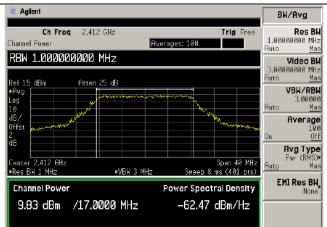
14.24 dBm /16.0000 MHz

Power Spectral Density

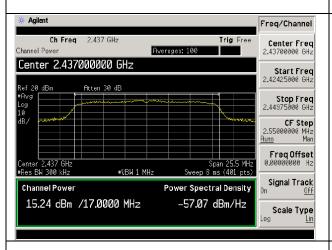
-55.63 dBm/Hz

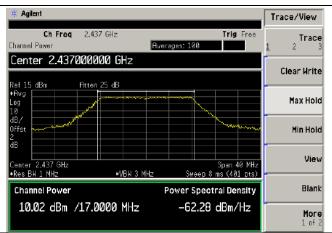

Channel Power

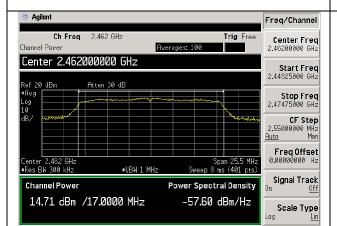
15.51 dBm /13.0000 MHz



Antenna 1 Antenna 2


802.11g Channel Low 2412MHz


802.11g Channel Low 2412MHz


802.11g Channel Middle 2437MHz

802.11g Channel Middle 2437MHz

802.11g Channel High 2462MHz

802.11g Channel High 2462MHz

Power Spectral Density

-63.31 dBm/Hz

Fr**eq Offset** 0.00000000 Hz

Signal Track

Scale Type

Trace

View

Blank

More

Channel Power

13.37 dBm /18.0000 MHz

Antenna 1 Antenna 2 802.11n HT20 Channel Low 2412MHz 802.11n HT20 Channel Low 2412MHz * Agilent 🔅 Agilent Freg/Channel Freq/Channel Ch Freq 2.412 GHz Trig Fr Ch Freq 2.412 GHz Center Freq 2.41200000 GHz Center Freq 2.41200000 GHz Trig Free Averages: 100 Averages: 100 Center 2.412000000 GHz Center 2.412000000 GHz Start Freq 2.39850000 GHz Start Freq 2,39200000 GHz Stop Freq 2.42550000 GHz Stop Freq 2.43200000 GHz CF Step 2.70000000 MHz Auto Man **CF Step** 4.000000000 MHz Auto Man

Channel Power

9.25 dBm /18.0000 MHz

Freq Offset 0.00000000 Hz

Signal Track

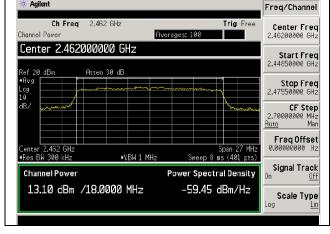
Scale Type

802.11n HT20 Channel Middle 2437MHz

#VBW 1 MHz

Power Spectral Density

-59.19 dBm/Hz


802.11n HT20 Channel Middle 2437MHz

#VBW 3 MHz

802.11n HT20 Channel High 2462MHz

Min Hold

View

Blank

More
1 of 2

Antenna 1 Antenna 2 802.11n HT40 Channel Low 2422MHz 802.11n HT40 Channel Low 2422MHz 🌞 Agilent Agilent Freq/Channel Freq/Channel Ch Freq 2.422 GHz Ch Freq 2.422 GHz Trig Free Trig Free Center Freq 2.42200000 GHz Center Freq 2.42200000 GHz Center 2.422000000 GHz Center 2.422000000 GHz Atten 30 dB kef 15 dBm Stop Freq 2.45200000 GHz Stop Freq 2.44975000 GHz **CF Step** 5.55000000 MHz <u>Auto</u> Man **CF Step** 6.000000000 MHz <u>Auto</u> Man Freq Offset 0.00000000 Hz Freq Offset 0.00000000 Hz #VBW 3 MHz #VBN 3 MHz Signal Track On Off Signal Track Channel Power **Power Spectral Density** Channel Power Power Spectral Density 9.14 dBm /37.0000 MHz -66.55 dBm/Hz 8.45 dBm /36.0000 MHz -67.11 dBm/Hz Scale Type Scale Type 802.11n HT40 Channel Middle 2437MHz 802.11n HT40 Channel Middle 2437MHz Freq/Channel Trace/View Ch Freq 2.437 GHz Ch Freq 2.437 GHz Trig Free Trig Free Center Freq 2.43700000 GHz Averages: 100 Center 2.437000000 GHz Center 2.437000000 GHz Start Freq 2.40925000 GHz Clear Write Atten 25 dB Atten 30 dB **Stop Freq** 2.46475000 GHz Max Hold CF Step 5.55000000 MHz Auto Man Min Hold Freq Offset 0.00000000 Hz View Span 55.5 MHz Sweep 4 ms (401 pts) #VBW 3 MHz ≠VBW 3 MHz Signal Track Blank Channel Power **Power Spectral Density** Channel Power Power Spectral Density 9.61 dBm /37.0000 MHz -66.07 dBm/Hz 8.82 dBm /36.0000 MHz -66.74 dBm/Hz Scale Type More 802.11n HT40 Channel High 2452MHz 802.11n HT40 Channel High 2452MHz Agilent Agilent Trace/View Trace/View Ch Freq 2.452 GHz Trig Free Ch Freq 2.452 GHz Trig Free Trace Trace Averages: 100 Center 2.452000000 GHz Center 2.452000000 GHz Clear Write Clear Write Atten 30 dB Max Hold Max Hold Min Hold

View

Blank

Center 2.452 GHz *Res BW 1 MHz

Channel Power

9.21 dBm

#VBW 3 MHz

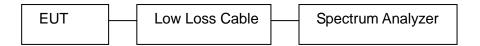
/36.0000 MHz

Power Spectral Density

-66.15 dBm/Hz

Span 55.5 MHz Sweep 4 ms (401 pts)

Power Spectral Density


-65.92 dBm/Hz

#UBW 3 MHz

9.77 dBm /37.0000 MHz

5. POWER SPECTRAL DENSITY TEST

5.1 Block diagram of test setup

5.2 Limits

According to 15.247(a)(1)(iii), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.3 Test procedure

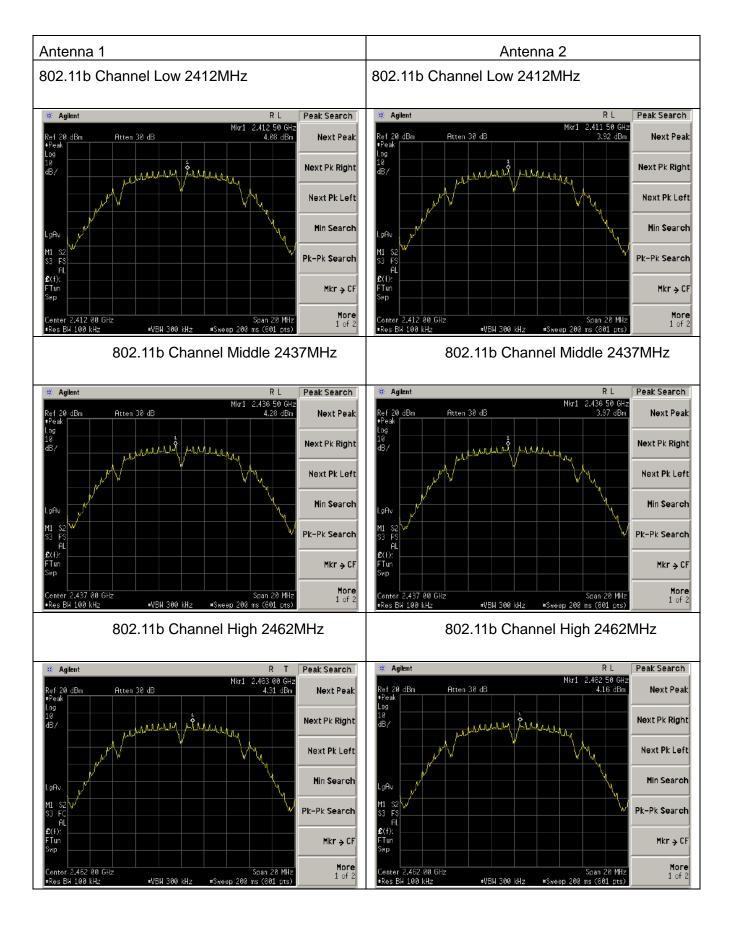
According to the KDB 558074 D01 DTS Meas Guidance v03r04, such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density. The test method of power spectral density as below:

- a. Set instrument center frequency to DTS channel center frequency.
- b. Set span to at least 1.5 times the OBW.
- c. Set RBW to: 3 kHz \leq RBW \leq 100 kHz.
- d. Set VBW $\geq 3 \times RBW$.
- e. Detector = Peak
- f. Sweep time = auto couple.
- g. Use the peak marker function to determine the maximum amplitude level within the RBW.
- h. Use the peak marker function to determine the maximum amplitude level.
- i. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat

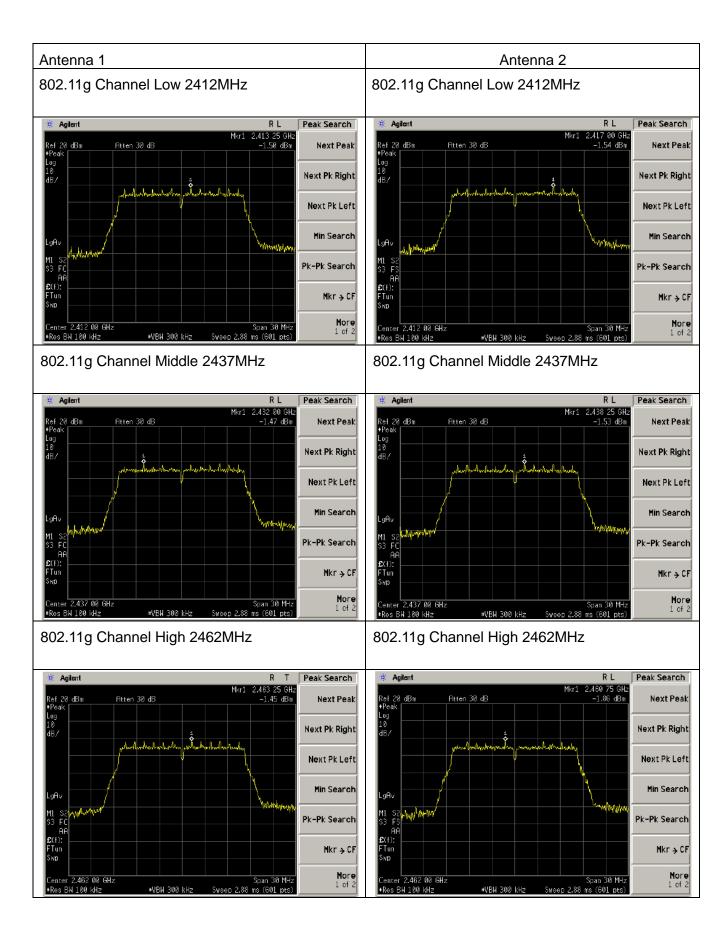
5.4 Test result

Pass

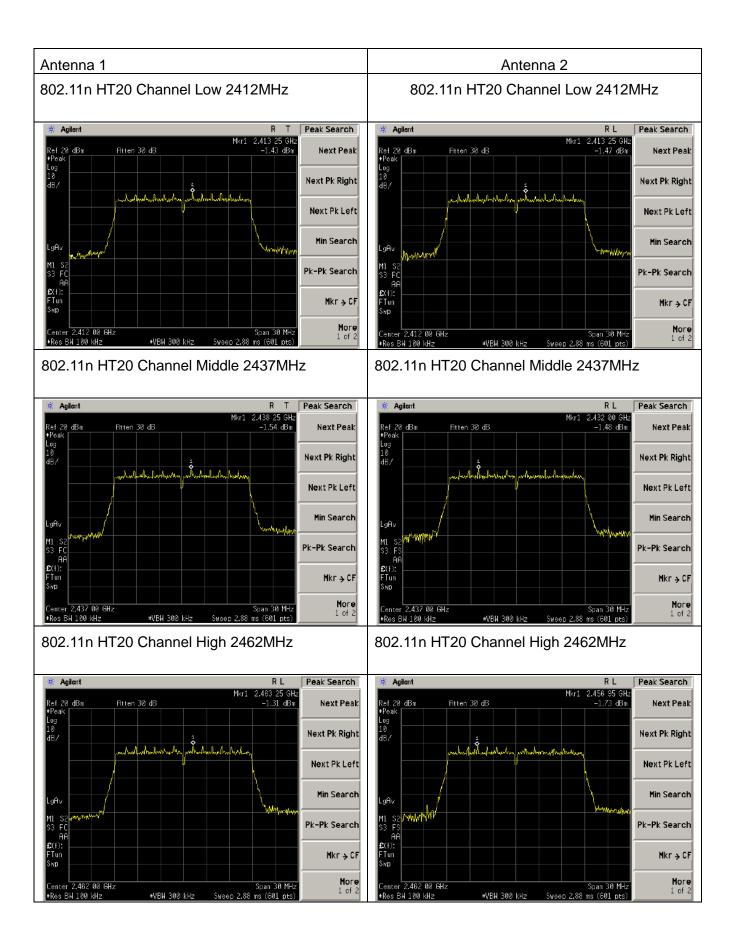
302.11b				
Channel	Frequency	Antenna 1	Antenna 2	Limit
	(MHz)	Power Spectral Density	Power Spectral Density	(dBm)
		(dBm)	(dBm)	
Low	2412	4.08	3.92	8
Middle	2437	4.28	3.97	8
High	2462	4.31	4.16	8

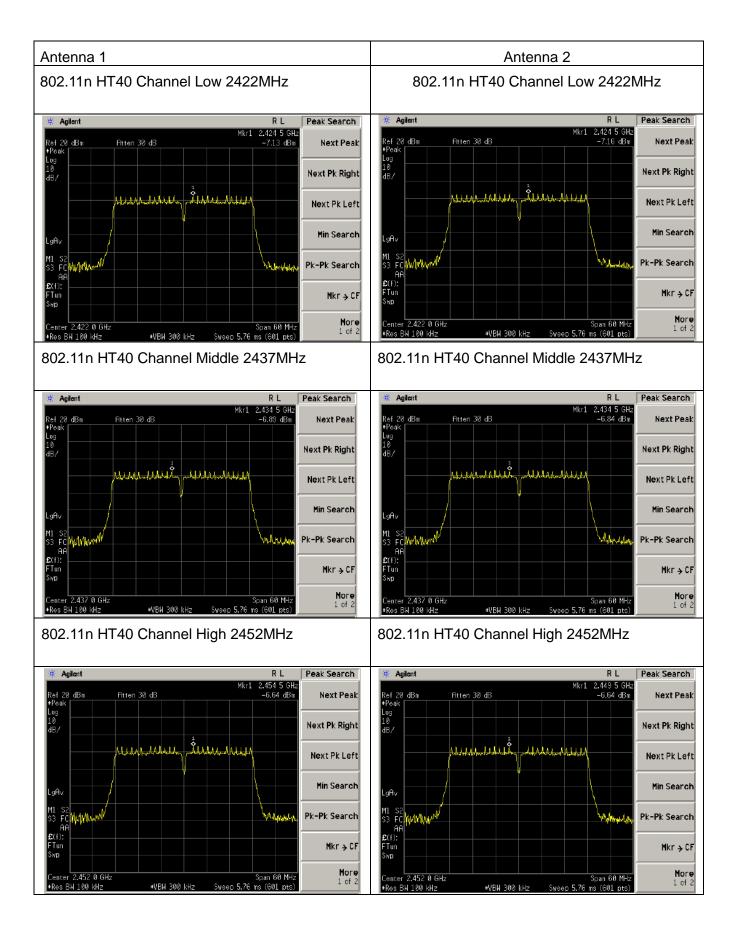


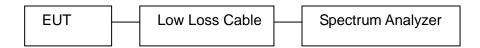
02.11g				
Channel	Frequency	Antenna 1	Antenna 2	Limit
	(MHz)	Power Spectral Density	Power Spectral Density	(dBm)
		(dBm)	(dBm)	
Low	2412	-1.50	-1.54	8
Middle	2437	-1.47	-1.53	8
High	2462	-1.45	-1.86	8


802.11n HT20					
Channel	Frequency	Antenna 1	Antenna 2	Total Power Spectral	Limit
	(MHz)	Power Spectral	Power Spectral	Density	(dBm)
		Density	Density	(dBm)	
		(dBm)	(dBm)		
Low	2412	-1.43	-1.47	1.55	8
Middle	2437	-1.54	-1.48	1.49	8
High	2462	-1.31	-1.73	1.49	8

802.11n HT40					
Channel	Frequency	Antenna 1	Antenna 2	Total Power Spectral	Limit
	(MHz)	Power Spectral	Power Spectral	Density	(dBm)
		Density	Density	(dBm)	
		(dBm)	(dBm)		
Low	2412	-7.13	-7.16	-4.20	8
Middle	2437	-6.89	-6.84	-3.87	8
High	2462	-6.64	-6.64	-3.57	8







6. BAND EDGE COMPLIANCE TEST

6.1 Block diagram of test setup

6.2 Limits

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

6.3 Test procedure

Conducted Band Edge:

- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.

Radiate Band Edge:

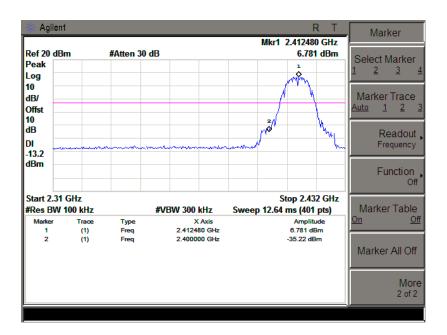
- a. The EUT is placed on a turntable, which is 0.8m above the ground plane and worked at highest radiated power.
- b. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- c. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- d. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission: RBW=1MHz, VBW=1MHz
- e. The band edges was measured and recorded.

6.4 Test result

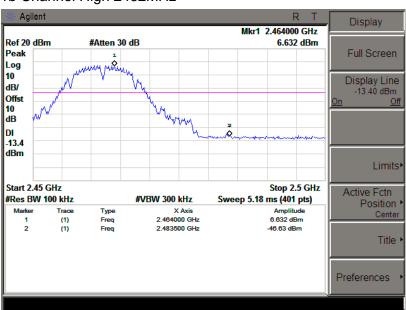
Pass

Antenna port 1 data is worst as following:

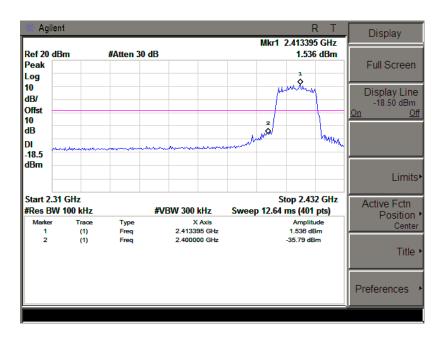
802.11b			
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2412	42.00	>30dBc
High	2462	53.26	> 30dBc


802.11g			
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2412	37.33	>30dBc
High	2462	44.72	> 30dBc

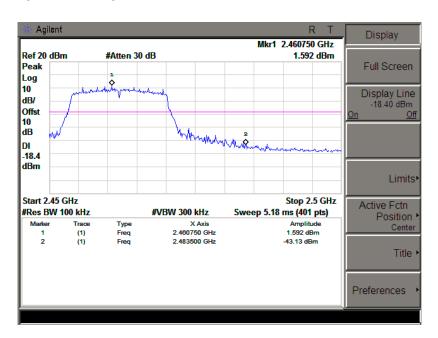
802.11n (20MHz)			
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2412	30.32	>30dBc
High	2462	44.17	> 30dBc


802.11n (40MHz)			
Channel	Frequency	Result of Band Edge	Limit
	(MHz)	(dBc)	(dBc)
Low	2422	36.33	>30dBc
High	2452	42.21	> 30dBc

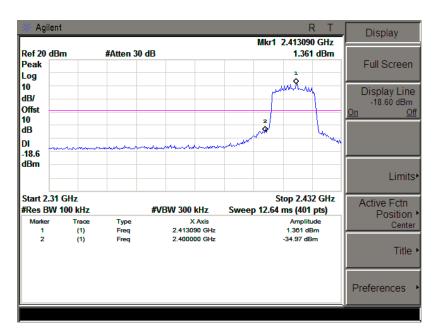
802.11b Channel Low 2412MHz



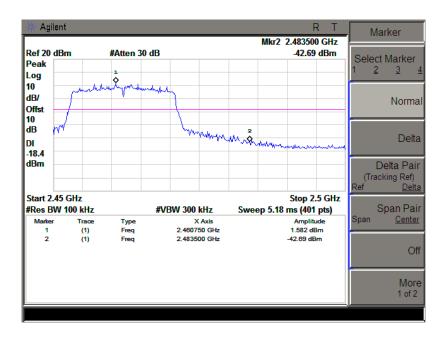
802.11b Channel High 2462MHz



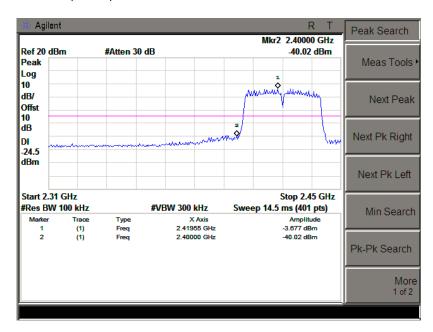
802.11g Channel Low 2412MHz



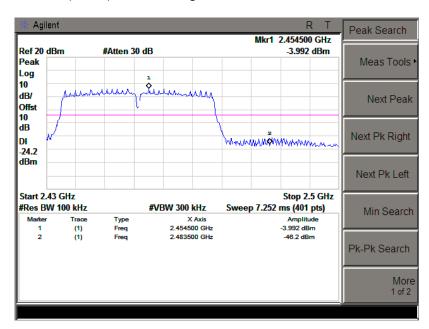
802.11g Channel High 2462MHz



802.11n(HT20) Channel Low 2412MHz



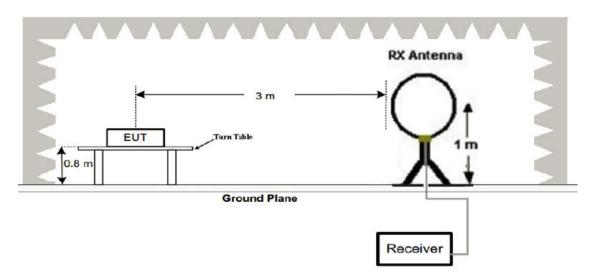
802.11n(HT20) Channel High 2462MHz



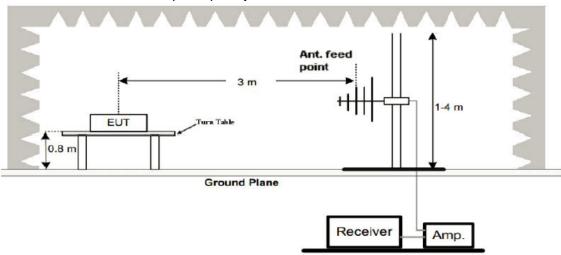
802.11n(HT40) Channel Low 2422MHz

802.11n(HT40) Channel High 2452MHz

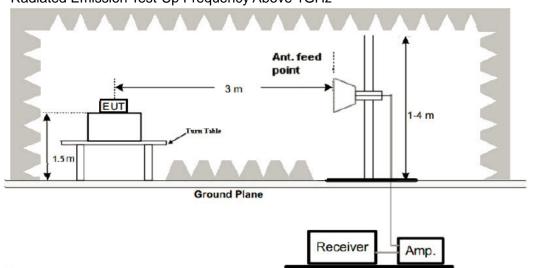
Page 38 of 53


Radiated Band Edge Result

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	Comment
			802.11 b				
2390	58.48	-13.06	45.42	74	-28.58	peak	Vertical
2390	58.22	-13.06	45.16	74	-28.84	peak	Horizontal
2483.5	59.41	-12.78	46.63	74	-27.37	peak	Vertical
2483.5	59.46	-12.78	46.68	74	-27.32	peak	Horizontal
			802.11g				
2390	58.38	-13.06	45.32	74	-28.68	peak	Vertical
2390	57.56	-13.06	44.5	74	-29.50	peak	Horizontal
2483.5	59.27	-12.78	46.49	74	-27.51	peak	Vertical
2483.5	59.49	-12.78	46.71	74	-27.29	peak	Horizontal
			802.11 HT20				
2390	60.6	-13.06	47.54	74	-26.46	peak	Vertical
2390	60.38	-13.06	47.32	74	-26.68	peak	Horizontal
2483.5	60.52	-12.78	47.74	74	-26.26	peak	Vertical
2483.5	60.64	-12.78	47.86	74	-26.14	peak	Horizontal
			802.11 HT 40				
2390	61.39	-13.06	48.33	74	-25.67	peak	Vertical
2390	62.48	-13.06	49.42	74	-24.58	peak	Horizontal
2483.5	61.02	-12.78	48.24	74	-25.76	peak	Vertical
2483.5	60.87	-12.78	48.09	74	-25.91	peak	Horizontal



7. RADIATED SPURIOUS EMISSION TEST


- 7.1 Block diagram of test setup
- (1) Radiated Emission Test-Up Frequency Below 30MHz

(2) Radiated Emission Test-Up Frequency 30MHz~1GHz

(3) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limits

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

7.3 Restricted bands of operation

FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495 - 0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

7.4 Test procedure

- 1, Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2, Support equipment, if needed, was placed as per ANSI C63.10

- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

Note:

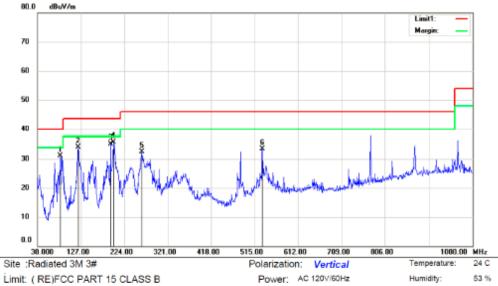
For battery operated equipment, the equipment tests shall be performed using a new battery.

7.5 Test result Pass

Test mode: 802.11b For Below 30MHz

Freq.(MHz)	Reading (dBuV/m) (QP)	Factor(dB) Corr.	Result (dBuV/m)	Limit (dBuV/m)	Margin(dB)
/	/	/	/	/	/

Test mode: 802.11b For 30MHz-1000MHz


Limit: (RE)FCC PART 15 CLASS B

Mode:TX CH1

Note:

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBu\//m	dBuV/m	dB	Detector	cm	degree	Comment
1		82.3800	51.56	-18.98	32.58	40.00	-7.42	QP			
2	*	192.9600	55.01	-17.01	38.00	43.50	-5.50	QP			
3		258.9200	48.45	-12.85	35.60	46.00	-10.40	QP			
4		338.4600	51.41	-12.55	38.86	46.00	-7.14	QP			
5		483.9600	44.89	-9.18	35.71	46.00	-10.29	QP			
6		699.3000	45.68	-5.99	39.69	46.00	-6.31	QP			

Limit: (RE)FCC PART 15 CLASS B

Mode:TX CH1

Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBu∀	dB	dBuV/m	dBu\//m	dB	Detector	cm	degree	Comment
1		81.4100	50.19	-19.15	31.04	40.00	-8.96	QP			
2		121.1800	50.53	-16.45	34.08	43.50	-9.42	QP			
3		192.9600	52.03	-17.01	35.02	43.50	-8.48	QP			
4	т .	199.7500	52.11	-16.42	35.69	43.50	-7.81	QP			
5	- 1	263.7700	45.26	-12.75	32.51	46.00	-13.49	QP			
6		532.4600	41.13	-7.53	33.60	46.00	-12.40	QP			

Test mode: 802.11b For 1GHz-25GHz

CH low

Freq.	Ant.Pol.	Emission	Level(dBuV/m)	Limit 3m	(dBuV/m)	Over	(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4824.00	٧	54.19	44.17	74.00	54.00	-19.81	-9.83
7236.00	٧	56.09	44.77	74.00	54.00	-17.91	-9.23
9648.00	٧	57.92	46.83	74.00	54.00	-16.08	-7.17
12060.00	٧	61.23	49.68	74.00	54.00	-12.77	-4.32
14472.00	٧	64.13	49.30	74.00	54.00	-9.87	-4.70
16884.00	٧	64.34	49.65	74.00	54.00	-9.66	-4.35
4824.00	Н	54.20	44.12	74.00	54.00	-19.80	-9.88
7236.00	Н	56.59	45.63	74.00	54.00	-17.41	-8.37
9648.00	Н	58.18	48.36	74.00	54.00	-15.82	-5.64
12060.00	Н	59.81	47.68	74.00	54.00	-14.19	-6.32
14472.00	Н	60.53	47.45	74.00	54.00	-13.47	-6.55
16884.00	Н	63.55	50.08	74.00	54.00	-10.45	-3.92

CH Middle

	naalo						
Freq.	Ant.Pol.	Emission	Level(dBuV/m)	Limit 3m	(dBuV/m)	Over	(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4874.00	V	55.35	44.90	74.00	54.00	-18.65	-9.10
7311.00	V	57.25	45.50	74.00	54.00	-16.75	-8.50
9748.00	٧	59.08	47.56	74.00	54.00	-14.92	-6.44
12185.00	٧	62.39	50.41	74.00	54.00	-11.61	-3.59
14622.00	٧	65.29	49.82	74.00	54.00	-8.71	-4.18
17059.00	٧	65.50	50.38	74.00	54.00	-8.50	-3.62
4874.00	Н	55.36	44.85	74.00	54.00	-18.64	-9.15
7311.00	Н	57.75	46.36	74.00	54.00	-16.25	-7.64
9748.00	Н	59.34	48.59	74.00	54.00	-14.66	-5.41
12185.00	Н	60.97	47.91	74.00	54.00	-13.03	-6.09
14622.00	Н	61.69	47.48	74.00	54.00	-12.31	-6.52
17059.00	Н	64.71	50.81	74.00	54.00	-9.29	-3.19


CH High

Freq.	Ant.Pol.	Emission	Level(dBuV/m)	Limit 3m	n(dBuV/m)	Over	(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4924.00	٧	55.17	44.86	74.00	54.00	-18.83	-9.14
7386.00	٧	57.07	45.46	74.00	54.00	-16.93	-8.54
9848.00	٧	58.90	47.52	74.00	54.00	-15.10	-6.48
12310.00	٧	62.21	50.37	74.00	54.00	-11.79	-3.63
14772.00	٧	65.11	49.99	74.00	54.00	-8.89	-4.01
17234.00	V	65.32	50.34	74.00	54.00	-8.68	-3.66
4924.00	Н	55.18	44.81	74.00	54.00	-18.82	-9.19
7386.00	Н	57.57	46.32	74.00	54.00	-16.43	-7.68
9848.00	Н	59.16	49.05	74.00	54.00	-14.84	-4 .95
12310.00	Н	60.79	48.37	74.00	54.00	-13.21	-5.63
14772.00	Н	61.51	48.14	74.00	54.00	-12.49	-5.86
17234.00	Н	64.53	50.77	74.00	54.00	-9.47	-3.23

Note: "802.11b" mode is worst mode

8. CONDUCTED SPURIOUS EMISSION COMPLIANCE TEST

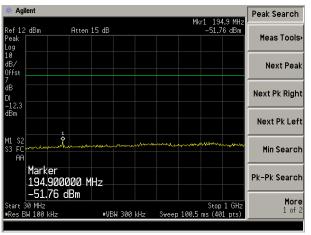
8.1 Block diagram of test setup

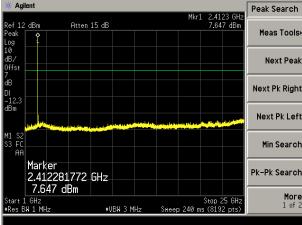
8.2 Limits

Se Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

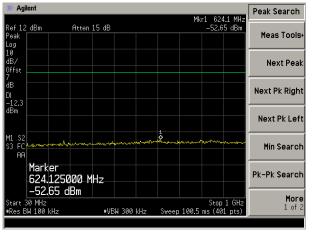
8.3 Test procedure

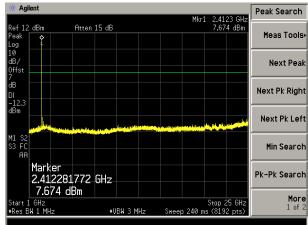
- a. The transmitter output was connected to the spectrum analyzer via a low loss cable.
- b. Set RBW of spectrum analyzer to 100kHz and VBW to 300kHz.
- c. The Conducted Spurious Emission was measured and recorded.

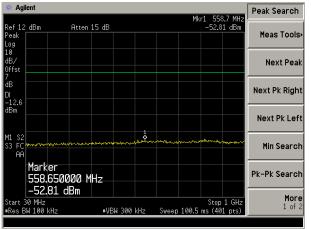

8.4 Test Result

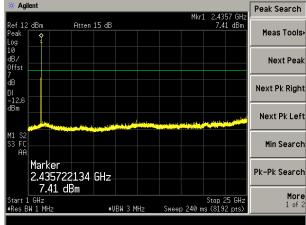

Pass

The spectrum analyzer plots are attached as below. Antenna port 1 data is worst:

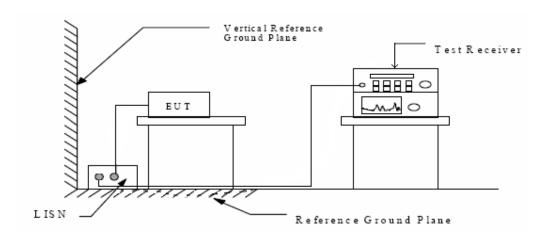



The worst test mode: 802.11b TX 802.11b Channel Low 2412MHz




TX 802.11b Channel Middle 2437MHz

TX 802.11b Channel High 2462MHz



9. AC POWER LINE CONDUCTED EMISSION

9.1 Block diagram of test setup

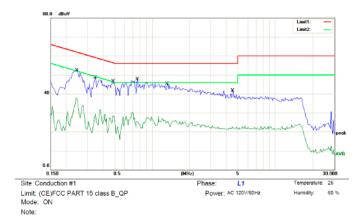
9.2 Limits

Conducted Emission Measurement Limits According to Section 15.207(a)

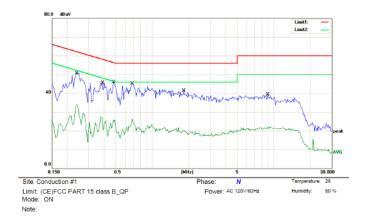
Conducted Enticolon Meded	Tomoric Emmio / toooramig	to occion relative
Frequency	Limits (dBμV)	
MHz	Quasi-peak Level	Average Level
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*
0.50 ~ 5.00	56	46
5.00 ~ 30.00	60	50

^{*} Decreases with the logarithm of the frequency.

9.3 Test procedure

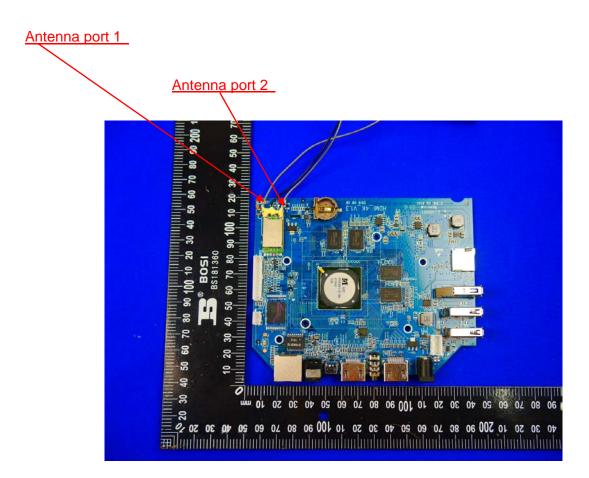

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.10: 2013 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESPI) is set at 9kHz.


The frequency range from 150kHz to 30MHz is checked.

9.4 Test Result PASS

No. M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∀	dB	dBu∀	dBuV	dB	Detector	Comment
1	0.2450	52.27	0.00	52.27	61.92	-9.65	QP	
2	0.2450	36.33	0.00	36.33	51.92	-15.59	AVG	
3	0.3450	48.52	0.00	48.52	59.08	-10.56	QP	
4	0.3450	28.65	0.00	28.65	49.08	-20.43	AVG	
5	0.4850	46.43	0.00	46.43	56.25	-9.82	QP	
6	0.4850	28.19	0.00	28.19	46.25	-18.06	AVG	
7 *	0.7600	47.79	0.00	47.79	56.00	-8.21	QP	
8	0.7600	25.06	0.00	25.06	46.00	-20.94	AVG	
9	1.3300	45.29	0.00	45.29	56.00	-10.71	QP	
10	1.3300	25.06	0.00	25.06	46.00	-20.94	AVG	
11	4.5200	41.71	0.00	41.71	56.00	-14.29	QP	
12	4.5200	22.19	0.00	22.19	46.00	-23.81	AVG	



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.2400	50.61	0.00	50.61	62.10	-11.49	QP	
2		0.2400	33.95	0.00	33.95	52.10	-18.15	AVG	
3		0.3900	45.57	0.00	45.57	58.06	-12.49	QP	
4		0.3900	22.91	0.00	22.91	48.06	-25.15	AVG	
5	*	0.4800	45.82	0.00	45.82	56.34	-10.52	QP	
6		0.4800	24.71	0.00	24.71	46.34	-21.63	AVG	
7		0.6850	45.19	0.00	45.19	56.00	-10.81	QP	
8		0.6850	25.88	0.00	25.88	46.00	-20.12	AVG	
9		1.8200	41.21	0.00	41.21	56.00	-14.79	QP	
10		1.8200	20.19	0.00	20.19	46.00	-25.81	AVG	
11		8.9500	39.29	0.00	39.29	60.00	-20.71	QP	
12		8.9500	22.18	0.00	22.18	50.00	-27.82	AVG	

10. ANTENNA REQUIREMENT

According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. Antenna is fixed by enclosure, can not be changed except take apart the product.

Note: Two antennas transmitting at the same time

11. POTOGRAPH OF TEST

11.1 Radiated Emission

11.2 Conducted Emission

