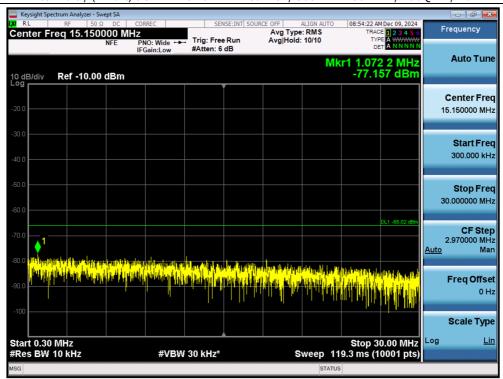
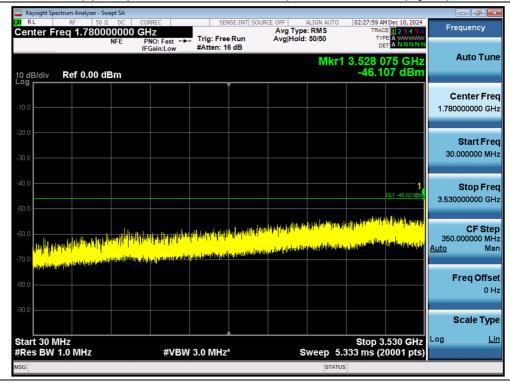

Antenna 2 / (4 Port) 5G NR n48 20 MHz 1 Carrier / 18 GHz ~ 40 GHz / QPSK / Middle


F-TP22-03 (Rev. 06) Page 85 of 99

Antenna 0 / (4 Port) 5G NR n48 40 MHz 1 Carrier / 9 kHz ~ 300 kHz / 256QAM / Low


Antenna 0 / (4 Port) 5G NR n48 40 MHz 1 Carrier / 300 kHz ~ 30 MHz / 256QAM / Low

F-TP22-03 (Rev. 06) Page 86 of 99

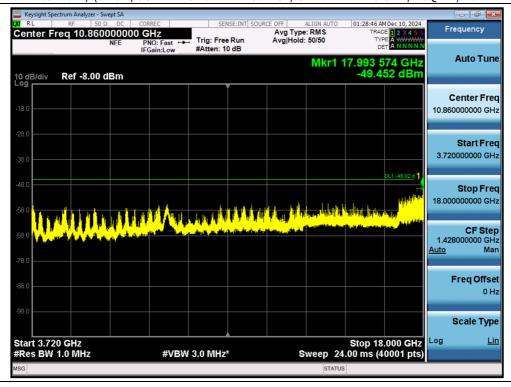
Antenna 2 / (4 Port) 5G NR n48 40 MHz 1 Carrier / 30 MHz ~ 3 530 MHz / QPSK / Middle

Antenna 1 / (4 Port) 5G NR n48 40 MHz 1 Carrier / 3 530 MHz ~ LowEdge - 10 MHz / QPSK / High

F-TP22-03 (Rev. 06) Page 87 of 99

Antenna 1 / (4 Port) 5G NR n48 40 MHz 1 Carrier / LowEdge - 10 MHz ~ LowEdge - 1 MHz / QPSK / High

Antenna 2 / (4 Port) 5G NR n48 40 MHz 1 Carrier / HighEdge + 1 MHz ~ HighEdge + 10 MHz / 256QAM / Low


F-TP22-03 (Rev. 06) Page 88 of 99

Antenna 3 / (4 Port) 5G NR n48 40 $\underline{\mathsf{M}}$ Hz 1 Carrier / HighEdge + 10 $\underline{\mathsf{MHz}}$ ~ 3 720 $\underline{\mathsf{MHz}}$ / QPSK / High

Antenna 2 / (4 Port) 5G NR n48 40 MHz 1 Carrier / 3 720 MHz ~ 18 GHz / 16QAM / Low

F-TP22-03 (Rev. 06) Page 89 of 99

Antenna 3 / (4 Port) 5G NR n48 40 MHz 1 Carrier / 18 GHz ~ 40 GHz / 16QAM / Middle

F-TP22-03 (Rev. 06) Page 90 of 99

5.6. RADIATED EMISSIONS

Test Requirements:

§ 2.1053 Measurements required: Field strength of spurious radiation.

- (a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of § 2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.
- (b) The measurements specified in paragraph (a) of this section shall be made for the following equipment:
 - (1) Those in which the spurious emissions are required to be 60 dB or more below the mean power of the transmitter.
 - (2) All equipment operating on frequencies higher than 25 MHz.
 - (3) All equipment where the antenna is an integral part of, and attached directly to the transmitter.
 - (4) Other types of equipment as required, when deemed necessary by the Commission.

96.41(e) General radio requirement: 3.5 GHz Emissions and Interference Limits.

- (1) General protection levels.
 - (i) Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by the SAS to CBSDs, the conducted power of any CBSD emission outside the fundamental emission bandwidth as specified in paragraph (e)(3) of this section (whether the emission is inside or outside of the authorized band) shall not exceed −13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge and less than 10 MHz below the lower SAS assigned channel edge, the conducted power of any CBSD emission shall not exceed −25 dBm/MHz. The upper and lower SAS assigned channel edges are the upper and lower limits of any channel assigned to a CBSD by an SAS, or in the case of multiple contiguous channels, the upper and lower limits of the combined contiguous channels.
 - (ii) Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the

F-TP22-03 (Rev. 06) Page 91 of 99

fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25 dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.

- (2) Additional protection levels.
 - Notwithstanding paragraph (e)(1) of this section, for CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed $-25 \, \text{dBm/MHz}$, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed $-40 \, \text{dBm/MHz}$.
- (3) Measurement procedure.
 - (i) Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's authorized frequency channel, a resolution bandwidth of no less than one percent of the fundamental emission bandwidth may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full reference bandwidth (i.e., 1 MHz or 1 percent of emission bandwidth, as specified). The fundamental emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
 - (ii) When measuring unwanted emissions to demonstrate compliance with the limits, the CBSD and End User Device nominal carrier frequency/channel shall be adjusted as close to the licensee's authorized frequency block edges, both upper and lower, as the design permits.
 - (iii) Compliance with emission limits shall be demonstrated using either average (RMS)-detected or peak-detected power measurement techniques.
- (4) When an emission outside of the authorized bandwidth causes harmful interference, the Commission may, at its discretion, require greater attenuation than specified in this section.

F-TP22-03 (Rev. 06) Page 92 of 99

Test Procedures:

The measurement is performed in accordance with Section 5.5.3.2 of ANSI C63.26.

- a) Place the EUT in the center of the turntable. The EUT shall be configured to transmit into the standard non-radiating load (for measuring radiated spurious emissions), connected with cables of minimal length unless specified otherwise. If the EUT uses an adjustable antenna, the antenna shall be positioned to the length that produces the worst case emission at the fundamental operating frequency.
- b) Each emission under consideration shall be evaluated:
 - 1) Raise and lower the measurement antenna in accordance 5.5.2, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - 2) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - 3) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - 4) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - 5) Record the measured emission amplitude level and frequency using the appropriate RBW.
- c) Repeat step b) for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- d) ~ j) Omitted
- k) Provide the complete measurement results as a part of the test report.

Note:

- 1. The results of the Radiated Emissions test shown above are measured at maximum power, and data values are attached only in the worst case.
- 2. We tested both single and simultaneous emissions, but we only attached the worst case result.
- 3. The amplitude of the spurious domain emission attenuated by more than 20 dB over the permissible value was not recorded according to ANSI C63.26, clause 5.1.1., c).
- 4. Measure distance = 3 m

F-TP22-03 (Rev. 06) Page 93 of 99

Test Result:

Freqeuncy	Measured Level	Ant. Factor	A.G.+C.L.+H.P.F.	Pol.	Measured Power	Result
[MHz]	[dBµV]	[dB/m]	[dB]		[dBm]	[dBm/m]

No Peak Found

A.G.: Amp Gain / C.L.: Cable Loss / H.P.F.: High Pass Filter

Result = (Measured Level - 95.2) + Ant. Factor - (A.G. + C.L. + H.P.F.)

Plot data of radiated spurious emissions

(4 Port) 5G NR n48

Note: Only the worst case plots for Radiated Spurious Emissions.

F-TP22-03 (Rev. 06) Page 94 of 99

5.7. FREQUENCY STABILITY

Test Requirements:

§ 2.1055 Measurements required: Frequency stability.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
 - (1) From -30° to $+50^{\circ}$ centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.

Test Procedures:

The measurement is performed in accordance with Section 5.6.3, 5.6.4 and 5.6.5 of ANSI C63.26.

5.6.3 Procedure for frequency stability testing

Frequency stability is a measure of the frequency drift due to temperature and supply voltage variations, with reference to the frequency measured at +20 °C and rated supply voltage.

The operating carrier frequency shall be set up in accordance with the manufacturer's published operation and instruction manual prior to the commencement of these tests. No adjustment of any frequency determining circuit element shall be made subsequent to this initial set-up. Frequency stability is tested:

- a) At 10 °C intervals of temperatures between -30 °C and +50 °C at the manufacturer's rated supply voltage, and
- b) At +20 °C temperature and $\pm 15\%$ supply voltage variations. If a product is specified to operate over a range of input voltage then the -15% variation is applied to the lowermost voltage and the +15% is applied to the uppermost voltage.

During the test all necessary settings, adjustments and control of the EUT have to be performed without disturbing the test environment, i.e., without opening the environmental chamber. The frequency stabilities can be maintained to a lesser temperature range provided that the transmitter is automatically inhibited from operating outside the lesser temperature range. For handheld equipment that is only capable of operating from internal batteries and the supply voltage cannot be varied, the frequency stability tests shall be performed at the nominal battery voltage and the battery end point voltage specified by the manufacturer. An external supply voltage can be used and set at the internal battery nominal voltage, and again at the battery operating end point voltage which shall be specified by the equipment manufacturer. If an unmodulated carrier is not available, the mean frequency of a modulated carrier can be obtained by using a frequency counter with gating time set to an appropriately large multiple of bit periods (gating time depending on the required accuracy). Full details on the choice of values shall be included in the test report.

F-TP22-03 (Rev. 06) Page 95 of 99

5.6.4 Frequency stability over variations in temperature

- a) Supply the EUT with a nominal 60 Hz ac voltage, dc voltage, or install a new or fully charged battery in the EUT.
- b) If possible a dummy load should be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, the EUT should be placed in the center of the chamber with the antenna adjusted to the shortest length possible.
- c) Turn on the EUT, and tune it to the center frequency of the operating band.
- d) Couple the transmitter output to the measuring instrument through a suitable attenuator and coaxial cable. If connection to the EUT output is not possible, make the measurement by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away).
 - NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory authority is the recommended measuring instrument.
- e) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument, but is strong enough to allow measurement of the operating or fundamental frequency of the EUT). Adjust the detector bandwidth and span settings to achieve a resolution capable of accurate frequency measurements over the applicable frequency stability limits.
- f) Turn the EUT off, and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.
- g) Set the temperature control on the chamber to the Highest temperature specified in the regulatory requirements for the type of device, and allow the oscillator heater and the chamber temperature to stabilize. Unless otherwise instructed by the regulatory authority, this temperature should be 50 °C.
- h) While maintaining a constant temperature inside the environmental chamber, turn on the EUT and allow sufficient time for the EUT temperature to stabilize.
- i) Measure the frequency.
- j) Switch off the EUT, but do not switch off the oscillator heater.
- k) Lower the chamber temperature to the next level that is required by the standard and allow the temperature inside the chamber to stabilize. Unless otherwise instructed by the regulators, this temperature step should be 10 °C.
- l) Repeat step h) through step k) down to the lowest specified temperature. Unless otherwise instructed by the regulators, this temperature should be $-30\,^{\circ}$ C. When the frequency stability limit is stated as being sufficient such that the fundamental emissions stay within the authorized bands of operation, a reference point shall be established at the applicable unwanted emissions limit using a RBW equal to the RBW required by the unwanted emissions specification of the applicable regulatory standard. These reference points measured using the lowest and Highest channel of operation shall be identified as f_L and f_H respectively. The worst-case frequency offset determined in the above methods shall be added or subtracted from the values of f_L and f_H and the resulting frequencies must remain within the band.
- m) Omitted

F-TP22-03 (Rev. 06) Page 96 of 99

5.6.5 Frequency stability when varying supply voltage

- a) Couple the transmitter output to the measuring instrument through a suitable attenuator and coaxial cable. If connection to the EUT output is not possible make the measurement by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away)
- b) Supply the EUT with nominal ac or dc voltage. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- c) Turn on the EUT, and couple its output to a frequency counter or other frequency-measuring instrument.
- d) Tune the EUT to the center frequency of the operating band. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument, but is strong enough to allow measurement of the operating or fundamental frequency of the EUT). Adjust the detector bandwidth and span settings to achieve a resolution capable of accurate frequency measurements over the applicable frequency stability limits.
 - NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory authority is the recommended measuring instrument.
- e) Measure the frequency.
- f) Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value for other than hand carried battery equipment.
- g) For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.
- h) Repeat the frequency measurement.

 NOTE—For band-edge compliance, it can be required to make these measurements at the low and High channel of the operating band.

Note:

The results of the frequency stability test shown above the frequency deviation measured values are very small and similar trend for each port, so we are attached only the worst case data.

F-TP22-03 (Rev. 06) Page 97 of 99

Test Results:

Reference: AC 120V at 20°C **Freq.** = 3,625,000,000 Hz

Voltage	Temp.	Frequency	Frequency	Deviation		
(%)	(°C)	(Hz)	Error (Hz)	(Hz)	ppm	
	+20(Ref)	3 625 000 003	2.725	0.000	0.00000	
	-30	3 625 000 006	3.757	1.031	0.00028	
	-20	3 625 000 011	8.577	5.851	0.00161	
	-10	3 625 000 006	3.701	0.975	0.00027	
100 %	0	3 625 000 007	4.056	1.330	0.00037	
	+10	3 625 000 005	1.853	-0.872	-0.00024	
	+30	3 625 000 003	0.581	-2.144	-0.00059	
	+40	3 625 000 007	4.735	2.010	0.00055	
	+50	3 625 000 007	3.999	1.273	0.00035	
115 %	+20	3 625 000 012	9.303	6.577	0.00181	
85 %	+20	3 625 000 005	2.439	-0.286	-0.00008	

Note: The results of the frequency stability test shown above the frequency deviation measured values are very small and similer trend for each port, so attached datas were only the port 0.

F-TP22-03 (Rev. 06) Page 98 of 99

6. Annex B_EUT AND TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description	
1	HCT-RF-2412-FC050-P	

F-TP22-03 (Rev. 06) Page 99 of 99