

Select Comfort Corporation

Smart Outlet P/N: 121268 FCC 15.207:2015 FCC 15.247:2015

Report # SECF0021.1

NVLAP Lab Code: 200881-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report may only be duplicated in its entirety

Last Date of Test: May 01, 2015 Select Comfort Corporation Model: Smart Outlet P/N: 121268

Radio Equipment Testing

Standards

Specification	Method
FCC 15.207:2015	ANSI C63.10:2009
FCC 15.247:2015	ANSI C63.10:2009

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.7	Band Edge Compliance	Yes	Pass	
6.7 6.7	Spurious Conducted Emissions	Yes	Pass	
6.9.1	Occupied Bandwidth	Yes	Pass	
6.10.2	Output Power	Yes	Pass	
6.11.2	Power Spectral Density	Yes	Pass	
7.5	Duty Cycle	Yes	N/A	Characterization of radio operation.

Deviations From Test Standards

None

Approved By:

amoth 1

Tim O'Shea, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number		Description	Date	Page Number
00	None			

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit: <u>http://www.nwemc.com/accreditations/</u> http://gsi.nist.gov/global/docs/cabs/designations.html

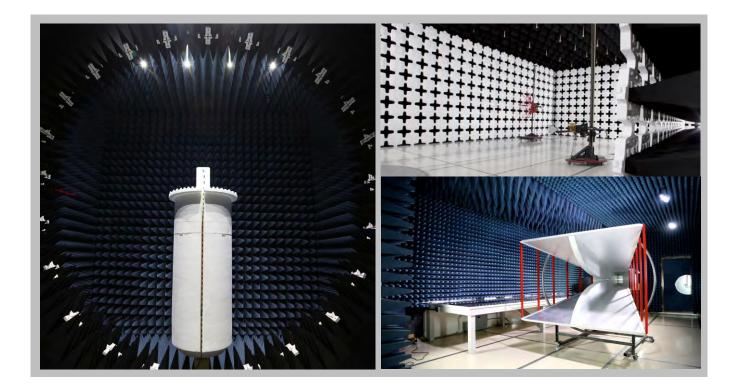
MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error gualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.


Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	4.7 dB	-4.7 dB
AC Powerline Conducted Emissions (dB)	2.9 dB	-2.9 dB

FACILITIES

California Labs OC01-13 41 Tesla Irvine, CA 92618 (949) 861-8918	Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136	New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214	Oregon Labs EV01-12 22975 NW Evergreen Pkwy Hillsboro, OR 97124 (503) 844-4066	Texas Labs TX01-09 3801 E Plano Pkwy Plano, TX 75074 (469) 304-5255	Washington Labs NC01-05 19201 120 th Ave NE Bothell, WA 9801 (425)984-6600	
		NV	LAP			
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0	
		Industry	Canada			
2834B-1, 2834B-3	2834E-1	N/A	2834D-1, 2834D-2	2834G-1	2834F-1	
		BS	MI			
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R	
VCCI						
A-0029	A-0109	N/A	A-0108	A-0201	A-0110	
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA					
US0158	US0175	N/A	US0017	US0191	US0157	

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Select Comfort Corporation
Address:	9800 59th Avenue North
City, State, Zip:	Minneapolis, MN 55442
Test Requested By:	Nick Reynolds
Model:	Smart Outlet P/N: 121268
First Date of Test:	April 30, 2015
Last Date of Test:	May 01, 2015
Receipt Date of Samples:	April 15, 2015
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Smart switchable outlet which will be controlled by the Select Comfort FCC approved smart pump, and this outlet will also be transmitting status back to the pump via Bluetooth LE.

Testing Objective:

To demonstrate compliance of the Bluetooth radio to FCC 15.247 requirements.

Configuration SECF0021-3

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
BLE Outlet	Select Comfort Corporation	121268	None

Peripherals in test setup boundary					
Description	Manufacturer	Model/Part Number	Serial Number		
Light Puck	Select Comfort Corporation	Light Puck	None		

Cables						
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2	
Power Cable	No	2m	No	BLE Outlet	Light Puck	
AC Power	No	1.8m	No	BLE Outlet	AC Mains	
AC Power	No	1.8m	No	BLE Outlet	Unterminated	

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	4/30/2015	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	4/30/2015	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	4/30/2015	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	5/1/2015	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	5/1/2015	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	5/1/2015	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
7	5/1/2015	Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

TEST DESCRIPTION

The EUT will be powered either directly or indirectly from the AC power line. Therefore, conducted emissions measurements were made on the AC input of the EUT, or on the AC input of the device used to power the EUT. The AC power line conducted emissions were measured with the EUT operating at the lowest, the highest, and a middle channel in the operational band. The EUT was transmitting at its maximum data rate. For each mode, the spectrum was scanned from 150 kHz to 30 MHz. The test setup and procedures were in accordance with ANSI C63.10-2009.

TEST EQUIPMENT

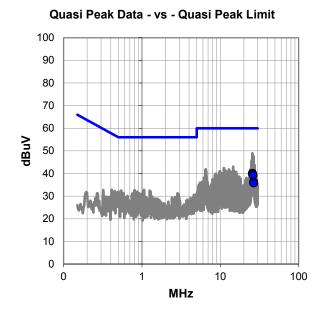
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
High Pass Filter	TTE	H97-100K-50-720B	HGN	5/23/2014	05/23/2015
Attenuator 20dB, BNC	Fairview Microwave	SA01B-20	AQP	7/22/2014	07/22/2015
MN03 Cables	ESM Cable Corp.	Conducted Cables	MNC	11/20/2014	11/20/2015
LISN	Solar Electronics	9252-50-R-24-BNC	LIY	3/23/2015	03/23/2016
Receiver	Rohde & Schwarz	ESR7	ARI	5/6/2014	05/06/2015

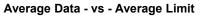
MEASUREMENT UNCERTAINTY

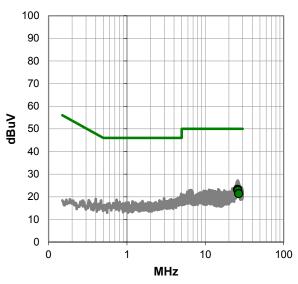
Description		
Expanded k=2	2.4 dB	-2.4 dB

CONFIGURATIONS INVESTIGATED

SECF0021-3


MODES INVESTIGATED


Bluetooth LE High Channel 2480 MHz Bluetooth LE Low Channel 2402 MHz Bluetooth LE Mid Channel 2442 MHz



EUT:	Smart Outlet	P/N: 1212	268		Work Order:	SECF0021		
Serial Number:	None			Date:	05/01/2015			
Customer:	Select Comfo	ort Corpora	ation		Temperature:	24.3°C		
Attendees:	None				Relative Humidity:	29.2%		
Customer Project:	None				Bar. Pressure:	987.9 mb		
Tested By:	Trevor Buls				Job Site:	MN03		
Power:	110VAC/60H	lz			Configuration:	SECF0021-3		
TEST SPECIFIC	CATIONS							
Specification:				Method:				
FCC 15.207:2015				ANSI C6	ANSI C63.10:2009			
TEST PARAME	TERS							
Run #: 4		Line:	High Line		Ext. Attenuation (dB):	20		
COMMENTS None								
EUT OPERATIN		ЛН						
DEVIATIONS F	DEVIATIONS FROM TEST STANDARD							

None

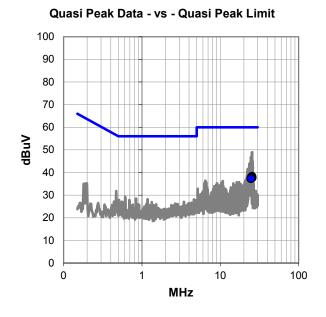
RESULTS - Run #4

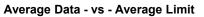
NEODEIN	J - IXull	π-						
Quasi Peak Data - vs - Quasi Peak Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
25.742	18.0	22.0	40.0	60.0	-20.0			
25.800	17.9	22.0	39.9	60.0	-20.1			
25.997	17.6	22.0	39.6	60.0	-20.4			
26.166	17.2	22.1	39.3	60.0	-20.7			
26.662	14.1	22.1	36.2	60.0	-23.8			
26.753	13.7	22.1	35.8	60.0	-24.2			

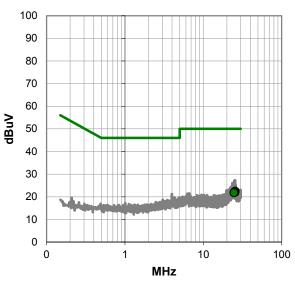
Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
25.997	1.2	22.0	23.2	50.0	-26.8	
25.800	1.2	22.0	23.2	50.0	-26.8	
25.742	1.2	22.0	23.2	50.0	-26.8	
26.166	0.7	22.1	22.8	50.0	-27.2	
26.662	-0.6	22.1	21.5	50.0	-28.5	
26.753	-0.8	22.1	21.3	50.0	-28.7	

CONCLUSION


Pass


Trevor Buls Tested By



EUT:	Smart Outlet	P/N: 1212	268		Work Order:	SECF0021		
Serial Number:	None				Date:	05/01/2015		
Customer:	Select Comfo	ort Corpora	ation		Temperature:	24.3°C		
Attendees:	None				Relative Humidity:	29.2%		
Customer Project:	None				Bar. Pressure:	987.9 mb		
Tested By:	Trevor Buls				Job Site:	MN03		
Power:	110VAC/60H	lz			Configuration:	SECF0021-3		
TEST SPECIFIC	CATIONS							
Specification:	ation:			Method:				
FCC 15.207:2015				ANSI C6	ANSI C63.10:2009			
TEST PARAME	TERS							
Run #: 5		Line:	Neutral		Ext. Attenuation (dB):	20		
COMMENTS None								
	NG MODES							
Bluetooth LE Low C	hannel 2402 N	ЛНz						
DEVIATIONS FROM TEST STANDARD								

None

RESULTS - Run #5

NEODEIN	J - IXull	πυ						
Quasi Peak Data - vs - Quasi Peak Limit								
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
25.368	16.3	22.0	38.3	60.0	-21.7			
25.035	16.0	21.9	37.9	60.0	-22.1			
25.598	15.7	22.0	37.7	60.0	-22.3			
25.433	15.7	22.0	37.7	60.0	-22.3			
24.964	15.7	21.9	37.6	60.0	-22.4			
24.698	15.4	21.9	37.3	60.0	-22.7			

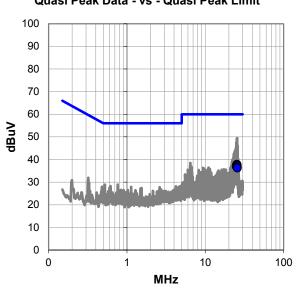
Average Data - vs - Average Limit

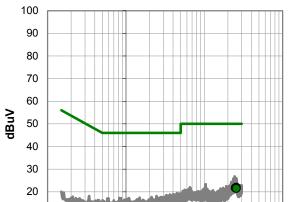
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
25.598	0.5	22.0	22.5	50.0	-27.5
25.368	0.1	22.0	22.1	50.0	-27.9
25.433	0.0	22.0	22.0	50.0	-28.0
25.035	0.0	21.9	21.9	50.0	-28.1
24.964	0.0	21.9	21.9	50.0	-28.1
24.698	-0.1	21.9	21.8	50.0	-28.2

CONCLUSION

Pass

Trevor Buls Tested By


EUT:	Smart Outlet	P/N: 1212	268			Work Order:	SECF0021	
Serial Number:	None				Date:	05/01/2015		
Customer:	Select Comfe	ort Corpora	ation			Temperature:	24.3°C	
Attendees:	None					Relative Humidity:	29.2%	
Customer Project:	None					Bar. Pressure:	987.9 mb	
Tested By:	Trevor Buls					Job Site:	MN03	
Power:	110VAC/60H	lz				Configuration:	SECF0021-3	
TEST SPECIFIC	CATIONS			-				
Specification:	cification:				lethod:			
FCC 15.207:2015				A	ANSI C63.10:2009			
TEST PARAME	TERS							
Run #: 6		Line:	Neutral		Ext.	Attenuation (dB):	20	
COMMENTS None								
EUT OPERATIN	IG MODES							
Bluetooth LE Mid C	hannel 2442 N	1Hz						
DEVIATIONS F	ROM TEST	STAND	ARD					


10

0

0

None

1

10

MHz

100

Average Data - vs - Average Limit

Quasi Peak Data - vs - Quasi Peak Limit

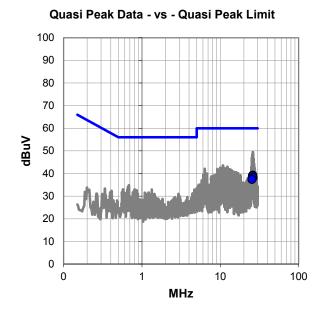
RESULTS - Run #6

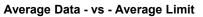
Q	Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
25.406	15.9	22.0	37.9	60.0	-22.1			
25.187	15.7	21.9	37.6	60.0	-22.4			
25.510	15.5	22.0	37.5	60.0	-22.5			
24.906	15.0	21.9	36.9	60.0	-23.1			
25.605	14.8	22.0	36.8	60.0	-23.2			
25.720	14.2	22.0	36.2	60.0	-23.8			

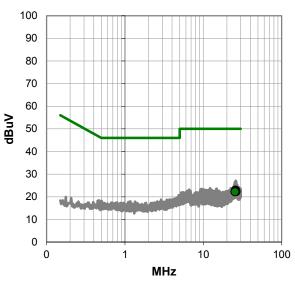
Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
25.605	0.0	22.0	22.0	50.0	-28.0
25.406	-0.1	22.0	21.9	50.0	-28.1
25.510	-0.2	22.0	21.8	50.0	-28.2
25.187	-0.2	21.9	21.7	50.0	-28.3
24.906	-0.2	21.9	21.7	50.0	-28.3
25.720	-0.5	22.0	21.5	50.0	-28.5

CONCLUSION


Pass


Trevor Buls Tested By



EUT:	Smart Outlet	P/N: 1212	268		Work Order:	SECF0021		
Serial Number:	None				Date:	05/01/2015		
Customer:	Select Comfo	ort Corpora	ation		Temperature:	24.3°C		
Attendees:	None				Relative Humidity:	29.2%		
Customer Project:	None				Bar. Pressure:	987.9 mb		
Tested By:	Trevor Buls				Job Site:	MN03		
Power:	110VAC/60H	z			Configuration:	SECF0021-3		
TEST SPECIFIC	ATIONS							
Specification:				Method:				
FCC 15.207:2015				ANSI C6	ANSI C63.10:2009			
TEST PARAME	TERS							
Run #: 7		Line:	High Line		Ext. Attenuation (dB):	20		
COMMENTS None								
EUT OPERATIN	IG MODES							
Bluetooth LE Mid C	hannel 2442 M	lHz						
DEVIATIONS FROM TEST STANDARD								

None

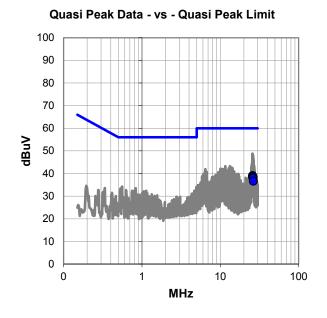
RESULTS - Run #7

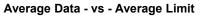
Q	Quasi Peak Data - vs - Quasi Peak Limit							
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)			
25.990	17.2	22.0	39.2	60.0	-20.8			
26.084	17.0	22.0	39.0	60.0	-21.0			
25.882	17.0	22.0	39.0	60.0	-21.0			
25.782	17.0	22.0	39.0	60.0	-21.0			
26.245	16.1	22.1	38.2	60.0	-21.8			
25.438	15.4	22.0	37.4	60.0	-22.6			

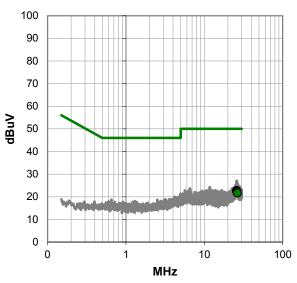
Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
25.782	0.9	22.0	22.9	50.0	-27.1
25.990	0.8	22.0	22.8	50.0	-27.2
25.882	0.7	22.0	22.7	50.0	-27.3
26.084	0.6	22.0	22.6	50.0	-27.4
26.245	0.2	22.1	22.3	50.0	-27.7
25.438	0.2	22.0	22.2	50.0	-27.8

CONCLUSION


Pass


Trevor Buls Tested By



EUT:	Smart Outlet	P/N: 1212	268		Work Order:	SECF0021				
Serial Number:	None				Date:	05/01/2015				
Customer:	Select Comfo	ort Corpora	ation		Temperature:	24.3°C				
Attendees:	None				Relative Humidity:	29.2%				
Customer Project:	None				Bar. Pressure:	987.9 mb				
Tested By:	Trevor Buls				Job Site:	MN03				
Power:	110VAC/60H	110VAC/60Hz				SECF0021-3				
TEST SPECIFICATIONS										
Specification:				Method:						
FCC 15.207:2015				ANSI C	63.10:2009					
TEST PARAME	TERS									
Run #: 8		Line:	High Line		Ext. Attenuation (dB):	20				
COMMENTS None										
Bluetooth LE High (Juannel 2480 I									
DEVIATIONS F	ROM TEST	STAND	ARD							

None

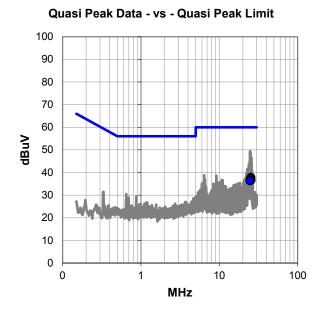
RESULTS - Run #8

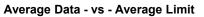
NEODEIN	J - IXull	πυ								
Quasi Peak Data - vs - Quasi Peak Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)					
25.910	17.0	22.0	39.0	60.0	-21.0					
26.021	16.7	22.0	38.7	60.0	-21.3					
25.769	16.6	22.0	38.6	60.0	-21.4					
26.189	16.5	22.1	38.6	60.0	-21.4					
26.302	15.9	22.1	38.0	60.0	-22.0					
26.506	14.5	22.1	36.6	60.0	-23.4					

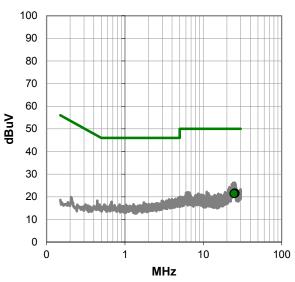
Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
25.910	0.7	22.0	22.7	50.0	-27.3	
25.769	0.6	22.0	22.6	50.0	-27.4	
26.021	0.5	22.0	22.5	50.0	-27.5	
26.189	0.3	22.1	22.4	50.0	-27.6	
26.302	0.1	22.1	22.2	50.0	-27.8	
26.506	-0.5	22.1	21.6	50.0	-28.4	

CONCLUSION


Pass


Trevor Buls Tested By



EUT:	Smart Outlet	P/N: 1212	268		Work Order:	SECF0021				
Serial Number:	None				Date:	05/01/2015				
Customer:	Select Comfo	ort Corpora	ation		Temperature:	24.3°C				
Attendees:	None				Relative Humidity:	29.2%				
Customer Project:	None				Bar. Pressure:	987.9 mb				
Tested By:	Trevor Buls				Job Site:	MN03				
Power:	110VAC/60H	lz		Configuration:	SECF0021-3					
TEST SPECIFICATIONS										
Specification:				Method	d:					
FCC 15.207:2015				ANSI C	263.10:2009					
TEST PARAME	TERS									
Run #: 9		Line:	Neutral		Ext. Attenuation (dB):	20				
COMMENTS None										
EUT OPERATIN	IG MODES									
Bluetooth LE High (Channel 2480 I	MHz								
DEVIATIONS F	ROM TEST	STAND	ARD							

None

RESULTS - Run #9

Q	Quasi Peak Data - vs - Quasi Peak Limit										
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)						
25.448	15.9	22.0	37.9	60.0	-22.1						
25.104	15.3	21.9	37.2	60.0	-22.8						
25.146	15.1	21.9	37.0	60.0	-23.0						
25.593	14.7	22.0	36.7	60.0	-23.3						
24.796	14.7	21.9	36.6	60.0	-23.4						
24.692	14.4	21.9	36.3	60.0	-23.7						

Average Data - vs - Average Limit

Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
25.448	-0.3	22.0	21.7	50.0	-28.3
25.146	-0.3	21.9	21.6	50.0	-28.4
25.104	-0.3	21.9	21.6	50.0	-28.4
25.593	-0.5	22.0	21.5	50.0	-28.5
24.796	-0.5	21.9	21.4	50.0	-28.6
24.692	-0.5	21.9	21.4	50.0	-28.6

CONCLUSION

Pass

Trevor Buls Tested By

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Bluetooth LE Low, Mid High channel: 2402, 2442, 2480 MHz (see comments)

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

SECF0021 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 25 GHz

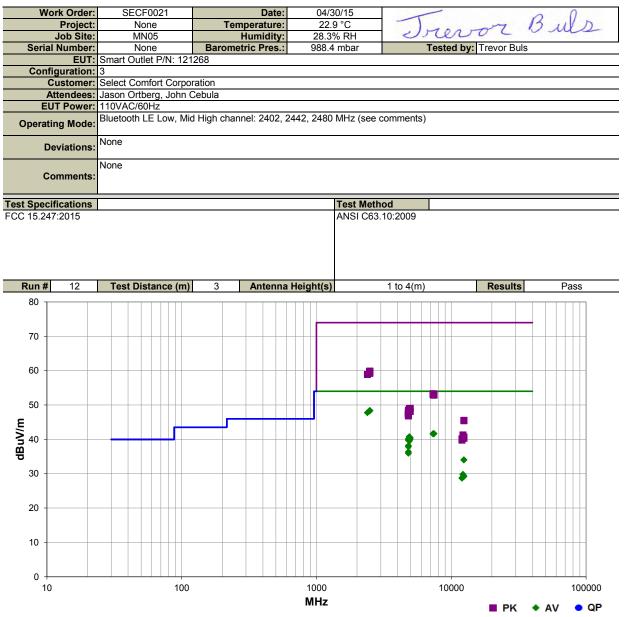
SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
High Pass Filter, 2.8 - 18 GHz	Micro-Tronics	HPM50111	HGQ	3/2/2015	12 mo
Low Pass Filter, 0 - 1000 MHz	Micro-Tronics	LPM50004	HGK	3/2/2015	12 mo
Attenuator, 20 dB, 'SMA'	SM Electronics	SA6-20	REO	3/2/2015	12 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	10/3/2014	12 mo
		18-26GHz Standard Gain			
MN05 Cable	N/A	Horn Cable	MNP	10/3/2014	12 mo
Antenna, Horn	ETS	3160-09	AHG	NCR	0 mo
Antenna, Horn	ETS	3160-07	AXP	NCR	0 mo
Antenna, Horn	ETS Lindgren	3160-08	AIQ	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVW	3/2/2015	12 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVV	3/2/2015	12 mo
MN05 Cables	ESM Cable Corp.	Standard Gain Horn Cables	MNJ	3/30/2015	12 mo
Pre-Amplifier	Miteq	AMF-3D-00100800-32-13P	AVX	3/2/2015	12 mo
		Double Ridge Guide Horn			
MN05 Cables	ESM Cable Corp.	Cables	MNI	3/30/2015	12 mo
Antenna, Horn	ETS	3115	AJA	6/3/2014	24 mo
Pre-Amplifier	Miteq	AM-1616-1000	PAD	3/2/2015	12 mo
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	3/30/2015	12 mo
Antenna, Biconilog	Teseq	CBL 6141B	AYD	12/17/2013	24 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2015	12 mo

MEASUREMENT BANDWIDTHS


Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

SPURIOUS RADIATED EMISSIONS

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	
													Comments
2488.325	31.3	-2.9	1.0	229.0	3.0	20.0	Vert	AV	0.0	48.4	54.0	-5.6	EUT Vertical, High Ch
2486.825	31.2	-2.9	1.0	340.0	3.0	20.0	Vert	AV	0.0	48.3	54.0	-5.7	EUT Horizontal, High Ch
2486.525	31.2	-2.9	1.0	137.1	3.0	20.0	Vert	AV	0.0	48.3	54.0	-5.7	EUT on Side, High Ch
2485.983	31.2	-2.9	3.7	319.9	3.0	20.0	Horz	AV	0.0	48.3	54.0	-5.7	EUT Vertical, High Ch
2484.683	31.2	-2.9	1.0	115.0	3.0	20.0	Horz	AV	0.0	48.3	54.0	-5.7	EUT on Side, High Ch
2483.867	31.2	-2.9	1.0	101.1	3.0	20.0	Horz	AV	0.0	48.3	54.0	-5.7	EUT Horizontal, High Ch
2386.433	31.0	-3.2	1.0	242.0	3.0	20.0	Vert	AV	0.0	47.8	54.0	-6.2	EUT Vertical, Low Ch
7437.792	28.4	13.3	2.1	326.9	3.0	0.0	Vert	AV	0.0	41.7	54.0	-12.3	EUT on Side, High Ch
7437.525	28.4	13.3	1.2	146.0	3.0	0.0	Horz	AV	0.0	41.7	54.0	-12.3	EUT Vertical, High Ch
7326.400	28.8	12.8	3.6	195.1	3.0	0.0	Horz	AV	0.0	41.6	54.0	-12.4	EUT Vertical, Mid Ch
7325.758	28.8	12.8	1.0	229.9	3.0	0.0	Vert	AV	0.0	41.6	54.0	-12.4	EUT on Side, Mid Ch
4882.033	35.8	5.0	1.1	307.0	3.0	0.0	Vert	AV	0.0	40.8	54.0	-13.2	EUT on Side, Mid Ch
4957.967	35.3	5.1	1.0	288.0	3.0	0.0	Horz	AV	0.0	40.4	54.0	-13.6	EUT Vertical, High Ch
4803.950	35.0	5.1	1.0	89.0	3.0	0.0	Horz	AV	0.0	40.1	54.0	-13.9	EUT Vertical, Low Ch
4958.050	34.9	5.1	1.0	325.0	3.0	0.0	Vert	AV	0.0	40.0	54.0	-14.0	EUT on Side, High Ch
2488.017	42.7	-2.9	1.0	137.1	3.0	20.0	Vert	PK	0.0	59.8	74.0	-14.2	EUT on Side, High Ch
2486.508	42.7	-2.9	1.0	229.0	3.0	20.0	Vert	PK	0.0	59.8	74.0	-14.2	EUT Vertical, High Ch
2485.325	42.7	-2.9	1.0	101.1	3.0	20.0	Horz	PK	0.0	59.8	74.0	-14.2	EUT Horizontal, High Ch
4804.133	34.6	5.1	1.0	12.1	3.0	0.0	Vert	AV	0.0	39.7	54.0	-14.3	EUT on Side, Low Ch
2484.683	42.6	-2.9	1.0	115.0	3.0	20.0	Horz	PK	0.0	59.7	74.0	-14.3	EUT on Side, High Ch
2487.067	42.5	-2.9	3.7	319.9	3.0	20.0	Horz	PK	0.0	59.6	74.0	-14.4	EUT Vertical, High Ch
4883.933	34.6	4.9	1.0	315.0	3.0	0.0	Horz	AV	0.0	39.5	54.0	-14.5	EUT Vertical, Mid Ch

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2485.333	42.1	-2.9	1.0	340.0	3.0	20.0	Vert	PK	0.0	59.2	74.0	-14.8	EUT Horizontal, High Ch
2385.500	42.1	-3.2	1.0	242.0	3.0	20.0	Vert	PK	0.0	58.9	74.0	-15.1	EUT Vertical, Low Ch
4803.942	33.0	5.1	1.1	42.0	3.0	0.0	Horz	AV	0.0	38.1	54.0	-15.9	EUT Horizontal, Low Ch
4803.842	32.7	5.1	1.0	40.1	3.0	0.0	Horz	AV	0.0	37.8	54.0	-16.2	EUT on Side, Low Ch
4804.042	31.2	5.1	1.0	169.0	3.0	0.0	Vert	AV	0.0	36.3	54.0	-17.7	EUT Horizontal, Low Ch
4803.933	30.8	5.1	1.0	311.0	3.0	0.0	Vert	AV	0.0	35.9	54.0	-18.1	EUT Vertical, Low Ch
12400.200	33.8	0.2	1.0	67.0	3.0	0.0	Vert	AV	0.0	34.0	54.0	-20.0	EUT on Side, High Ch
12400.030	33.8	0.2	1.0	92.0	3.0	0.0	Horz	AV	0.0	34.0	54.0	-20.0	EUT Vertical, High Ch
7327.400	40.5	12.8	3.6	195.1	3.0	0.0	Horz	PK	0.0	53.3	74.0	-20.7	EUT Vertical, Mid Ch
7442.117	39.8	13.3	1.2	146.0	3.0	0.0	Horz	PK	0.0	53.1	74.0	-20.9	EUT Vertical, High Ch
7325.883	40.2	12.8	1.0	229.9	3.0	0.0	Vert	PK	0.0	53.0	74.0	-21.0	EUT on Side, Mid Ch
7441.575	39.6	13.3	2.1	326.9	3.0	0.0	Vert	PK	0.0	52.9	74.0	-21.1	EUT on Side, High Ch
12209.500	34.5	-4.7	1.0	175.0	3.0	0.0	Vert	AV	0.0	29.8	54.0	-24.2	EUT on Side, Mid Ch
12211.630	34.4	-4.7	1.8	8.1	3.0	0.0	Horz	AV	0.0	29.7	54.0	-24.3	EUT Vertical, Mid Ch
12399.130	34.0	-4.7	1.0	263.0	3.0	0.0	Horz	AV	0.0	29.3	54.0	-24.7	EUT Vertical, High Ch
12398.570	33.9	-4.7	1.0	272.9	3.0	0.0	Vert	AV	0.0	29.2	54.0	-24.8	EUT on Side, High Ch
4958.242	43.9	5.1	1.0	325.0	3.0	0.0	Vert	PK	0.0	49.0	74.0	-25.0	EUT on Side, High Ch
4881.900	44.0	5.0	1.0	315.0	3.0	0.0	Horz	PK	0.0	49.0	74.0	-25.0	EUT Vertical, Mid Ch
12011.000	34.1	-5.3	1.0	294.9	3.0	0.0	Vert	AV	0.0	28.8	54.0	-25.2	EUT on Side, Low Ch
12009.280	34.0	-5.3	1.0	54.0	3.0	0.0	Horz	AV	0.0	28.7	54.0	-25.3	EUT Vertical, Low Ch
4804.492	43.3	5.1	1.0	89.0	3.0	0.0	Horz	PK	0.0	48.4	74.0	-25.6	EUT Vertical, Low Ch
4884.800	43.3	4.9	1.1	307.0	3.0	0.0	Vert	PK	0.0	48.2	74.0	-25.8	EUT on Side, Mid Ch
4958.433	43.0	5.1	1.0	288.0	3.0	0.0	Horz	PK	0.0	48.1	74.0	-25.9	EUT Vertical, High Ch
4804.725	43.0	5.1	1.0	12.1	3.0	0.0	Vert	PK	0.0	48.1	74.0	-25.9	EUT on Side, Low Ch
4803.592	42.5	5.1	1.0	40.1	3.0	0.0	Horz	PK	0.0	47.6	74.0	-26.4	EUT on Side, Low Ch
4803.392	42.4	5.1	1.1	42.0	3.0	0.0	Horz	PK	0.0	47.5	74.0	-26.5	EUT Horizontal, Low Ch
4803.242	41.9	5.1	1.0	311.0	3.0	0.0	Vert	PK	0.0	47.0	74.0	-27.0	EUT Vertical, Low Ch
4806.092	41.7	5.1	1.0	169.0	3.0	0.0	Vert	PK	0.0	46.8	74.0	-27.2	EUT Horizontal, Low Ch
12401.280	45.3	0.2	1.0	92.0	3.0	0.0	Horz	PK	0.0	45.5	74.0	-28.5	EUT Vertical, High Ch
12401.700	45.2	0.2	1.0	67.0	3.0	0.0	Vert	PK	0.0	45.4	74.0	-28.6	EUT on Side, High Ch
12207.980	46.0	-4.7	1.0	175.0	3.0	0.0	Vert	PK	0.0	41.3	74.0	-32.7	EUT on Side, Mid Ch
12397.810	45.4	-4.7	1.0	263.0	3.0	0.0	Horz	PK	0.0	40.7	74.0	-33.3	EUT Vertical, High Ch
12211.630	45.4	-4.7	1.8	8.1	3.0	0.0	Horz	PK	0.0	40.7	74.0	-33.3	EUT Vertical, Mid Ch
12398.710	45.0	-4.7	1.0	272.9	3.0	0.0	Vert	PK	0.0	40.3	74.0	-33.7	EUT on Side, High Ch
12009.730	45.5	-5.3	1.0	294.9	3.0	0.0	Vert	PK	0.0	40.2	74.0	-33.8	EUT on Side, Low Ch
12009.520	45.1	-5.3	1.0	54.0	3.0	0.0	Horz	PK	0.0	39.8	74.0	-34.2	EUT Vertical, Low Ch

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

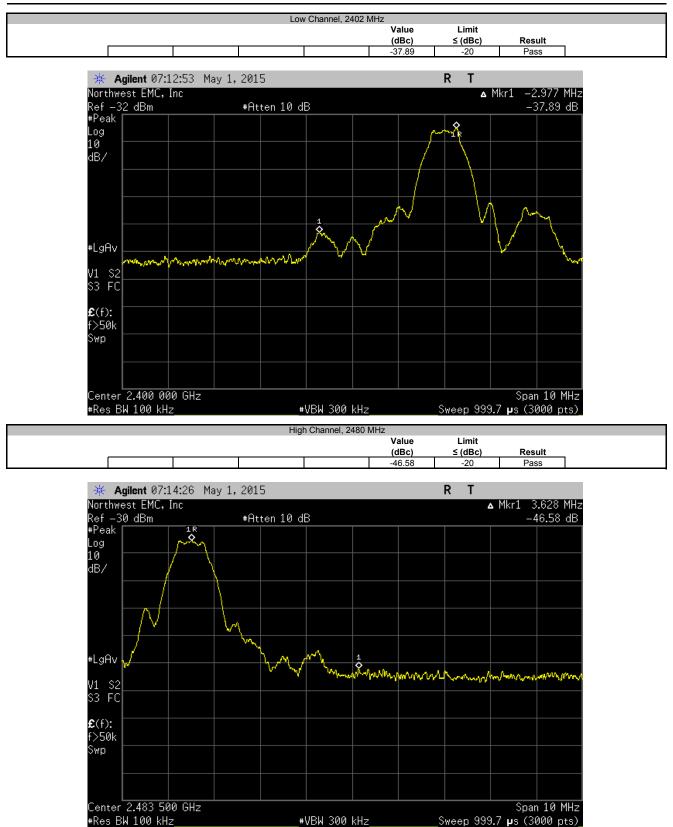
					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
MN08 Direct Connect Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	10/2/2014	12
Near Field Probe Set	ETS Lindgren	7405	IPO	NCR	0
Spectrum Analyzer	Agilent	E4440A	AAX	4/20/2015	12

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet.

The spectrum was scanned below the lower band edge and above the higher band edge.

BAND EDGE COMPLIANCE



EUT:	Smart Outlet P/N: 121268				Work Order:	SECF0021				
Serial Number:	None				Date:	05/01/15				
Customer:	Select Comfort Corporat	ion			Temperature:	23.7°C				
Attendees:	None				Humidity:	24%				
Project:	None				Barometric Pres.:	988.7				
Tested by:	Trevor Buls			Power: 110VAC/60Hz	Job Site: MN08					
TEST SPECIFICATI	ONS			Test Method						
FCC 15.247:2015				ANSI C63.10:2009						
COMMENTS				•						
None										
DEVIATIONS FROM	I TEST STANDARD									
None										
Configuration #	3	Signature	Tree	or Buls						
					Value (dBc)	Limit ≤ (dBc)	Result			
Low Channel, 2402	MHz				-37.89	-20	Pass			
High Channel, 2480	MHz				-46.58	-20	Pass			

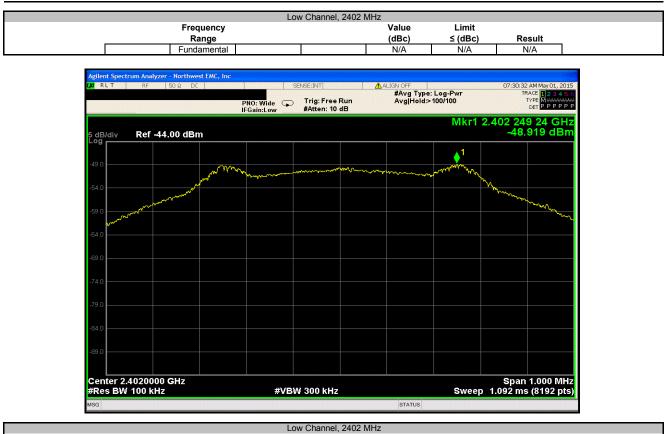
Report No. SECF0021.1

BAND EDGE COMPLIANCE

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

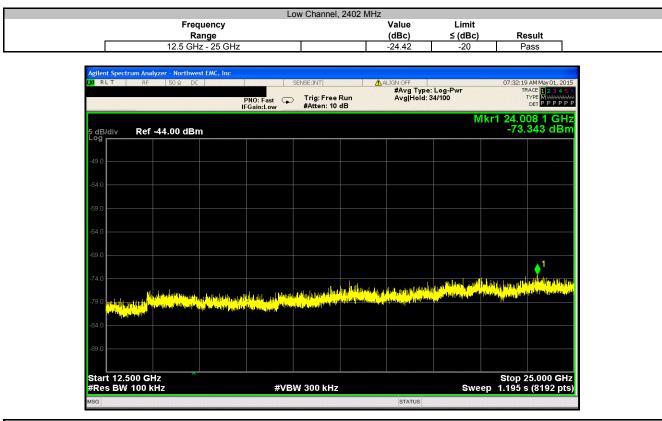
TEST EQUIPMENT

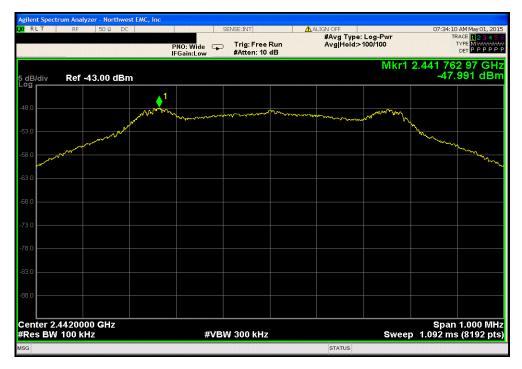
					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
MN05 Cables	ESM Cable Corp.	Bilog Cables	MNH	3/30/2015	12
Antenna, Horn	ETS	3115	AJA	6/3/2014	24
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2015	12

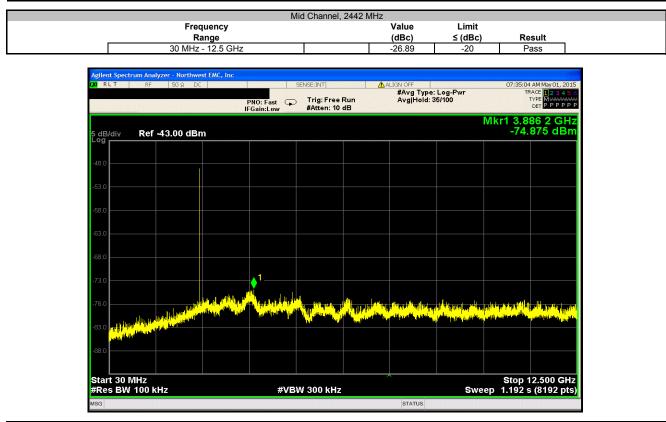

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium and high transmit frequencies. The measurements were made using a the spectrum analyzer. The EUT was transmitting at the data rate(s) listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

EUT.	Smart Outlet P/N: 121268			Work Order:	SECE0024	
Serial Number:					05/01/15	
	Select Comfort Corporation			Temperature:		
Attendees:				Humidity:		
Project:				Barometric Pres.:		
	Trevor Buls		Power: 110VAC/60Hz	Job Site:		
EST SPECIFICATIO			Test Method			
CC 15.247:2015			ANSI C63.10:2009			
OMMENTS						
lone						
EVIATIONS FROM	I TEST STANDARD					
EVIATIONS FROM	I TEST STANDARD					
	1 TEST STANDARD	Signature	Trevor Buls			
lone		Signature	Frequency	Value	Limit	
one configuration #	3	Signature	Frequency Range	(dBc)	≤ (dBc)	Result
one onfiguration #	3 MHz	Signature	Frequency Range Fundamental	(dBc) N/A	≤ (dBc) N/A	N/A
one onfiguration # ow Channel, 2402 M ow Channel, 2402 M	3 MHz MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -25.46	≤ (dBc)	
one onfiguration # ow Channel, 2402 N ow Channel, 2402 N ow Channel, 2402 N	3 MHz MHz MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -25.46 -24.42	≤ (dBc) N/A -20 -20	N/A Pass Pass
one onfiguration # box Channel, 2402 N box Channel, 2402 N box Channel, 2402 N id Channel, 2442 M	3 MHz MHz MHz HIz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	(dBc) N/A -25.46 -24.42 N/A	≤ (dBc) N/A -20 -20 N/A	N/A Pass Pass N/A
one onfiguration # ow Channel, 2402 N ow Channel, 2402 N w Channel, 2402 N id Channel, 2442 M id Channel, 2442 M	3 MHz MHz MHz AHz MHz MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz	(dBc) N/A -25.46 -24.42 N/A -26.89	≤ (dBc) N/A -20 -20 N/A -20	N/A Pass Pass N/A Pass
one onfiguration # ow Channel, 2402 N ow Channel, 2402 N ow Channel, 2442 M id Channel, 2442 M id Channel, 2442 M	3 MHz MHz MHz AHz AHz MHz MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -25.46 -24.42 N/A -26.89 -25.64	≤ (dBc) N/A -20 -20 N/A -20 -20 -20	N/A Pass Pass N/A Pass Pass
one onfiguration # ow Channel, 2402 N ow Channel, 2402 N id Channel, 2442 M lid Channel, 2442 M lid Channel, 2442 M lid Channel, 2442 M	3 MHz MHz MHz MHz MHz MHz MHz MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental	(dBc) N/A -25.46 -24.42 N/A -26.89 -25.64 N/A	≤ (dBc) N/A -20 -20 N/A -20 -20 N/A	N/A Pass Pass N/A Pass Pass N/A
one onfiguration # ow Channel, 2402 N ow Channel, 2402 N id Channel, 2442 M lid Channel, 2442 M	3 MHz MHz MHz AHz MHz MHz MHz MHz	Signature	Frequency Range Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz Fundamental 30 MHz - 12.5 GHz 12.5 GHz - 25 GHz	(dBc) N/A -25.46 -24.42 N/A -26.89 -25.64	≤ (dBc) N/A -20 -20 N/A -20 -20 -20	N/A Pass Pass N/A Pass Pass




Low Channel, 2402 MHz							
Frequency		Value	Limit				
Range		(dBc)	≤ (dBc)	Result			
30 MHz - 12.5 GHz		-25.46	-20	Pass			


RL	T RI	= 50Ω (DC		SENSE:INT	<u>A</u>	LIGN OFF		07:31:25	5 AM May 01, 201
				PNO: Fast 🖵 IFGain:Low	Trig: Free F #Atten: 10 (#Avg Type: Avg Hold: 3			RACE 12345 TYPE MUNICIPAL DET PPPP
dB/c	div R e	f -44.00 dE	Sm						Mkr1 3.7 -74.	43 1 GH 378 dBn
9.0										
4.0 -										
4.0										
9.0										
3.0										
4.0				1						
9.0				dia Ny faritr'ora dia mampiasa dia ma Ny faritr'ora dia mampiasa dia ma	dal Alara Mahalimita di		, Alex, selling h. e	n oki b aratakia	Ald world. Aller	Littlend dates .
4.0 ¹¹	the set the			and a second		and the second sec			and a star of the start of the st	unnidan _{au s} .
9.0 -	liniya ^{ntak k}									
	30 MHz BW 100	kHz		#VB	W 300 kHz			Swe	Stop 1 ep 1.192 s	12.500 GH
G			******		11 93 9 KHZ		STATUS		op 1413/2 3	protection of the

Mid Channel, 2442 MHz						
Frequency			Value	Limit		
Range			(dBc)	≤ (dBc)	Result	
Fundamental			N/A	N/A	N/A	

Mid Channel, 2442 MHz						
Frequency	Value	Limit				
Range	(dBc)	≤ (dBc)	Result			
12.5 GHz - 25 GHz	-25.64	-20	Pass			

RL	T RF	50 Ω D			SENSE:INT	<u>A</u> A	LIGN OFF			3 AM May 01, 20:
				PNO: Fast 🖵 Gain:Low	Trig: Free #Atten: 10		#Avg Type: Avg Hold: 3	Log-Pwr 4/100	Т	RACE 1 2 3 4 5 TYPE MUNUM DET P P P P P
dB/c	liv Ref	-43.00 dB	m					Ν	/lkr1 24.4 -73.	07 9 GH 626 dBi
48.0										
3.0 -										
8.0 -										
3.0										
8.0 -										▲ 1
3.0 - 3.0 -			hat an a ha a		Kalanda Ju ^{ka} kan	ll la llin (lin <mark>l</mark> a para				Wallanda Jahra. Matukana Jahra
3.0		t paliti dati di da ta	al hay be as for the layer and a second of the second		rughan fely high lite series	A SALE AND A SALE A	hihadu, _H uliyaaasidi.			
3.O -										
	12.500 G BW 100			#VB	W 300 kHz			Swe	Stop 2 eep 1.195 s	25.000 GF
1045	BW 1001	M112		#*	W 300 MHZ			300	-ep 1.195 :	s to i az pi

High Channel, 2480 MHz						
Frequency		Value	Limit			
Range		(dBc)	≤ (dBc)	Result		
30 MHz - 12.5 GHz		-25.1	-20	Pass		

RLT	RF	50 Ω DC			SENSE:INT		LIGN OFF		07:26:59	AM May 01, 201
			Π	PNO: Fast 🕞	Trig: Free #Atten: 10	Run dB	#Avg Type: Avg Hold: 3	Log-Pwr 5/100	TF	RACE 12345 TYPE MUNUM DET PPPP
dB/div	Ref -	45.00 dBr	n						Mkr1 3.8 -74.	07 1 GH 730 dBr
og 										
5.0										
0.0										
5.0										
D.O				1						
5.0			a. Jaco de la contra			lla alleba	and a block have	abels I and .	and, dhadhallita	
0.0 				ان <u>ر أنبال رينوسي الم</u>			and a state of the second s			
5.0 <mark>jin.</mark>	L BY									
0.0										
	0 MHz W 100 kH	17		#VE	3W 300 kHz	, ,		Swe	Stop 1 ep 1.192 s	12.500 GH
							opposite the second descent and the second se		AP HIGE	

		F	ligh Channel, 24	80 MHz			
	Frequenc	у		Value	Limit		
	Range			(dBc)	≤ (dBc)	Result	
	12.5 GHz - 25	GHz		-23.15	-20	Pass	
Agilent Spectrum An	alyzer - Northwest EMC,	Inc					
LXI RLT RF			SENSE:INT	ALIGN OFF		07:27:53 AM May 01, 2	
			Tains Free Pro	#Avg	Type: Log-Pwr Iold: 34/100	TRACE 1 2 3 4 TYPE M WAA	56
		PNO: Fast G	Trig: Free Rui #Atten: 10 dB	n Avgir	1010: 34/100	DET P P P	PP
					N	1kr1 21.558 7 G	
5 dB/div Ref	f -45.00 dBm					-72.778 dE	
Log							
-50.0							
-55.0							
-60.0							
-65.0							
-70.0					1		
-75.0			1			lught on the log light of the lage of the lage of the lage of the log light of the log light of the lage of the la	i y i
		والفارية ورجا المأم وقفاته ورياماتها	and the part of the		A CARLES AND A CARLE	المراجع المناطقة فرها المربي والمتحرك	of the second second
-80.0 - 19 - 19 - 19	a second and a second	Real Property and a second second second	and the second	I CONTRACTOR INTERPORT			
and the second							
-85.0							
-90.0							
Start 12.500 G	HZ		~			Stop 25.000 G	H7
#Res BW 100		#VE	300 kHz		Swe	ep 1.195 s (8192 p	ts)
MSG				STAT			_

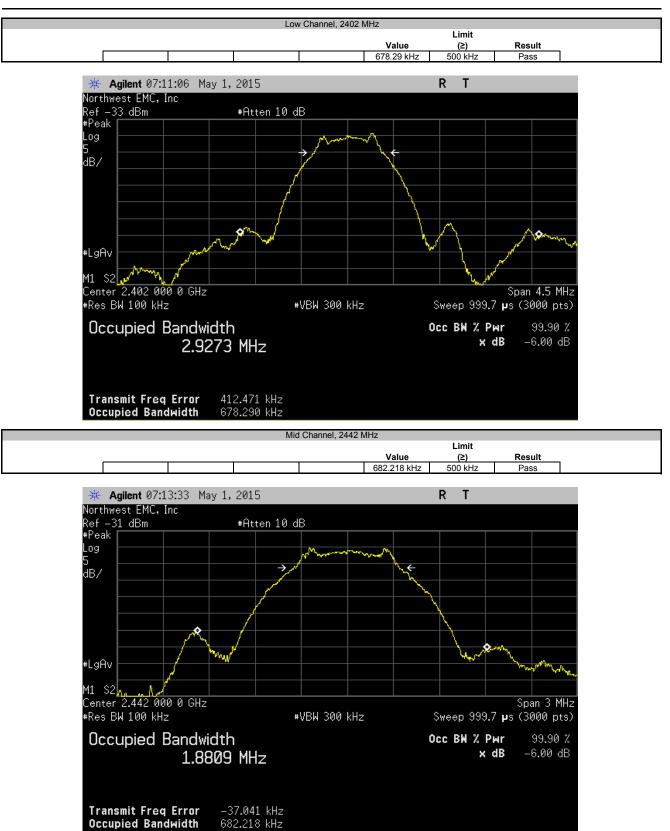
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

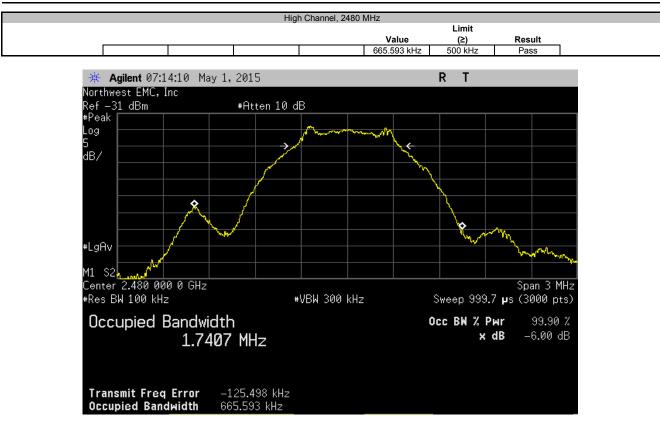
TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
MN08 Direct Connect Cable	ESM Cable Corp.	TTBJ141 KMKM-72	MNU	10/2/2014	12
Near Field Probe Set	ETS Lindgren	7405	IPO	NCR	0
Spectrum Analyzer	Agilent	E4440A	AAX	4/20/2015	12

TEST DESCRIPTION

The 6dB occupied bandwidth was measured. The 26 dB (99.9%) emission bandwidth (EBW) was also measured at the same time.


The EUT was set to low, medium and high transmit frequencies. The measurement was made in a radiated configuration. The EUT was transmitting at the data rate(s) listed in the datasheet.


EUT:	Smart Outlet P/N: 121268	Work Order:	SECF0021	
Serial Number:	None	Date:	05/01/15	
	Select Comfort Corporation	Temperature:		
Attendees:		Humidity:		
Project:		Barometric Pres.:		
	Trevor Buls Power: 110VAC/60Hz	Job Site:	MN08	
TEST SPECIFICAT				
FCC 15.247:2015	ANSI C63.10:2009			
COMMENTS				
None				
DEVIATIONS FROM	TEST STANDARD			
None				
Configuration #	3 Signature Trevor Buls			
			Limit	
		Value	(≥)	Result
Low Channel, 2402	IHz	678.29 kHz	500 kHz	Pass
Mid Channel, 2442	Hz	682.218 kHz	500 kHz	Pass
High Channel, 2480	ЛНг	665.593 kHz	500 kHz	Pass

Report No. SECF0021.1

OUTPUT POWER

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Bluetooth LE Low, Mid, High channel: 2402, 2442, 2480 MHz (see comments)

POWER SETTINGS INVESTIGATED

110VAC/60Hz

CONFIGURATIONS INVESTIGATED

SECF0021 - 3

FREQUENCY RANGE INVESTIGATED

Start Frequency 2400 MHz

Stop Frequency 2483.5 MHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Power Sensor	Agilent	N8481A	SQN	8/22/2014	12 mo
Power Meter	Agilent	N1913A	SQL	8/22/2014	12 mo
Signal Generator	Agilent	E4422B	TGQ	3/23/2015	36 mo
Antenna, Horn	ETS	3115	AIB	8/12/2014	24 mo
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2015	12 mo
		Double Ridge Guide Horn			
MN05 Cables	ESM Cable Corp.	Cables	MNI	3/30/2015	12 mo
Antenna, Horn	ETS	3115	AJA	6/3/2014	24 mo

TEST DESCRIPTION

The fundamental emissions from the EUT were maximized by rotating the EUT, adjusting the measurement antenna height (1-4 meters) and polarization and manipulating the EUT antenna in 3 orthogonal planes The antennas to be used with the EUT were tested. The EUT was transmitting while set at the lowest channel, a middle channel, and the highest channel available. The EUT was then replaced with a horn antenna. A signal generator was connected to the horn antenna and its output was adjusted to match the level previously noted for each frequency. The output of the signal generator was recorded, and by factoring in the gain (dBi) of the horn antenna the effective radiated power for each emission was determined.

Prior to measuring peak transmit power the DTS bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.

The method found in KDB 558074 DTS D01 Measurement Section 9.1.1 was used because the RBW on the analyzer was greater than the DTS Bandwidth of the radio.

De Facto EIRP Limit: Per 47 CFR 15.247 (b)(1-3), the EUT meets the de facto EIRP limit of +36 dBm.

EMC

OUTPUT POWER

Wo	ork Order	SECF	0021		Date:	04/3	0/15		-		0	0
	Project		ne	Ten	nperature:		9°C	-		02	BI	VD
	Job Site				Humidity:	28.39		2)	ter	OC	~ m	is
Seria	I Number				988.4			Tested by:	Trevor Buls			
							,					
Conf	iguration	3	011711.121	200								
00111	ustomor	Select Cor	nfort Corn									
	ttendees		mont corp.									
			21.1-									
E(JI Power	: 110VAC/6										
Operati	ing Mode	•	_E Low, Mic	d, High cha	nnel: 2402,	2442, 2480) MHz (see	comments	5)			
D	eviations											
C	omments	None :										
ost Spoci	ifications						Test Meth	od	1			
CC 15.24							ANSI C63.					
D		T+ P'			A			4 +		Decultur		
Run #	18	Test Dis	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	P	ass
40 _T												
												+
20 -												
0 +												
-											7	
Б -20 -												
_ B												
_40												
-40 -												
-40 -												
-40 -												
-40 -												
-60 -												
-60 -												
-60 -	00	2410	2420	2	430	2440	2450	0	2460	2470	24	480
-60 -	00	2410	2420	2	430		2450	0	2460			
-60 -	00	2410	2420	2	430	2440 MHz	2450	0	2460	2470 PK	24 • AV	180 • QP
-60 -	00	2410	2420		430		2450	0	2460			
-60 -	00	2410	2420	Polarity/	430		2450	0				
-60 -		2410		Polarity/ Transducer	430		2450 EIRP	0 Spec. Limit	2460 Compared to Spec.	■ РК		• QP
-60 -	Freq			Polarity/		MHz			Compared to	■ РК	◆ AV	• QP
-60 -		Antenna Height	Azimuth	Polarity/ Transducer		MHz	EIRP	Spec. Limit	Compared to Spec.	■ РК	AV Comments	• QP

2441.933	1.5	282.0	Horz	PK	1.32E-04	-8.8	36.0	-44.8	EUT Vertical, Mid Ch	
2402.083	2.0	292.0	Horz	PK	1.14E-04	-9.4	36.0	-45.4	EUT Vertical, Low Ch	
2479.833	1.4	296.0	Vert	PK	1.07E-04	-9.7	36.0	-45.7	EUT on Side, High Ch	
2479.817	1.9	294.9	Horz	PK	1.05E-04	-9.8	36.0	-45.8	EUT Vertical, High Ch	
2401.900	1.1	289.9	Vert	PK	9.68E-05	-10.1	36.0	-46.1	EUT on Side, Low Ch	
2441.833	1.0	288.0	Vert	PK	8.15E-05	-10.9	36.0	-46.9	EUT on Side, Mid Ch	
2479.500	1.0	175.0	Horz	PK	7.96E-05	-11.0	36.0	-47.0	EUT Horizontal, High Ch	
2479.450	1.4	306.0	Horz	PK	6.93E-05	-11.6	36.0	-47.6	EUT on Side, High Ch	
2482.667	1.1	340.9	Vert	PK	5.14E-05	-12.9	36.0	-48.9	EUT Vertical, High Ch	
2479.933	1.0	35.0	Vert	PK	3.72E-05	-14.3	36.0	-50.3	EUT Horizontal, High Ch	

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					Interval
Description	Manufacturer	Model	ID	Last Cal.	(mo)
Antenna, Horn	ETS	3115	AJA	6/3/2014	24
MN05 Cables	ESM Cable Corp.	uble Ridge Guide Horn Cab	MNI	3/30/2015	12
Spectrum Analyzer	Agilent	N9010A	AFI	1/27/2015	12

TEST DESCRIPTION

The maximum power spectral density measurements were measured with the EUT set to the required transmit frequencies in each band. The EUT was transmitting at the lowest, middle, and maximum data rate for each modulation type available.

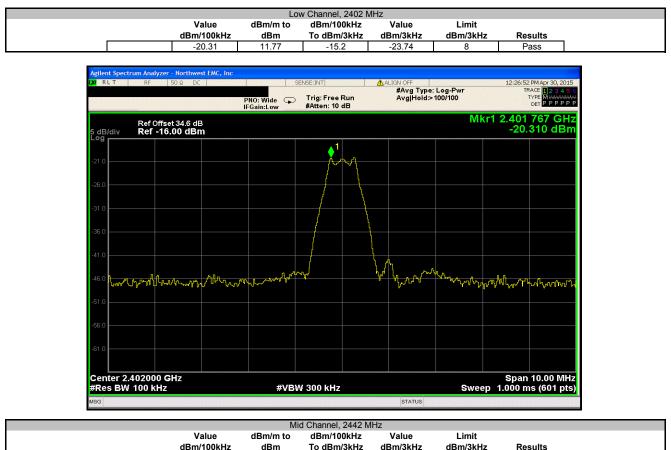
The final data was converted from a field strength to a radiated power value. Equation 5 found in ANSI C63.10:2009, was used to derive this conversion formula:

dBm/m (field strength) + 11.77 = dBm EIRP

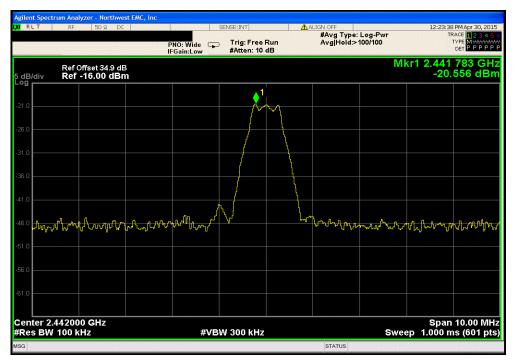
Per the procedure outlined in FCC KDB 558074 D01 DTS Measurement Section 5.3.1, the spectrum analyzer was used as follows:

≻RBW = 100 kHz

≻VBW = 300 kHz


>Detector = Peak (to match method used for power measurement)

≻Trace = Max hold


The observed power level is then scaled to an equivalent value in 3 kHz by adding a Bandwidth Correction Factor (BWCF) where:

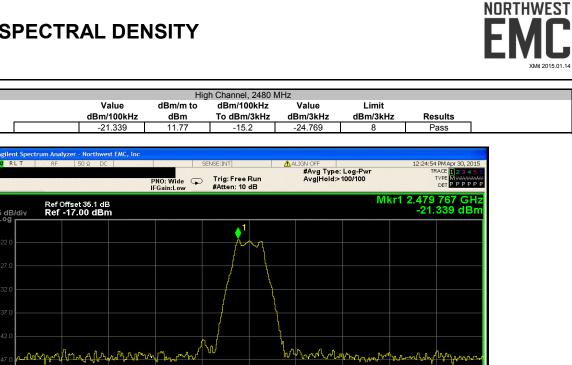
EUT: Sm	nart Outlet P/N: 121268							Work Order:	SECF0021	
Serial Number: Nor									04/30/15	
Customer: Sel	lect Comfort Corporation	n						Temperature:	24.1°C	
Attendees: Nor	one							Humidity:	25%	
Project: Nor								Barometric Pres.:	988.1	
Tested by: Tre				Power: 1	10VAC/60Hz			Job Site:	MN05	
EST SPECIFICATIONS	S			T	est Method					
CC 15.247:2015				A	NSI C63.10:2009					
COMMENTS										
lone	EST STANDARD									
COMMENTS None DEVIATIONS FROM TEN None	EST STANDARD									
Ione	EST STANDARD	Signature	In	ievor	Buls					
one EVIATIONS FROM TE		Signature	Ja	ievor	Buls Value dBm/100kHz	dBm/m to dBm	dBm/100kHz To dBm/3kHz	Value dBm/3kHz	Limit dBm/3kHz	Results
one EVIATIONS FROM TE one onfiguration #	3	Signature	Jr	ievor	Value					Results Pass
Ione DEVIATIONS FROM TE Ione	3	Signature	Jr	ievor	Value dBm/100kHz	dBm	To dBm/3kHz	dBm/3kHz	dBm/3kHz	

	Mid Channel, 2442 MHz								
		Value	dBm/m to	dBm/100kHz	Value	Limit			
		dBm/100kHz	dBm	To dBm/3kHz	dBm/3kHz	dBm/3kHz	Results		
l		-20.556	11.77	-15.2	-23.986	8	Pass		

RLT

5 dB/div

Center 2.480000 GHz #Res BW 100 kHz


Value

-21.339

#VBW 300 kHz

50 Ω DC

Ref Offset 35.1 dB Ref -17.00 dBm

STATUS

Span 10.00 MHz Sweep 1.000 ms (601 pts)

DUTY CYCLE

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.