

198 Kezhu Road, Scientech Park, Guangzhou Economic & Technological Development District, Guangzhou, China 51 0663

Telephone: +86 (0) 20 82155555 Fax: +86 (0) 20 82075059 Email: ee.guangzhou@sgs.com Report No.: GZEM150500203303

Page: 1 of 50

FCC ID: 2AAFMRDA0003

FCC REPORT

The following sample(s) was/were submitted and identified on behalf of the client as:

Application No.: GZEM1505002033CR (Ref. SZEM1504002241CR)

Applicant: Corsair Memory, Inc.

Manufacturer:Shenzhen Horn Audio Co., LtdFactory:Shenzhen Horn Audio Co., Ltd

Product Name: Wireless headset

Model No.(EUT): RDA0003
Trade Mark: Corsair

FCC ID: 2AAFMRDA0003

Standards: 47 CFR Part 15, Subpart C (2014)

Date of Receipt: 2015-05-08

Date of Test: 2015-05-14 to 2015-05-22

Date of Issue: 2015-05-27

Test Result: PASS *

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspxand.for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: GZEM150500203303

Page: 2 of 50

2 Version

Revision Record							
Version	Version Chapter Date Modifier Remark						
00		2015-05-27		Original			

Authorized for issue by:			
Tested By	Little Xiang	2015-05-14 to 2015-05-22	
	(Little Xiang) /Project Engineer	Date	
Prepared By	June Chen (June Chen) /Clerk	2015-05-27 Date	
	(Julie Chell) /Clerk	Date	
Checked By	3	2015-05-27	
	(Jerry Chan) /Reviewer	Date	

Report No.: GZEM150500203303

Page: 3 of 50

3 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement 47 CFR Part 15, Subpart C Second 15.203		ANSI C63.10 (2009)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2009)	PASS	
Field Strength of the Fundamental Signal	47 CFR Part 15, Subpart C Section 15.249 (a)	ANSI C63.10 (2009)	PASS	
Spurious Emissions	47 CFR Part 15, Subpart C Section 15.249 (a)/15.209	ANSI C63.10 (2009)	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.249(a)/15.205	ANSI C63.10 (2009)	PASS	
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.215 (c)	ANSI C63.10 (2009)	PASS	

Model No.: RDA0003

RDA0003 is identical on circuitry design, PCB layout, electrical components used, internal wiring and functions ,which we chose to be tested by SGS and only different on color.

Report No.: GZEM150500203303

4 of 50 Page:

Contents

			Page
1	С	OVER PAGE	1
2	٧	/ERSION	2
3	Т	EST SUMMARY	3
4		CONTENTS	
5		SENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2		
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	7
	5.6	TEST FACILITY	8
	5.7	DEVIATION FROM STANDARDS	9
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	9
	5.9		
	5.10	DEQUIPMENT LIST	10
6	Т	EST RESULTS AND MEASUREMENT DATA	13
	6.1	Antenna Requirement	13
	6.2	CONDUCTED EMISSIONS	14
	6.3	RADIATED SPURIOUS EMISSIONS	18
	6.4	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	28
	6.5	20dB Bandwidth	46-50

Report No.: GZEM150500203303

Page: 5 of 50

5 General Information

5.1 Client Information

Applicant:	Corsair Memory, Inc.		
Address of Applicant:	47100 Bayside Pkwy, Fremont, CA 94538, USA		
Manufacturer:	Shenzhen Horn Audio Co., Ltd		
Address of Manufacturer:	No.6, 4 th Guihua Rd, Pingshan, Longgang, Shenzhen		
Factory:	Shenzhen Horn Audio Co., Ltd		
Address of Factory:	No.6, 4 th Guihua Rd, Pingshan, Longgang, Shenzhen		

5.2 General Description of EUT

Product Name:	Wireless headset
Model No.:	RDA0003
Trade Mark:	Corsair
Carrier Frequency	2425.35MHz-2477.35MHz
Modulation Type:	π/4DQPSK
Channel Number:	27 (declared by the client)
Channel Spacing:	2MHz (declared by the client)
EUT Function:	Wireless headset
Sample Type:	Portable production
Test Power Grade:	Default setting (manufacturer declare)
Test Software of EUT:	VMI Dev Software (manufacturer declare)
Antenna Type:	Integral (Remark: The Antenna1 and Antenna2 can not transmit simultaneously)
Antenna Gain:	-0.61dBi
Power Supply:	Rechargeable battery DC 3.7V 1000mAh Charge by USB
USB Cable:	160cm unshielded
Test Voltage:	AC 120V 60Hz

Report No.: GZEM150500203303

Page: 6 of 50

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency			
1 CH	2.42535GHz	10 CH	2.44335GHz	19 CH	2.46135GHz			
2 CH	2.42735GHz	11 CH	2.44535GHz	20 CH	2.46335GHz			
3 CH	2.42935GHz	12 CH	2.44735GHz	21 CH	2.46535GHz			
4 CH	2.43135GHz	13 CH	2.44935GHz	22 CH	2.46735GHz			
5 CH	2.43335GHz	14 CH	2.45135GHz	23 CH	2.46935GHz			
6 CH	2.43535GHz	15 CH	2.45335GHz	24 CH	2.47135GHz			
7 CH	2.43735GHz	16 CH	2.45535GHz	25 CH	2.47335GHz			
8 CH	2.43935GHz	17 CH	2.45735GHz	26 CH	2.47535GHz			
9 CH	2.44135GHz	18 CH	2.45935GHz	27 CH	2.47735GHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency	
The Lowest channel(CH1)	2425.35MHz	
The Middle channel(CH14)	2451.35MHz	
The Highest channel(CH27)	2477.35MHz	

Report No.: GZEM150500203303

Page: 7 of 50

5.3 Test Environment and Mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	52 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.

5.4 Description of Support Units

The EUT has been tested independently.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou Branch EMC Laboratory, 198 Kezhu Road, Scientech Park, Guangzhou Economic & Technology Development District, Guangzhou, China 510663

Tel: +86 20 82155555 Fax: +86 20 82075059

No tests were sub-contracted.

Report No.: GZEM150500203303

Page: 8 of 50

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• NVLAP (Lab Code: 200611-0)

SGS-CSTC Standards Technical Services Co., Ltd., Guangzhou EMC Laboratory is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP/NIST). NVLAP Code: 200611-0.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

ACMA

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our NVLAP accreditation.

SGS UK(Certificate No.: 32), SGS-TUV SAARLAND and SGS-FIMKO

Have approved SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory as a supplier of EMC TESTING SERVICES and SAFETY TESTING SERVICES.

CNAS (Lab Code: L0167)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been assessed and in compliance with CNAS-CL01:2006 accreditation criteria for testing laboratories (identical to ISO/IEC 17025:2005 General Requirements) for the Competence of Testing Laboratories.

• FCC (Registration No.: 282399)

SGS-CSTC Standards Technical Services Co., Ltd., EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 282399, May 31, 2002.

Industry Canada (Registration No.: 4620B-1)

The 3m/10m Alternate Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd., has been registered by Certification and Engineering of Industry Canada for radio equipment testing with Registration No. 4620B-1.

VCCI (Registration No.: R-2460, C-2584, G-449 and T-1179)

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co. Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-2460, C-2584, G-449 and T-1179 respectively.

CBTL (Lab Code: TL129)

SGS-CSTC Standards Technical Services Co., Ltd., E&E Laboratory has been assessed and fully comply with the requirements of ISO/IEC 17025:2005, the Basic Rules, IECEE 01:2006-10 and Rules of procedure IECEE 02:2006-10, and the relevant IECEE CB-Scheme Operational documents.

Report No.: GZEM150500203303

Page: 9 of 50

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: GZEM150500203303

10 of 50 Page:

5.10 Equipment List

Conducte	Conducted Emission						
No.	To at Familians and	Manufacturer	Model No.	Serial No.	Cal. date	Cal.Due date	
NO.	Test Equipment	wanulacturer	woder No.		(YYYY-MM-DD)	(YYYY-MM-DD)	
EMC0306	Shielding Room	Zhong Yu	8 x 3 x 3.8 m ³	N/A	N/A	N/A	
EMC0118	Two-line v-netwok	R&S	ENV216	100359	2015-03-02	2016-03-02	
EMC0102	LISN	SCHAFFNER CHASE	MN2050D/1	1421	2014-09-14	2015-09-14	
EMC0506	EMI Test Receiver	Rohde & Schwarz	ESCS30	100085	2015-03-02	2016-03-02	
EMC0107	Coaxial Cable	SGS	2m	N/A	2014-07-25	2016-07-25	
EMC0106	Voltage Probe	SGS	N/A	N/A	2014-04-19	2016-04-19	
EMC0120	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T8-02	20550	2014-08-30	2015-08-30	
EMC0121	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T4-02	20549	2014-08-30	2015-08-30	
EMC0122	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN-T2-02	20548	2014-08-30	2015-08-30	
EMC2047	CDN	Elektronik- Feinmechanik	L-801:AF2	2793	2012-09-23	2015-09-23	
EMC2048	CDN	Elektronik- Feinmechanik	L-801:M2/M3	2738	2012-09-23	2015-09-23	
EMC2062	6dB Attenuator	HP	8491A	24487	2014-04-19	2016-04-19	
EMC167	Conical metal housing	SGS-EMC	N/A	N/A	2014-02-16	2016-02-16	

RE in Cha	mber					
No.	Toot Equipment	Manufacturer	Model No.	Serial No.	Cal. date	Cal.Due date
NO.	Test Equipment	wanulacturer	woder No.	Serial No.	(YYYY-MM-DD)	(YYYY-MM-DD)
EMC0525	Compact Semi- Anechoic Chamber	ChangZhou ZhongYu	N/A	N/A	2014-12-5	2015-12-5
EMC0522	EMI Test Receiver	Rohde & Schwarz	ESIB26	100283	2015-03-02	2016-03-02
EMC0056	EMI Test Receiver	Rohde & Schwarz	ESCI	100236	2015-04-07	2016-04-07
EMC0528	RI High frequency Cable	SGS	20 m	N/A	2014-04-19	2016-04-19
EMC2025	Trilog Broadband Antenna 30-1000MHz	SCHWARZBECK MESS- ELEKTRONIK	VULB 9160	9160-3372	2014-07-14	2017-07-14
EMC0524	Bi-log Type Antenna	Schaffner -Chase	CBL6112B	2966	2013-08-31	2016-08-31
EMC0519	Bilog Type Antenna	Schaffner -Chase	CBL6143	5070	2014-05-04	2017-05-04
EMC2026	Horn Antenna 1-18GHz	SCHWARZBECK MESS- ELEKTRONIK	BBHA 9120D	9120D-841	2013-08-31	2016-08-31
EMC0521	1-26.5 GHz Pre-Amplifier	Agilent	8449B	3008A01649	2015-03-02	2016-03-02
EMC2065	Amplifier	HP	8447F	N/A	2014-08-25	2015-08-25
EMC0075	310N Amplifier	Sonama	310N	272683	2015-03-02	2016-03-02
EMC0523	Active Loop Antenna	EMCO	6502	42963	2014-03-03	2016-03-03
EMC2041	Broad-Band Horn Antenna (14)15-26.5(40)GHz	SCHWARZBECK MESS- ELEKTRONI	BBHA 9170	9170-375	2014-05-26	2017-05-26
EMC2079	High Pass Filter(915MHz)	FSY MICROWAVE	HM1465-9SS	009	2015-03-02	2016-03-02
EMC2069	2.4GHz filter	Micro-Tronics	BRM 50702	149	2015-03-02	2016-03-02
EMC0530	10m Semi- Anechoic Chamber	ETS	N/A	N/A	2014-05-03	2016-05-03

Report No.: GZEM150500203303

Page: 11 of 50

No.	Toot Equipment	Manufacturer	Model No.	Serial No.	Cal. date Cal. Due date		
NO.	Test Equipment	Manufacturer	woder No.	Serial No.	(YYYY-MM-DD)	(YYYY-MM-DD)	
EMC0039	Temperature Chamber	GZ GongWen Co.Ltd.	GDJW-100	118	2014-08-25	2015-08-25	
EMC2022	DC Power Supply	KIKUSUI ELECTRONICS CORP.	PAN60-20A	HH000269	2015-03-02	2016-03-02	
EMC0007	DMM	Fluke	73	70671122	2014-09-15	2015-09-15	
EMC0006	DMM	Fluke	73	70681569	2014-09-15	2015-09-15	
EMC0525	Compact Semi- Anechoic Chamber	ChangZhou ZhongYu	N/A	N/A	2014-12-5	2015-12-5	
EMC0530	10m Semi- Anechoic Chamber	ETS	N/A	N/A	2014-05-03	2016-05-03	
EMC2080	Biconical Antenna (Tx)	Rohde & Schwarz	HK116	100641	201412-04	2017-12-03	
EMC2082	Log-Perd. Dipole Antenna (Rx)	Rohde & Schwarz	HL223	100624	201412-04	2017-12-03	
EMC2026	Horn Antenna (Rx)	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120D	9120D-84	2013-08-31	2016-08-31	
EMC0519	Bilog Type Antenna	Schaffner Chase	CBL6143	5070	2014-05-04	2017-05-04	
EMC0521	1-26.5GHz Pre Amplifier	Agilent	8449B	3008A01649	2015-03-02	2016-03-02	
EMC0075	9KHz-1GHz Pre Amplifier	SONOMA INSTRUMENT Co.	310N	272683	2015-03-02	2016-03-02	
EMC0507	Antenna Mask (Tx)	HD-GmbH	AS620M	620/408	N/A	N/A	
EMC0508	Antenna Mask (Rx)	HD-GmbH	MA240	240/619	N/A	N/A	
EMC0509	Turntable	HD-GmbH	DT430	N/A	N/A	N/A	
EMC0510	Turntable & Antenna Mask Controller	HD-GmbH	HD100	N/A	N/A	N/A	
EMC0512	EMI Test Software	Rohde & Schwarz	ES-K1	N/A	N/A	N/A	
EMC0522	EMI Test Receiver	Rohde & Schwarz	ESIB26	100283	2015-03-02	2016-03-02	
EMC0516	Signal Generator	Rohde & Schwarz	SMR20	100416	2015-03-02	2016-03-02	
EMC0032	Radio Communication Monitor	Rohde & Schwarz	CMS54	100137	2014-08-25	2015-08-25	
EMC0904	Power Meter	Rohde & Schwarz	NRVS	825770/074	2015-03-02	2016-03-02	
EMC0071	URV5-Z2 Insert. Unit	Rohde & Schwarz	URV5-Z2	100309	2015-03-02	2016-03-02	
EMC0906	Dual Directional Coupler	Werlatone Inc.	C1795	6634	2014-08-30	2015-08-30	
EMC2012	Power-Electronics Measurement System	Tektronix	TDS 744A	N/A	2015-03-02	2016-03-02	
EMC0523	Active Loop Antenna	EMCO	6502	42963	2015-03-02	2016-03-02	
EMC0069	Signal Analyzer (20Hz ~ 26.5Ghz	R&S	FSIQ26	100312	2015-03-02	2016-03-02	
EMC2025	Trilog Broadband Antenna 30-1000MHz	SCHWARZBECK MESS- ELEKTRONIK	VULB 9160	9160-3372	2014-07-14	2017-07-14	
EMC0078	Temperature, & Humidity	Shanghai Meteorological Instrum ent factory Co., Ltd.	ZJ1-2B	709131	2014-09-16	2015-09-16	

Report No.: GZEM150500203303

Page: 12 of 50

General used equipment									
No. T	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. date	Cal.Due date			
NO.	rest Equipment	Manufacturei	Woder No.	Serial No.	(YYYY-MM-DD)	(YYYY-MM-DD)			
EMC0006	DMM	Fluke	73	70681569	2014-09-15	2015-09-15			
EMC0007	DMM	Fluke	73	70671122	2014-09-15	2015-09-15			

Note: The calibration interval is one year, all the instruments are valid.

Report No.: GZEM150500203303

Page: 13 of 50

6 Test results and Measurement Data


6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203

15.203 requirement:

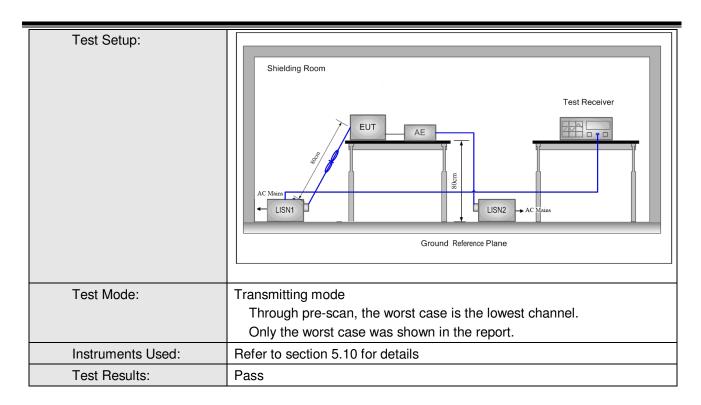
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.61dBi.

Report No.: GZEM150500203303

Page: 14 of 50

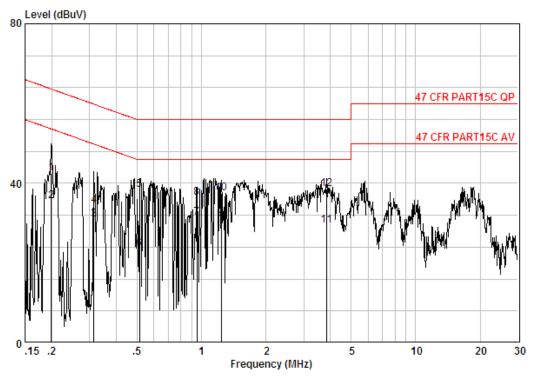

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207					
Test Method:	ANSI C63.10: 2009					
Test Frequency Range:	150kHz to 30MHz					
Limit:	Eroguenov rango (MHz)	Limit (c	lBuV)			
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithn	n of the frequency.				
Test Procedure:	 The mains terminal disturb shielded room. The EUT was connected to Impedance Stabilization Not linear impedance. The power connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Life exceeded. The tabletop EUT was place the ground reference plane EUT was placed on the howest the EUT shall be 0. plane. The vertical ground horizontal ground reference the boundary of the unit unplane for LISNs mounted of distance was between the All other units of the EUT am from the LISN 2. In order to find the maximum equipment and all of the into ANSI C63.10: 2009 on certain processing the power of the into ANSI C63.10: 2009 on certain processing the power of the into ANSI C63.10: 2009 on certain processing the power of the power of the into ANSI C63.10: 2009 on certain processing the power of the power of	ance voltage test was ance voltage test was a AC power source throetwork) which provides wer cables of all other us a 2, which was bonde to exay as the LISN 1 for et outlet strip was used ISN provided the rating and a vertical ground reference plane was be plane. The LISN 1 was a proper to the ground reference plane was be plane. The LISN 1 was also to top of the ground reference plane was being the plane and associated equipment and associated equipment and associated between the relative terface cables must be	ough a LISN 1 (Line is a 50Ω/50μH + 5Ω units of the EUT were do to the ground or the unit being do to connect multiple if of the LISN was not a table 0.8m above grangement, the ince plane, erence plane. The round reference onded to the as placed 0.8 m from the as a ground reference ference plane. This is SN 1 and the EUT. The ent was at least 0.8 from the connections of the changed according the changed according the state of the state of the connections of the changed according the state of t			

Report No.: GZEM150500203303

Page: 15 of 50

Report No.: GZEM150500203303


Page: 16 of 50

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

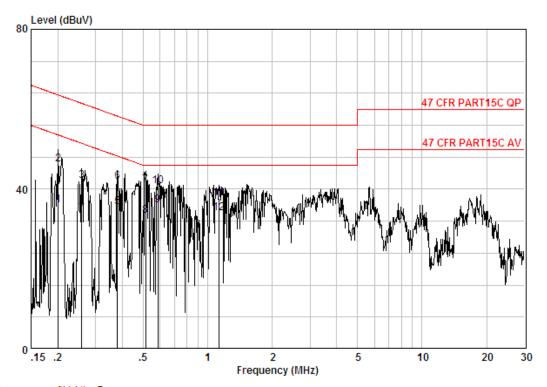
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

: Shielding Room

Condition : 47 CFR PART15C QP CE LINE

Job No. : 2241CR


	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.19863	0.10	0.06	42.34	42.50	63.67	-21.17	QP
2	0.19863	0.10	0.06	35.34	35.50	53.67	-18.17	Average
3	0.31495	0.10	-0.02	30.85	30.93	59.84	-28.91	QP
4	0.31495	0.10	-0.02	34.38	34.45	49.84	-15.39	Average
5	0.51278	0.10	0.00	38.16	38.26	56.00	-17.74	QP
6	0.51278	0.10	0.00	23.36	23.46	46.00	-22.54	Average
7	0.95313	0.10	0.02	31.32	31.44	46.00	-14.56	Average
8	0.95313	0.10	0.02	36.23	36.35	56.00	-19.65	QP
9	1.236	0.10	0.04	30.93	31.07	46.00	-14.93	Average
10	1.236	0.10	0.04	37.32	37.46	56.00	-18.54	QP
11	3.840	0.10	0.11	29.32	29.53	46.00	-16.47	Average
12	3.840	0.10	0.11	38.32	38.53	56.00	-17.47	OP

Report No.: GZEM150500203303

Page: 17 of 50

Neutral Line:

Site : Shielding Room

Condition : 47 CFR PART15C QP CE NEUTRAL

Job No. : 2241CR

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.20075	0.10	0.06	35.84	36.00	53.58	-17.58	Average
2	0.20075	0.10	0.06	45.98	46.14	63.58	-17.44	QP
3	0.25888	0.10	0.01	41.92	42.03	61.47	-19.43	QP
4	0.25888	0.10	0.01	35.06	35.17	51.47	-16.29	Average
5	0.37912	0.10	-0.03	35.53	35.60	48.30	-12.70	Average
6	0.37912	0.10	-0.03	41.88	41.95	58.30	-16.35	QP
7	0.51278	0.10	0.00	40.84	40.94	56.00	-15.06	QP
8	0.51278	0.10	0.00	33.34	33.43	46.00	-12.57	Average
9	0.58540	0.10	0.01	35.81	35.92	46.00	-10.08	Average
10	0.58540	0.10	0.01	40.67	40.78	56.00	-15.22	QP
11	1.129	0.10	0.03	37.58	37.71	56.00	-18.29	QP
12	1.129	0.10	0.03	33.83	33.96	46.00	-12.04	Average

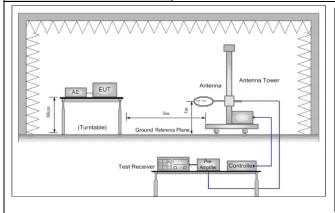
Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No.: GZEM150500203303

Page: 18 of 50

6.3 Radiated Spurious Emissions


Took Downing	47.0ED David 450.0	4F 040	- 000						
Test Requirement:		47 CFR Part 15C Section 15.249 and 15.209							
Test Method:	ANSI C63.10: 2009								
Test Site:	Measurement Distance:	3m (Semi-Anec	hoic Chambe	er)					
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark				
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGHZ	Peak	1MHz	10Hz	Average				
Limit: (Spurious Emissions)	Frequency	Field strength (microvolt/mete	Limit r) (dBuV/m)	Remark	Measuremer distance (m)				
	0.009MHz-0.490MHz 2400/F(kHz) -		-	300					
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30				
	1.705MHz-30MHz	30	-	-	30				
	30MHz-88MHz	100	40.0	Quasi-peak	3				
	88MHz-216MHz	150	43.5	Quasi-peak	3				
	216MHz-960MHz	200	46.0	Quasi-peak	3				
	960MHz-1GHz	500	54.0	Quasi-peak	3				
	Above 1GHz	500	54.0	Average	3				
	Note: 15.35(b), Unless emissions is 20d applicable to the peak emission lev	B above the ma equipment unde	ximum permer test. This p	itted average	emission lim				
Limit:	Frequency	Limit (dBı	uV/m @3m)	Rema	ırk				
(Field strength of the	0.4001414 - 0.400 - 51.111	9	4.0	Average	Value				
fundamental signal)	2400MHz-2483.5MH	z 1·	14.0	Peak V	Peak Value				

Report No.: GZEM150500203303

Page: 19 of 50

Test Setup:

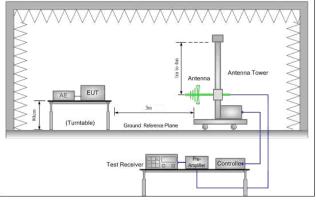


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

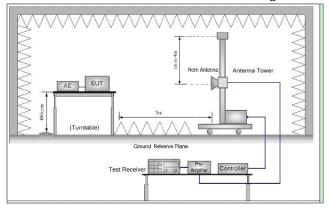


Figure 3. Above 1 GHz

Test Procedure:

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or

Report No.: GZEM150500203303

Page: 20 of 50

	average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel,the middle channel,the Highest channel h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode,And found the X axis positioning which it is worse case. i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode For below 1GHz part, through pre-scan, the worst case is the lowest channel at Antenna 1 mode. Only the worst case was shown in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Measurement Data

6.3.1.1 Field Strength Of The Fundamental Signal

Antenna 1

Peak value:

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)
2425.35	4.95	32.42	38.46	99.5	98.41	114.00	-15.59
2451.35	4.98	32.43	38.46	95.19	94.14	114.00	-19.86
2477.137	5.02	32.44	38.47	94.37	93.36	114.00	-20.64

Average value:

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)
2425.35	4.95	32.42	38.46	85.19	84.1	94.00	-9.9
2451.35	4.98	32.43	38.46	86.97	85.92	94.00	-8.08
2477.376	5.02	32.44	38.47	83.29	82.28	94.00	-11.72

Report No.: GZEM150500203303

Page: 21 of 50

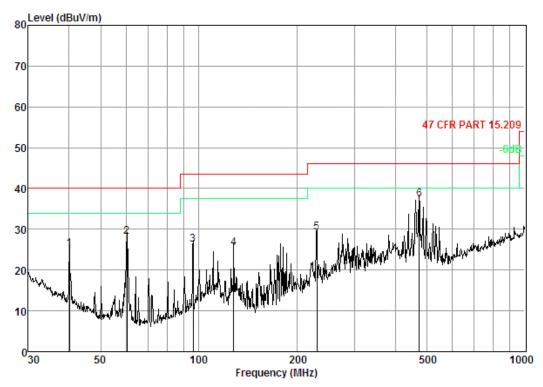
Antenna 2

Peak value:

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)
2423.575	4.95	32.42	38.46	98.14	97.05	114.00	-16.95
2451.35	4.98	32.43	38.46	95.16	94.11	114.00	-19.89
2477.167	5.02	32.44	38.47	95.03	94.02	114.00	-19.98

Average value:

Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)
2422.964	4.95	32.42	38.46	83.56	82.47	94.00	-11.53
2451.35	4.98	32.43	38.46	86.89	85.84	94.00	-8.16
2477.376	5.02	32.44	38.47	88.24	87.23	94.00	-6.77


Report No.: GZEM150500203303

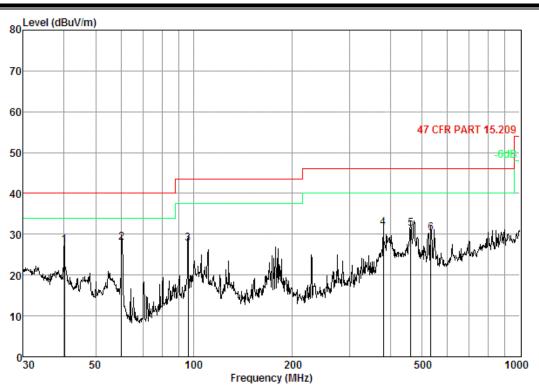
Page: 22 of 50

6.3.1.2 Spurious Emissions

30MHz~1GHz	
Test mode:	Transmitting

QP value:

Condition: 47 CFR PART 15.209 3m 3142C HORIZONTAL


Job No. : 2241CR

	Freq			Preamp Factor	Read Level		Limit Line	Over Limit
_	MHz	d₿	dB/m	dB	dBuV	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB
1 2 3 4 5	40.13 60.28 96.10 128.11 230.10 473.83	0.80 1.05 1.42 1.65 2.34 3.57	13.04 7.19 8.98 7.94 11.56 17.66	25. 79 25. 67 25. 38 25. 13 24. 76 25. 79	37. 11 45. 56 41. 21 40. 94 40. 02 41. 87	25. 16 28. 13 26. 23 25. 40 29. 16 37. 31	40.00 43.50 43.50 46.00	-14.84 -11.87 -17.27 -18.10 -16.84 -8.69

Report No.: GZEM150500203303

Page: 23 of 50

Condition: 47 CFR PART 15.209 3m 3142C VERTICAL

Job No. : 2241CR

	Freq			Preamp Factor		Level	Limit Line	Over Limit
_	MHz	dB	_dB/m	dB	dBuV	$\overline{\text{dBuV/m}}$	$\overline{\text{dBuV/m}}$	dB
1 2 3 4 5	40.13 60.07 96.10 381.25 462.35 533.83	1.42 3.18 3.67	13. 04 7. 20 8. 98 16. 02 17. 30	25. 79 25. 67 25. 38 25. 25 25. 87 26. 49	45. 27 42. 62 37. 69 36. 19	27.64 31.64 31.29	40.00 43.50	-15.86 -14.36 -14.71

Report No.: GZEM150500203303

Page: 24 of 50

Antenna 1

Above 1GHz	Z										
Test mode:		Tran	smitting	Test channel: Lowest			Remark:	Remark: Pea		ak	
Frequency (MHz)	_	ble ss B)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV		Level (dBuV/m)	Limit Line (dBuV/m)	Ove Lim (dE	nit	Polarization
3598.087	5.8	35	33.00	38.78	46.28	}	46.35	74	-27.	65	Vertical
4850.700	5.6	61	34.75	39.25	52.78	}	53.89	74	-20.	11	Vertical
5971.290	7.4	45	36.24	39.19	46.44		50.94	74	-23.	06	Vertical
7276.050	8.3	36	35.56	39.06	45.75	,	50.61	74	-23.	39	Vertical
9701.400	9.2	21	37.62	37.88	43.89)	52.84	74	-21.	16	Vertical
11486.410	10.	.06	38.22	38.46	44.07	,	53.89	74	-20.	11	Vertical
3616.451	5.8	83	33.01	38.79	45.87	,	45.92	74	-28.	80	Horizontal
4850.700	5.6	61	34.75	39.25	52.80)	53.91	74	-20.	09	Horizontal
6001.768	7.	51	36.30	39.18	45.93	}	50.56	74	-23.	44	Horizontal
7276.050	8.3	36	35.56	39.06	47.07	,	51.93	74	-22.	07	Horizontal
9701.400	9.2	21	37.62	37.88	44.03	}	52.98	74	-21.	02	Horizontal
11084.270	9.7	71	38.11	38.26	43.30)	52.86	74	-21.	14	Horizontal

Test mode:	Tran	smitting	Test char	nnel:	Middle		Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)		Level (dBuV/m)	Limit Line (dBuV/m)	Ove Limi (dB)	t Polarization
3561.636	5.87	32.96	38.77	45.73		45.79	74	-28.2	21 Vertical
4902.700	5.75	34.80	39.27	51.79		53.07	74	-20.9	93 Vertical
6047.776	7.47	36.25	39.18	46.88		51.42	74	-22.5	Vertical
7354.050	8.44	35.47	39.05	46.27		51.13	74	-22.8	7 Vertical
9805.400	9.15	37.94	37.81	43.10		52.38	74	-21.6	S2 Vertical
11486.410	10.06	38.22	38.46	43.31		53.13	74	-20.8	7 Vertical
3489.840	5.91	32.88	38.74	46.00		46.05	74	-27.9	95 Horizontal
4902.700	5.75	34.80	39.27	49.18		50.46	74	-23.5	Horizontal
6078.644	7.45	36.21	39.18	46.61		51.09	74	-22.9	1 Horizontal
7354.050	8.44	35.47	39.05	46.70		51.56	74	-22.4	4 Horizontal
9805.400	9.15	37.94	37.81	43.07		52.35	74	-21.6	65 Horizontal
11084.270	9.71	38.11	38.26	44.07		53.63	74	-20.3	Horizontal

Report No.: GZEM150500203303

Page: 25 of 50

Test mode:	Tran	smitting	Test char	nnel:	Hi	ghest	Remark:	P	eak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3543.550	5.88	32.94	38.76	46.27	,	46.33	74	-27.67	Vertical
4954.700	5.88	34.86	39.29	50.01		51.46	74	-22.54	Vertical
6047.776	7.47	36.25	39.18	46.71		51.25	74	-22.75	Vertical
7432.050	8.53	35.43	39.05	47.02		51.93	74	-22.07	Vertical
9909.400	9.10	38.24	37.75	42.95)	52.54	74	-21.46	Vertical
11341.140	9.94	38.14	38.39	44.13	,	53.82	74	-20.18	Vertical
3616.451	5.83	33.01	38.79	45.56	;	45.61	74	-28.39	Horizontal
4954.700	5.88	34.86	39.29	51.89)	53.34	74	-20.66	Horizontal
6047.776	7.47	36.25	39.18	46.93	}	51.47	74	-22.53	Horizontal
7432.050	8.53	35.43	39.05	45.72		50.63	74	-23.37	Horizontal
9909.400	9.10	38.24	37.75	43.16	;	52.75	74	-21.25	Horizontal
11112.520	9.74	38.11	38.28	43.90)	53.47	74	-20.53	Horizontal

Antenna 2

Above 1GH	Z										
Test mode:		Tran	smitting	Test char	nnel: Lowest		Remark:	Remark:		Peak	
Frequency (MHz)	Lo	able oss IB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV		Level (dBuV/m)	Limit Line (dBuV/m)	Ov Lim (dE	nit	Polarization
3662.775	5.	.80	33.05	38.81	46.33	}	46.37	74	-27.	63	Vertical
4850.700	5.	61	34.75	39.25	45.91		47.02	74	-26.	98	Vertical
6078.644	7.	45	36.21	39.18	46.61		51.09	74	-22.	91	Vertical
7276.050	8.	36	35.56	39.06	46.70)	51.56	74	-22.	44	Vertical
9701.400	9.	21	37.62	37.88	42.87	,	51.82	74	-22.	18	Vertical
11084.270	9.	71	38.11	38.26	44.07	,	53.63	74	-20.	37	Vertical
3616.451	5.	.83	33.01	38.79	45.87	,	45.92	74	-28.	80	Horizontal
4850.700	5.	61	34.75	39.25	46.16	;	47.27	74	-26.	73	Horizontal
5925.863	7.	35	36.16	39.19	46.37	,	50.69	74	-23.	31	Horizontal
7276.050	8.	36	35.56	39.06	47.07	,	51.93	74	-22.	07	Horizontal
9701.400	9.	21	37.62	37.88	44.03	}	52.98	74	-21.	02	Horizontal
11428.080	10	.01	38.17	38.43	43.38	}	53.13	74	-20.	87	Horizontal

Report No.: GZEM150500203303

Page: 26 of 50

Test mode:	Tran	smitting Test channel: Middle Remark:		Pe	ak			
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3625.669	5.83	33.02	38.80	46.00	46.05	74	-27.95	Vertical
4902.700	5.75	34.80	39.27	45.54	46.82	74	-27.18	Vertical
6047.776	7.47	36.25	39.18	46.71	51.25	74	-22.75	Vertical
7354.050	8.44	35.47	39.05	47.07	51.93	74	-22.07	Vertical
9805.400	9.15	37.94	37.81	43.24	52.52	74	-21.48	Vertical
10669.020	9.66	37.79	38.06	43.35	52.74	74	-21.26	Vertical
3644.175	5.82	33.03	38.80	45.50	45.55	74	-28.45	Horizontal
4902.700	5.75	34.80	39.27	45.23	46.51	74	-27.49	Horizontal
6109.670	7.43	36.18	39.17	47.15	51.59	74	-22.41	Horizontal
7354.050	8.44	35.47	39.05	46.27	51.13	74	-22.87	Horizontal
9805.400	9.15	37.94	37.81	43.53	52.81	74	-21.19	Horizontal
11486.410	10.06	38.22	38.46	43.31	53.13	74	-20.87	Horizontal

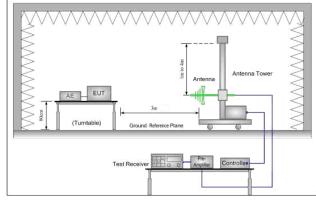
Test mode:	Tran	smitting	Test char	nnel:	Highest	Remark:	nark: Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	(dRuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	
3719.146	5.77	33.09	38.84	45.43	45.45	74	-28.5	5 Vertical
4954.700	5.88	34.86	39.29	45.12	46.57	74	-27.43	3 Vertical
6047.776	7.47	36.25	39.18	46.93	51.47	74	-22.53	3 Vertical
7432.050	8.53	35.43	39.05	46.49	51.40	74	-22.60	O Vertical
9909.400	9.10	38.24	37.75	43.01	52.60	74	-21.40	O Vertical
11112.520	9.74	38.11	38.28	43.90	53.47	74	-20.5	3 Vertical
3738.129	5.76	33.10	38.84	46.29	46.31	74	-27.69	9 Horizontal
4954.700	5.88	34.86	39.29	45.50	46.95	74	-27.0	5 Horizontal
6172.197	7.38	36.11	39.17	46.41	50.73	74	-23.2	7 Horizontal
7432.050	8.53	35.43	39.05	45.89	50.80	74	-23.20) Horizontal
9909.400	9.10	38.24	37.75	42.58	52.17	74	-21.83	3 Horizontal
11112.520	9.74	38.11	38.28	43.92	53.49	74	-20.5	1 Horizontal

Report No.: GZEM150500203303

Page: 27 of 50

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


Report No.: GZEM150500203303

Page: 28 of 50

6.4 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 15	5.209 and 15.205								
Test Method:	ANSI C63.10: 2009									
Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)									
Limit(band edge):	Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.									
	Frequency Limit (dBuV/m @3m) Remark									
	30MHz-88MHz	40.0	Quasi-peak Value							
	88MHz-216MHz	43.5	Quasi-peak Value							
	216MHz-960MHz	46.0	Quasi-peak Value							
	960MHz-1GHz	54.0	Quasi-peak Value							
	Above 1011- 54.0 Average Value									
	Above 1GHz	74.0	Peak Value							
Test Setup:										

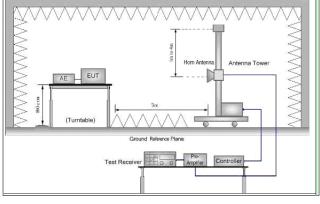


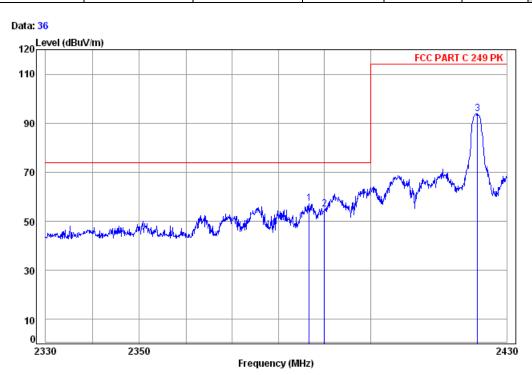
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: GZEM150500203303

Page: 29 of 50

Test Procedure:	 a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	g. Test the EUT in the lowest channel, the Highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	Repeat above procedures until all frequencies measured was complete.
Test Mode:	Transmitting mode
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass


Report No.: GZEM150500203303

30 of 50 Page:

Test plot as follows:

Antenna 1

Test mode:	Transmitting	Test channel:	Lowest	Remark:	Peak	Vertical	l
------------	--------------	---------------	--------	---------	------	----------	---

: chamber

Condition: FCC PART C 249 PK 3m Vertical

Job No: : 2241CR

Mode: : 2425.35 Band edge

	Freq			Preamp Factor				
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
	2386.69							
2	2390.00 2423.58							

Report No.: GZEM150500203303

2430

Page: 31 of 50

Test mode:	Transmitting	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	--------------	---------------	--------	---------	------	------------

Frequency (MHz)

Site : chamber

Condition: FCC PART C 249 PK 3m Horizontal

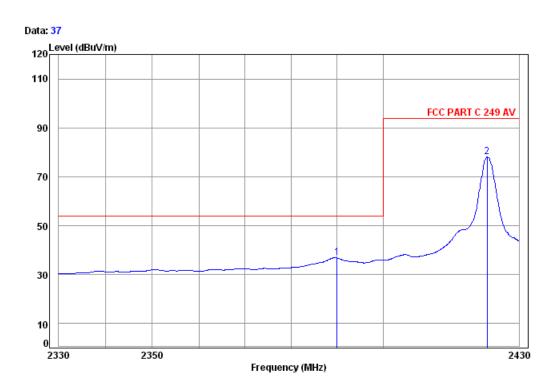
2350

Job No: : 2241CR

2330

10

Mode: : 2425.35 Band edge


		Cable	Ant	Preamp	Read		Limit	0∨er
	Freq	Loss	Factor	Factor	Le∨el	Level	Line	Limit
	-							
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
			,			,	,	
1 pp	2390.00	4.90	32.35	38.46	60.62	59.41	74.00	-14.59
2	2423.58	4.95	32.42	38.46	99.50	98.41	114.00	-15.59

Report No.: GZEM150500203303

Page: 32 of 50

Test mode:	Transmitting	Test channel:	Lowest	Remark:	Average	Vertical

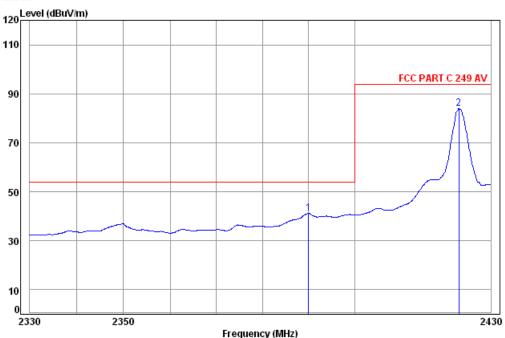
Site : chamber

Condition: FCC PART C 249 AV 3m Vertical

Job No: : 2241CR

Mode: : 2425.35 Band edge

Cable Ant Preamp Limit 0ver Read Loss Factor Factor Level Line Limit MHz dBuV dBuV/m dBuV/m dΒ dΒ dB/m 2390.00 4.90 32.35 38.46 38.20 36.99 54.00 -17.01 2 pp 2422.96 32.42 38.46 79.33 78.24 94.00 - 15.76



Report No.: GZEM150500203303

Page: 33 of 50

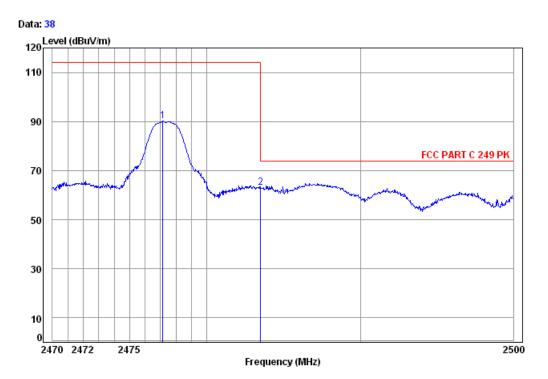
Test mode:	Transmitting	Test channel:	Lowest	Remark:	Average	Horizontal

Site : chamber

Condition: FCC PART C 249 AV 3m Horizontal

Job No: : 2241CR

Mode: : 2425.35 Band edge


Ant Preamp Cable Limit 0ver Read Freq Loss Factor Factor Line Limit Level Level MHz dB/m dBuV dBuV/m dBuV/m 2390.00 4.90 32.35 38.46 42.31 41.10 54.00 -12.90 2 pp 2422.96 4.95 32.42 38.46 85.19 84.10 94.00 -9.90

Report No.: GZEM150500203303

Page: 34 of 50

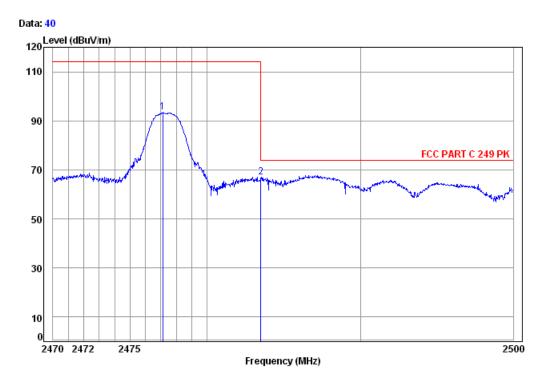
Test mode:	Transmitting	Test channel:	Highest	Remark:	Peak	Vertical

Site : chamber

Condition: FCC PART C 249 PK 3m Vertical

Job No: : 2241CR

Mode: : 2477.35 Band edge


Ant Preamp Read Limit 0∨er Freq Loss Factor Factor Level Line Limit MHz dBuV dBuV/m dBuV/m dΒ dB/m dΒ 2477.17 5.02 32.44 38.47 91.12 90.11 114.00 -23.89 2 pp 2483.50 5.03 32.44 38.47 63.95 62.95 74.00 -11.05

Report No.: GZEM150500203303

Page: 35 of 50

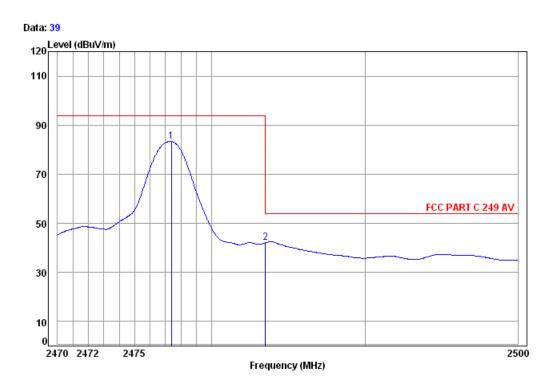
Test mode:	Transmitting	Test channel:	Highest	Remark:	Peak	Horizontal
------------	--------------	---------------	---------	---------	------	------------

Site : chamber

Condition: FCC PART C 249 PK 3m Horizontal

Job No: : 2241CR

Mode: : 2477.35 Band edge


	_			Preamp				
	Freq	Loss	Factor	Factor	Le∨el	Le∨el	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	2477.14	5.02	32.44	38.47	94.37	93.36	114.00	-20.64
2 pp	2483.50	5.03	32.44	38.47	67.90	66.90	74.00	-7.10

Report No.: GZEM150500203303

Page: 36 of 50

Test mode:	Transmitting	Test channel:	Highest	Remark:	Average	Vertical

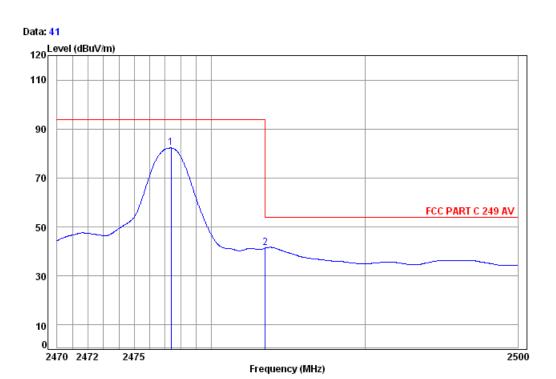
Site : chamber

Condition: FCC PART C 249 AV 3m Vertical

Job No: : 2241CR

1

Mode: : 2477.35 Band edge


		Cable	Ant	Preamp	Read		Limit	0∨er
	Freq	Loss	Factor	Factor	Le∨el	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
. pp	2477.38	5.02	32.44	38.47	84.38	83.37	94.00	-10.63
!	2483.50	5.03	32.44	38.47	43.24	42.24	54.00	-11.76

Report No.: GZEM150500203303

Page: 37 of 50

Test mode: Transmitting Test channel: Highest Rem	ark: Average Horizontal
---	-------------------------

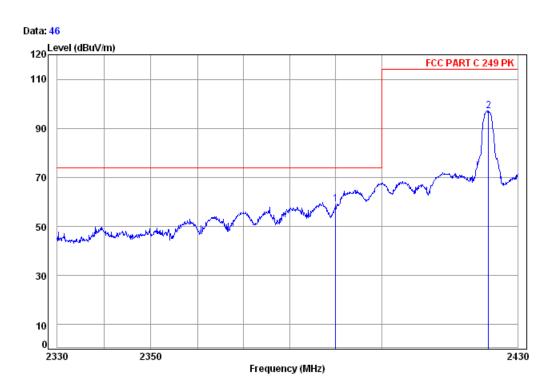
Site : chamber

Condition: FCC PART C 249 AV 3m Horizontal

Job No: : 2241CR

Mode: : 2477.35 Band edge

Ant Preamp Cable Read Limit 0ver Loss Factor Factor Line Limit Freq Le∨el Level MHz dΒ dB/m dΒ dBuV dBuV/m dBuV/m 1 pp 2477.38 5.02 32.44 38.47 83.29 82.28 94.00 -11.72 5.03 32.44 38.47 42.48 41.48 54.00 -12.52 2483.50



Report No.: GZEM150500203303

Page: 38 of 50

Antenna 2

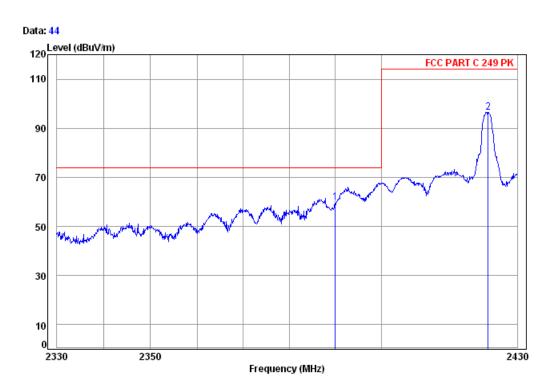
Test mode: Transmitting Test channel: Lowest Remark: Peak Vertical

Site : chamber

Condition: FCC PART C 249 PK 3m Vertical

Job No: : 2241CR

Mode: : 2425.35 Band edge


Ant Preamp Limit 0ver Cable Read Loss Factor Factor Line Limit Le∨el Level MHz dΒ dB/m dΒ dBuV dBuV/m dBuV/m 4.90 32.35 1 pp 2390.00 38.46 60.33 59.12 74.00 -14.88 98.14 97.05 114.00 -16.95 2423.58 4.95 32.42 38.46

Report No.: GZEM150500203303

Page: 39 of 50

Test mode:	Transmitting	Test channel:	Lowest	Remark:	Peak	Horizontal

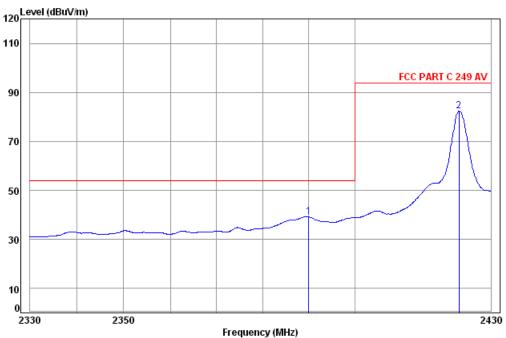
Site : chamber

Condition: FCC PART C 249 PK 3m Horizontal

Job No: : 2241CR

Mode: : 2425.35 Band edge

Ant Preamp Read 0ver Cable Limit Freq Loss Factor Factor Line Limit Level Level MHz dB/m dBuV dBuV/m dBuV/m 1 pp 2390.00 4.90 32.35 38.46 60.90 59.69 74.00 -14.31 2423.58 4.95 32.42 38.46 97.55 96.46 114.00 -17.54



Report No.: GZEM150500203303

Page: 40 of 50

Test mode:	Transmitting	Test channel:	Lowest	Remark:	Average	Vertical

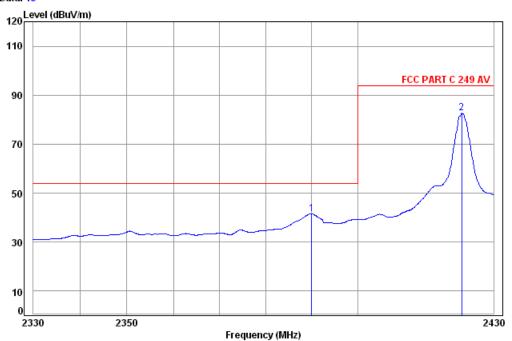
Site : chamber

Condition: FCC PART C 249 AV 3m Vertical

Job No: : 2241CR

Mode: : 2425.35 Band edge

	Freq			Preamp Factor				
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 pp	2390.00 2422.96							



Report No.: GZEM150500203303

Page: 41 of 50

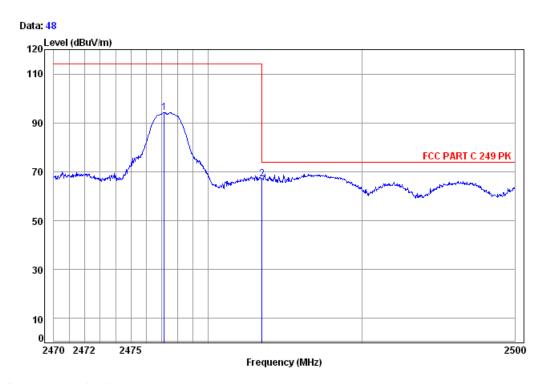
Test mode:	Transmitting	Test channel:	Lowest	Remark:	Average	Horizontal
------------	--------------	---------------	--------	---------	---------	------------

Site : chamber

Condition: FCC PART C 249 AV 3m Horizontal

Job No: : 2241CR

Mode: : 2425.35 Band edge


Freq			Preamp Factor				
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
2390.00 2422.96							

Report No.: GZEM150500203303

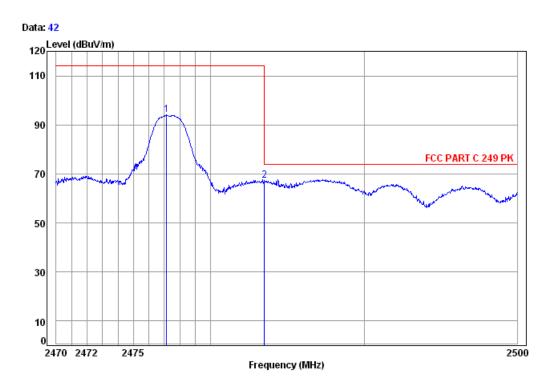
42 of 50 Page:

Test mode:	Transmitting	Test channel:	Highest	Remark:	Peak	Vertical
------------	--------------	---------------	---------	---------	------	----------

: chamber

Condition: FCC PART C 249 PK 3m Vertical

Job No: : 2241CR


: 2477.35 Band edge Mode: Cahla

	Freq			Preamp Factor				
_	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
p	2477.17 2483.50							

Report No.: GZEM150500203303

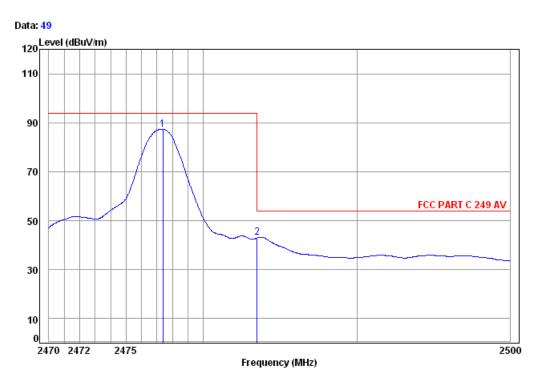
Page: 43 of 50

Site : chamber

Condition: FCC PART C 249 PK 3m Horizontal

Job No: : 2241CR

Mode: : 2477.35 Band edge


				5-				
		Cable	Ant	Preamp	Read		Limit	0∨er
	Freq	Loss	Factor	Factor	Le∨el	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	2477.17	5.02	32.44	38.47	95.03	94.02	114.00	-19.98
2 pp	2483.50	5.03	32.44	38.47	68.34	67.34	74.00	-6.66

Report No.: GZEM150500203303

Page: 44 of 50

Test mode: Transmitting Test channel: Highest Remark: Average Vertical
--

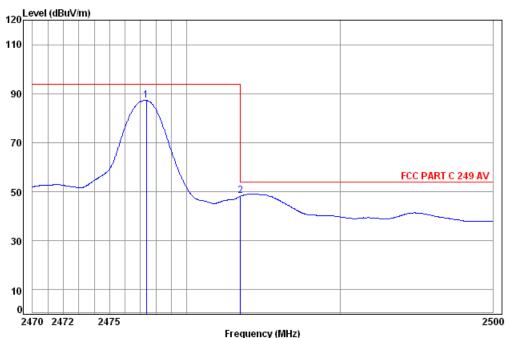
Site : chamber

Condition: FCC PART C 249 AV 3m Vertical

Job No: : 2241CR

Mode: : 2477.35 Band edge

		Cable	Ant	Preamp	Read		Limit	0∨er
	Freq	Loss	Factor	Factor	Le∨el	Le∨el	Line	Limit
	MHz	dB	dB/m	dB	dBu∀	dBuV/m	dBuV/m	dB
1 pp	2477.38	5.02	32.44	38.47	88.45	87.44	94.00	-6.56
2	2483.50	5.03	32.44	38.47	44.14	43.14	54.00	-10.86



Report No.: GZEM150500203303

Page: 45 of 50

Test mode:	Transmitting	Test channel:	Highest	Remark:	Average	Horizontal

Site : chamber

Condition: FCC PART C 249 AV 3m Horizontal

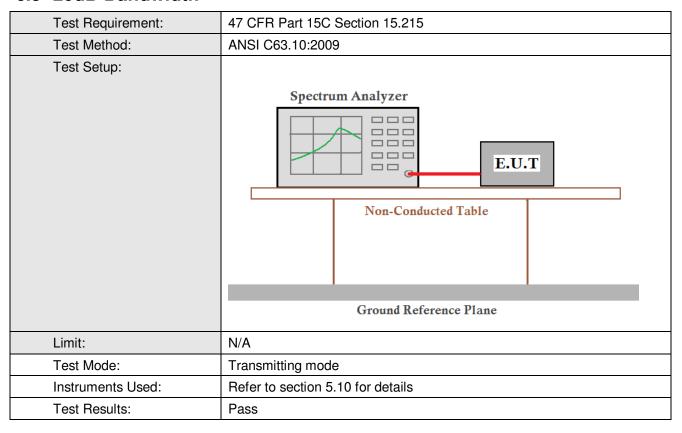
Job No: : 2241CR

Mode: : 2477.35 Band edge

	Freq			Preamp Factor				
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1 2 pp	2477.38 2483.50							

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation

with a sample calculation is as follows:


Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: GZEM150500203303

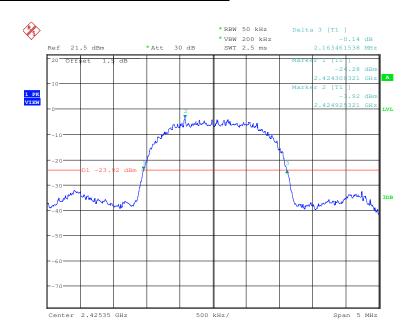
Page: 46 of 50

6.5 20dB Bandwidth

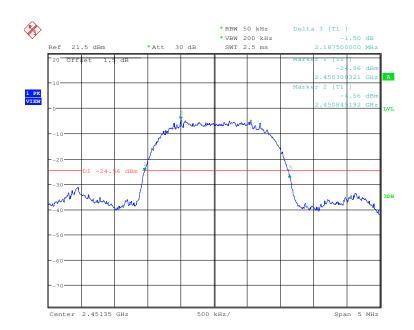
Antenna 1

Measurement Data

Test Channel	20dB bandwidth (MHz)	Results				
Lowest	2.163	Pass				
Middle	2.188	Pass				
Highest	2.163	Pass				



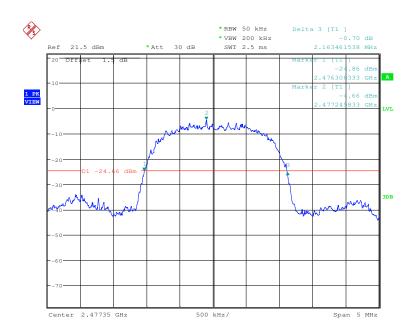
Report No.: GZEM150500203303


Page: 47 of 50

Test plot as follows:

Test channel: Lowest

Test channel: Middle

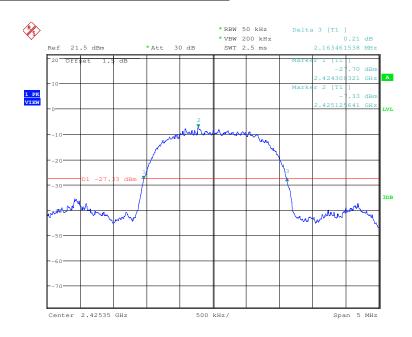


Report No.: GZEM150500203303

Page: 48 of 50

Report No.: GZEM150500203303

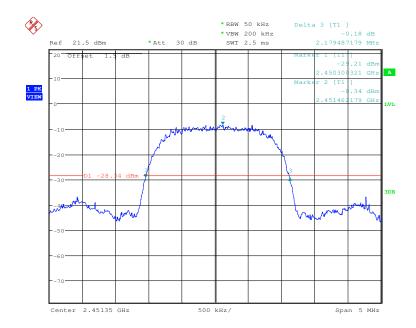
Page: 49 of 50

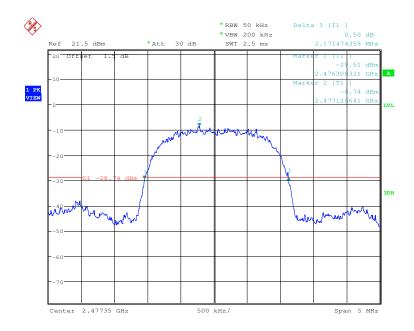

Antenna 2

Measurement Data

Test Channel	20dB bandwidth (MHz)	Results
Lowest	2.163	Pass
Middle	2.179	Pass
Highest	2.171	Pass

Test plot as follows:




Report No.: GZEM150500203303

Page: 50 of 50

Test channel: Middle

Test channel: Highest

--Report end--