

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7517

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (<i>k</i> =2)
750	41.9	0.89	9.70	9.70	9.70	0.15	1.32	±12.19
900	41.5	0.97	9.30	9.30	9.30	0.21	1.19	±12.19
1450	40.5	1.20	8.40	8.40	8.40	0.18	1.06	±12.19
1640	40.3	1.29	8.20	8.20	8.20	0.30	0.90	±12.19
1750	40.1	1.37	8.10	8.10	8.10	0.25	0.93	±12.19
1900	40.0	1.40	7.74	7.74	7.74	0.30	0.90	±12.19
2100	39.8	1.49	7.64	7.64	7.64	0.24	1.09	±12.19
2300	39.5	1.67	7.44	7.44	7.44	0.64	0.68	±12.19
2450	39.2	1.80	7.16	7.16	7.16	0.43	0.91	±12.19
2600	39.0	1.96	6.97	6.97	6.97	0.57	0.77	±12.1
3300	38.2	2.71	6.85	6.85	6.85	0.45	0.92	±13.3
3500	37.9	2.91	6.60	6.60	6.60	0.40	1.03	±13.3
3700	37.7	3.12	6.34	6.34	6.34	0.41	1.03	±13.3
3900	37.5	3.32	6.25	6.25	6.25	0.35	1.35	±13.3
4100	37.2	3.53	6.34	6.34	6.34	0.40	1.15	±13.3
4200	37.1	3.63	6.26	6.26	6.26	0.35	1.35	±13.3
4400	36.9	3.84	6.15	6.15	6.15	0.35	1.35	±13.3
4600	36.7	4.04	6.05	6.05	6.05	0.50	1.13	±13.3
4800	36.4	4.25	6.01	6.01	6.01	0.50	1.13	±13.3
4950	36.3	4.40	5.74	5.74	5.74	0.45	1.25	±13.3
5250	35.9	4.71	5.30	5.30	5.30	0.50	1.25	±13.3
5600	35.5	5.07	4.70	4.70	4.70	0.55	1.20	±13.3
5750	35.4	5.22	4.75	4.75	4.75	0.55	1.20	±13.3

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z21-60558

Page 4 of 10

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7517

Calibration Parameter Determined in Body Tissue Simulating Media

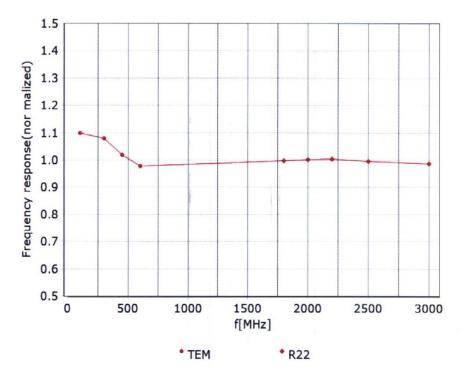
f [MHz] ^C	Relative	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G	Unct.
	Permittivity F	(S/m) ^F					(mm)	(k=2)
750	55.5	0.96	9.65	9.65	9.65	0.40	0.85	±12.1%
900	55.0	1.05	9.20	9.20	9.20	0.24	1.18	±12.1%
1450	54.0	1.30	8.20	8.20	8.20	0.14	1.34	±12.1%
1640	53.8	1.40	8.05	8.05	8.05	0.25	1.08	±12.1%
1750	53.4	1.49	7.85	7.85	7.85	0.32	0.98	±12.1%
1900	53.3	1.52	7.58	7.58	7.58	0.24	1.13	±12.1%
2100	53.2	1.62	7.47	7.47	7.47	0.25	1.19	±12.1%
2300	52.9	1.81	7.35	7.35	7.35	0.44	0.93	±12.1%
2450	52.7	1.95	7.21	7.21	7.21	0.50	0.84	±12.1%
2600	52.5	2.16	7.02	7.02	7.02	0.68	0.70	±12.1%
3300	51.6	3.08	6.25	6.25	6.25	0.43	1.11	±13.3%
3500	51.3	3.31	6.06	6.06	6.06	0.40	1.25	±13.3%
3700	51.0	3.55	5.99	5.99	5.99	0.40	1.25	±13.3%
3900	51.2	3.78	5.95	5.95	5.95	0.40	1.30	±13.3%
4100	50.5	4.01	5.90	5.90	5.90	0.40	1.30	±13.3%
4200	50.4	4.13	5.80	5.80	5.80	0.45	1.30	±13.3%
4400	50.1	4.37	5.70	5.70	5.70	0.45	1.30	±13.3%
4600	49.8	4.60	5.58	5.58	5.58	0.50	1.25	±13.3%
4800	49.6	4.83	5.41	5.41	5.41	0.50	1.45	±13.3%
4950	49.4	5.01	5.12	5.12	5.12	0.50	1.55	±13.3%
5250	48.9	5.36	4.70	4.70	4.70	0.50	1.55	±13.3%
5600	48.5	5.77	4.10	4.10	4.10	0.55	1.50	±13.3%
5750	48.3	5.94	4.15	4.15	4.15	0.50	1.60	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No:Z21-60558

Page 5 of 10

F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to $\pm 5\%$. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. GAIpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

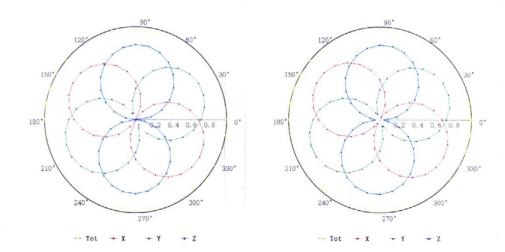


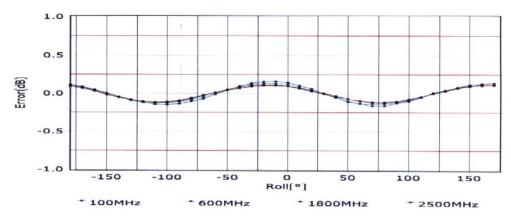
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z21-60558

Page 6 of 10





Receiving Pattern (Φ), θ=0°

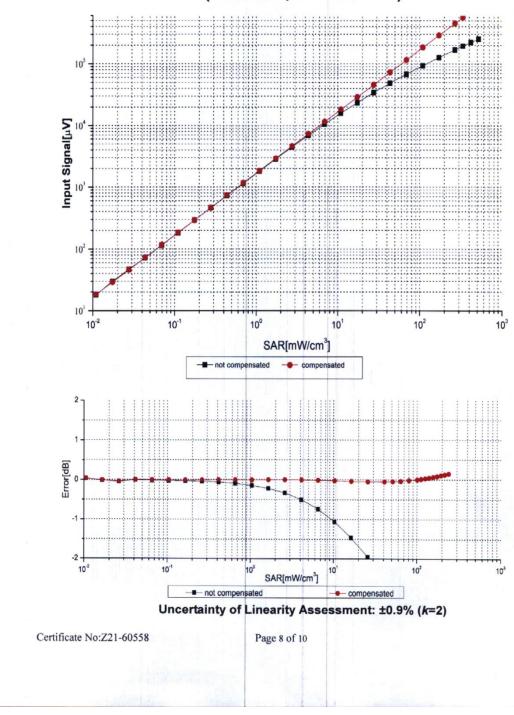
f=600 MHz, TEM

f=1800 MHz, R22

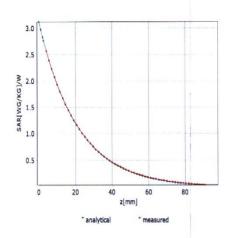
Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

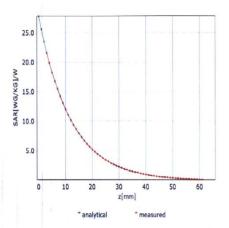
Certificate No:Z21-60558

Page 7 of 10

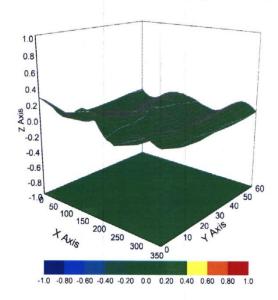


Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)





Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z21-60558

Page 9 of 10

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7517

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	15.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z21-60558

Page 10 of 10

ANNEX H Dipole Calibration Certificate

750 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

rtificate No: D750V3-1017 Jul21

CALIBRATION C	ERTIFICATE		
Object	D750V3 - SN:10	17	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Source	es between 0.7-3 GHz
Calibration date:	July 12, 2021		
The measurements and the uncert	ainties with confidence p	ional standards, which realize the physical probability are given on the following pages ry facility: environment temperature (22 \pm 3	and are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	1. Kytin
Approved by:	Katja Pokovic	Technical Manager	1. kgt
	mile access of the sub-product of cost that		

Certificate No: D750V3-1017_Jul21

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1017_Jul21

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	•
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.4 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.20 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.68 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.65 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω - 0.2 jΩ	
Return Loss	- 28.8 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.036 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

MATERIAL DE LA CONTRACTOR DEL CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR	
Manufactured by	SPEAG
	0, 2,10

DASY5 Validation Report for Head TSL

Date: 12.07.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1017

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 42.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.11, 10.11, 10.11) @ 750 MHz; Calibrated: 28.12.2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.11.2020

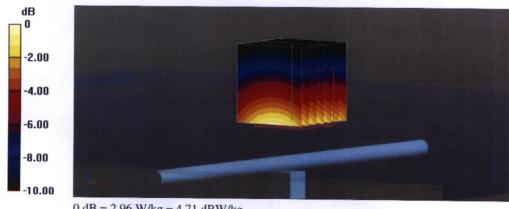
Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

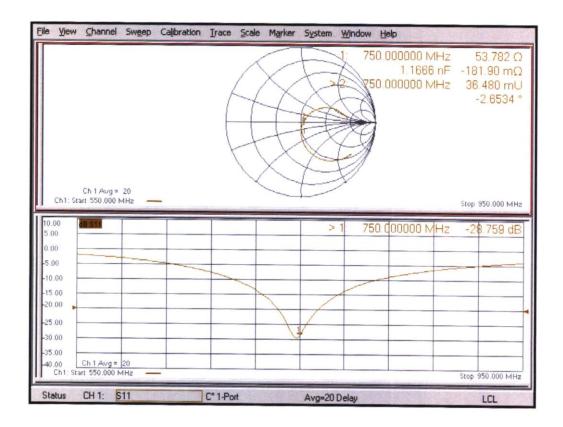
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.01 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 3.39 W/kg

SAR(1 g) = 2.20 W/kg; SAR(10 g) = 1.43 W/kg

Smallest distance from peaks to all points 3 dB below = 16 mm


Ratio of SAR at M2 to SAR at M1 = 64.8%

Maximum value of SAR (measured) = 2.96 W/kg

0 dB = 2.96 W/kg = 4.71 dBW/kg

Impedance Measurement Plot for Head TSL

835 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-4d069_Jul21 CTTL (Auden) **CALIBRATION CERTIFICATE** D835V2 - SN:4d069 Object QA CAL-05.v11 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 0.7-3 GHz July 12, 2021 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration ID# Cal Date (Certificate No.) Primary Standards 09-Apr-21 (No. 217-03291/03292) Apr-22 SN: 104778 Power meter NRP Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Power sensor NRP-Z91 Apr-22 SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Reference 20 dB Attenuator SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Type-N mismatch combination Reference Probe EX3DV4 SN: 7349 28-Dec-20 (No. EX3-7349_Dec20) Dec-21 02-Nov-20 (No. DAE4-601_Nov20) Nov-21 DAE4 SN: 601 Scheduled Check Secondary Standards Check Date (in house) SN: GB39512475 30-Oct-14 (in house check Oct-20) In house check: Oct-22 Power meter E4419B 07-Oct-15 (in house check Oct-20) In house check: Oct-22 SN: US37292783 Power sensor HP 8481A Power sensor HP 8481A SN: MY41092317 07-Oct-15 (in house check Oct-20) In house check: Oct-22 SN: 100972 15-Jun-15 (in house check Oct-20) In house check: Oct-22 RF generator R&S SMT-06 Network Analyzer Agilent E8358A SN: US41080477 31-Mar-14 (in house check Oct-20) In house check: Oct-21 Function Jeffrey Katzman Laboratory Technician Calibrated by: Technical Manager Approved by: Katja Pokovic Issued: July 15, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d069_Jul21

Page 1 of 6

Calibration Laboratory of Schmid & Partner

Engineering AG

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL

sensitivity in TSL / NORM x,y,z ConvF not applicable or not measured N/A

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- . Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

ne following parameters and calculations were appli	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.2 ± 6 %	0.94 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.48 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.63 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.24 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7 Ω - 2.3 j Ω	
	- 31.0 dB	
Return Loss	01.0 05	-

General Antenna Parameters and Design

Electrical Delay (one direction)	1.393 ns
Electrical Delay (one direction)	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 12.07.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d069

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.94$ S/m; $\varepsilon_r = 42.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 28.12.2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.11.2020

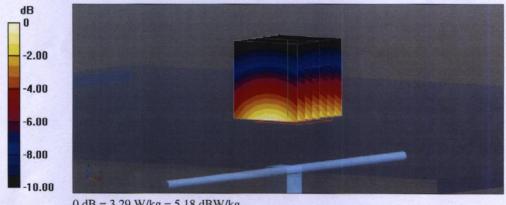
Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

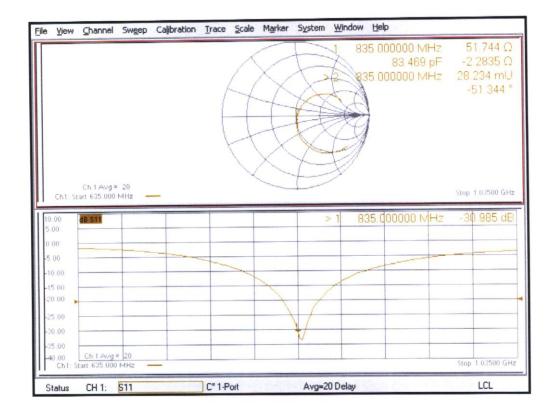
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 63.94 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 3.76 W/kg

SAR(1 g) = 2.48 W/kg; SAR(10 g) = 1.60 W/kg

Smallest distance from peaks to all points 3 dB below = 16.3 mm


Ratio of SAR at M2 to SAR at M1 = 66.1%

Maximum value of SAR (measured) = 3.29 W/kg

0 dB = 3.29 W/kg = 5.18 dBW/kg

Impedance Measurement Plot for Head TSL

1750 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accreditation No.: SCS 0108

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D1750V2-1003_Jul21 CTTL (Auden)

Object	D1750V2 - SN:10	003	
Calibration procedure(s)	QA CAL-05.v11 Calibration Proce	edure for SAR Validation Sources	s between 0.7-3 GHz
Calibration date:	July 12, 2021		
		ional standards, which realize the physical un	
The measurements and the uncert	tainties with confidence p	robability are given on the following pages ar	nd are part of the certificate.
All calibrations have been conduct	ed in the closed laborato	ry facility: environment temperature (22 ± 3)°	C and humidity < 70%.
Calibration Equipment used (M&TE	E critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Power sensor NRP-Z91			
	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k) SN: 310982 / 06327	09-Apr-21 (No. 217-03343) 09-Apr-21 (No. 217-03344)	
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4			Apr-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22 Apr-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 310982 / 06327 SN: 7349	09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20)	Apr-22 Apr-22 Dec-21
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475	09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20)	Apr-22 Apr-22 Dec-21 Nov-21
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783	09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house)	Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317	09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317	09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 07-Oct-15 (in house check Oct-20)	Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22
Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972	09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20)	Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21
Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06	SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	09-Apr-21 (No. 217-03344) 28-Dec-20 (No. EX3-7349_Dec20) 02-Nov-20 (No. DAE4-601_Nov20) Check Date (in house) 30-Oct-14 (in house check Oct-20) 07-Oct-15 (in house check Oct-20) 15-Jun-15 (in house check Oct-20) 31-Mar-14 (in house check Oct-20)	Apr-22 Apr-22 Dec-21 Nov-21 Scheduled Check In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-22 In house check: Oct-21

Certificate No: D1750V2-1003_Jul21

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the sign

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1003_Jul21	Page 2 of 6	

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.4 ± 6 %	1.36 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.9 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.82 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.4 W/kg ± 16.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.7 Ω + 0.3 jΩ	
Return Loss	- 47.0 dB	

General Antenna Parameters and Design

E 15 1 1		
Electrical Delay (one direction)	1.215 ns	

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: D1750V2-1003_Jul21

DASY5 Validation Report for Head TSL

Date: 12.07.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1003

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.36 \text{ S/m}$; $\varepsilon_r = 40.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 28.12.2020

• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.11.2020

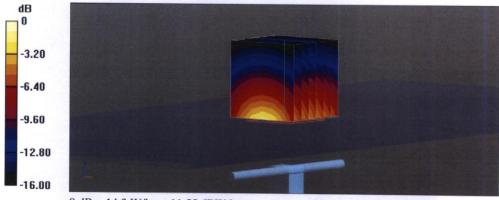
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

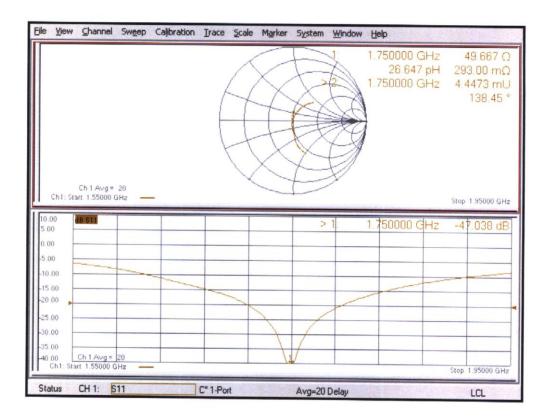
Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.5 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 17.1 W/kg

SAR(1 g) = 9.17 W/kg; SAR(10 g) = 4.82 W/kg

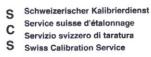
Smallest distance from peaks to all points 3 dB below = 10 mm


Ratio of SAR at M2 to SAR at M1 = 54%

Maximum value of SAR (measured) = 14.3 W/kg

0 dB = 14.3 W/kg = 11.55 dBW/kg

Impedance Measurement Plot for Head TSL



1900 MHz Dipole Calibration Certificate

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Certificate No: D1900V2-5d101_Jul21

CALIBRATION CERTIFICATE

Object

D1900V2 - SN:5d101

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

July 15, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).

The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	09-Apr-21 (No. 217-03291/03292)	Apr-22
Power sensor NRP-Z91	SN: 103244	09-Apr-21 (No. 217-03291)	Apr-22
Power sensor NRP-Z91	SN: 103245	09-Apr-21 (No. 217-03292)	Apr-22
Reference 20 dB Attenuator	SN: BH9394 (20k)	09-Apr-21 (No. 217-03343)	Apr-22
Type-N mismatch combination	SN: 310982 / 06327	09-Apr-21 (No. 217-03344)	Apr-22
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seffler
Approved by:	Katja Pokovic	Technical Manager	elde

Issued: July 19, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d101_Jul21

Page 1 of 6