

FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E

TEST REPORT

For

Mobile

Model: C61Ca

Market name: OT-E200a

Trade Name: Alcatel

Issued to

TCL&Alcatel Mobile Phones 3/F, B2 Block, Digital Technology Yard, Gaoxin Nan Qi Road, Nan Shan District, Shenzhen, Guangdong, P.R.China

Issued by

COMPLIANCE CERTIFICATION SERVICES (KUNSHAN) INC. 10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone Kunshan city JiangSu, (215300) CHINA TEL: 86-512-57355888 FAX: 86-512-57370818

Lab. Code: 200581-0

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1.	TES	Γ RESULT CERTIFICATION
2.	EUT	DESCRIPTION
3.	TES	F METHODOLOGY6
	3.1	EUT CONFIGURATION
	3.2	EUT EXERCISE
	3.3	GENERAL TEST PROCEDURES
	3.4	DESCRIPTION OF TEST MODES
4.	INST	TRUMENT CALIBRATION7
5.	FAC	ILITIES AND ACCREDITATIONS
	5.1	FACILITIES
	5.2	EQUIPMENT
	5.3	LABORATORY ACCREDITATIONS AND LISTING
	5.4	TABLE OF ACCREDITATIONS AND LISTINGS 9
6.	SET	UP OF EQUIPMENT UNDER TEST 10
	6.1	SETUP CONFIGURATION OF EUT
	6.2	SUPPORT EQUIPMENT
7.	FCC	PART 22 & 24 REQUIREMENTS 11
	7.1	PEAK POWER
	7.2	ERP & EIRP MEASUREMENT
	7.3	OCCUPIED BANDWIDTH MEASUREMENT 16
	7.4	OUT OF BAND EMISSION AT ANTENNA TERMINALS
	7.5	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT
	7.6	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT
	7.7	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT
	7.8	POWERLINE CONDUCTED EMISSIONS

1. TEST RESULT CERTIFICATION

Applicant:	TCL & Alcatel Mobile Phones 3/F, B2 Block, Digital Technology Yard, Gaoxin Nan Qi Road, Nan Shan District, Shenzhen, Guangdong, P.R.China
Equipment Under Test:	Mobile
Trade Name:	Alcatel
Model Number:	C61Ca
Market name:	OT-E200a
Date of Test:	April 6~13, 2006

APPLICABLE STA	NDARDS
STANDARD	TEST RESULT
FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E	No non-compliance noted

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA/EIA-603-A-2001 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 22 Subpart H and PART 24 Subpart E.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Tony Houng

General Manager of Kunshan Laboratory Compliance Certification Services Inc.

Reviewed by:

Miro Chueh Section Manager of Kunshan Laboratory Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	Mobile				
Trade Name	Alcatel				
Model Number	C61Ca				
Market name	OT-E200a				
Model Number C61Ca Market name OT-E200a Model Discrepancy N/A 1. AC to DC charger Trade Name :Alcatel Model Number :3DS09371AGAA Input: AC100-127V, 50/60Hz, 0.15 A Output: DC4.5V,350mA DC Power Cord: DC Power Cable 2m Non-shielding, Non-detachable, without Core Manufactures: Astec 2. AC to DC charger Trade Name :Alcatel Model Number :3DS09371AGAA Input: AC100-127V, 50/60Hz, 0.3 A Output: DC4.5V,350mA DC Power Cord: DC Power Cable 2.05m Non-shielding, Non-detachable, without Core Manufactures: Leader 3. AC to DC charger Trade Name :Alcatel Model Number :3DS09371AAAA Input: AC200-240V, 50/60Hz, 0.3 A Output: DC4.5V,350mA DC Power Cord: DC Power Cable 2.05m Non-shielding, Non-detachable, without Core Manufactures: Leader 3. AC to DC charger Trade Name :Alcatel Model Number :3DS09371AAAA Input: AC200-240V, 50/60Hz, 0.3 A Output: DC4.5V,350mA DC Power Cord: DC Power Cable 2m Non-shielding, Non-detachable, without Core Manufactures: Astec 4. AC to DC charger Trade Name :Alcatel					
Power Supply	 Trade Name :Alcatel Model Number :3DS09371AGAA Input: AC100-127V, 50/60Hz, 0.15 A Output: DC4.5V,350mA DC Power Cord: DC Power Cable 2m Non-shielding, Non-detachable, without Core Manufactures: Astec 2. AC to DC charger Trade Name :Alcatel Model Number :3DS09371AGAA Input: AC100-127V, 50/60Hz, 0.3 A Output: DC4.5V,350mA DC Power Cord: DC Power Cable 2.05m Non-shielding, Non-detachable, without Core Manufactures: Leader 3. AC to DC charger Trade Name :Alcatel Model Number :3DS09371AAAA Input: AC200-240V, 50/60Hz, 0.3 A Output: DC4.5V,350mA DC Power Cord: DC Power Cable 2m Non-shielding, Non-detachable, without Core Manufactures: Leader 3. AC to DC charger Trade Name :Alcatel Model Number :3DS09371AAAA Input: AC200-240V, 50/60Hz, 0.3 A Output: DC4.5V,350mA DC Power Cord: DC Power Cable 2m Non-shielding, Non-detachable, without Core Manufactures: Astec 4. AC to DC charger 				

	Non-detachable, without Core
	Manufactures: Tenpao
	6. AC to DC charger
	Trade Name :Alcatel
	Model Number : 3DS10628AGAA
	Input: AC100-240V, 50/60Hz, 0.10 A
	Output: DC4.5V,350mA
	DC Power Cord: DC Power Cable 2.06m Non-shielding,
	Non-detachable, without Core
	Manufactures: Tenpao
	7. DC to DC charger
	Trade Name :Alcatel
	Model Number :3DS07848AAAA
	Input: DC12/24V,
	Output: DC4.5V
	DC Power Cord: DC Power Cable 2.64m Non-shielding,
	Non-detachable, without Core
	Manufactures: Primax
	8. Battery:
	Alcatel / 3DS11080AAAA
	Lithium-Ion 3.7V/ 600mAh
Frequency Range	TX: 824 ~ 849 MHz / 1850 ~ 1910 MHz
Trequency Kange	RX: 869 ~ 894 MHz / 1930 ~ 1990 MHz
Transmit Power	31.45 dBm
Cellular Phone Protocol	GSM (PCS)
Type of Emission	243KGXW
Antenna Type	Inner Antenna

Remark: This submittal(s) (test report) is intended for FCC ID: <u>RAD039</u> filing to comply with Part 22 and Part 24 of the FCC 47 CFR Rules.

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4 and FCC CFR 47, 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

3.4 DESCRIPTION OF TEST MODES

The EUT (model: C61Ca) had been tested under operating condition.

EUT staying in continuous transmitting mode was programmed. Channel Low, Mid and High were chosen for full testing.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at CCS China Kunshan Lab at 10#, Weiye Rd, Innovation Park Eco. & Tec. Development Zone

Kunshan city JiangSu, (215300)CHINA.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200581-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

Page 8

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP	EN 55022, EN 61000-3-2,EN 61000-3-3, EN550024, EN 61000-4-2, EN 61000-4-3, EN61000-4-4, EN 61000-4-5, EN 61000-4-6, IEC 61000-4-8, EN 61000-4-11 ANSI C63.4, CISPR16-1, IEC61000-3-2, IEC61000-3-3, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	Lab. Code: 200581-0
USA	FCC	3/10 meter Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	3/10 meter Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-1600 C-1707
Norway	NEMKO	EN61000-6-1/2/3/4, EN 50082-1/2, IEC 61000-6-1/2/3/4, EN 50091-2, EN 55011, EN 55022, EN 55024, EN 61000-3-2/3, EN 61000-11, IEC 61000-4-2/3/4/5/6/8/11, CISPR16-1/2/3/4	ELA 105

* No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
1	N/A						

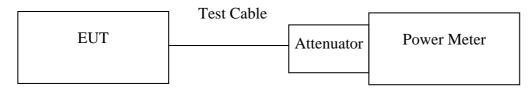
Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 22 & 24 REQUIREMENTS

7.1 PEAK POWER

<u>LIMIT</u>


According to FCC §2.1046.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Peak and Avg Power Sensor	Agilent	E9327A	US40441788	09/05/2007
EPM-P Series Power Meter	Agilent	E4416A	QB41292714	09/05/2007
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/27/2007
Wireless communication test set	Agilent	E5515C	GB44051695	10/06/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

TEST RESULTS

No non-compliance noted.

Test Data

Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Factor (dB)	Peak Power (dBm)
	128	824.20	5.64		32.14
GSM 850	190	836.60	5.48	26.50	31.98
	251	848.80	5.39		31.89

Remark: The value of factor includes both the loss of cable and external attenuator

Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Factor (dB)	Peak Power (dBm)
	512	1850.20	5.03		29.53
GSM 1900	661	1880.00	5.46	24.50	29.96
	810	1910.00	5.26		29.76

Remark: The value of factor includes both the loss of cable and external attenuator

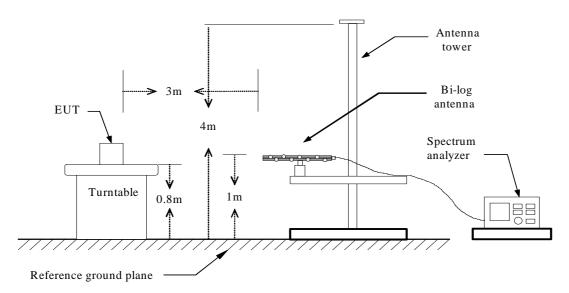
7.2 ERP & EIRP MEASUREMENT

LIMIT

According to FCC §2.1046

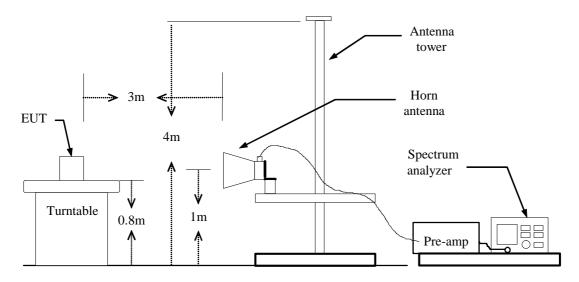
FCC 22.913(a): The Effective Radiated Power (ERP) of mobile transmitters must not exceed 7 Watts.

FCC 24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.

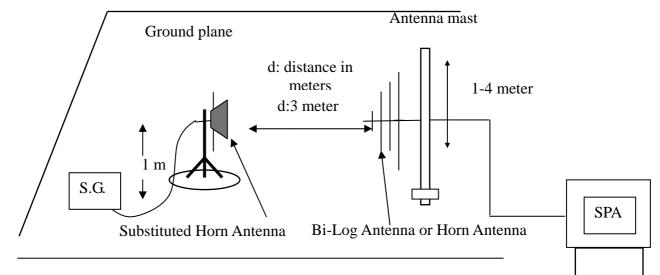

MEASUREMENT EQUIPMENT USED

	977 Chamber (3m)									
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due						
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/27/2007						
EMI Test Receiver	R&S	ESPI3	101026	11/10/2006						
Pre-Amplfier	MINI	ZFL-1000VH2	d041703	12/13/2006						
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/28/2007						
Bilog Antenna	Sunol	JB1	A110204-2	11/10/2006						
Horn-antenna	SCHWARZBECK	BBHA9120D	D:266	02/01/2007						
PSG Analog Signal Generator	Agilent	E8257C	MY43321570	12/11/2006						
Wireless communication test set	Agilent	E5515C	QB44051695	10/06/2007						
Turn Table	СТ	CT123	4165	N.C.R						
Antenna Tower	СТ	CTERG23	3256	N.C.R						
Controller	СТ	CT100	95637	N.C.R						
Site NSA	CCS	N/A	N/A	04/06/2007						

Remark: Each piece of equipment is scheduled for calibration once a year.


TEST CONFIGURATION

Below 1 GHz



Above 1 GHz

For Substituted Method Test Set-UP

TEST PROCEDURE

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 3MHz and the average bandwidth was set to 3MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824-849MHz, and EIRP in frequency band 1851.25 –1910MHz were measured using a substitution method. The EUT was replaced by half-wave dipole (824-849MHz) or horn antenna (1851.25-1910MHz) connected to a signal generator. The spectrum analyzer reading was recorded and ERP/EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) – Cable (dB) EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

TEST RESULTS

No non-compliance noted.

GSM 850 Test Data

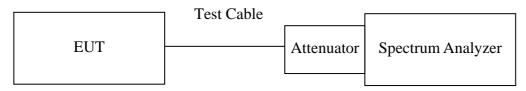
EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)		S.G. (dBm)		Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
	128	824.20	129.83	V	28.12	2.87	6.20	31.45	38.50	-7.05
	120	824.20	118.67	Н	22.59	2.87	6.20	25.92	38.50	-12.58
Z	190	836.60	128.17	V	27.61	2.88	6.40	31.13	38.50	-7.37
L	190	836.60	120.00	Н	23.50	2.88	6.40	27.02	38.50	-11.48
	251	848.80	127.33	V	27.47	2.94	6.50	31.03	38.50	-7.47
	231	848.80	119.17	Н	23.41	2.94	6.50	26.97	38.50	-11.53

GSM 1900 Test Data

EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)		S.G. (dBm)		Ant.Gain (dBi)	level	Limit (dBm)	Margin (dB)
	512	1850.20	123.67	V	24.51	4.31	8.45	28.65	33.00	-4.35
	512	1850.20	120.17	Н	20.42	4.31	8.45	24.56	33.00	-8.44
Z	661	1880.00	124.83	V	25.51	4.53	8.48	29.46	33.00	-3.54
L	661	1880.00	122.33	Н	21.66	4.53	8.48	25.61	33.00	-7.39
	810	1909.80	125.10	V	25.67	4.55	8.52	29.64	33.00	-3.36
	810	1909.80	121.17	Н	21.16	4.55	8.52	25.13	33.00	-7.87

7.3 OCCUPIED BANDWIDTH MEASUREMENT

LIMIT


According to §FCC 2.1049.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/27/2007
Wireless communication test set	Agilent	E5515C	QB44051695	10/06/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

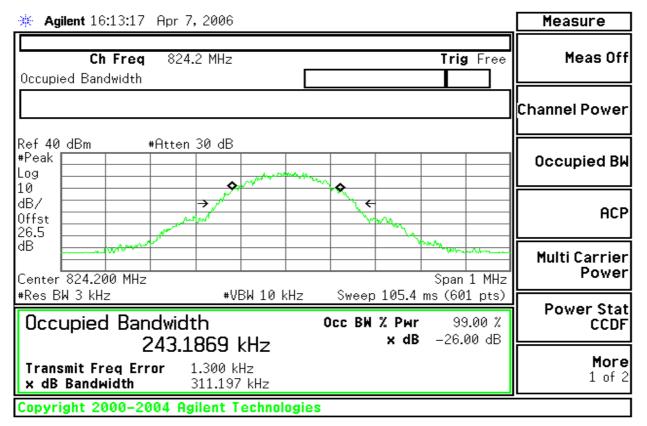
TEST PROCEDURE

The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW is set to 3 times the RBW, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

No non-compliance noted

<u>Test Data</u>


Test Mode	СН	Frequency (MHz)	Bandwidth (kHz)
	128	824.20	243. 19
GSM 850	190	836.60	240.25
	251	848.80	238.13

Test Mode	СН	Frequency (MHz)	Bandwidth (kHz)
GSM 1900	512	1850.20	242.53
	661	1880.00	240.21
	810	1909.80	237.87

Test Plot

GSM 850 (CH Low)

GSM 850 (CH Mid)

# Agilent 16:12:26 Apr 7, 2006	Measure
Ch Freq 836.6 MHz Trig Free Occupied Bandwidth	Meas Off
	Channel Power
Ref 40 dBm #Atten 30 dB #Peak Log 10	Occupied BW
dB/ →/ ← · · · · · · · · · · · · · · · · · ·	ACP
Center 836.600 MHz Span 1 MHz	Multi Carrier Power
*Res BW 3 kHz *VBW 10 kHz Sweep 105.4 ms (601 pts)	Power Stat
Occupied Bandwidth осс вм % Рмг 99.00 % 240.2470 kHz × dB -26.00 dB	CCDF
Transmit Freq Error 303.213 Hz x dB Bandwidth 300.893 kHz	More 1 of 2
Copyright 2000–2004 Agilent Technologies	

GSM 850 (CH High)

* Agilent 16:11:34 Apr 7, 2006	Measure
Ch Freq 848.8 MHz Trig Free Occupied Bandwidth	Meas Off
	Channel Power
Ref 40 dBm #Atten 30 dB #Peak	Occupied BW
dB/	ACP
dB Center 848.800 MHz Span 1 MHz Span 1 MHz	Multi Carrier Power
*Res BW 3 kHz *VBW 10 kHz Sweep 105.4 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % 238.1280 kHz × dB -26.00 dB	Power Stat CCDF
ZSO.1200 KH2 Transmit Freq Error -251.081 Hz x dB Bandwidth 304.982 kHz	More 1 of 2
Copyright 2000-2004 Agilent Technologies	

GSM 1900 (CH Low)

🔆 Agilent 16:53:02 Apr 7, 2006	Measure
Ch Freq 1.8502 GHz Trig Free Occupied Bandwidth	Meas Off
	Channel Power
Ref 40 dBm	Occupied BW
dB/	ACP
dB Center 1.850 200 GHz Span 1 MHz #Res BW 3 kHz #VBW 10 kHz Sweep 105.4 ms (601 pts)	Multi Carrier Power
	Power Stat
Occupied Bandwidth Осс ВМ % Рмг 99.00 % 242.5324 kHz × dB -26.00 dB	CCDF
Transmit Freq Error 16.318 Hz × dB Bandwidth 316.115 kHz	More 1 of 2
Copyright 2000–2004 Agilent Technologies	

GSM 1900 (CH Mid)

🔆 Agilent 16:34:33 Apr 7, 2006	Measure
Ch Freq 1.88 GHz Trig Free Occupied Bandwidth	Meas Off
	Channel Power
Ref 40 dBm #Atten 30 dB #Peak Log 10	Occupied BW
dB/ Offst 24.5	ACP
dB http://www.climatic Center 1.880 000 GHz Span 1 MHz Proc PH 2 MHz Span 1 MHz	Multi Carrier Power
#Res BW 3 kHz #VBW 10 kHz Sweep 105.4 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 %	Power Stat CCDF
240.2136 kHz × dB -26.00 dB Transmit Freq Error -244.249 Hz × dB Bandwidth 308.867 kHz	More 1 of 2
Copyright 2000–2004 Agilent Technologies	

GSM 1900 (CH High)

🔆 Agilent 16:31:23 Apr 7, 2006	Measure			
Ch Freq 1.90982 GHz Trig Free Occupied Bandwidth	Meas Off			
	Channel Power			
Ref 40 dBm #Atten 30 dB #Peak Log 10	Occupied BW			
dB/ → ← · · · · · · · · · · · · · · · · · ·	ACP			
dB Max	Multi Carrier Power			
Res BW 3 kHz #VBW 10 kHz Sweep 105.4 ms (601 pts) Power Sta Occupied Bandwidth Осс ВЖ % Рыг 99.00 % CCDF 237.8716 kHz × dB -26.00 dB CCDF				
ZJ7.0710 KHZ Transmit Freq Error -15.001 kHz x dB Bandwidth 300.930 kHz	More 1 of 2			
Copyright 2000–2004 Agilent Technologies				

7.4 OUT OF BAND EMISSION AT ANTENNA TERMINALS

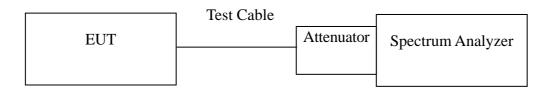
LIMIT

According to FCC §2.1051, FCC §22.917(e), FCC §22.917(f), FCC §24.238(a).

<u>Out of Band Emissions</u>: The mean power of emission must be attenuated below the mean power of the non-modulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at lease $43 + 10 \log P dB$.

<u>Mobile Emissions in Base Frequency Range</u>: The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitters operated must be attenuated to a level not exceed –80 dBm at the transmit antenna connector.

Band Edge Requirements: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at lease 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the Out of band Emission


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/27/2007
Wireless communication test set	Agilent	E5515C	QB44051695	10/06/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

Out of band emission at antenna terminals:

TEST PROCEDURE

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10 th harmonic. Limit = -13dBm

Band Edge Requirements (824 MHz and 849 MHz /1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

TEST RESULTS

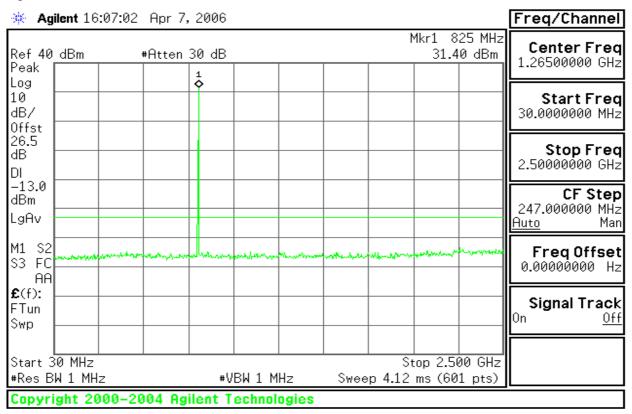
No non-compliance noted.

Test Data

Mode	СН	Location	Description
	128 —	Figure 7-1	Conducted spurious emissions, 30MHz - 2.5GHz
		Figure 7-2	Conducted spurious emissions, 2.5GHz - 20GHz
GSM 850	50 190	Figure 7-3	Conducted spurious emissions, 30MHz - 2.5GHz
USW 030		Figure 7-4	Conducted spurious emissions, 2.5GHz - 20GHz
	251	Figure 7-5	Conducted spurious emissions, 30MHz - 2.5GHz
	231	Figure 7-6	Conducted spurious emissions, 2.5GHz - 20GHz

Mode	СН	Location	Description
	512	Figure 8-1	Conducted spurious emissions, 30MHz - 2.5GHz
		Figure 8-2	Conducted spurious emissions, 2.5GHz - 20GHz
GSM 1900	661	Figure 8-3	Conducted spurious emissions, 30MHz - 2.5GHz
GSWI 1900		Figure 8-4	Conducted spurious emissions, 2.5GHz - 20GHz
		Figure 8-5	Conducted spurious emissions, 30MHz - 2.5GHz
	810	Figure 8-6	Conducted spurious emissions, 2.5GHz - 20GHz

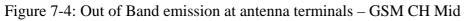
Mode	СН	CH Location Description					
GSM 850	128	Figure 9-1	Band Edge emissions				
	251	Figure 9-2	Band Edge emissions				

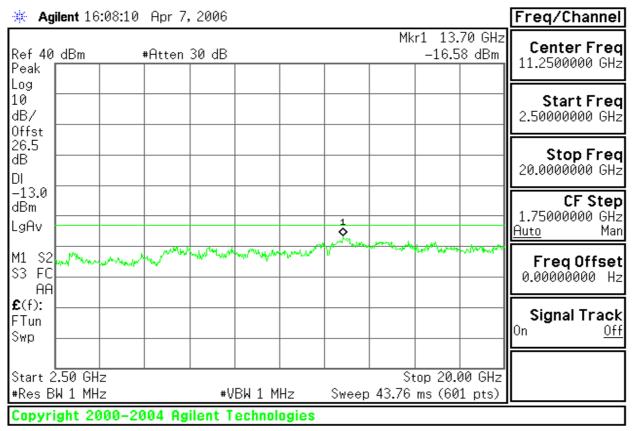

Mode	СН	Location	Description
GSM 1900	512	Figure 10-1	Band Edge emissions
	810	Figure 10-2	Band Edge emissions

Test Plot

<u>GSM 850</u>

Figure 7-1: Out of Band emission at antenna terminals – GSM CH Low


Figure 7-2: Out of Band emission at antenna terminals – GSM CH Low


🔆 Ag	ilent 16	:07:35	Apr 7,	2006							Freq/Channel
Ref 40 Peak	dBm	:	#Atten	30 dB				Mkr		82 GHz 9 dBm	Center Freq 11.2500000 GHz
Log 10 dB/											Start Freq
0ffst 26.5 dB											2.50000000 GHz Stop Freq
DI -13.0											20.0000000 GHz
dBm LgAv							1				CF Step 1.75000000 GHz Auto Man
	L	vinde jam	- Connection	na ha	a hur	alashda parama	Jan Marina	- bill way on a	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	64 ⁰⁰ 5-25-2 ⁴⁰	FreqOffset 0.00000000 Hz
£ (f): FTun Swp											Signal Track ^{On <u>Off</u>}
Start 2 #Res B					BW 1 M	<u> </u>	Sween	Sti 43.76	•	00 GHz	
Copyri			04 Ag				0466h	45.70		1 p(3)	IL

🔆 Ag	j ilent 16	:08:34	Apr 7,	200	<i>1</i> 6							Freq/Channel
Ref 40 Peak	dBm		≇Atten	30 c	яв				٢		37 MHz 3 dBm	Center Freq 1.26500000 GHz
Log 10 dB/ Offst				\$								Start Freq 30.0000000 MHz
26.5 dB DI												Stop Freq 2.50000000 GHz
-13.0 dBm LgAv												CF Step 247.000000 MHz <u>Auto</u> Man
M1 S2 S3 FC AA	www.www.	enymewith	Vinturalitation	J	*****	ntransme	Mahamadaha	ungelegen	manna	n hunn hy th	Anna	Freq Offset 0.00000000 Hz
€(f): FTun Swp												Signal Track ^{On <u>Off</u>}
	W 1 MH					3W 1 M		Swee	St p 4.12		00 GHz 1 pts)	
Copyri	ignt 20	00-20	104 Hg	lien	C 16	echnol	ogies					

Figure 7-3: Out of Band emission at antenna terminals – GSM CH Mid

🔆 Agilent 16:09:02 Apr 7, 2006	Freq/Channel
Mkr1 849 MHz Ref 40 dBm #Atten 30 dB 30.96 dBm Peak 1 1	Center Freq 1.26500000 GHz
Log 10 dB/ Offst	Start Freq 30.0000000 MHz
26.5 dB DI	Stop Freq 2.50000000 GHz
-13.0 dBm LgAv	CF Step 247.000000 MHz <u>Auto</u> Man
M1 S2 S3 FC AA	FreqOffset 0.00000000 Hz
£(f):	Signal Track On <u>Off</u>
Start 30 MHz Stop 2.500 GHz #Res BW 1 MHz #VBW 1 MHz Sweep 4.12 ms (601 pts) Copyright 2000-2004 Agilent Technologies	

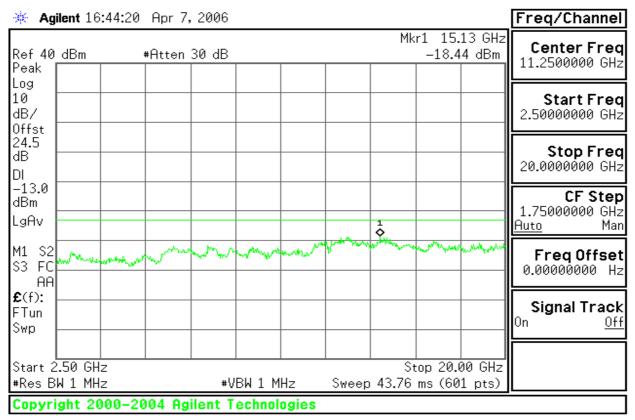
Figure 7-5: Out of Band emission at antenna terminals – GSM CH High

Figure 7-6: Out of Band emission at antenna terminals – GSM CH High

🔆 Agilent 16:09:38	Hpr 7,2006			Freq/Channel
Peak	Atten 30 dB		Mkr1 13.93 GHz -16.78 dBm	Center Freq 11.2500000 GHz
Log 10 dB/ Offst				Start Freq 2.50000000 GHz
26.5 dB DI				Stop Freq 20.0000000 GHz
-13.0 dBm LgAv		1	Sales and the second second	CF Step 1.75000000 GHz <u>Auto</u> Man
M1 S2 S3 FC AA	winderten		Manager Durch Jowe Jam	FreqOffset 0.00000000 Hz
€(f): FTun Swp				Signal Track ^{On <u>Off</u>}
Start 2.50 GHz #Res BW 1 MHz	#VBW 1 M	· · · · · · · · · · · · · · · · · · ·	Stop 20.00 GHz 3.76 ms (601 pts)	
Copyright 2000-200	04 Hgilent Technol	ogies		

Page 25

A 7 2000 4 1 C+00+20 0 . . .

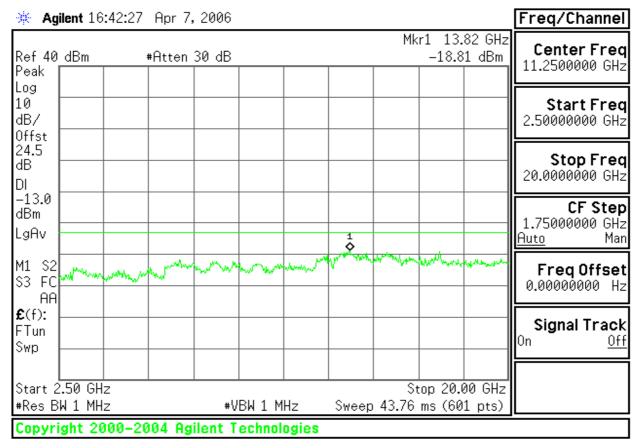


<u>GSM 1900</u>

Figure 8-1: Out of Band emission at antenna terminals - GSM CH Low

Peak 1 1.26500000 GH: Log 1 1 10 1 1 dB/ 1 1 Offst 24.5 1 dB 1 1 DI 1 1 -13.0 1 1 dBm 1 1 LgAv 1 1 M1 S2 S3 FC 1 1 AA A 1 1 f(f): 1 1 1 f(f): 1 1 1 f(f): 1 1 1 Signal Tracl 1 1 1	🔆 Agilent 16:43:		Freq/Channel			
10 Start Free dB/ 0ffst 30.000000 MH: 24.5 dB 5 dB 0 0 DI 0 0 -13.0 0 0 dBm 0 0 LgAv 0 0 M1 S2 0 0 S3 FC 0 0 AA 0 0 £(f): 0 0 Swp 0 0 Start 30 MHz Stop 2.500 GHz	Peak 👘	#Atten 30	dB			Center Freq 1.26500000 GHz
24.5 dB Image: Constraint of the second	10 dB/					Start Freq 30.0000000 MHz
dBm Cr Step LgAv 247.000000 MH: M1 S2 M1 Mummum (Mummum (Mumum)) S3 FC M1 Mumum (Mumum) AA Freq Offse £(f): Stop 2.500 GHz	24.5 dB DI					Stop Freq 2.50000000 GHz
S3 FC 0.00000000 H: AA 0.00000000 H: £(f): Start 30 MHz Stop 2.500 GHz	dBm					CF Step 247.000000 MHz <u>Auto</u> Man
FTun Swp Signal Tracion Start 30 MHz Stop 2.500 GHz	S3 FC	hand block in the	un and an and a second second	amanana	and the second	FreqOffset 0.00000000 Hz
	FTun					Signal Track ^{On <u>Off</u>}
Copyright 2000–2004 Agilent Technologies	#Res BW 1 MHz	-2004 Agilon				

Figure 8-2: Out of Band emission at antenna terminals - GSM CH Low



.

🔆 Agile	ent 16:	43:01	Apr /,	2006							Freq/Channel
Ref 40 (Peak	dBm	4	#Atten	30 dB				M		78 GHz 6 dBm	Center Freq 1.26500000 GHz
Log 10 dB/ Offst								.			Start Freq 30.0000000 MHz
24.5 dB – DI											Stop Freq 2.50000000 GHz
-13.0 dBm LgAv											CF Step 247.000000 MHz <u>Auto</u> Man
M1 S2 S3 FC	hronde	menter	enderser optick	and the second	www.unh	manne	www.Aw	nor wat	kowana	n name	FreqOffset 0.00000000 Hz
£(f): _ FTun Swp _											Signal Track ^{On <u>Off</u>}
Start 30 #Res BW	1 MH;				BW 1 M		Swee		top 2.50 ms (60		
Copyrig	int 20	00-20	104 Hg	lient l	ecnnol	ogies					

Figure 8-3: Out of Band emission at antenna terminals – GSM CH Mid

Figure 8-4: Out of Band emission at antenna terminals - GSM CH Mid

	Freq/Channel
Mkr1 1.911 GHz Ref 40 dBm #Atten 30 dB 29.82 dBm Peak	Center Freq 1.26500000 GHz
Log 1 10 dB/ 0 0ffst 0	Start Freq 30.0000000 MHz
24.5 dB DI	Stop Freq 2.50000000 GHz
-13.0 dBm LgAv	CF Step 247.000000 MHz <u>Auto</u> Man
M1 S2 S3 FC	FreqOffset 0.00000000 Hz
£(f):	Signal Track ^{On <u>Off</u>}
Start 30 MHz Stop 2.500 GHz #Res BW 1 MHz #VBW 1 MHz Sweep 4.12 ms (601 pts)	

Figure 8-5: Out of Band emission at antenna terminals – GSM CH High

Figure 8-6: Out of Band emission at antenna terminals – GSM CH High

🔆 Ag	ilent 16	:41:48	Hpr /,	2006							Freq/Channel
Ref 40 Peak	dBm	:	#Atten	30 dB				Mk		90 GHz 1 dBm	Center Freq 11.2500000 GHz
Log 10 dB/ Offst											Start Freq 2.50000000 GHz
24.5 dB DI											Stop Freq 20.0000000 GHz
-13.0 dBm LgAv											CF Step 1.75000000 GHz <u>Auto</u> Man
M1 S2 S3 FC AA		hrinking tr	wards	w.M.s.a	white	want	June Mary	and the second	4 Walter Conner	www	FreqOffset 0.00000000 Hz
£ (f): FTun Swp											Signal Track ^{On <u>Off</u>}
#Res B		z			BW 1 M		Sweep	St 43.76		00 GHz 1 pts)	
Copyri	ight 20	00-20	104 Ag	ilent T	echnol	ogies					

16-11-10 7 0000 0 . . .

<u>GSM 850</u>

Figure 9-1: Band Edge emissions - GSM CH Low

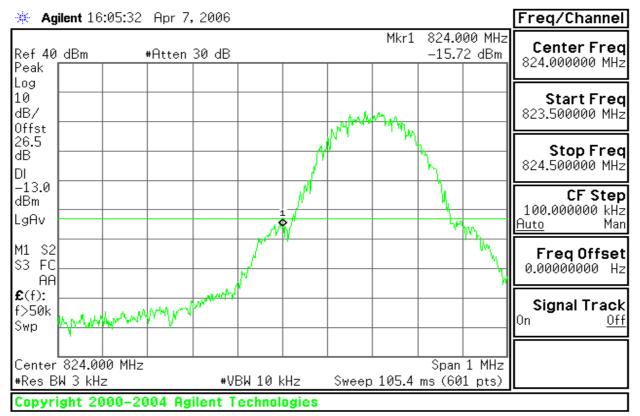
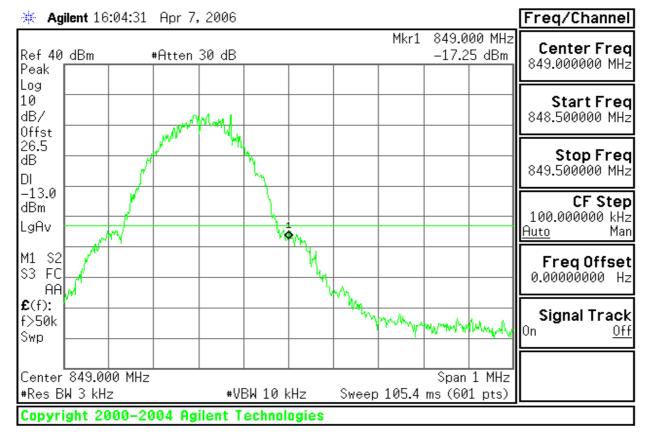



Figure 9-2: Band Edge emissions – GSM CH High

<u>GSM 1900</u>

Figure 10-1: Band Edge emissions – GSM CH Low

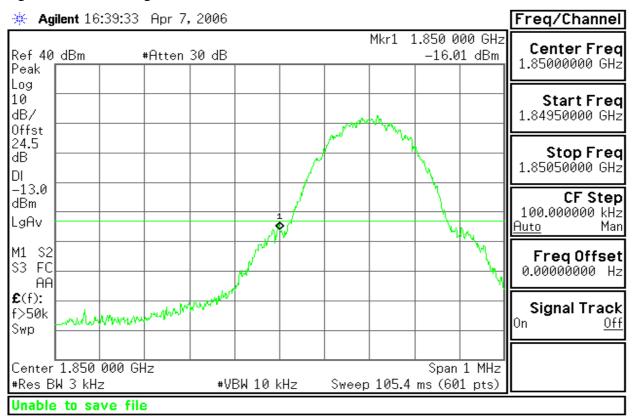
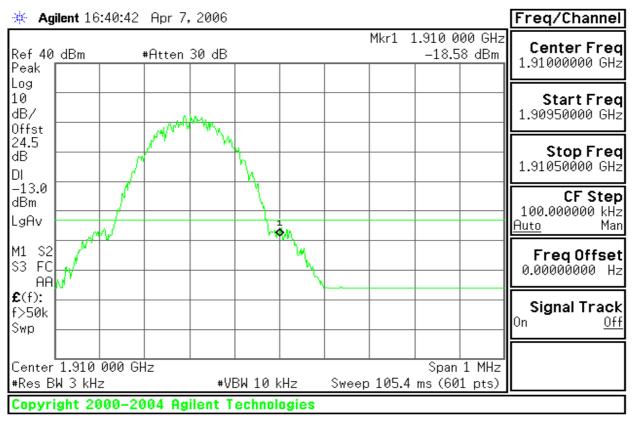
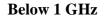



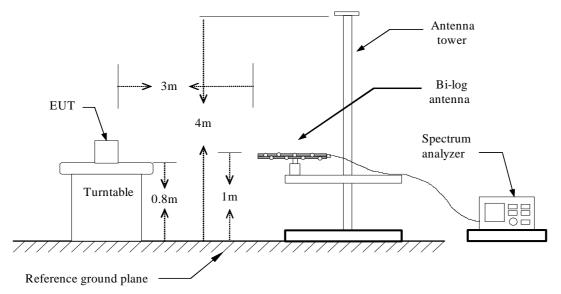
Figure 10-2: Band Edge emissions - GSM CH High

7.5 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

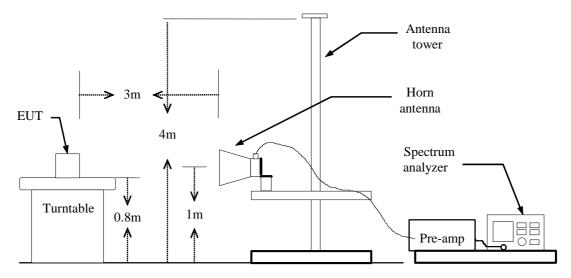
LIMIT

According to FCC §2.1053

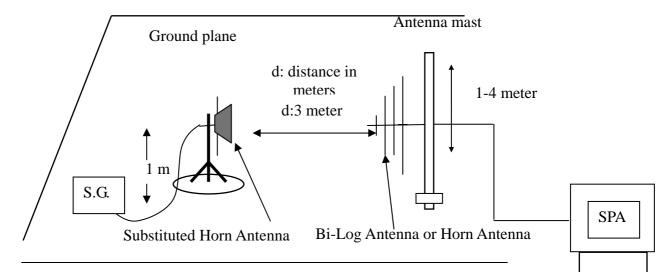

MEASUREMENT EQUIPMENT USED


	977 (Chamber (3m)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/27/2007
EMI Test Receiver	R&S	ESPI3	101026	11/10/2006
Pre-Amplfier	MINI	ZFL-1000VH2	d041703	12/13/2006
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/28/2007
Bilog Antenna	Sunol	JB1	A110204-2	11/10/2006
Horn-antenna	SCHWARZBECK	BBHA9120D	D:266	02/01/2007
PSG Analog Signal Generator	Agilent	E8257C	MY43321570	12/11/2006
Wireless communication test set	Agilent	E5515C	QB44051695	10/06/2007
Turn Table	СТ	CT123	4165	N.C.R
Antenna Tower	СТ	CTERG23	3256	N.C.R
Controller	СТ	CT100	95637	N.C.R
Site NSA	CCS	N/A	N/A	04/06/2007

Remark: Each piece of equipment is scheduled for calibration once a year.



Test Configuration



Above 1 GHz

Substituted Method Test Set-up

TEST PROCEDURE

The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

TEST RESULTS

Refer to the attached tabular data sheets.

Radiated Spurious Emission Measurement Result

Below 1GHz

No emissions to be recorded. (Since no specific emission noted beyond the background noise floor)

Above 1GHz

Operation Mode: GSM 850 / TX / CH 128

 $25^{\circ}C$ **Temperature:**

55 % RH **Humidity:**

Tested by: Spring Zhou

Test Date: April 13, 2006

Ver. / Hor. **Polarity:**

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1648.46	36.98	V	-77.44	4.01	7.86	-73.59	-13.00	-60.59
1648.53	38.92	Н	-79.43	4.01	7.86	-75.58	-13.00	-62.58

Operation Mode: GSM 850 / TX / CH 190

 $25^{\circ}C$ **Temperature:**

Humidity: 55 % RH Test Date: April 13, 2006

Tested by: Spring Zhou

Polarity: Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1673.21	34.98	V	-73.25	4.21	7.95	-69.51	-13.00	-56.51
1673.31	36.28	Н	-75.36	4.21	7.95	-71.62	-13.00	-58.62

Operation Mode: GSM 850 / TX / CH 251

 $25^{\circ}C$ **Temperature:**

	•
Tested by:	Spring Zhou

Test Date: April 13, 2006

Humidity:	ty: 55 % RH			Polarity	• Ver. / I	Hor.		
Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1697.47	36.05	V	-75.64	4.53	8.12	-72.05	-13.00	-59.05
1697.48	35.70	Н	-74.53	4.53	8.12	-70.94	-13.00	-57.94

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Data of measurement within this frequency range shown "----" in the table above

means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

- 4. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 5. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Below 1GHz

No emissions to be recorded. (Since no specific emission noted beyond the background noise floor)

Above 1GHz

Operation Mode: GSM 1900 / TX / CH 512

Temperature: 25°C

Humidity: 55 % RH

Test Date: April 13, 2006 Tested by: Spring Zhou

Polarity: Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3700.53	29.02	V	-73.80	6.65	13.40	-67.05	-13.00	-54.05
3700.49	28.68	Н	-73.73	6.65	13.40	-66.98	-13.00	-53.98

Operation Mode: GSM 1900 / TX / CH 661

Temperature: 25°C

Humidity: 55 % RH

Test Date: April 13, 2006 Tested by: Spring Zhou Polarity: Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3760.15	28.02	V	-73.12	6.75	13.56	-66.31	-13.00	-53.31
3759.93	29.12	Н	-73.93	6.75	13.56	-67.12	-13.00	-54.12

Operation Mode: GSM 1900 / TX / CH 810

Temperature: 25°C

Humidity: 55 % RH

Test Date:April 13, 2006Tested by:Spring ZhouPolarity:Ver. / Hor.

3819.74 27.78 V -73.47 6.84 14.25 -66.06 -13.00 -53.06	Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
	3819.74	27.78	V	-73.47	6.84	14.25	-66.06	-13.00	-53.06
3819.76 27.41 H -73.24 6.84 14. 25 -65.83 -13.00 -52.83	3819.76	27.41	Н	-73.24	6.84	14.25	-65.83	-13.00	-52.83

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible

limits or the field strength is too small to be measured.

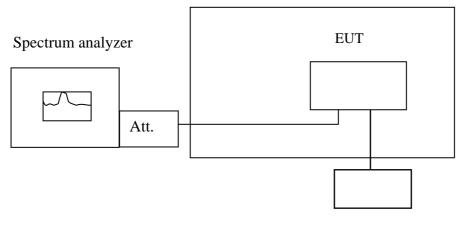
- 4. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 5. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

7.6 FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235.

Frequency Tolerance: 2.5 ppm


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
DC POWER SUPPLY	GW instek	GPS-3303C	E903131	10/18/2007
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/27/2007
Wireless communication test set	Agilent	E5515C	QB44051695	10/06/2007
Temp. / Humidity Chamber	Kingson	THS-M1	242	05/26/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Temperature Chamber

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

TEST RESULTS

Reference Frequency: GSM Mid Channel 836.6 MHz @ 20°C						
	Limit: ± 2	2.5 ppm = 2091.5 Hz	Z			
Power Supply Vdc	EnvironmentFrequencyTemperature (°C)(Hz)		Delta (Hz)	Limit (Hz)		
	50	836600018	44.00			
	40	836600020	46.00			
	30 20	836600012	38.00			
		836599974	0.00			
3.7	10	836600026	52.00	2091.5		
	0	836600020	46.00			
	-10	836600030	56.00			
	-20	836600024	50.00			
	-30	836600035	61.00			

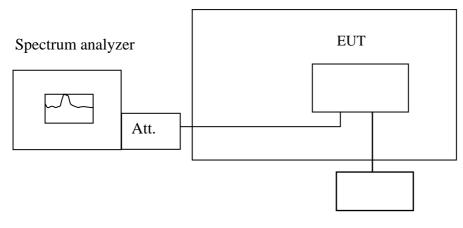
No non-compliance noted.

Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C					
	Limit: ±	2.5 ppm = 4700 Hz			
Power Supply Vdc			Delta (Hz)	Limit (Hz)	
	50	1879999970	-48		
	40	1879999974	-44		
	30	1879999971	-47		
	20	1880000018	0		
3.7	10	1879999963	-55	4700	
	0	1879999970	-48		
	-10	1879999970	-48		
	-20	1879999966	-52		
	-30	1879999968	-50		

7.7 FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235,


Frequency Tolerance: 2.5 ppm. MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
DC POWER SUPPLY	GW instek	GPS-3303C	E903131	10/18/2007
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/27/2007
Wireless communication test set	Agilent	E5515C	QB44051695	10/06/2007
Temp. / Humidity Chamber	Kingson	THS-M1	242	05/26/2007

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Temperature Chamber

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector.

TEST PROCEDURE

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

No non-compliance noted.

Reference Frequency: GSM Mid Channel 836.6 MHz @ 20°C						
	Limit: ± 2.5 ppm = 2091.5Hz					
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)		
4.3		836599970	-4			
3.7	20	836599974	0	2091.5		
3.2 (End Point)		836599965	-9			

Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C						
Limit: ± 2.5 ppm = 4700 Hz						
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)		
4.3		1880000026	8			
3.7	20	1880000018	0	4700		
3.2 (End Point)		1880000018	0			

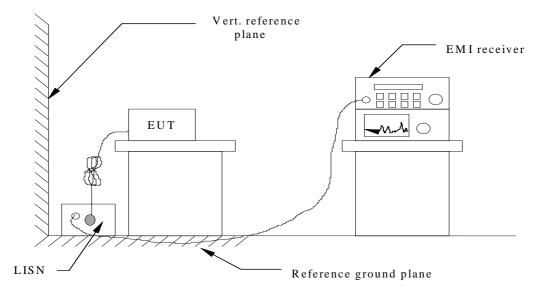
7.8 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBµV)			
Trequency Range (19112)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESI26	100068	01/21/2007
EMC Analyzer	Agilent E7402A US41		US41160329	01/21/2007
LISN	FCC	FCC-LISN-50-50-2-M	01067	02/02/2007
LISN (EUT)	FCC	FCC-LISN-50-50-2-M	01068	02/02/2007
TRANSIENT LIMITER	SCHAFFNER	CLF9206	1710	05/19/2007
EMI Monitor control box	FCC	0-SVDC	N/A	N.C.R

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete..

DECISION OF FINAL TEST MODE

- 1. The following test mode(s) were scanned during the preliminary test:
 - 1. AC to DC charger :Trade Name :Alcatel ; Model Number :3DS09371AGAA Manufactures: Astec
 - 2. AC to DC charger:Trade Name :Alcatel; Model Number :3DS09371AGAA Manufactures: Leader
 - 3. AC to DC charger: Trade Name :Alcatel; Model Number :3DS09371AAAA Manufactures: Astec
 - 4. AC to DC charger: Trade Name :Alcatel; Model Number : 3DS09371AAAA Manufactures: Leader
 - 5. AC to DC charger: Trade Name :Alcatel; Model Number : 3DS10628AGAA Manufactures: Tenpao
 - 6. AC to DC charger: Trade Name :Alcatel; Model Number :3DS10628AHAA Manufactures: Tenpao
 - 7. DC to DC charger: Trade Name :Alcatel; Model Number :3DS07848AAAA Manufactures: Primax

2. After the preliminary scan, the following test mode was found to produce the highest emission level.

- 2. AC to DC charger:Trade Name :Alcatel; Model Number :3DS09371AGAA Manufactures: Leader
- 7. DC to DC charger: Trade Name :Alcatel; Model Number :3DS07848AAAA Manufactures: Primax

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

	Link mode		
Operation Mode:	(AC to DC charger)	Test Date:	April 07, 2006
Temperature:	25°C	Tested by:	Spring Zhou
Humidity:	68% RH		

Freq. (MHz)	PEAK. Raw (dBuV)	Q.P. Raw (dBuV)	AVG Raw (dBuV)	Q.P. Limit (dBuV)	AVG Limit (dBuV)	Margin (dB)	Factor (dB)	Remark
0.150	62.71	49.58	43.61	66.00	56.00	-12.39	10.33	L1
0.202	58.95	49.54	42.74	64.52	54.52	-11.78	10.30	L1
0.250	57.96	48.66	40.64	63.14	53.14	-12.50	10.29	L1
0.298	55.03	47.72	39.78	61.76	51.76	-11.98	10.29	L1
0.350	55.42	50.31	39.39	60.28	50.28	-10.89	10.30	L1
0.502	54.41	51.00	36.31	56.00	46.00	-9.69	10.36	L1
0.947	52.26	48.86	30.00	56.00	46.00	-16.00	10.47	L1
1.336	51.50	50.30	33.97	56.00	46.00	-12.03	10.52	L1
0.154	60.17	50.82	43.84	65.89	55.89	-12.05	10.41	L2
0.202	57.96	49.51	42.64	64.52	54.52	-11.88	10.39	L2
0.250	57.12	48.43	40.90	63.14	53.14	-12.24	10.38	L2
0.350	55.48	49.14	38.40	60.28	50.28	-11.88	10.38	L2
0.402	54.86	50.76	38.11	58.80	48.80	-10.69	10.38	L2
0.506	55.03	50.95	36.37	56.00	46.00	-9.63	10.47	L2
0.591	53.62	49.89	34.76	56.00	46.00	-11.24	10.49	L2
0.947	53.39	48.90	29.15	56.00	46.00	-16.85	10.56	L2
1.336	52.42	51.14	29.30	56.00	46.00	-16.70	10.61	L2

	Link mode		
Operation Mode:	(DC to DC charger)	Test Date:	April 07, 2006
Temperature:	25°C	Tested by:	Spring Zhou
Humidity:	68% RH		

Freq.	PEAK.	Q.P.	AVG	Q.P.	AVG	Margin	Factor	
(MHz)	Raw	Raw	Raw	Limit	Limit	(dB)	(dB)	Remark
	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)			
0.190	40.26	34.32	34.28	64.86	54.86	-20.58	10.36	L1
0.780	48.39	17.19	16.83	56.00	46.00	-29.17	10.42	L1
0.915	45.15	20.16	20.35	56.00	46.00	-25.65	10.42	L1
0.995	46.98	17.74	18.47	56.00	46.00	-27.53	10.43	L1
1.040	48.13	15.54	15.90	56.00	46.00	-30.10	10.43	L1
1.175	44.32	17.79	18.69	56.00	46.00	-27.31	10.44	L1
0.230	36.51	32.32	32.38	63.71	53.71	-21.33	10.39	L2
0.775	48.31	25.88	23.80	56.00	46.00	-22.20	10.41	L2
0.940	43.14	18.32	17.71	56.00	46.00	-28.29	10.42	L2
1.070	41.52	15.89	16.64	56.00	46.00	-29.36	10.43	L2
1.185	43.34	17.80	18.25	56.00	46.00	-27.75	10.43	L2
1.220	37.51	15.81	15.77	56.00	46.00	-30.23	10.44	L2

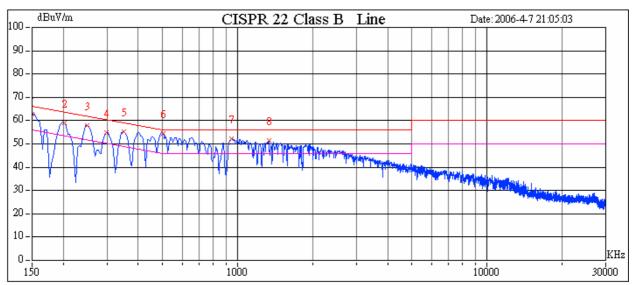
Remark:

- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- *3. "---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.*
- 4. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz
- 5. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

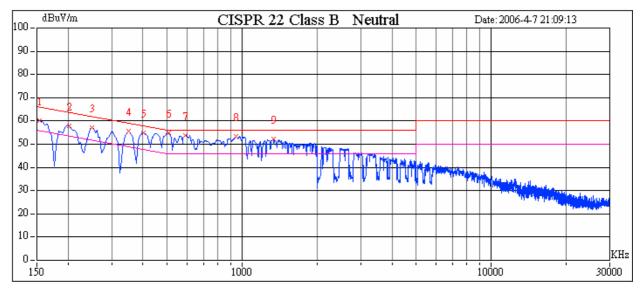
Note:

Freq.	= Emission frequency	in KHz
I req.	Binission ji equence j	<i></i>

```
Factor (dB) = cable loss + Insertion loss of LISN+ Insertion loss of TRANSIENT LIMITER (The TRANSIENT LIMITER included 10 dB ATTENUATION)
```

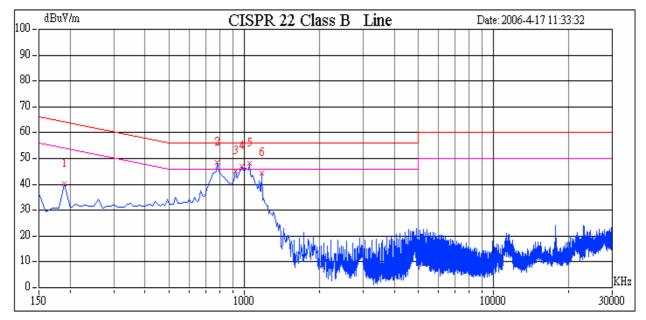

- $$\label{eq:ample} \begin{split} Amptd \ dBuV &= Uncorrected \ Analyzer/Receiver \ reading \ + \ cable \ loss \ + \ Insertion \ loss \ of \ LISN + \\ Insertion \ loss \ of \ TRANSIENT \ LIMITER, \\ if \ it \ > \ 0.5 \ dB \end{split}$$
- Limit dBuV = Limit stated in standard

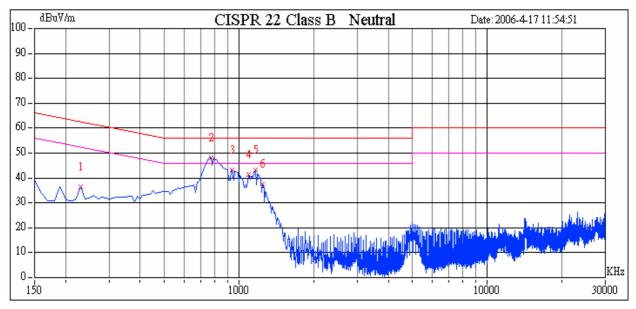
Margin dB = *Reading in reference to limit* Calculation Formula


Margin (dB) = Amptd (dBuV) - Limit (dBuV)

Test Plots AC to DC charger

Conducted emissions (Line 1)

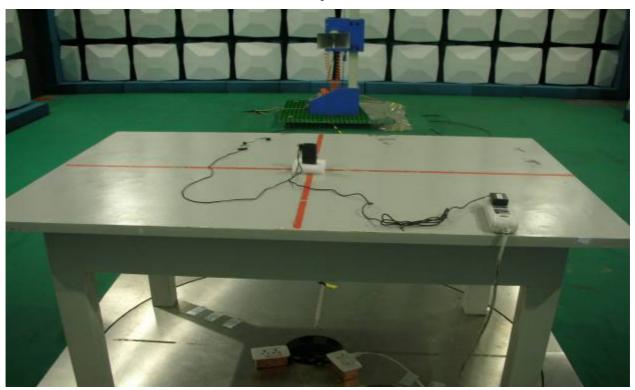

Conducted emissions (Line 2)

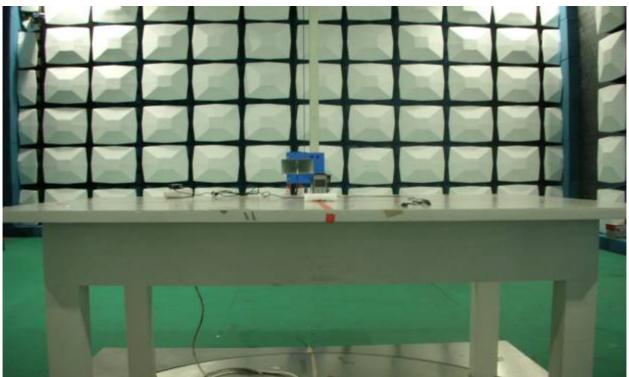


Test Plots DC to DC charger

Conducted emissions (Line 1)

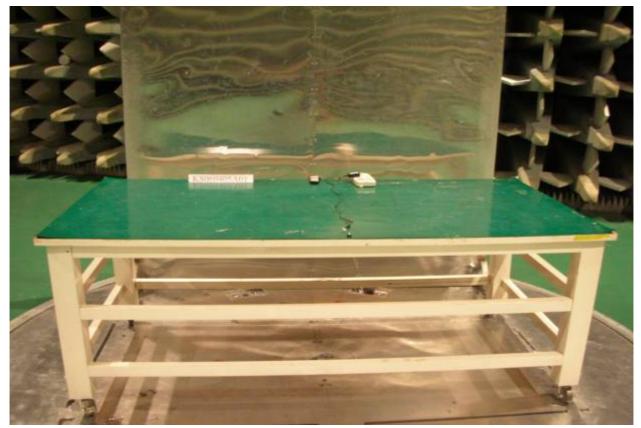
Conducted emissions (Line 2)

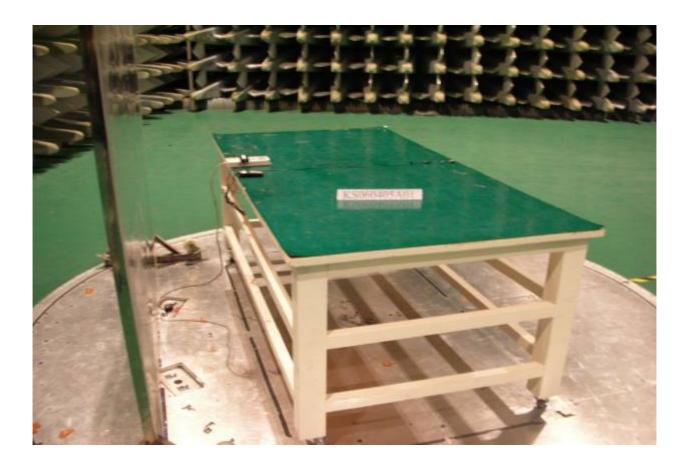



APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Radiated Emission Set up Photos

Front of view




Back of view

Conducted Emission SetUp Photos AC to DC charger

