# **FCC Test Report** Report No: FCS202302125W01 # Issued for | Applicant: | Shenzhen Caibo Technology Co.,Ltd. | | | | |-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|--| | Address: | 4th Floor, Building 30th, No.5 Area, Cuigang Industrial Zone,<br>Huaide, Fuyong, Baoan District, Shenzhen China | | | | | Product Name: | Three-Axis Linkage Wireless Charger Car | | | | | Brand Name: | N/A | | | | | Model Name: | X6 | | | | | Series Model: | X6S | | | | | FCC ID: | 2AXTH-X6 | | | | | Issued By: Flux Compliance Service Laboratory | | | | | Issued By: Flux Compliance Service Laboratory Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.fcs-lab.com ### **TEST RESULT CERTIFICATION** | Applicant's Name: | Shenzhen Caibo Technology Co.,Ltd. | |----------------------------|-------------------------------------------------------------------------------------------------------------| | Address: | 4th Floor, Building 30th, No.5 Area, Cuigang Industrial Zone Huaide, Fuyong, Baoan District, Shenzhen China | | Manufacture's Name: | Shenzhen Caibo Technology Co.,Ltd. | | Address: | 4th Floor, Building 30th, No.5 Area, Cuigang Industrial Zone Huaide, Fuyong, Baoan District, Shenzhen China | | <b>Product Description</b> | | | Product Name: | Three-Axis Linkage Wireless Charger Car | | Brand Name: | N/A | | Model Name: | X6 | | Series Model: | X6S | | Test Standards: | FCC Rules and Regulations Part 15 Subpart C, Section 209 | This device described above has been tested FCS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. ANSI C63.10:2013 This report shall not be reproduced except in full, without the written approval of FCS, this document may be altered or revised by FCS, personal only, and shall be noted in the revision of the document... ## Date of Test....: Test Procedure....: Date (s) of performance of tests.: Feb 20. 2023 ~ Feb 23. 2023 Date of Issue...... Feb 23. 2023 Test Result.....: Pass | Tested by | : | Scott shen | - CERIFIC | |-------------|---|--------------|-----------| | | | (Scott Shen) | STO TO | | Reviewed by | : | Duke Own | | | | | (Duke Qian) | SOMETINE | | Approved by | : | Jak vous | | | | | (Jack Wang) | | | Table of Contents | Page | |--------------------------------------------------------------|------| | 1. SUMMARY OF TEST RESULTS | 5 | | 1.1 TEST FACTORY | 6 | | 1.2 MEASUREMENT UNCERTAINTY | 6 | | 2. GENERAL INFORMATION | 7 | | 2.1 GENERAL DESCRIPTION OF THE EUT | 7 | | 2.2 DESCRIPTION OF THE TEST MODES | 8 | | 2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS . | 9 | | 2.4 EQUIPMENTS LIST | 10 | | 3 CONDUCTED EMISSION MEASUREMENT | 11 | | 3.1 LIMIT | 11 | | 3.2 TEST PROCEDURE | 11 | | 3.3 TEST SETUP | 12 | | 3.4 TEST RESULTS | 13 | | 4. RADIATED EMISSION MEASUREMENT | 15 | | 4.1 LIMIT | 15 | | 4.2 TEST PROCEDURE | 16 | | 4.3 TEST SETUP | | | 4.4 TEST RESULTS | | | (30MHZ-1000MHZ) | 19 | | 5. 20 DB BANDWIDTH TEST | 21 | | 5.1 LIMIT | 21 | | 5.2 TEST PROCEDURE | | | 5.3 TEST SETUP | | | 5.4 TEST RESULTS | 22 | | 6. ANTENNA REQUIREMENT | | | 6.1 STANDARD REQUIREMENT | | | 6.2 EUT ANTENNA | 23 | # **Revision History** | Rev. | Issue Date | Effect Page | Contents | |------|--------------|-------------|----------| | 00 | Feb 23. 2023 | N/A | N/A | | | | | | ## 1. SUMMARY OF TEST RESULTS | FCC Rules and Regulations Part 15 Subpart C, Section 209 | | | | | |----------------------------------------------------------|----------------------------|----------|--------|--| | Standard<br>Section | Test Item | Judgment | Remark | | | 15.207 | Conducted Emission | PASS | | | | 15.209(a) (f) | Radiated Spurious Emission | PASS | | | | 15.215(c) | 20dB Bandwidth | PASS | | | | 15.203 | Antenna Requirement | PASS | | | ## NOTE: - (1)" N/A" denotes test is not applicable in this Test Report - (2) All tests are according to ANSI C63.10-2013 #### 1.1 TEST FACTORY | Company Name: | Flux Compliance Service Laboratory | | | |-------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--| | Company Name. | Titax Compliance Service Laboratory | | | | Address: | Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan | | | | Telephone: | +86-769-27280901 | | | | Fax: | +86-769-27280901 | | | | FCC Test Firm Registration Number: 514908 | | | | FCC Test Firm Registration Number: 514908 Designation number: CN0127 A2LA accreditation number: 5545.01 ## 1.2 MEASUREMENT UNCERTAINTY The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$ , where expended uncertainty $\mathbf{U}$ is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$ , providing a level of confidence of approximately $\mathbf{95}$ %. | No. | Item | Uncertainty | |-----|-------------------------------------------|-----------------------| | 1 | RF output power, conducted | ±0.71dB | | 2 | Unwanted Emissions, conducted | ±2.98 dB | | 3 | Conducted Emission (9KHz-150KHz) | ± 4.13 dB | | 4 | Conducted Emission (150KHz-30MHz) | ±4.74 dB | | 5 | All emissions,radiated (9KHz -30MHz) | $\pm3.1~ ext{dB}$ | | 6 | All emissions,radiated(<1G) 30MHz-1000MHz | $\pm3.2~\text{dB}$ | | 7 | All emissions,radiated (1GHz -18GHz) | $\pm3.66~\mathrm{dB}$ | | 8 | All emissions,radiated (18GHz -40GHz) | ±4.31 dB | ## 2. GENERAL INFORMATION ## 2.1 GENERAL DESCRIPTION OF THE EUT | Product Name | Three-Axis Linkage Wireless Charger Car | |-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Trade Name | N/A | | Model Name | X6 | | Series Model | X6S | | Model Difference | The above product with same circuit, PCB layout, electrical parts, materials and wiring structures, the materials of decorative accessories is same, For the product appearance difference, the size is the same, but the color of the product is different | | Channel List | Please refer to the Note 2. | | Operation frequency | 115-205KHz | | Modulation Type | MSK | | Antenna Type | Inductive Loop Antenna with 1.0dBi | | Power Supply | Input: 5V/2A, 9V/2A<br>Output power: 5W/7.5W/10W/15W | | Rated voltage | DC 9V | | Test voltage | DC 9V | | Hardware version number | V1.0 | | Software version number | V1.0 | | Connecting I/O Port(s) | Please refer to the User's Manual | ## Note: - 1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. - 2. Operation frequency:0.115KHz~0.205KHz - 3. Table for Filed Antenna | Ant. | Brand | Model<br>Name | Antenna Type | Connector | Gain (dBi) | NOTE | | |------|-------|---------------|---------------------------|-----------|------------|---------|--| | 1 | N/A | FGGH | Inductive Loop<br>Antenna | N/A | 1.0dBi | Antenna | | #### 2.2 DESCRIPTION OF THE TEST MODES To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively. Test software: KCC Use manual test control EUT to operate in continuous TX mode and select the test channel | Tested mode, Description | | | | | |--------------------------|---------------------------------------|--|--|--| | Mode | Description | | | | | Mode 1 | Mobile phone wireless charging (5W) | | | | | Mode 2 | Mobile phone wireless charging (7.5W) | | | | | Mode 3 | Mobile phone wireless charging (10W) | | | | | Mode 4 | Mobile phone wireless charging (15W) | | | | #### 2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. ## Necessary accessories | Item | Equipment | Mfr/Brand | Model/Type<br>No. | Serial No. | Note | |------|-----------|-----------|---------------------|------------|-------------------------------------| | 1 | Adapter | XIAOMI | MDY-11-EB | N/A | This is for testing only in report. | | 2 | Phone | Apple | iPone 12 Pro<br>Max | N/A | This is for testing only in report. | ## Support units | Item | Equipment | Mfr/Brand | Model/Type No. | Serial<br>No. | Note | |------|-----------|-----------|----------------|---------------|------| | N/A | N/A | N/A | N/A | N/A | N/A | #### Note: - (1) The support equipment was authorized by Declaration of Confirmation. - (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column. - (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core". ## 2.4 EQUIPMENTS LIST Radiation Test equipment | Kind of Equipment | Manufacturer | Type No. | Company No. | Last calibration | Calibrated until | |-------------------------------------|--------------|--------------|-------------|------------------|------------------| | EMI Test Receiver | R&S | ESRP 3 | FCS-E001 | 2022.08.30 | 2023.08.29 | | Signal Analyzer | R&S | FSV40-N | FCS-E012 | 2022.08.30 | 2023.08.29 | | Active loop Antenna | ZHINAN | ZN30900C | FCS-E013 | 2022.08.30 | 2023.08.29 | | Bilog Antenna | SCHWARZBECK | VULB 9168 | FCS-E002 | 2022.08.30 | 2023.08.29 | | Horn Antenna | SCHWARZBECK | BBHA 9120D | FCS-E003 | 2022.08.30 | 2023.08.29 | | SHF-EHF Horn<br>Antenna (18G-40GHz) | A-INFO | LB-180400-KF | FCS-E018 | 2022.08.30 | 2023.08.29 | | Pre-Amplifier(0.1M-3G<br>Hz) | EMCI | EM330N | FCS-E004 | 2022.08.30 | 2023.08.29 | | Pre-Amplifier<br>(1G-18GHz) | N/A | TSAMP-0518SE | FCS-E014 | 2022.08.30 | 2023.08.29 | | Pre-Amplifier<br>(18G-40GHz) | TERA-MW | TRLA-0400 | FCS-E019 | 2022.08.30 | 2023.08.29 | | Temperature & Humidity | HTC-1 | victor | FCS-E005 | 2022.08.30 | 2023.08.29 | Conduction Test equipment | Kind of Equipment | Manufacturer | Type No. | Company No. | Last calibration | Calibrated until | |------------------------|--------------|----------|-------------|------------------|------------------| | EMI Test Receiver | R&S | ESPI | FCS-E020 | 2022.08.30 | 2023.08.29 | | LISN | R&S | ENV216 | FCS-E007 | 2022.08.30 | 2023.08.29 | | LISN | ETS | 3810/2NM | FCS-E009 | 2022.08.30 | 2023.08.29 | | Temperature & Humidity | HTC-1 | victor | FCS-E008 | 2022.08.30 | 2023.08.29 | #### **RF Connected Test** | Ta Connected Foot | | | | | | |-------------------|--------------|----------|-------------|------------------|------------------| | Kind of Equipment | Manufacturer | Type No. | Company No. | Last calibration | Calibrated until | | Spectrum Analyzer | Keysight | N9020A | FCS-E015 | 2022.08.30 | 2023.08.29 | | Spectrum Analyzer | Agilent | E4447A | MY50180039 | 2022.08.30 | 2023.08.29 | | Spectrum Analyzer | R&S | FSV-40 | 101499 | 2022.08.30 | 2023.08.29 | #### **3 CONDUCTED EMISSION MEASUREMENT** #### 3.1 LIMIT Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed. | EDEOLIENCY (MH-) | Conducted Emissionlimit (dBuV) | | | |------------------|--------------------------------|-----------|--| | FREQUENCY (MHz) | Quasi-peak | Average | | | 0.15 -0.5 | 66 - 56 * | 56 - 46 * | | | 0.50 -5.0 | 56.00 | 46.00 | | | 5.0 -30.0 | 60.00 | 50.00 | | #### Note: - (1) The tighter limit applies at the band edges. - (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range. #### 3.2 TEST PROCEDURE The following table is the setting of the receiver | Receiver Parameters | Setting | |---------------------|----------| | Attenuation | 10 dB | | Start Frequency | 0.15 MHz | | Stop Frequency | 30 MHz | | IF Bandwidth | 9 kHz | - a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument. - b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long. - c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m. - d. LISN at least 80 cm from nearest part of EUT chassis. - e. For the actual test configuration, please refer to the related Item –EUT Test Photos. ## 3.3 TEST SETUP Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes ## 3.4 TEST RESULTS | Temperature: | 25℃ | Relative Humidity: | 50% | |--------------|---------------|--------------------|--------------------| | Test Mode: | Mode 4(Worst) | Test Voltage: | DC 9V from adapter | | Result: | Pass | | | | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|--------|--------|--------|--------| | | (MHz) | (dBuV) | Factor(dB) | (dBuV) | (dBuV) | (dB) | | | 1 | 0. 1615 | 36.73 | 10. 13 | 46.86 | 65.39 | 18.53 | QP | | 2 | 0. 1615 | 6.33 | 10. 13 | 16.46 | 55.39 | 38.93 | AVG | | 3 | 0.4200 | 27.22 | 10.02 | 37.24 | 57.45 | 20.21 | QP | | 4 | 0.4200 | 15.46 | 10.02 | 25.48 | 47.45 | 21.97 | AVG | | 5 | 1.5720 | 19.02 | 9.98 | 29.00 | 56.00 | 27.00 | QP | | 6 | 1.5720 | 3.76 | 9.98 | 13.74 | 46.00 | 32.26 | AVG | | 7 | 2.9849 | 25.85 | 9.94 | 35.79 | 56.00 | 20.21 | QP | | 8 | 2.9849 | 17.77 | 9.94 | 27.71 | 46.00 | 18.29 | AVG | | 9 | 7.7235 | 22. 11 | 9.82 | 31.93 | 60.00 | 28.07 | QP | | 10 | 7.7235 | 19.33 | 9.82 | 29. 15 | 50.00 | 20.85 | AVG | | 11 | 14.2125 | 24.38 | 9.81 | 34. 19 | 60.00 | 25.81 | QP | | 12 | 14.2125 | 22.04 | 9.81 | 31.85 | 50.00 | 18. 15 | AVG | | No. | Frequency | Reading | Correct | Result | Limit | Margin | Remark | |-----|-----------|---------|------------|--------|--------|--------|--------| | | (MHz) | (dBuV) | Factor(dB) | (dBuV) | (dBuV) | (dB) | | | 1 | 0. 1770 | 33.38 | 10.06 | 43.44 | 64.63 | 21. 19 | QP | | 2 | 0. 1770 | 4.53 | 10.06 | 14.59 | 54.63 | 40.04 | AVG | | 3 | 0.4245 | 26.51 | 10.00 | 36.51 | 57.36 | 20.85 | QP | | 4 | 0.4245 | 14.36 | 10.00 | 24.36 | 47.36 | 23.00 | AVG | | 5 | 1. 1445 | 23. 14 | 9.99 | 33. 13 | 56.00 | 22.87 | QP | | 6 | 1. 1445 | 12.37 | 9.99 | 22.36 | 46.00 | 23.64 | AVG | | 7 | 2.9760 | 28.60 | 9.94 | 38.54 | 56.00 | 17.46 | QP | | 8 | 2.9760 | 26.32 | 9.94 | 36.26 | 46.00 | 9.74 | AVG | | 9 | 8.3715 | 22.41 | 9.82 | 32.23 | 60.00 | 27.77 | QP | | 10 | 8.3715 | 18.58 | 9.82 | 28.40 | 50.00 | 21.60 | AVG | | 11 | 17.8260 | 20.61 | 9.92 | 30.53 | 60.00 | 29.47 | QP | | 12 | 17.8260 | 16.38 | 9.92 | 26.30 | 50.00 | 23.70 | AVG | #### 4. RADIATED EMISSION MEASUREMENT #### 4.1 LIMIT In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed LIMITS OF RADIATED EMISSION MEASUREMENT (0.009mhz - 1000mhz) | Frequencies | Field Strength | Measurement Distance | |-------------|--------------------|----------------------| | (MHz) | (micorvolts/meter) | (meters) | | 0.009~0.490 | 2400/F(KHz) | 300 | | 0.490~1.705 | 24000/F(KHz) | 30 | | 1.705~30.0 | 30 | 30 | | 30~88 | 100 | 3 | | 88~216 | 150 | 3 | | 216~960 | 200 | 3 | | Above 960 | 500 | 3 | #### Notes: - (1) The limit for radiated test was performed according to FCC PART 15C. - (2) The tighter limit applies at the band edges. - (3) Emission level (dBuV/m)=20log Emission level (uV/m). - (4) Distance refers to the distance in meters between the measuring instrument antenna and the EUT - (5) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits inthese three bands are based on measurements employing an average detector. #### **4.2 TEST PROCEDURE** | Spectrum Parameter | Setting | | |---------------------------------|---------------------------------|--| | Attenuation | Auto | | | Detector | Peak/AV | | | Start Frequency | 1000 MHz(Peak/AV) | | | Stop Frequency | 10th carrier hamonic(Peak/AV) | | | RB / VB (emission in restricted | | | | band) | PK=1MHz / 1MHz, AV=1 MHz /10 Hz | | - a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz. - b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation. - c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement. - d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured. - e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. - f. For the actual test configuration, please refer to the related Item –EUT Test Photos. #### Note: Both horizontal and vertical antenna polarities were tested. The worst case emissions were reported #### 4.3 TEST SETUP ## (A) Radiated Emission Test-Up Frequency Below 30MHz ## (B) Radiated Emission Test-Up Frequency 30MHz~1GHz ## (C) Radiated Emission Test-Up Frequency Above 1GHz #### 4.4 TEST RESULTS ## For spurious emission (9KHz-30MHz) | Temperature: | 22.7℃ | Relative Humidity: | 61% | |---------------|---------------|--------------------|----------| | Test Voltage: | DC 9V | Phase: | Vertical | | Test Mode: | Mode 4(Worst) | | | | No. | Frequency (MHz) | Reading<br>(dBuV) | Factor (dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | |-----|-----------------|-------------------|---------------|-------------------|-------------------|----------------|----------| | 1 | 0.0212 | 27.21 | 20.55 | 47.76 | 121.10 | 73.34 | AV | | 2 | 0.1345 | 50.64 | 20.70 | 71.34 | 104.78 | 33.44 | AV | | 3 | 0.3577 | 23.26 | 20.32 | 43.58 | 96.57 | 52.99 | AV | | 4 | 0.8591 | 24.58 | 20.25 | 44.83 | 68.89 | 24.06 | AV | | 5 | 2.9723 | 23.30 | 20.39 | 43.69 | 69.50 | 25.81 | QP | | 6* | 5.3735 | 26.40 | 20.54 | 46.94 | 69.50 | 22.56 | QP | #### Remarks: - 1. Final Level =Receiver Read level + Factor - 2. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz. Radiated emission limits inthese three bands are based on measurements employing an average detector an average detector ## (30MHZ-1000MHZ) | Temperature: | 23.7℃ | Relative Humidity: | 61% | |---------------|---------------|--------------------|------------| | Test Voltage: | DC 9V | Phase: | Horizontal | | Test Mode: | Mode 4(Worst) | | | #### Remarks: 1. Final Level =Receiver Read level + Factor | Temperature: | 22.7℃ | Relative Humidity: | 61% | |---------------|---------------|--------------------|----------| | Test Voltage: | DC 9V | Phase: | Vertical | | Test Mode: | Mode 4(Worst) | | | ## Remarks: 1. Final Level =Receiver Read level + Factor #### 5. 20 DB BANDWIDTH TEST #### 5.1 LIMIT According to 15.215 (c) Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation ## 5.2 TEST PROCEDURE Check the calibration of the measuring instrument using either an internal calibrator or a - a. known signal from an external generator - b. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value. - C. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth. ## 5.3 TEST SETUP ## **5.4 TEST RESULTS** | Temperature: | 25℃ | Relative Humidity: | 50% | |--------------|---------------|--------------------|-------| | Test Mode: | Mode 4(Worst) | Test Voltage: | DC 9V | | Frequency<br>(KHz) | 20dB Bandwidth<br>(Hz) | Result | |--------------------|------------------------|--------| | 134.4 | 252 | PASS | ## 6. ANTENNA REQUIREMENT ## **6.1 STANDARD REQUIREMENT** 15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. ## **6.2 EUT ANTENNA** The antennas used for this product is Inductive Loop Antenna and no other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 1.0dBi. \*\*\*\*END OF THE REPORT\*\*\*