TEST REPORT

of

FCC Part 15 Subpart C

 \boxtimes New Application; \square Class I PC; \square Class II PC

Product :	7 inch Android Panel PC PoE LED
Brand:	ProDVX
Model:	APPC-7XPL, APPC-7XPLN
Model Difference:	For different markets
FCC ID:	2AR42APPC7XPL
FCC Rule Part:	§15.247, Cat: DTS
Applicant:	ProDVX Europe B.V.
Address:	Europalaan 12F, 5232 BC Den Bosch, The Netherlands

Test Performed by: International Standards Laboratory Corp.

<LT Lab.> *Site Registration No. BSMI: SL2-IN-E-0013; MRA TW0997; TAF: 0997; IC: IC4067B-4;

*Address: No. 120, Lane 180, San Ho Tsuen, Hsin Ho Rd. Lung-Tan Hsiang, Tao Yuan County 325, Taiwan TEL: +886-3-263-8888 FAX: +886-3-263-8899 Report No.: **ISL-20LR400FCDTS** Issue Date : **2021/01/15**

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

The uncertainty of the measurement does not include in consideration of the test result unless the customer required the determination of uncertainty via the agreement, regulation or standard document specification.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory Corp.

VERIFICATION OF COMPLIANCE

Applicant:	ProDVX Europe B.V.
Product Description:	7 inch Android Panel PC PoE LED
Brand Name:	ProDVX
Model No.:	APPC-7XPL, APPC-7XPLN
Model Difference:	For different markets
FCC ID:	2AR42APPC7XPL
Date of test:	2020/12/04 ~ 2021/01/14
Date of EUT Received:	2020/12/04

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory Corp.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	Barry Lee	Date:	2021/01/15
	Barry Lee / Senior Engineer	-	
Prepared By:	Gigi Jeh	Date:	2021/01/15
	Gigi Yeh / Senior Engineer	-	
Approved By:	Jerry Lin	Date:	2021/01/15
	Jerry Liu / Technical Manager	-	

Version

Version No.	Date	Description
00	2021/01/15	Initial creation of document

Uncertainty of Measurement

Description Of Test	Uncertainty
Conducted Emission (AC power line)	2.586 dB
Field Strongth of Spurious Dadia	<=30MHz: 2.96dB
Field Strength of Spurious Radia- tion	30-1GHz: 4.22 dB
	1-40 GHz: 4.08 dB
Conducted Dower	2.412 GHz: 1.30 dB
Conducted Power	5.805 GHz: 1.55 dB
	2.412 GHz:1.30 dB
Power Density	5.805 GHz: 1.67 dB
Frequency	0.0032%

Table of Contents

1	Gener	cal Information	
	1.1	Related Submittal(s) / Grant (s)	8
	1.2	Test Methodology	8
	1.3	Test Facility	8
	1.4	Special Accessories	
	1.5	Equipment Modifications	8
2	Syster	n Test Configuration	9
	2.1	EUT Configuration	
	2.2	EUT Exercise	9
	2.3	Test Procedure	9
	2.4	Configuration of Tested System	10
3	Sumn	nary of Test Results	.11
4	Descr	iption of Test Modes	.11
5	Cond	- uced Emission Test	12
J	5.1	Standard Applicable:	
	5.2	Measurement Equipment Used:	
	5.3	EUT Setup:	
	5.4	Measurement Procedure:	
	5.5	Measurement Result:	
6			
6		Standard Applicable	
	6.1 6.2	Standard Applicable:	
	6.2 6.3	Measurement Equipment Used:	
	0.5 6.4	Test Set-up: Measurement Procedure:	
	0.4 6.5	Measurement Result:	
	0.5	Measurement Result.	
_	<		40
7		andwidth	
7	7.1	Standard Applicable:	19
7	7.1 7.2	Standard Applicable: Measurement Equipment Used:	19 19
7	7.1 7.2 7.3	Standard Applicable: Measurement Equipment Used: Test Set-up:	19 19 19
7	7.1 7.2 7.3 7.4	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure:	19 19 19 19
7	7.1 7.2 7.3 7.4 7.5	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result:	19 19 19 19 20
7	7.1 7.2 7.3 7.4 7.5 Spuri	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test	19 19 19 19 20 29
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable	19 19 19 20 29 29
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used:	19 19 19 20 .29 29 29
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP:	19 19 19 20 .29 29 30
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure:	19 19 19 20 .29 29 30 31
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation	19 19 19 20 .29 29 30 31 32
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure:	19 19 19 20 .29 29 30 31 32
	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test . Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement	19 19 19 20 29 29 30 31 32 32 32 32
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable:	19 19 19 20 29 29 30 31 32 32 63
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used:	19 19 19 20 29 30 31 32 32 63 63 63
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3	Standard Applicable:	19 19 19 20 29 29 30 31 32 63 63 63 65
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable. Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement . Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Procedure:	19 19 19 20 29 29 30 31 32 63 63 63 65 66
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5	Standard Applicable:	19 19 19 20 29 29 29 30 31 32 32 63 63 65 66 66
8	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable. Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement . Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Equipment Used: Measurement Procedure:	19 19 19 20 29 29 29 30 31 32 32 63 63 65 66 66
8 9.	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation: Measurement Procedure: Field Strength Calculation: Measurement Result: Measurement Result:	19 19 19 20 29 29 29 30 31 32 32 63 63 65 66 66 66 66
8 9.	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak 10.1	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Lz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Lz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Result: Measurement Procedure: Field Strength Calculation: Measurement Result: Power Spectral Density Standard Applicable:	19 19 19 20 29 29 30 31 32 32 63 63 66 66 66 66 66
8 9.	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak 10.1 10.2	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Iz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation: Measurement Result: Power Spectral Density Standard Applicable: Measurement Equipment Used: Measurement Equipment Used: Measurement Result:	19 19 19 20 29 29 30 31 32 63 63 63 66 66 66 87 87 87
8 9.	7.1 7.2 7.3 7.4 7.5 Spuri 8.1 8.2 8.3 8.4 8.5 8.6 100kH 9.1 9.2 9.3 9.4 9.5 9.6 Peak 10.1	Standard Applicable: Measurement Equipment Used: Test Set-up: Measurement Procedure: Measurement Result: ous Radiated Emission Test. Standard Applicable Measurement Equipment Used: Test SET-UP: Measurement Procedure: Field Strength Calculation Measurement Result: Lz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Result: Lz Bandwidth of Band Edges Measurement Standard Applicable: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Equipment Used: Test SET-UP: Measurement Result: Measurement Procedure: Field Strength Calculation: Measurement Result: Power Spectral Density Standard Applicable:	19 19 19 20 29 29 30 31 32 32 63 63 63 63 65 66 66 66

	10.5	Measurement Result:	88
11.	Anten	na Requirement	97
	11.1	Standard Applicable:	97
	11.2	Antenna Connected Construction:	97

1 General Information

General:

Product Name	7 inch Android Panel F	PC PoE LED
Brand Name	ProDVX	
Model Name	APPC-7XPL, APPC-72	XPLN
Model Difference	For different markets	
USB port	One provided	
Micro USB	One provided	
SD	One provided	
RJ45	One provided	
Audio ouy	One provided	
	12Vdc from AC/DC adapter	
Power Supply	Adapter:	 Model : SOY-1200200-068 Model: 2AAJ024FC Model: 2ABL024F US

BLE:

Frequency Range:	2402 – 2480MHz
Bluetooth Version:	V4.0
Channel number:	40 channels
Tune up power (Peak):	GFSK : 4.15 dBm +/- 1 dB
Antenna Designation:	PCB Antenna: 2.2 dBi

WLAN

Wi-Fi	Frequency Range (MHz)	Channels	Peak / Average Rated Power	Modulation Technology		
802.11b	2412 - 2462(DTS)	11	19.73 dBm (PK)			
802.11g	2412 - 2462(DTS)	11	24.19dBm (PK)			
802.11n	HT20 2412 – 2462(DTS)	11	23.97dBm (PK)	OFDM		
(2.4G)	HT40 2412 – 2462(DTS)	9	23.89 dBm (PK)			
Madal		CCK, DQPSK, DBPSK for DSSS				
Modula	Modulation type		256QAM.64QAM. 16QAM, QPSK, BPSK for OFDM			
could be considered unce tional gain computation.			Antenna : 2.2 dBi to KDB662911 D01 SM-M nsidered uncorrelated for purp omputation.	U		
Directional gain = G_{ANT}						

The EUT is compliance with IEEE 802.11 b/g/n Standard. This report applies for 2.4GHz Wifi + BLE.

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.1 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID:** <u>2AR42APPC7XPL</u> filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules

1.2 Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

KDB Document: 558074 D01 15.247 Meas Guidance v0.5r02

1.3 Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of International Standards Laboratory Corp. <LT Lab.> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents . FCC Registration Number is: 487532; Designation Number is: TW0997.

1.4 Special Accessories

Not available for this EUT intended for grant.

1.5 Equipment Modifications

Not available for this EUT intended for grant.

2 System Test Configuration

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

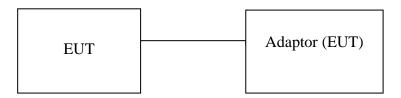
The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3 Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section 6 of ANSI C63.10: 2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR 16-1-1 Quasi-Peak and Average detector mode.

2.3.2 Radiated Emissions


The EUT is a placed on as turn table which is 0.8 m/1.5m (Frequency above 1GHz) above ground plane. The turn table shall rotate 360 degrees to determine the position of maxi-mum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter(EUT) was rotated through three orthogonal axes according to the requirements in Section 6 and 11 of ANSI C63.10: 2013.

2.4 Configuration of Tested System

Fig. 2-1 Configuration of Tested System (Fixed channel)

Radiated Emission

Table 2-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord
1	Adaptor (EUT)	Shenzhen SOY Techology Co.,LTD	SOY-1200200-068	NA	NA	3M

Note: All the above equipment/cables were placed in worse case positions to maximize emission signals during emission test.

Grounding: Grounding was in accordance with the manufacturer's requirements and conditions for the intended use.

3	Summary of Test Results	

FCC Rules	Description Of Test	Result
§15.207(a)	AC Power Line Conducted Emission	Compliant
§15.247(b) (3),(4)	Peak Output Power/ EIRP	Compliant
§15.247(a)(2)	6dB Power Bandwidth	Compliant
815 047(1)	100 kHz Bandwidth Of	Compliant
§15.247(d)	Frequency Band Edges	Compliant
§15.247(d)	Spurious Emission	Compliant
§15.247(e)	Peak Power Density	Compliant
§15.203	Antenna Requirement	Compliant

Description of Test Modes 4

The EUT has been tested under engineering operating condition.

Test program used to control the EUT for staying in continuous transmitting mode is programmed.

Wifi:

802.11 b mode: Channel low (2412MHz) mid (2437MHz) high (2462MHz) with 1Mbps lowest data rate are chosen for full testing.

802.11 g mode: Channel low (2412MHz) mid (2437MHz) high (2462MHz) with 6Mbps lowest data rate are chosen for full testing.

802.11 n _20MHz: Channel low (2412MHz) \cdot mid (2437MHz) \cdot high (2462MHz) with 6.5Mbps lowest data rate are chosen for full testing.

BLE:

Channel low (2402MHz) • mid (2442MHz) and high (2480MHz) with each modulation were chosen for full testing.

5 Conduced Emission Test

5.1 Standard Applicable:

According to \$15.207, frequency range within 150kHz to 30MHz shall not exceed the Limit table as below.

	Limits						
Frequency range	dBo	(uV)					
MHz	Quasi-peak	Average					
0.15 to 0.50	66 to 56	56 to 46					
0.50 to 5	56	46					
5 to 30	60	50					
Note							

1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.2 Measurement Equipment Used:

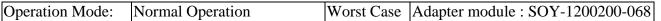
Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Conduction 03	EMI Receiver 15	ROHDE & SCHWARZ	ESCI	101166	07/29/2020	07/29/2021
Conduction 03	ISN T4 09	Teseq GmbH	ISN T400A	49914	08/10/2020	08/10/2021
Conduction 03	ISNT8 09	Teseq GmbH	ISN T800	36190	09/20/2020	09/20/2021
Conduction 03	LISN 15	R&S	ENV216	101335	12/12/2020	12/12/2021
Conduction 03	LISN 22	R&S	ENV216	101478	08/10/2020	08/10/2021
Conduction 03	Conduction 04-3 Cable	WOKEN	CFD 300-NL	conduction 04-3	08/29/2020	08/29/2021
Conduction 03	Capacitive Voltage Probe	FCC	F-CVP-1	68	01/17/2020	01/17/2021
Conduction 03	Current Probe	SCHAFFNER	SMZ 11	18030	01/17/2020	01/17/2021

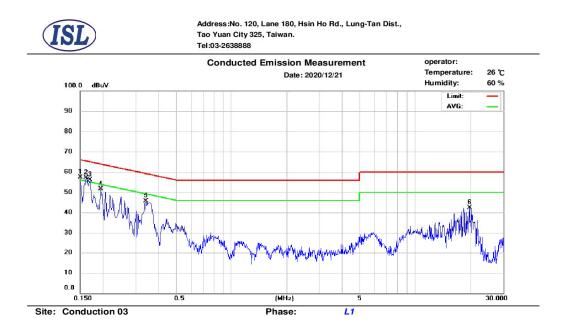
5.3 EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.10: 2014.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.

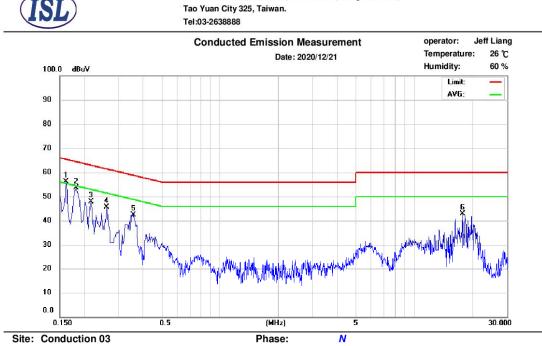
5.4 Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.
- 4. Both 120V & 240V have been verified, and 120V/60Hz was defined as the worst-case and record in the report.


5.5 Measurement Result:


The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Note: Refer to next page for measurement data and plots.


AC POWER LINE CONDUCTED EMISSION TEST DATA

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.150	44.59	26.99	9.71	54.30	66.00	-11.70	36.70	56.00	-19.30
2	0.162	44.32	30.70	9.70	54.02	65.36	-11.34	40.40	55.36	-14.96
3	0.170	40.53	26.59	9.70	50.23	64.96	-14.73	36.29	54.96	-18.67
4	0.196	36.96	22.54	9.70	46.66	63.80	-17.14	32.24	53.80	-21.56
5	0.342	32.44	21.53	9.70	42.14	59.15	-17.01	31.23	49.15	-17.92
6	19.710	31.44	29.06	9.98	41.42	60.00	-18.58	39.04	50.00	-10.96

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.162	43.36	28.85	9.71	53.07	65.36	-12.29	38.56	55.36	-16.80
2	0.182	39.66	24.27	9.70	49.36	64.39	-15.03	33.97	54.39	-20.42
3	0.218	34.58	20.84	9.71	44.29	62.89	-18.60	30.55	52.89	-22.34
4	0.262	30.49	18.30	9.71	40.20	61.37	-21.17	28.01	51.37	-23.36
5	0.358	31.58	24.31	9.70	41.28	58.77	-17.49	34.01	48.77	-14.76
6	17.694	31.29	28.49	10.02	41.31	60.00	-18.69	38.51	50.00	-11.49

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist.,

6 Peak Output Power

6.1 Standard Applicable:

According to §15.247(b)(3),(4)(b)

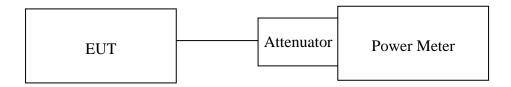
(3) For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(c) Operation with directional antenna gains greater than 6 dBi.

(1) Fixed point-to-point operation:

(i) Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


(ii) Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted output power.

6.2 Measure Location	rement Equipmen				Last Cal.	Next Cal.
Conducted	Equipment Name	Brand	Model	S/N	Date	Date
Conducted	Power Meter	Anritsu	ML2495A	1116010	09/25/2020	09/25/2021
Conducted	Power Sensor	Anritsu	MA2411B	34NKF50	09/25/2020	09/25/2021
Conducted	Power Sensor	DARE	RPR3006W	13I00030SNO33	01/04/2021	01/04/2022
Conducted	Power Sensor	DARE	RPR3006W	13I00030SNO34	01/04/2021	01/04/2022
Conducted	Power Sensor	DARE	RPR3006W	14I00889SNO35	06/29/2020	06/29/2021
Conducted	Power Sensor	DARE	RPR3006W	14I00889SNO36	06/29/2020	06/29/2021
Conducted	Temperature Cham- ber	KSON	THS-B4H100	2287	03/11/2020	03/11/2021
Conducted	DC Power supply	ABM	8185D	N/A	01/05/2021	01/05/2022
Conducted	AC Power supply	EXTECH	CFC105W	NA	N/A	N/A
Conducted	Spectrum analyzer	Keysight	N9010A	MY56070257	09/23/2020	09/23/2021
Conducted	Test Software	DARE	Radiation Ver:2013.1.23	NA	NA	NA
Conducted	Test Software	R&S	CMUGO Ver:2.0.0	N/A	N/A	N/A
Conducted	Universal Digital Radio Communica- tion Tester	R&S	CMU200	111968	11/29/2020	11/29/2021
Conducted	Wideband Radio Communication Tester	R&S	CMW500	1201.002K50108 793-JG	10/28/2020	10/28/2021
Conducted	BT Simulator	Agilent	N4010A	MY48100200	NA	NA
Conducted	GPS Simulator	Welnavigate	GS-50	701523	NA	NA

6.2 Measurement Equipment Used:

6.3 Test Set-up:

6.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

6.5 Measurement Result:

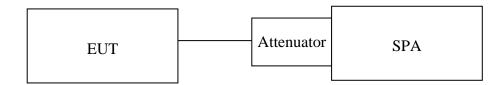
Peak Power

Mode	Freq.	(Output Por	wer (dBm))	Duty Factor	Total Output	Output Power	
Mode	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(dB)	Power (dBm)	Limit (dBm)	
	2412	19.64				0.00	19.64	30.00	
802.11b	2437	19.73				0.00	19.73	30.00	
	2462	19.72				0.00	19.72	30.00	
	2412	24.06				0.00	24.06	30.00	
802.11g	2437	24.1				0.00	24.10	30.00	
	2462	24.19				0.00	24.19	30.00	
	2412	23.8				0.00	23.80	30.00	
802.11n HT20	2437	23.81				0.00	23.81	30.00	
-	2462	23.97				0.00	23.97	30.00	
	2422	23.89				0.00	23.89	30.00	
802.11n HT40	2437	23.67				0.00	23.67	30.00	
	2452	23.98				0.00	23.98	30.00	

Peak Power

Mode	Freq. (MHz)	Output Power (dBm)	Duty Factor (dB)	Total Output Power (dBm)	Output Power Limit (dBm)
	2402	4.15	0.00	4.15	30.00
BLE 4.0	2442	3.687	0.00	3.69	30.00
	2480	2.897	0.00	2.90	30.00

7 6dB Bandwidth


7.1 Standard Applicable:

According to §15.247(a)(2), Systems using digital modulation techniques may operate in the 902 - 928 MHz,2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500kHz.

7.2 Measurement Equipment Used:

Refer to section 6.2 for details.

7.3 Test Set-up:

7.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100kHz, VBW = 3*RBW, Span= cover the complete power envelope of the signal of the UUT Sweep=auto
- 4. Mark the peak frequency and –6dB (upper and lower) frequency.
- 5. Repeat above procedures until all frequency measured were complete.

7.5 Measurement Result:

Frequency	6dB Bandwidth	99% OBW	6dB BW Limit
(MHz)	(MHz)	(MHz)	(kHz)
2412	9.05	12.04	> 500
2437	9.04	12.05	> 500
2462	9.06	12.09	> 500
2412	16.29	16.66	> 500
2437	16.31	16.65	> 500
2462	15.83	16.57	> 500
2412	17.09	17.80	> 500
2437	17.07	17.80	> 500
2462	16.06	17.70	> 500
2422	35.68	36.25	> 500
2437	35.84	36.23	> 500
2452	35.70	36.27	> 500

-20 of 97-

BT 4.0

Frequency	6dB Bandwidth	99% OBW	6dB BW Limit
(MHz)	(MHz)	(MHz)	(kHz)
2402	0.71	1.06	> 500
2442	0.72	1.06	> 500
2480	0.71	1.06	> 500

Note: Refer to next page for plots.

802.11b

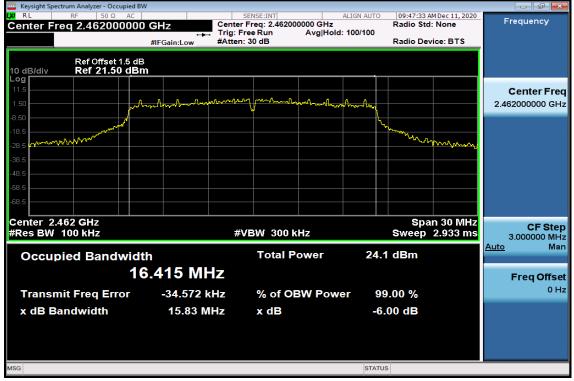
6dB Band Width Test Data CH-Low

6dB Band Width Test Data CH-Mid

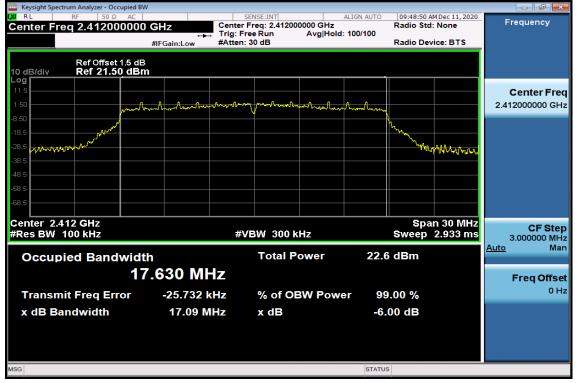
Keysight Spectrum Analyzer - Occupied B SENSE:INT Center Freq: 2.462000000 GHz Trig: Free Run Avg|Hold #Atten: 30 dB R 09:43:10 AM Dec 11, 2020 Radio Std: None ALIGN AUTO Frequency Center Freq 2.462000000 GHz Avg|Hold: 100/100 #IFGain:Low Radio Device: BTS Ref Offset 1.5 dB Ref 21.50 dBm 10 dB/div Log **Center Freq** A A A A.A NA NA A nA A.A 2.462000000 GHz hry. mh ሊሶ W.A Center 2.462 GHz #Res BW 100 kHz Span 30 MHz Sweep 2.933 ms CF Step 3.000000 MHz #VBW 300 kHz <u>Auto</u> Man Total Power 24.5 dBm **Occupied Bandwidth** 12.073 MHz Freq Offset 0 Hz Transmit Freq Error -28.101 kHz % of OBW Power 99.00 % x dB Bandwidth 9.060 MHz x dB -6.00 dB STATUS ISG

6dB Band Width Test Data CH-High

802.11g 6dB Band Width Test Data CH-Low


Keysight Spectrum Analyzer - Occupied I	3W					
RL RF 50 Ω AC enter Freq 2.41200000	Trig	SENSE:INT nter Freq: 2.412000000 (g: Free Run Avg ten: 30 dB	ALIGN AUTO GHz JHold: 100/100	09:45:09 AN Radio Std: Radio Devi		Frequency
Ref Offset 1.5 d 0 dB/div Ref 21.50 dB	B M					
1.5	Amalin Marson Marson	man produced and the second	-Annahary			Center Fr 2.412000000 Gi
50 3.5 3.5 million			<u>ل</u> ر	harrow have have	Ma 6 860	
3.5						
3.5						
enter 2.412 GHz Res BW 100 kHz		#VBW 300 kHz		Spar Sweep	n 30 MHz 2.933 ms	CF Sto 3.000000 M
Occupied Bandwid	th 6.467 MHz	Total Powe	r 23.	8 dBm	2	Auto M Freg Offs
Transmit Freq Error	-41.279 kHz	% of OBW F	ower 9	9.00 %		• 0
x dB Bandwidth	16.29 MHz	x dB	-6	.00 dB		
G			STATU			

6dB Band Width Test Data CH-Mid

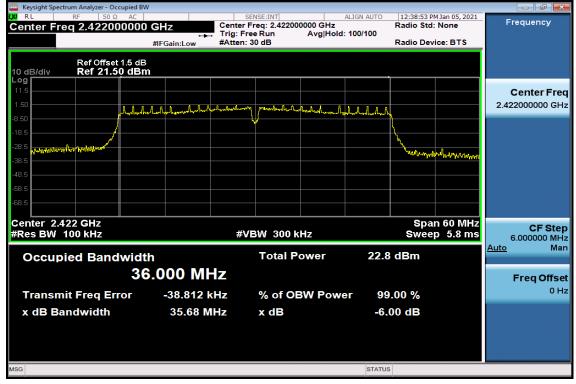

6dB Band Width Test Data CH-High

802.11n_20M

6dB Band Width Test Data CH-Low

6dB Band Width Test Data CH-Mid

Keysight Spectrum Analyzer - Occupied	BW					
IM RF 50 Ω AC Center Freq 2.43700000		SENSE:INT Center Freg: 2.4370	ALIGN AUT	O 09:51:36 A Radio Std	MDec 11, 2020	Frequency
Center Freq 2.43700000		Trig: Free Run	Avg Hold: 100/100			
	#IFGain:Low	#Atten: 30 dB		Radio Dev	/ice: BTS	
Ref Offset 1.5 d	B					
10 dB/div Ref 21.50 dE						
Log 11.5						O antes Essa
	0 0 0 0	5 0-00 m A 0	a 6 a 0			Center Freq 2.437000000 GHz
~~~~	Andreamber	Van Area Van	warman tweethrough the	m		2.437000000 GHZ
-8.50				w.		
-18.5				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
-28.5 Appropriate - 28.5					www.white	
-38.5						
-48.5						
-58.5						
-68.5						
Center 2.437 GHz #Res BW 100 kHz		#VBW 3001	( <b>U</b> 7	Spa	n 30 MHz 2.933 ms	CF Step
TOO KIIZ		#VDVV 3001	112	Gweep	2.955 1115	3.000000 MHz Auto Man
Occupied Bandwid	lth	Total F	ower 2	2.8 dBm		<u>Auto</u> Man
	7.645 M⊦					
	7.045 IVIT	12				Freq Offset
Transmit Freq Error	-25.927 k	Hz % of O	BW Power	99.00 %		0 Hz
x dB Bandwidth	17.07 M	Hz x dB		-6.00 dB		
	11.07 10					
MSG			ST/	ATUS		

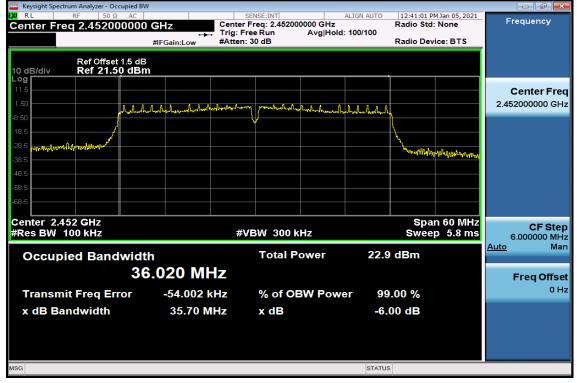



## 6dB Band Width Test Data CH-High




## 802.11n_40M

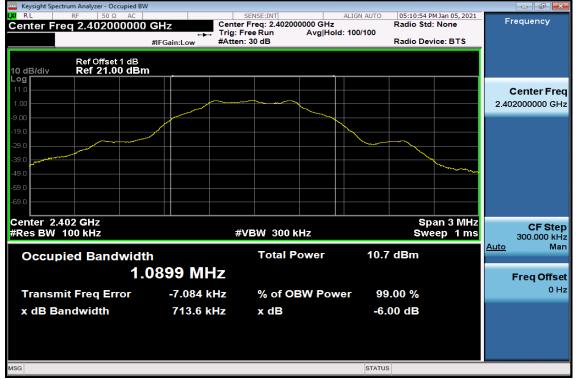
## 6dB Band Width Test Data CH-Low



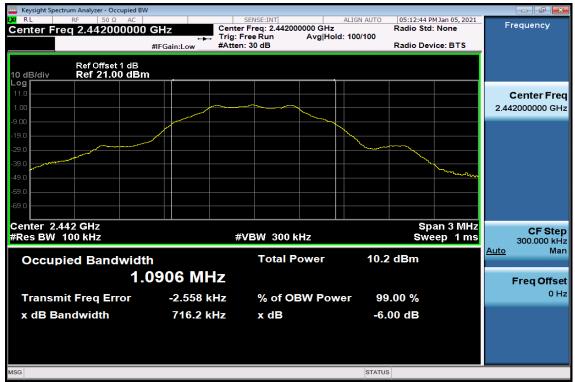



## 6dB Band Width Test Data CH-Mid




## 6dB Band Width Test Data CH-High






## BT BLE 4.0

## 6dB Band Width Test Data CH-Low



## 6dB Band Width Test Data CH-Mid







## 6dB Band Width Test Data CH-High





## 8 Spurious Radiated Emission Test

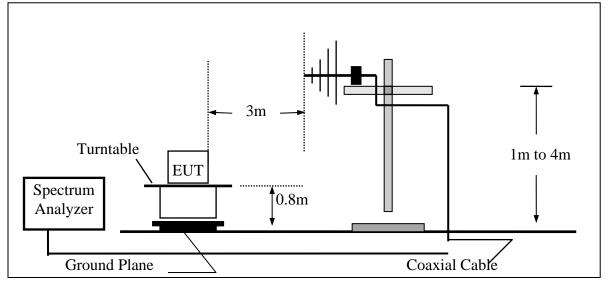
### 8.1 Standard Applicable

According to \$15.247(d), all other emissions outside these bands shall not exceed the general radiated emission limits specified in \$15.209(a). And according to \$15.33(a)(1), for an intentional radiator operates below 10GHz, the frequency range of measurements: to the tenth harmonic of the highest fundamental frequency or to 40GHz, whichever is lower.

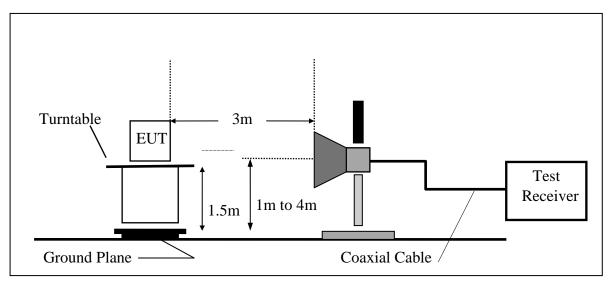
### 8.2 Measurement Equipment Used:

### 8.2.1 Conducted Emission at antenna port:

Refer to section 6.2 for details.


### 8.2.2 Radiated emission:

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Chamber 19	Signal analyzer	R&S	FSV40	101919	8/13/2020	8/13/2021
Chamber 19	EMI Receiver	R&S	ESR3	102461	05/05/2020	05/05/2021
Chamber 19	Loop Antenna	EM	EM-6879	271	05/21/2020	05/21/2021
Chamber 19	Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 6dB Att.	736	02/11/2020	02/11/2021
Chamber 19	Horn antenna (1GHz-18GHz)	ETS LINDGREN	3117	00218718	09/25/2020	09/25/2021
Chamber 19	Horn antenna (18GHz-26GHz)	Com-power	AH-826	081001	11/23/2020	11/23/2021
Chamber 19	Horn antenna (26GHz-40GHz)	Com-power	AH-640	100A	03/13/2020	03/13/2021
Chamber 19	Preamplifier (9kHz-1GHz)	HP	8447F	3113A04621	06/19/2020	06/19/2021
Chamber 19	Preamplifier (1GHz - 26GHz)	EM	EM01M26G	060681	05/04/2020	05/04/2021
Chamber 19	Preamplifier (26GHz-40GHz)	MITEQ	JS4-26004000- 27-5A	818471	05/04/2020	05/04/2021
Chamber 19	RF Cable (9kHz-18GHz)	Huber Suhner & Woken	Sucoflex 104A & 18GHz SMA(M)-SM A(M)-10M	MY817/4A & 20200525	12/25/2020	12/25/2021
Chamber 19	RF Cable (18GHz-40GHz)	HUBER SU- HNER	Sucoflex 102	27963/2&374 21/2	11/19/2020	11/19/2021
Chamber 19	Signal Generator	Anritsu	MG3692A	20311	01/03/2021	01/03/2022
Chamber 19	Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A




## 8.3 Test SET-UP:

The test item only performed radiated mode (A) Radiated Emission Test Set-Up, Frequency Below 1000MHz



(B) Radiated Emission Test Set-UP Frequency Over 1 GHz





### 8.4 Measurement Procedure:

- 1. According 414788 section 2, Either OATS or chamber for radiated emission below 30MHz, the test was done at 966 chamber, the test site was evaluated with OATS and the Chamber has test signals level greater than OATS's.
- 2. The EUT was placed on a turn table which is 0.8m/1.5m above ground plane in 966 chamber.
- 3. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 5. When measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.
- 6. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 7. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. Repeat above procedures until all frequency measured were complete.

Test receiver setting	:	Blew 1GHz
Detector	:	Average(9kHz – 90kHz, 110kHz – 90kHz), Quasi-Peak
Bandwidth	:	200Hz, 120kHz
Test spectrum setting	:	Above 1GHz
Peak	:	RBW=1MHz, VBW=3MHz,Sweep=auto
Average (for Wi-Fi)	:	RBW=1MHz, VBW≥1/Ton, Sweep=auto
Average (for BLE)	:	RBW=1MHz, VBW ≥1/Ton 1, Sweep=auto

# Average Measurement Setting (VBW)

Mode	ON time (ms)	Total time (ms)	Duty Cycle	Duty Factor	1/Ton (kHz)	VBW for average de- tector (kHz)
b	100.000	100.000	100.000%	0.00	0.010	0.01
g	1.386	1.446	95.833%	0.18	0.721	1
HT20	1.288	1.348	95.530%	0.20	0.776	1
HT40	0.625	0.690	90.580%	0.43	1.600	3
BLE	0.390	0.625	62.400%	2.05	2.564	3



## 8.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

## FS = RA + AF + CL - AG

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

### 8.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.



Humidity

Radiated Spurious Emission Measurement Result (below 1GHz) (802.11b mode)						
Operation Mode	TX mode	Test Date	2021/01/07			
Channel number	CH Low	Test By	Barry			
Temperature	25 °C	Pol	Ver./Hor			

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	617.82	30.66	1.73	32.39	46.00	-13.61	Peak	VERTICAL
2	727.43	29.63	3.49	33.12	46.00	-12.88	Peak	VERTICAL
3	785.63	31.13	4.44	35.57	46.00	-10.43	Peak	VERTICAL
4	829.28	30.31	5.13	35.44	46.00	-10.56	Peak	VERTICAL
5	862.26	30.06	5.43	35.49	46.00	-10.51	Peak	VERTICAL
6	905.91	29.95	6.22	36.17	46.00	-9.83	Peak	VERTICAL
1	600.36	41.70	1.58	43.28	46.00	-2.72	Peak	HORIZONTAL
2	662.44	29.92	2.37	32.29	46.00	-13.71	Peak	HORIZONTAL
3	747.80	30.03	3.93	33.96	46.00	-12.04	Peak	HORIZONTAL
4	793.39	30.97	4.65	35.62	46.00	-10.38	Peak	HORIZONTAL
5	868.08	30.82	5.47	36.29	46.00	-9.71	Peak	HORIZONTAL
6	912.70	31.07	6.39	37.46	46.00	-8.54	Peak	HORIZONTAL

# 

60 %

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



### -34 of 97-

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Mid	Test By	Barry
Temperature	<b>25</b> ℃	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	644.98	30.89	2.01	32.90	46.00	-13.10	Peak	VERTICAL
2	729.37	30.15	3.57	33.72	46.00	-12.28	Peak	VERTICAL
3	788.54	30.70	4.57	35.27	46.00	-10.73	Peak	VERTICAL
4	844.80	30.15	5.20	35.35	46.00	-10.65	Peak	VERTICAL
5	892.33	30.41	5.99	36.40	46.00	-9.60	Peak	VERTICAL
6	935.98	29.82	7.06	36.88	46.00	-9.12	Peak	VERTICAL
1	600.36	39.95	1.58	41.53	46.00	-4.47	Peak	HORIZONTAL
2	667.29	30.25	2.29	32.54	46.00	-13.46	Peak	HORIZONTAL
3	765.26	29.70	4.33	34.03	46.00	-11.97	Peak	HORIZONTAL
4	805.03	29.72	4.60	34.32	46.00	-11.68	Peak	HORIZONTAL
5	833.16	30.45	5.14	35.59	46.00	-10.41	Peak	HORIZONTAL
6	884.57	29.30	5.87	35.17	46.00	-10.83	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



### -35 of 97-

## Radiated Spurious Emission Measurement Result (below 1GHz) (802.11b mode)

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH High	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	741.98	30.54	3.79	34.33	46.00	-11.67	Peak	VERTICAL
2	812.79	30.01	4.69	34.70	46.00	-11.30	Peak	VERTICAL
3	855.47	30.38	5.45	35.83	46.00	-10.17	Peak	VERTICAL
4	874.87	30.70	5.65	36.35	46.00	-9.65	Peak	VERTICAL
5	900.09	30.69	6.17	36.86	46.00	-9.14	Peak	VERTICAL
6	940.83	30.84	7.09	37.93	46.00	-8.07	Peak	VERTICAL
1	600.36	39.46	1.58	41.04	46.00	-4.96	Peak	HORIZONTAL
2	687.66	30.15	2.86	33.01	46.00	-12.99	Peak	HORIZONTAL
3	764.29	29.74	4.35	34.09	46.00	-11.91	Peak	HORIZONTAL
4	854.50	30.53	5.44	35.97	46.00	-10.03	Peak	HORIZONTAL
5	928.22	30.02	6.88	36.90	46.00	-9.10	Peak	HORIZONTAL
6	952.47	30.46	7.25	37.71	46.00	-8.29	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



### -36 of 97-

<b>Radiated Spurious Emission Measuremen</b>	t Result (below 1GH	z) (802.11g mode)
----------------------------------------------	---------------------	-------------------

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Low	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	743.92	30.18	3.84	34.02	46.00	-11.98	Peak	VERTICAL
2	816.67	31.77	4.83	36.60	46.00	-9.40	Peak	VERTICAL
3	840.92	30.11	5.19	35.30	46.00	-10.70	Peak	VERTICAL
4	878.75	29.76	5.67	35.43	46.00	-10.57	Peak	VERTICAL
5	917.55	29.93	6.61	36.54	46.00	-9.46	Peak	VERTICAL
6	936.95	30.81	7.06	37.87	46.00	-8.13	Peak	VERTICAL
1	600.36	39.04	1.58	40.62	46.00	-5.38	Peak	HORIZONTAL
2	683.78	30.68	2.71	33.39	46.00	-12.61	Peak	HORIZONTAL
3	787.57	30.63	4.53	35.16	46.00	-10.84	Peak	HORIZONTAL
4	820.55	29.98	5.00	34.98	46.00	-11.02	Peak	HORIZONTAL
5	922.40	30.93	6.79	37.72	46.00	-8.28	Peak	HORIZONTAL
6	959.26	30.23	7.28	37.51	46.00	-8.49	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



#### -37 of 97-

<b>Radiated Spurious Emission Measurement Result</b>	t (below 1GHz) (802.11g mode)
------------------------------------------------------	-------------------------------

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Mid	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	629.46	30.77	1.85	32.62	46.00	-13.38	Peak	VERTICAL
2	696.39	30.55	3.00	33.55	46.00	-12.45	Peak	VERTICAL
3	789.51	29.53	4.61	34.14	46.00	-11.86	Peak	VERTICAL
4	859.35	29.63	5.47	35.10	46.00	-10.90	Peak	VERTICAL
5	920.46	29.92	6.78	36.70	46.00	-9.30	Peak	VERTICAL
6	933.07	30.48	7.01	37.49	46.00	-8.51	Peak	VERTICAL
1	600.36	40.02	1.58	41.60	46.00	-4.40	Peak	HORIZONTAL
2	662.44	30.66	2.37	33.03	46.00	-12.97	Peak	HORIZONTAL
3	744.89	30.87	3.86	34.73	46.00	-11.27	Peak	HORIZONTAL
4	758.47	30.02	4.35	34.37	46.00	-11.63	Peak	HORIZONTAL
5	888.45	30.79	5.91	36.70	46.00	-9.30	Peak	HORIZONTAL
6	926.28	30.11	6.85	36.96	46.00	-9.04	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



### Radiated Spurious Emission Measurement Result (below 1GHz) (802.11g mode)

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH High	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	709.00	30.32	3.12	33.44	46.00	-12.56	Peak	VERTICAL
2	786.60	30.19	4.48	34.67	46.00	-11.33	Peak	VERTICAL
3	838.01	29.82	5.17	34.99	46.00	-11.01	Peak	VERTICAL
4	884.57	30.36	5.87	36.23	46.00	-9.77	Peak	VERTICAL
5	927.25	31.31	6.87	38.18	46.00	-7.82	Peak	VERTICAL
6	960.23	30.01	7.29	37.30	54.00	-16.70	Peak	VERTICAL
1	600.36	40.53	1.58	42.11	46.00	-3.89	Peak	HORIZONTAL
2	653.71	30.67	2.21	32.88	46.00	-13.12	Peak	HORIZONTAL
3	722.58	30.05	3.33	33.38	46.00	-12.62	Peak	HORIZONTAL
4	763.32	30.36	4.36	34.72	46.00	-11.28	Peak	HORIZONTAL
5	821.52	30.87	5.04	35.91	46.00	-10.09	Peak	HORIZONTAL
6	895.24	30.44	6.05	36.49	46.00	-9.51	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



# Radiated Spurious Emission Measurement Result (below 1GHz) (802.11n HT20 mode)

-39 of 97-

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Low	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	608.12	30.49	1.76	32.25	46.00	-13.75	Peak	VERTICAL
2	719.67	29.63	3.25	32.88	46.00	-13.12	Peak	VERTICAL
3	736.16	30.66	3.65	34.31	46.00	-11.69	Peak	VERTICAL
4	820.55	29.48	5.00	34.48	46.00	-11.52	Peak	VERTICAL
5	870.99	30.70	5.55	36.25	46.00	-9.75	Peak	VERTICAL
6	918.52	29.97	6.68	36.65	46.00	-9.35	Peak	VERTICAL
1	600.36	39.71	1.58	41.29	46.00	-4.71	Peak	HORIZONTAL
2	686.69	30.34	2.82	33.16	46.00	-12.84	Peak	HORIZONTAL
3	790.48	29.57	4.63	34.20	46.00	-11.80	Peak	HORIZONTAL
4	819.58	30.85	4.96	35.81	46.00	-10.19	Peak	HORIZONTAL
5	867.11	29.78	5.45	35.23	46.00	-10.77	Peak	HORIZONTAL
6	916.58	30.79	6.55	37.34	46.00	-8.66	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



# Radiated Spurious Emission Measurement Result (below 1GHz) (802.11n HT20 mode)

-40 of 97-

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Mid	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	620.73	30.26	1.73	31.99	46.00	-14.01	Peak	VERTICAL
2	697.36	30.32	3.03	33.35	46.00	-12.65	Peak	VERTICAL
3	760.41	29.70	4.41	34.11	46.00	-11.89	Peak	VERTICAL
4	815.70	29.98	4.78	34.76	46.00	-11.24	Peak	VERTICAL
5	853.53	30.46	5.42	35.88	46.00	-10.12	Peak	VERTICAL
6	931.13	30.98	6.95	37.93	46.00	-8.07	Peak	VERTICAL
1	515.97	35.17	-0.27	34.90	46.00	-11.10	Peak	HORIZONTAL
2	600.36	39.62	1.58	41.20	46.00	-4.80	Peak	HORIZONTAL
3	676.99	30.99	2.50	33.49	46.00	-12.51	Peak	HORIZONTAL
4	804.06	31.16	4.59	35.75	46.00	-10.25	Peak	HORIZONTAL
5	885.54	30.84	5.91	36.75	46.00	-9.25	Peak	HORIZONTAL
6	918.52	30.39	6.68	37.07	46.00	-8.93	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



-41 of 97-

#### Radiated Spurious Emission Measurement Result (below 1GHz) (802.11n HT20 mode)

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH High	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	687.66	30.36	2.86	33.22	46.00	-12.78	Peak	VERTICAL
2	745.86	29.85	3.89	33.74	46.00	-12.26	Peak	VERTICAL
3	792.42	30.48	4.65	35.13	46.00	-10.87	Peak	VERTICAL
4	845.77	30.60	5.23	35.83	46.00	-10.17	Peak	VERTICAL
5	887.48	29.93	5.91	35.84	46.00	-10.16	Peak	VERTICAL
6	930.16	29.39	6.93	36.32	46.00	-9.68	Peak	VERTICAL
1	600.36	40.17	1.58	41.75	46.00	-4.25	Peak	HORIZONTAL
2	700.27	28.98	3.08	32.06	46.00	-13.94	Peak	HORIZONTAL
3	796.30	30.64	4.62	35.26	46.00	-10.74	Peak	HORIZONTAL
4	847.71	30.14	5.27	35.41	46.00	-10.59	Peak	HORIZONTAL
5	924.34	30.17	6.80	36.97	46.00	-9.03	Peak	HORIZONTAL
6	937.92	30.51	7.08	37.59	46.00	-8.41	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



# -42 of 97-

#### Radiated Spurious Emission Measurement Result (below 1GHz) (802.11n HT40 mode)

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Low	Test By	Barry
Temperature	<b>25</b> ℃	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	616.85	26.80	1.73	28.53	46.00	-17.47	Peak	VERTICAL
2	719.67	27.71	3.25	30.96	46.00	-15.04	Peak	VERTICAL
3	784.66	27.62	4.41	32.03	46.00	-13.97	Peak	VERTICAL
4	817.64	28.34	4.87	33.21	46.00	-12.79	Peak	VERTICAL
5	864.20	26.96	5.42	32.38	46.00	-13.62	Peak	VERTICAL
6	946.65	27.16	7.15	34.31	46.00	-11.69	Peak	VERTICAL
1	707.06	27.21	3.11	30.32	46.00	-15.68	Peak	HORIZONTAL
2	779.81	26.74	4.39	31.13	46.00	-14.87	Peak	HORIZONTAL
3	812.79	27.12	4.69	31.81	46.00	-14.19	Peak	HORIZONTAL
4	865.17	28.35	5.40	33.75	46.00	-12.25	Peak	HORIZONTAL
5	904.94	27.34	6.20	33.54	46.00	-12.46	Peak	HORIZONTAL
6	939.86	28.00	7.08	35.08	46.00	-10.92	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



### -43 of 97-

#### Radiated Spurious Emission Measurement Result (below 1GHz) (802.11n HT40 mode)

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Mid	Test By	Barry
Temperature	<b>25</b> ℃	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	599.39	31.25	1.55	32.80	46.00	-13.20	Peak	VERTICAL
2	711.91	29.70	3.13	32.83	46.00	-13.17	Peak	VERTICAL
3	789.51	29.89	4.61	34.50	46.00	-11.50	Peak	VERTICAL
4	850.62	29.67	5.34	35.01	46.00	-10.99	Peak	VERTICAL
5	900.09	31.03	6.17	37.20	46.00	-8.80	Peak	VERTICAL
6	927.25	31.13	6.87	38.00	46.00	-8.00	Peak	VERTICAL
1	588.72	34.38	1.21	35.59	46.00	-10.41	Peak	HORIZONTAL
2	599.39	40.78	1.55	42.33	46.00	-3.67	Peak	HORIZONTAL
3	611.03	34.79	1.78	36.57	46.00	-9.43	Peak	HORIZONTAL
4	729.37	30.02	3.57	33.59	46.00	-12.41	Peak	HORIZONTAL
5	824.43	30.64	5.18	35.82	46.00	-10.18	Peak	HORIZONTAL
6	901.06	33.88	6.17	40.05	46.00	-5.95	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



# Radiated Spurious Emission Measurement Result (below 1GHz) (802.11n HT40 mode)

-44 of 97-

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH High	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	599.39	40.95	1.55	42.50	46.00	-3.50	Peak	VERTICAL
2	670.20	30.73	2.29	33.02	46.00	-12.98	Peak	VERTICAL
3	720.64	31.99	3.27	35.26	46.00	-10.74	Peak	VERTICAL
4	790.48	31.22	4.63	35.85	46.00	-10.15	Peak	VERTICAL
5	824.43	31.05	5.18	36.23	46.00	-9.77	Peak	VERTICAL
6	900.09	33.98	6.17	40.15	46.00	-5.85	Peak	VERTICAL
1	299.66	41.02	-3.95	37.07	46.00	-8.93	Peak	HORIZONTAL
2	579.02	36.21	1.05	37.26	46.00	-8.74	Peak	HORIZONTAL
3	599.39	40.50	1.55	42.05	46.00	-3.95	Peak	HORIZONTAL
4	605.21	35.96	1.69	37.65	46.00	-8.35	Peak	HORIZONTAL
5	720.64	35.13	3.27	38.40	46.00	-7.60	Peak	HORIZONTAL
6	902.03	37.03	6.18	43.21	46.00	-2.79	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



Radiated Spurious			noue)	
Operation Mode	TX mode	Test Date	2021/01/07	
Channel number	CH Low	Test By	Barry	
Temperature	25 °C	Pol	Ver./Hor	
Humidity	60 %			

Radiated Si	nurious Emissi	on Measurement R	esult (above 1	GHz) (	802.11h mode)
Maulaicu D	purious Linissi	on micasul chicht is	coult (above 1		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4824.00	46.40	-6.63	39.77	74.00	-34.23	Peak	VERTICAL
2	7236.00	45.70	-2.64	43.06	74.00	-30.94	Peak	VERTICAL
1	4824.00	45.60	-6.63	38.97	74.00	-35.03	Peak	HORIZONTAL
2	7236.00	46.93	-2.64	44.29	74.00	-29.71	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



4874.00

7311.00

46.84

45.56

(	Chann	tion Mode el number erature lity		-			Test Date Test By Pol		021/01/07 Barry /er./Hor
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4874.00	45.02	-6.47	38.55	74.00	-35.45	Peak	VERTICAL
	2	7311.00	44.60	-2.59	42.01	74.00	-31.99	Peak	VERTICAL

40.37

42.97

-46 of 97-

### Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

-6.47

-2.59

Remark:

1 2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-33.63

-31.03

Peak

Peak

HORIZONTAL

HORIZONTAL

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Peak

Peak

HORIZONTAL

HORIZONTAL



4924.00

7386.00

46.83

45.22

(	Chann	tion Mode el number erature lity		-			Test Date Test By Pol		2021/01/07 Barry Ver./Hor
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4924.00	47.72	-6.31	41.41	74.00	-32.59	Peak	VERTICAL
	2	7386.00	44.64	-2.58	42.06	74.00	-31.94	Peak	VERTICAL

40.52

42.64

-47 of 97-

#### Radiated Spurious Emission Measurement Result (above 1GHz) (802.11b mode)

-6.31

-2.58

Remark:

1 2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-33.48

-31.36

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



# Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Low	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	4824.00	46.46	-6.63	39.83	74.00	-34.17	Peak	VERTICAL
2	7236.00	45.33	-2.64	42.69	74.00	-31.31	Peak	VERTICAL
1	4824.00	46.23	-6.63	39.60	74.00	-34.40	Peak	HORIZONTAL
2	7236.00	45.30	-2.64	42.66	74.00	-31.34	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH Mid 25 °C 60 %				Tes Tes Pol	t By E	021/01/07 Barry Ver./Hor
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4874.00	45.71	-6.47	39.24	74.00	-34.76	Peak	VERTICAL
	2	7311.00	45.30	-2.59	42.71	74.00	-31.29	Peak	VERTICAL
	1	4874.00	45.20	-6.47	38.73	74.00	-35.27	Peak	HORIZONTAL

-49 of 97-

#### Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)

Remark:

7311.00

45.04

-2.59

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

42.45

-31.55

Peak

HORIZONTAL

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

Peak

Peak

HORIZONTAL

HORIZONTAL



4924.00

7386.00

45.26

45.69

Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH High 25 ℃ 60 %				Test Date Test By Pol		2021/01/07 Barry Ver./Hor
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4924.00	46.44	-6.31	40.13	74.00	-33.87	Peak	VERTICAL
	2	7386.00	45.33	-2.58	42.75	74.00	-31.25	Peak	VERTICAL

38.95

43.11

-50 of 97-

#### Radiated Spurious Emission Measurement Result (above 1GHz) (802.11g mode)

-6.31

-2.58

Remark:

1 2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-35.05

-30.89

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



## Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT20 mode)

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Low	Test By	Barry
Temperature	<b>25</b> ℃	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	IVIIIZ	uDu v	uD	uDu v/m	uDu v/III	dD		•/11
1	4824.00	46.31	-6.63	39.68	74.00	-34.32	Peak	VERTICAL
2	7236.00	44.73	-2.64	42.09	74.00	-31.91	Peak	VERTICAL
1	4824.00	46.49	-6.63	39.86	74.00	-34.14	Peak	HORIZONTAL
2	7236.00	46.01	-2.64	43.37	74.00	-30.63	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL



Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH Mid 25 ℃ 60 %				Test Date Test By Pol		2021/01/07 Barry Ver./Hor	
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H	
	1	4874.00	45.83	-6.47	39.36	74.00	-34.64	Peak	VERTICAL	
	2	7311.00	44.73	-2.59	42.14	74.00	-31.86	Peak	VERTICAL	
	1	4874.00	46.33	-6.47	39.86	74.00	-34.14	Peak	HORIZONTAL	

-52 of 97-

#### Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT20 mode)

Remark:

7311.00

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-31.74

Peak

42.26

-2.59

44.85

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH High 25 ℃ 60 %				Г	Test Date Test By Pol	2021/01/07 Barry Ver./Hor
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
	1	4924.00	45.46	-6.31	39.15	74.00	-34.85	Peak	VERTICAL
	2	7386.00	44.53	-2.58	41.95	74.00	-32.05	Peak	VERTICAL
	1	4924.00	45.65	-6.31	39.34	74.00	-34.66	Peak	HORIZONTAL

-53 of 97-

#### Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT20 mode)

Remark:

7386.00

45.64

-2.58

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

43.06

-30.94

Peak

HORIZONTAL

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



# -54 of 97-

#### Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT40 mode)

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Low	Test By	Barry
Temperature	<b>25</b> ℃	Pol	Ver./Hor
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4844.00	45.24	-6.52	38.72	74.00	-35.28	Peak	VERTICAL
2	7266.00	44.88	-2.66	42.22	74.00	-31.78	Peak	VERTICAL
1	4844.00	46.07	-6.52	39.55	74.00	-34.45	Peak	HORIZONTAL
2	7266.00	47.51	-2.66	44.85	74.00	-29.15	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL



Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH Mid 25 ℃ 60 %					t By B	2021/01/07 Barry Ver./Hor	
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H	
	1	4874.00	46.32	-6.47	39.85	74.00	-34.15	Peak	VERTICAL	
	2	7311.00	44.94	-2.59	42.35	74.00	-31.65	Peak	VERTICAL	
	1	4874.00	47.59	-6.47	41.12	74.00	-32.88	Peak	HORIZONTAL	

-55 of 97-

#### Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT40 mode)

Remark:

7311.00

44.54

-2.59

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-32.05

Peak

41.95

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

HORIZONTAL



Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH High 25 ℃ 60 %				Т	Test Date Test By Pol	2021/01/07 Barry Ver./Hor
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
		MITZ	ибиу	uр			uБ		V/H
	1	4904.00	45.86	-6.41	39.45	74.00	-34.55	Peak	VERTICAL
	2	7356.00	43.84	-2.64	41.20	74.00	-32.80	Peak	VERTICAL
	1	4904.00	45.25	-6.41	38.84	74.00	-35.16	Peak	HORIZONTAL

-56 of 97-

#### Radiated Spurious Emission Measurement Result (above 1GHz) (802.11n HT40 mode)

Remark:

7356.00

43.80

-2.64

2

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

-32.84

Peak

41.16

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



		.) = == ::::::::::::::::::::::::::::::::	-
Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Low	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

<b>Radiated Spurious</b>	Emission Measur	rement Result (below	(1GHz) BLE Mode
Maulaicu Spullous	Iningsion micasu	CHICHT INCOULT DUID	

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	628.49	30.04	1.83	31.87	46.00	-14.13	Peak	VERTICAL
2	676.02	30.06	2.45	32.51	46.00	-13.49	Peak	VERTICAL
3	714.82	29.60	3.14	32.74	46.00	-13.26	Peak	VERTICAL
4	816.67	29.91	4.83	34.74	46.00	-11.26	Peak	VERTICAL
5	883.60	29.66	5.83	35.49	46.00	-10.51	Peak	VERTICAL
6	932.10	30.40	6.99	37.39	46.00	-8.61	Peak	VERTICAL
1	600.36	39.94	1.58	41.52	46.00	-4.48	Peak	HORIZONTAL
2	640.13	30.28	2.00	32.28	46.00	-13.72	Peak	HORIZONTAL
3	686.69	30.31	2.82	33.13	46.00	-12.87	Peak	HORIZONTAL
4	797.27	30.70	4.61	35.31	46.00	-10.69	Peak	HORIZONTAL
5	901.06	31.56	6.17	37.73	46.00	-8.27	Peak	HORIZONTAL
6	926.28	30.68	6.85	37.53	46.00	-8.47	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



#### -58 of 97-

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Mid	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	752.65	29.59	4.10	33.69	46.00	-12.31	Peak	VERTICAL
2	776.90	30.31	4.33	34.64	46.00	-11.36	Peak	VERTICAL
3	823.46	29.97	5.13	35.10	46.00	-10.90	Peak	VERTICAL
4	854.50	30.29	5.44	35.73	46.00	-10.27	Peak	VERTICAL
5	902.03	30.27	6.18	36.45	46.00	-9.55	Peak	VERTICAL
6	954.41	29.81	7.25	37.06	46.00	-8.94	Peak	VERTICAL
1	600.36	40.43	1.58	42.01	46.00	-3.99	Peak	HORIZONTAL
2	713.85	29.54	3.14	32.68	46.00	-13.32	Peak	HORIZONTAL
3	831.22	30.37	5.13	35.50	46.00	-10.50	Peak	HORIZONTAL
4	883.60	30.04	5.83	35.87	46.00	-10.13	Peak	HORIZONTAL
5	907.85	30.67	6.27	36.94	46.00	-9.06	Peak	HORIZONTAL
6	940.83	29.78	7.09	36.87	46.00	-9.13	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



#### -59 of 97-

<b>Radiated Spurious Emission Measurement Result</b>	(below 1GHz) BLE Mode
------------------------------------------------------	-----------------------

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH High	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H
1	552.83	30.93	0.42	31.35	46.00	-14.65	Peak	VERTICAL
2	599.39	31.02	1.55	32.57	46.00	-13.43	Peak	VERTICAL
3	703.18	29.80	3.10	32.90	46.00	-13.10	Peak	VERTICAL
4	797.27	29.88	4.61	34.49	46.00	-11.51	Peak	VERTICAL
5	892.33	30.32	5.99	36.31	46.00	-9.69	Peak	VERTICAL
6	948.59	29.85	7.19	37.04	46.00	-8.96	Peak	VERTICAL
1	600.36	38.66	1.58	40.24	46.00	-5.76	Peak	HORIZONTAL
2	698.33	30.40	3.05	33.45	46.00	-12.55	Peak	HORIZONTAL
3	745.86	30.96	3.89	34.85	46.00	-11.15	Peak	HORIZONTAL
4	834.13	29.98	5.14	35.12	46.00	-10.88	Peak	HORIZONTAL
5	900.09	30.58	6.17	36.75	46.00	-9.25	Peak	HORIZONTAL
6	952.47	29.72	7.25	36.97	46.00	-9.03	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9kHz to 1000MHz were made with an instrument detector setting 9-90kHz/110-490kHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



#### Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

Operation Mode	TX mode	Test Date	2021/01/07
Channel number	CH Low	Test By	Barry
Temperature	25 °C	Pol	Ver./Hor
Humidity	60 %		

No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	4804.00	47.73	-6.72	41.01	74.00	-32.99	Peak	VERTICAL
2	7206.00	47.36	-2.52	44.84	74.00	-29.16	Peak	VERTICAL
1	4804.00	47.11	-6.72	40.39	74.00	-33.61	Peak	HORIZONTAL
2	7206.00	47.45	-2.52	44.93	74.00	-29.07	Peak	HORIZONTAL

#### Remark:

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

-32.98

-30.03

Peak

Peak

HORIZONTAL

HORIZONTAL



4884.00

7326.00

47.47

46.58

Operation Mode Channel number Temperature Humidity		el number erature	TX mode CH Mid 25 ℃ 60 %				Test Test Pol		2021/01/07 Barry /er./Hor
	No	Freq	Reading	Factor	Level	Limit	Margin	Remark	Pol
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
	1	4884.00	47.94	-6.45	41.49	74.00	-32.51	Peak	VERTICAL
	2	7326.00	46.48	-2.61	43.87	74.00	-30.13	Peak	VERTICAL

41.02

43.97

-61 of 97-

#### Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

-6.45

-2.61

#### Remark:

1

2

Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequen-1 cy

74.00

74.00

- Field strength limits for frequency above 1000MHz are based on average limits. However, 2 Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the 3 reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



Operation Mode Channel number Temperature Humidity		el number erature					7	Cest Date Cest By Pol	2021/01/07 Barry Ver./Hor	
	No	Freq MHz	Reading dBuV	Factor dB	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H	
	1	4960.00	47.51	-6.19	41.32	74.00	-32.68	Peak	VERTICAL	
	2	7440.00	47.90	-2.61	45.29	74.00	-28.71	Peak	VERTICAL	

-62 of 97-

#### Radiated Spurious Emission Measurement Result (above 1GHz) BLE Mode

#### Remark:

1

2

4960.00

7440.00

47.20

47.15

-6.19

-2.61

1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency

74.00

74.00

-32.99

-29.46

Peak

Peak

HORIZONTAL

HORIZONTAL

2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.

41.01

44.54

3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.



# 9. 100kHz Bandwidth of Band Edges Measurement

### 9.1 Standard Applicable:

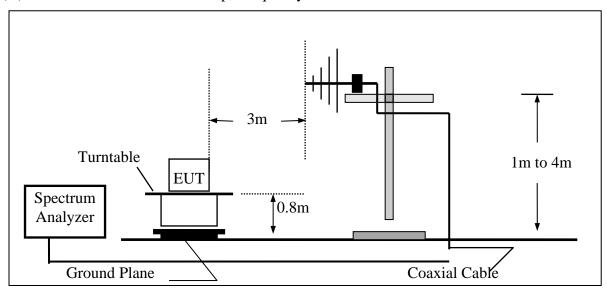
According to \$15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in \$15.205(a), must also comply with the radiated emission limits specified in15.209(a).

#### 9.2 Measurement Equipment Used:

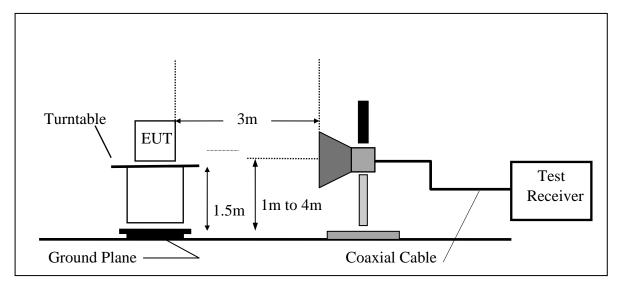
#### 9.2.1. Conducted Emission at antenna port:

Refer to section 6.2 for details.




#### 9.2.2. Radiated emission:

Location	Equipment Name	Brand	Model	S/N	Last Cal. Date	Next Cal. Date
Chamber 19	Signal analyzer	R&S	FSV40	101919	8/13/2020	8/13/2021
Chamber 19	EMI Receiver	R&S	ESR3	102461	05/05/2020	05/05/2021
Chamber 19	Loop Antenna	EM	EM-6879	271	05/21/2020	05/21/2021
Chamber 19	Bilog Antenna (30MHz-1GHz)	Schwarzbeck	VULB9168 w 6dB Att.	736	02/11/2020	02/11/2021
Chamber 19	Horn antenna		3117	00218718	09/25/2020	09/25/2021
Chamber 19	Horn antenna (18GHz-26GHz)	Com-power	AH-826	081001	11/23/2020	11/23/2021
Chamber 19	Chamber 19 Horn antenna (26GHz-40GHz)		AH-640	100A	03/13/2020	03/13/2021
Chamber 19	Preamplifier (9kHz-1GHz)	HP	8447F	3113A04621	06/19/2020	06/19/2021
Chamber 19	Preamplifier (1GHz - 26GHz)	EM	EM01M26G	060681	05/04/2020	05/04/2021
Chamber 19	Preamplifier (26GHz-40GHz)	MITEQ	JS4-26004000- 27-5A	818471	05/04/2020	05/04/2021
Chamber 19	RF Cable		Sucoflex 104A & 18GHz SMA(M)-SM A(M)-10M	MY817/4A & 20200525	12/25/2020	12/25/2021
Chamber 19	Chamber 19 RF Cable HUBER SU- (18GHz-40GHz) HNER		Sucoflex 102	27963/2&374 21/2	11/19/2020	11/19/2021
Chamber 19	Signal Generator	Anritsu	MG3692A	20311	01/03/2021	01/03/2022
Chamber 19	Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A




### 9.3 Test SET-UP:

The test item only performed radiated mode (A) Radiated Emission Test Set-Up, Frequency Below 1000MHz



(B) Radiated Emission Test Set-UP Frequency Over 1 GHz





#### 9.4 Measurement Procedure:

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set center frequency of spectrum analyzer = operating frequency.
- 4. Set the spectrum analyzer as RBW, VBW=100kHz, Span=25MHz, Sweep = auto
- 5. Mark Peak, 2.390GHz and 2.4835GHz and record the max. level.
- 6. Repeat above procedures until all frequency measured were complete.

#### 9.5 Field Strength Calculation:

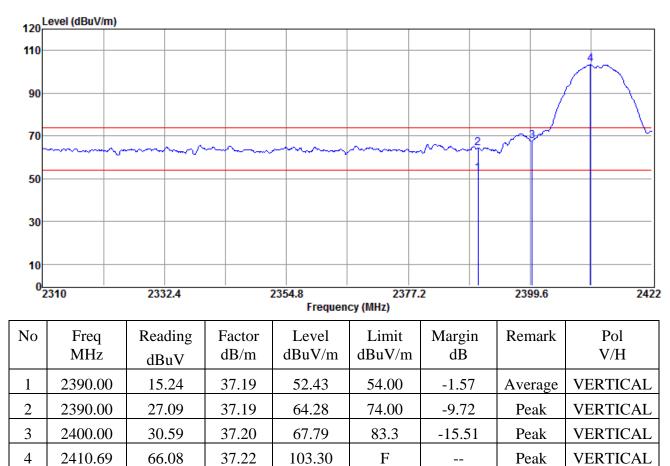
The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

#### $\mathbf{FS} = \mathbf{RA} + \mathbf{AF} + \mathbf{CL} - \mathbf{AG}$

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)				
	RA = Reading Amplitude	AG = Amplifier Gain				
	AF = Antenna Factor					

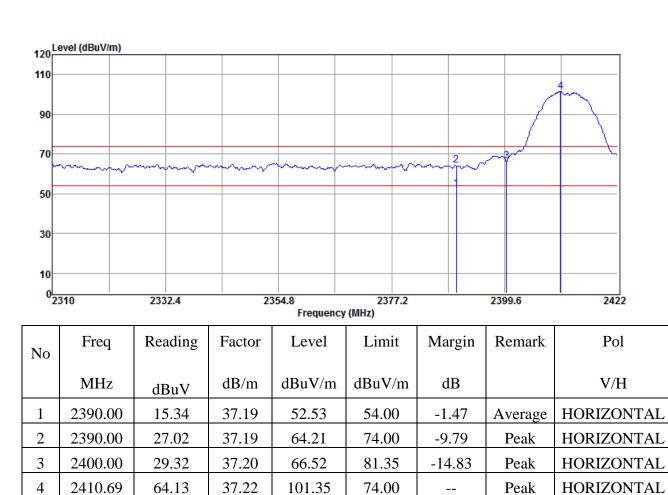
#### 9.6 Measurement Result:

Note: Refer to next page spectrum analyzer data chart and tabular data sheets.






<b>Radiated Emission:</b>	802.11 b mode
Operation Mode	TX CH Low


Operation ModeTX CH LowFundamental Frequency2412 MHzTemperature25 °C

Test Date2020/11/12Test ByBarryHumidity60 %



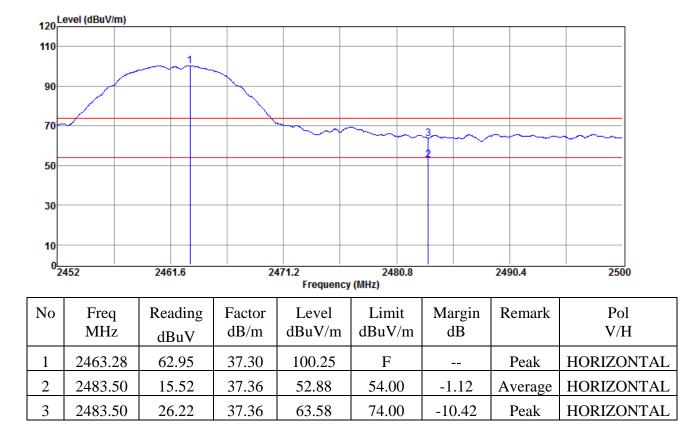
Remark: F" denotes fundamental frequency





-68 of 97-

Remark: F" denotes fundamental frequency





	on Mode nental Free cature	quency						Test Date Test By Humidity	Barry	1/12
120 ^{Le}	evel (dBuV/m)									
110										
			+							
90				$\searrow$						
70										
10						~			~~~~	~~~~
50							2			
30										
10										
	152	2461	6	2471	2		2480.8	249	0.4	2500
0 2452 2461.6 2471.2 2480.8 2490.4 2500 Frequency (MHz)										
No	Freq	Re	ading	Factor	Level		Limit	Margin	Remark	Pol
	MHz	d	BuV	dB/m	dBuV/r	n	dBuV/m	dB		V/H
1	2463.33	6	4.02	37.30	101.32	2	F		Peak	VERTICAL
2	2483.50	) 14	4.24	37.36	51.60		54.00	-2.40	Average	VERTICAL
3	2483.50	2	7.81	37.36	65.17		74.00	-8.83	Peak	VERTICAL

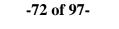
-69 of 97-

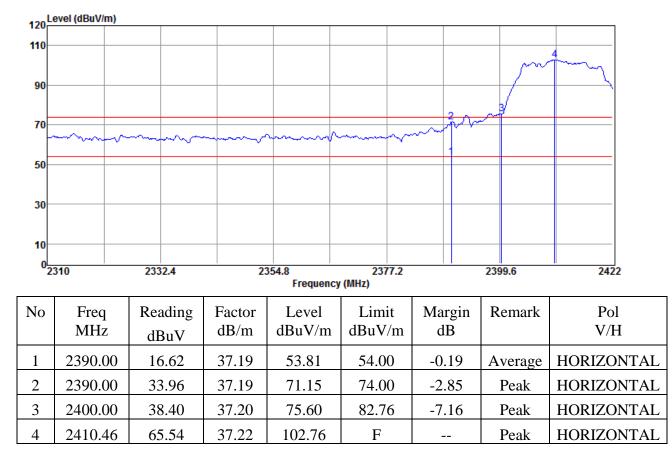
Remark: F" denotes fundamental frequency





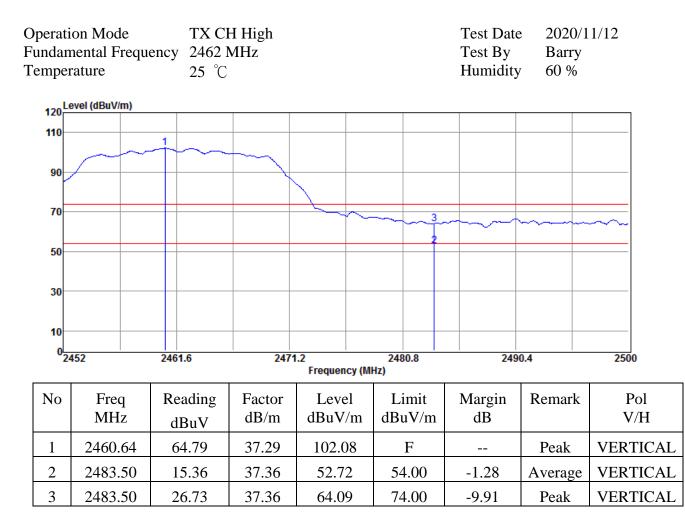




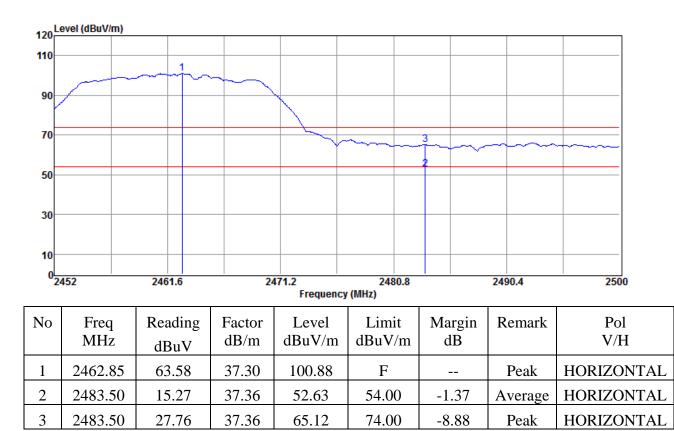


#### Radiated Emission: 802.11 g mode

Fundan	Operation ModeTX CH LowTest Date2020/11/12Fundamental Frequency2412 MHzTest ByBarryTemperature25 °CHumidity60 %										
120	evel (dBuV/m)										
110							4				
90											
70						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/				
50						-					
30											
10											
0	310	2332.4	2354		2377.2	239	9.6	2422			
	Frequency (MHz)										
No	Freq MHz	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Margin dB	Remark	Pol V/H			
1	2390.00	16.42	37.19	53.61	54.00	-0.39	Average	VERTICAL			
2	2390.00	32.77	37.19	69.96	74.00	-4.04	Peak	VERTICAL			
3	2400.05	40.34	37.20	77.54	85.31	-7.77	Peak	VERTICAL			
4	2413.38	68.09	37.22	105.31	F		Peak	VERTICAL			

Remark: F" denotes fundamental frequency






Remark: F" denotes fundamental frequency

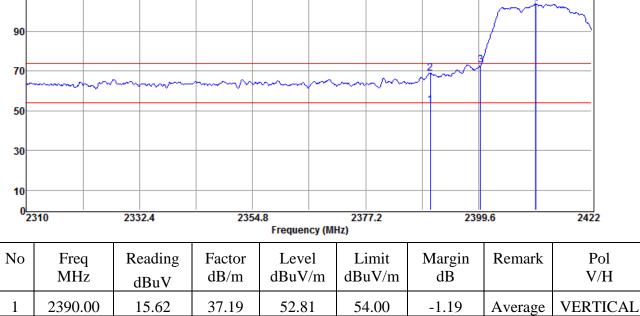








-74 of 97-


Remark: F" denotes fundamental frequency





#### Radiated Emission: 802.11 n_20 mode

Operation Mode Fundamental Frequency Temperature			TX CH Low 2412 MHz 25 °C				Test Dat Test By Humidit	Barı	•
120	evel (dBuV/m	)							
110									
110								·~~~	fund



69.01

72.98

103.79

74.00

83.79

F

-4.99

-10.<u>81</u>

--

Peak

Peak

Peak

VERTICAL

VERTICAL

VERTICAL

Remark: F" denotes fundamental frequency

31.82

35.78

66.57

37.19

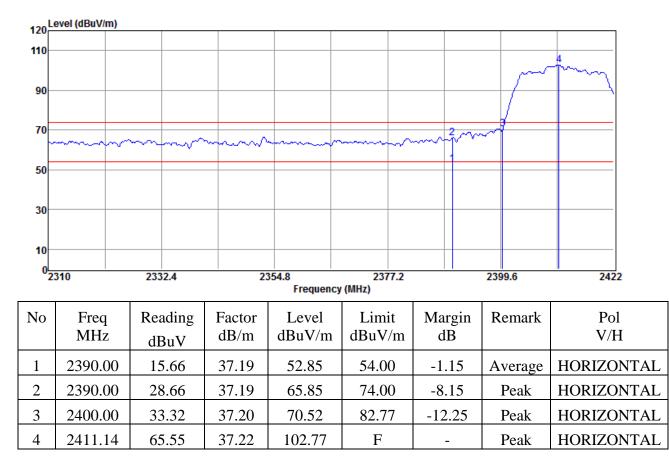
37.20

37.22

2

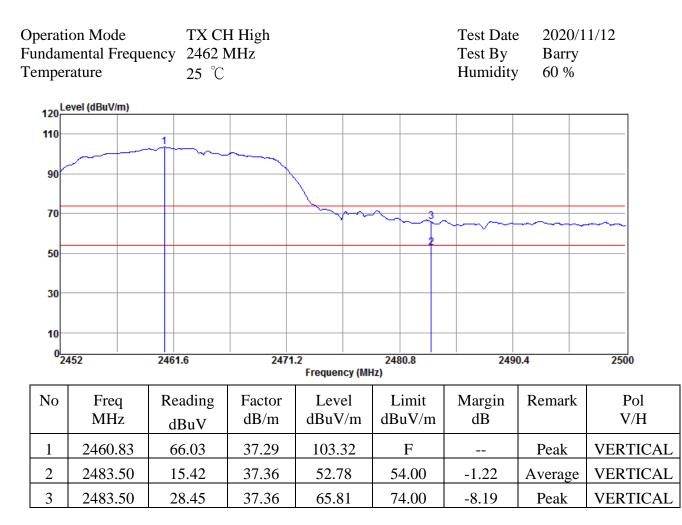
3

4


2390.00

2400.00

2411.02





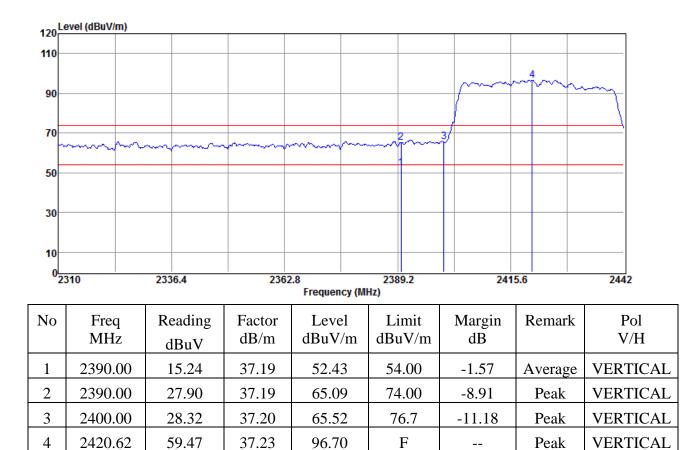



Remark: F" denotes fundamental frequency





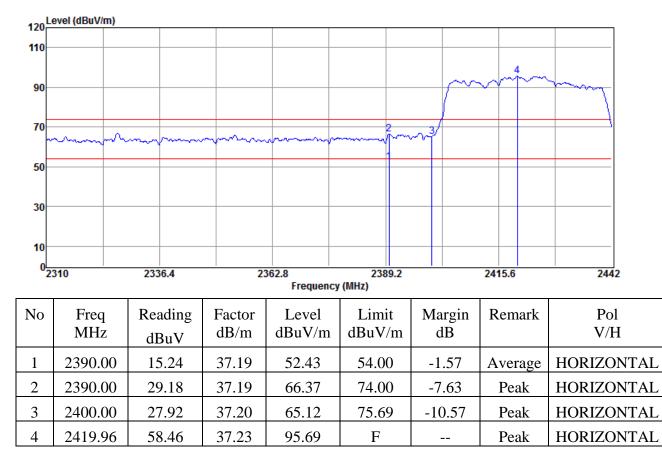





Remark: F" denotes fundamental frequency

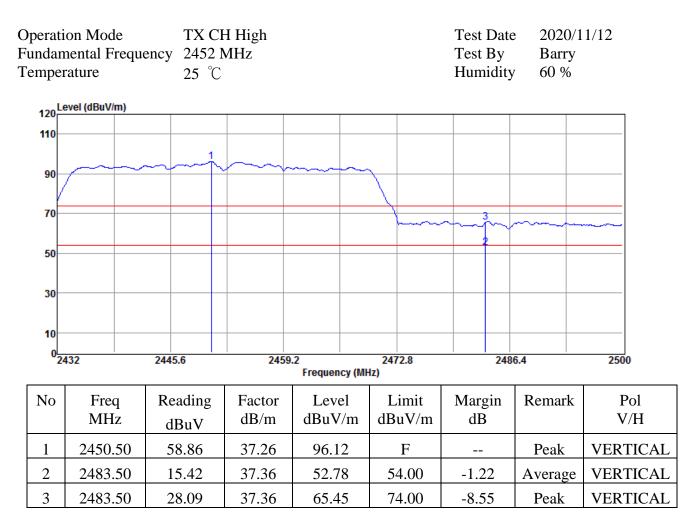


#### Radiated Emission: 802.11 n_40 mode

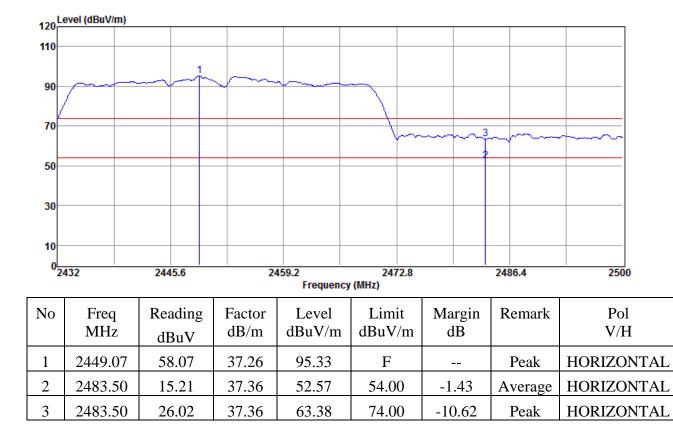

Operation Mode	TX CH Low	Test Date	2020/11/12
Fundamental Frequency	2412 MHz	Test By	Barry
Temperature	25 °C	Humidity	60 %



Remark: F" denotes fundamental frequency





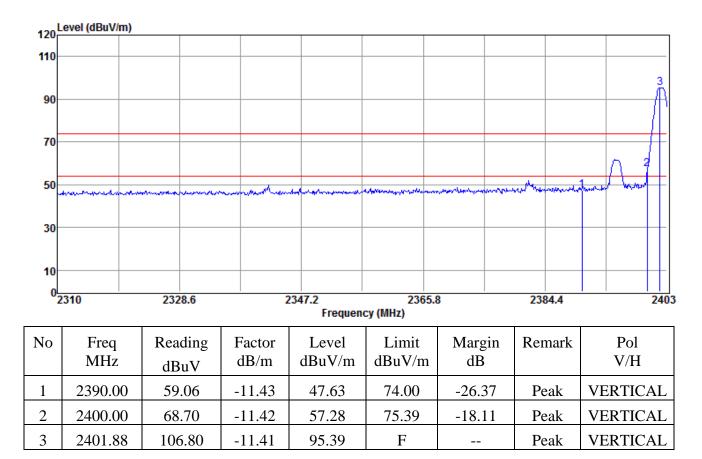




Remark: F" denotes fundamental frequency

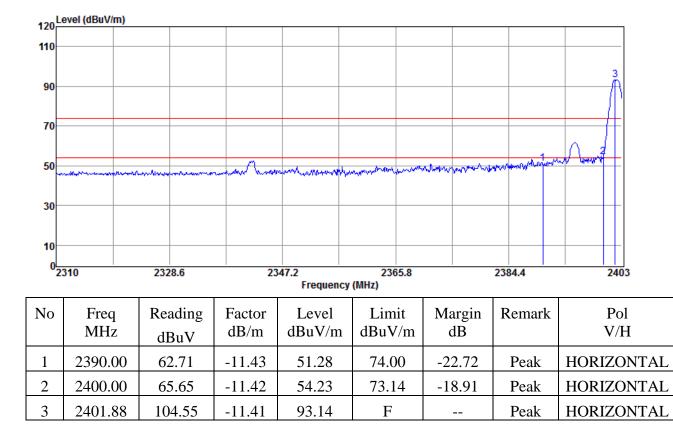









Remark: F" denotes fundamental frequency




### **Radiated Emission: BT LE mode**

Operation Mode	TX CH Low	Test Date	2020/01/22
Fundamental Frequency	2402 MHz	Test By	Barry
Temperature	25 °C	Humidity	60 %







Remark: F" denotes fundamental frequency





Operati Fundan Temper	nental F			CH High ) MHz C				Test Date Test By Humidity	Barry	1/22
120	evel (dBuV	//m)								
110										
90	1	<u> </u>								
70-										
50-	/		2							
			When down on the owner of the owner owne	ere harden and an and an	hadhaanna dhadhadhadhad	alysie-ralle-in	erendrikaterkonnen	-m-adriationstanables.Allowing	~~deerer	natural laboration to
30										
10										
0 <u>_</u> 24	478	1	2482.4	248	6.8 Frequenc	y (MHz	2491.2 )	249	5.6	2500
No	Fre MH	-	Reading dBuV	Factor dB/m	Level dBuV/r		Limit dBuV/m	Margin dB	Remark	Pol V/H
1	2479	.76	102.13	-11.30	90.83		F		Peak	VERTICAL

48.02

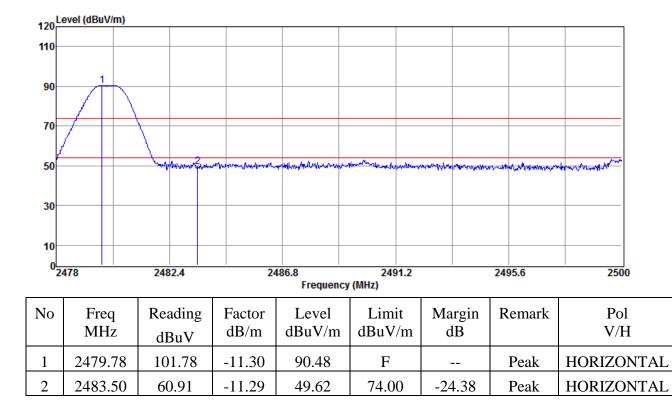
74.00

-25.98

Peak

VERTICAL

Remark: F" denotes fundamental frequency


59.31

-11.29

2

2483.50





Remark: F" denotes fundamental frequency



# **10. Peak Power Spectral Density**

### **10.1 Standard Applicable:**

According to §15.247(e) For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

### 10.2 Measurement Equipment Used:

Refer to section 6.2 for details.

### 10.3 Test Set-up:

Refer to section 7.3 for details.

### **10.4 Measurement Procedure:**

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW =3kHz, VBW = 10kHz, Set the span to 1.5 DTS bandwidth., Sweep=Auto
- 4. Record the max. reading.
- 5. Repeat above procedures until all frequency measured were complete.



### **10.5 Measurement Result:**

Mode	Frequency		PSD (dB	m/3kHz)		Duty Factor	Total PSD	PSD Limit	
Widde	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3	(dB)	(dBm/3kHz)	(dBm/3kHz)	
	2412	-6.202				0.00	-6.20	8.00	
802.11b	2437	-5.263				0.00	-5.26	8.00	
	2462	-5.926				0.00	-5.93	8.00	
	2412	-6.828				0.00	-6.83	8.00	
802.11g	2437	-6.818				0.00	-6.82	8.00	
	2462	-6.155				0.00	-6.16	8.00	
	2412	-8.358				0.00	-8.36	8.00	
802.11n HT20	2437	-8.795				0.00	-8.80	8.00	
	2462	-8.669			/	0.00	-8.67	8.00	
	2422	-11.039	/		/	0.00	-11.04	8.00	
802.11n HT40	2437	-10.85		$\sim$		0.00	-10.85	8.00	
	2452	-12.025				0.00	-12.03	8.00	

Mode	Frequency (MHz)	PSD (dBm/3kHz)	Duty Factor (dB)	Total PSD (dBm/3kHz)	PSD Limit (dBm/3kHz)
	2402	-9.885	0.00	-9.89	8.00
BLE 4.0	2442	-10.481	0.00	-10.48	8.00
	2480	-11.16	0.00	-11.16	8.00



### 802.11b

### **Power Spectral Density Test Plot (CH-Low)**



### **Power Spectral Density Test Plot (CH-Mid)**





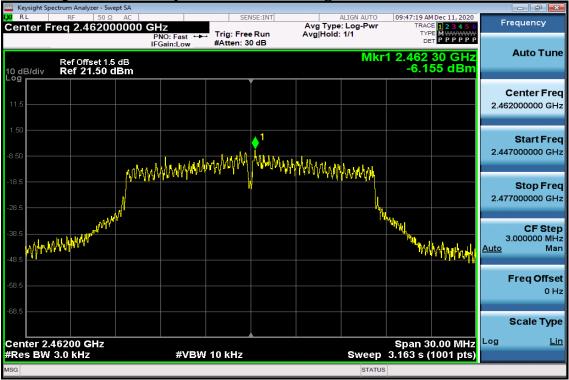



-90 of 97-

# Power Spectral Density Test Plot (CH-High)

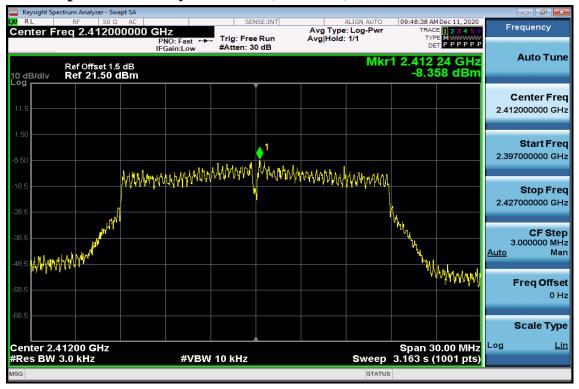
### 802.11g Power Spectral Density Test Plot (CH-Low)











# **Power Spectral Density Test Plot (CH-Mid)**

### **Power Spectral Density Test Plot (CH-High)**

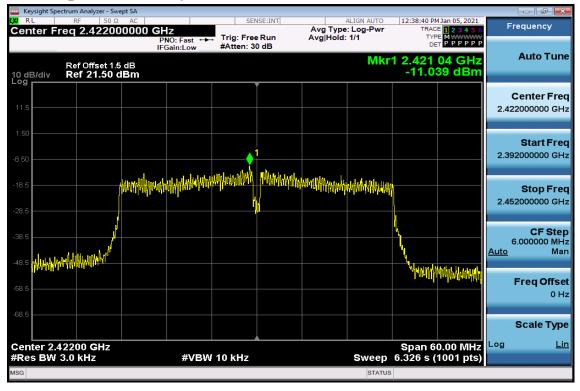




### 802.11n_20M Power Spectral Density Test Plot (CH-Low)



# **Power Spectral Density Test Plot (CH-Mid)**



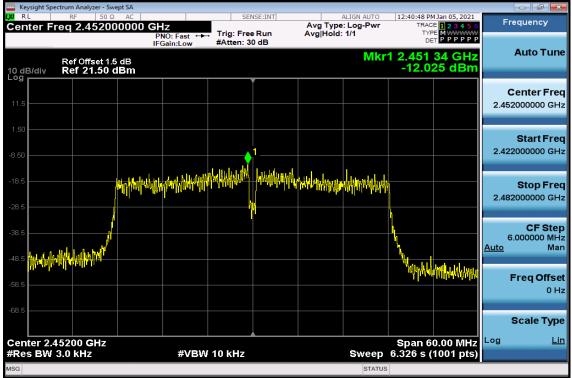





# Power Spectral Density Test Plot (CH-High)

### 802.11n_40M Power Spectral Density Test Plot (CH-Low)



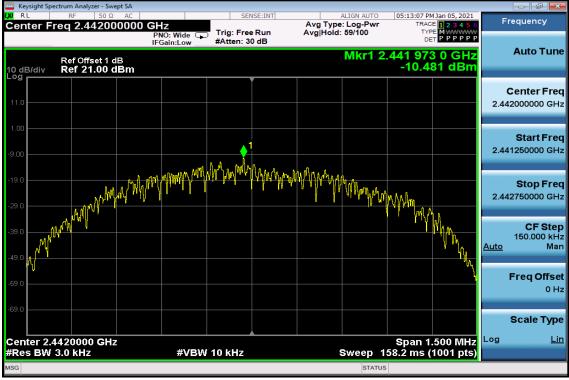





	m Analyzer - Swept RF 50 Ω	SA AC		SE	NSE:INT		ALIGN AUTO	12:39:46 P	M Jan 05, 2021		
	2.437000	000 GHz	:Fast ↔ in:Low		Run		: Log-Pwr	TRA	CE 1 2 3 4 5 6 PE MWWWWW ET P P P P P P		equency
	ef Offset 1.5 d ef 21.50 dB						Mkr		60 GHz 50 dBm		Auto Tun
11.5											enter Fre 7000000 GH
3.50					<b>↓</b> 1					2.407	Start Fre 7000000 GH
28.5		uk dan kana kana kana kana kana kana kana	ter frankland	^{MADDA} ADDAA A	MMAnnppp 1	₩₩₩₩₩₩₩₩	dalah da Dalah dalah			2.467	<b>Stop Fre</b> 7000000 GH
38.5	l . udanktik									6 <u>Auto</u>	CF Ste .000000 MH Ma
48.5 <b></b> 58.5	acuth da faith a							WWW	MMupphinn	F	Freq Offse 0 H
68.5											Scale Typ
enter 2.437 Res BW 3.0			#VBW	10 kHz			Sweep	Span 6 6.326 s (	i0.00 MHz (1001 pts)	Log	Li
SG							STATUS				

# **Power Spectral Density Test Plot (CH-Mid)**

# Power Spectral Density Test Plot (CH-High)






### **BT BLE 4.0 Power Spectral Density Test Plot (CH-Low)**



# **Power Spectral Density Test Plot (CH-Mid)**







-96 of 97-

### **Power Spectral Density Test Plot (CH-High)**





### **11.Antenna Requirement**

### **11.1 Standard Applicable:**

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

### **11.2 Antenna Connected Construction:**

The directional gins of antenna used for transmitting is below table, and the antenna connector is designed with unique type RF connector and no consideration of replacement. Please see EUT photo and antenna spec. for details.

Antenna Designation:

	PCB Antenna	Gain
1	WiFi 2.4G Antenna	2.2dBi
2	BLE Antenna	2.2dBi