)Т			
	TEST REPOR	ί I			
FCC ID	2AGEB-TCT				
Test Report No:	TCT240607E008				
Date of issue:	Jun. 18, 2024 🔍				
Testing laboratory::	SHENZHEN TONGCE TESTIN	IG LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factor Subdistrict, Bao'an District, Sho People's Republic of China				
Applicant's name: :	Shenzhen ZKC Software Tech	nology Co., Ltd			
Address::	1st Floor, No. 1 Block, Zhongko Xixiang Town, Bao'an District,		Beiqi Road,		
Manufacturer's name :	Shenzhen ZKC Software Tech	nology Co., Ltd			
Address:	1st Floor, No. 1 Block, Zhongk Xixiang Town, Bao'an District,	Shenzhen, China	•		
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013				
Product Name::	TPMS Configuration Tool				
Trade Mark:	N/A		6		
Model/Type reference :	тст				
Rating(s):	Rechargeable Li-ion Battery D	C 3.6V			
Date of receipt of test item	Jun. 07, 2024	(O)			
Date (s) of performance of test:	Jun. 07, 2024 ~ Jun. 18, 2024				
Tested by (+signature) :	Ronaldo LUO	Ronaldz 60000			
Check by (+signature) :	Beryl ZHAO	BoyC	TING		
Approved by (+signature):	Tomsin	Tomsitis			
TONGCE TESTING LAB. TH	oduced except in full, without th his document may be altered or ly, and shall be noted in the rev apply to the tested sample.	revised by SHENZH	IEN TONGCE		

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

	eneral Pro							
	2. Model(s) I							
	B. Operation							
2. Te	est Result	Summar	,y		(\mathcal{O})		(\mathcal{L})	4 5
	eneral Info							
3.1	. Test envir 2. Descriptic	onment ai	nd mode				•••••	6
	cilities an							
	. Facilities .							
	2. Location .							
	8. Measurem							
5. Te	est Results	and Me	asureme	ent Data .				9
	. Antenna r	-						
	2. Conducte							
5.3	8. Maximum	Conducte	d (Peak) (Output Po	wer			14
5.4	. Emission	Bandwidtl	h					15
5.5	5. Power Spe	ectral Den	sity					16
5.6	6. Conducte	d Band Ed	lge and S	purious Ei	mission M	easureme	nt	17
5.7	7. Radiated	Spurious E	Emission	Measurem	ent			19
Арре	endix A: Te	est Resu	It of Con	ducted 1	est			
Appe	endix B: Pl	hotograp	hs of Te	st Setup				
	endix C: Pl	• •		•				

1. General Product Information

1.1. EUT description

Product Name:	TPMS Configuration Tool
Model/Type reference:	тст
Sample Number	TCT240607E007-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20)) 2422MHz~2452MHz (802.11n(HT40))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20) 7 for 802.11n(HT40)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing(OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	PCB Antenna
Antenna Gain:	0.94dBi
Rating(s):	Rechargeable Li-ion Battery DC 3.6V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 77

1.3. Operation Frequency

For 802.11b/g/n (HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
/	1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
N	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

For 802.11n (HT40)

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
		4	2427MHz	7	2442MHz		
G)	(,	5	2432MHz	8	2447MHz	G`)	("G
3	2422MHz	6	2437MHz	9	2452MHz		e

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

802.11n (HT40)

Frequency
2422MHz
2437MHz
2452MHz

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

802.11n(H40)

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	22.8 °C	24.8 °C
Humidity:	49 % RH	51 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	EspRFTestTool_v2.8	
Power Level:	10	
Test Mode:		
Engineering mode:	Keep the EUT in continuous channel and modulations with	
polarities were performed.	om chamber. Measurements ir During the test, each emissior	n both horizontal and vertica n was maximized by: having
polarities were performed. I the EUT continuously work axis (X, Y & Z) and con manipulating interconnectin from 1m to 4m in both horiz	ontal and vertical polarizations	h both horizontal and vertica h was maximized by: having modes, rotated about all 3 h to obtain worst position ble, varying antenna heigh
polarities were performed. I the EUT continuously work axis (X, Y & Z) and con manipulating interconnectin from 1m to 4m in both horiz	or chamber. Measurements in During the test, each emission ing, investigated all operating isidered typical configuration g cables, rotating the turntal	n was maximized by: having modes, rotated about all 3 n to obtain worst position ble, varying antenna height
polarities were performed. I the EUT continuously work axis (X, Y & Z) and con manipulating interconnectin from 1m to 4m in both horiz (Z axis) are shown in Test R We have verified the constru-	am chamber. Measurements in During the test, each emission ing, investigated all operating isidered typical configuration g cables, rotating the turntal ontal and vertical polarizations esults of the following pages.	h both horizontal and vertica h was maximized by: having modes, rotated about all 3 h to obtain worst position ble, varying antenna heigh s. The emissions worst-case peration. All the test modes
polarities were performed. If the EUT continuously work axis (X, Y & Z) and con- manipulating interconnectin from 1m to 4m in both horiz (Z axis) are shown in Test R We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra	am chamber. Measurements in During the test, each emission ing, investigated all operating isidered typical configuration g cables, rotating the turntal ontal and vertical polarizations esults of the following pages.	h both horizontal and vertica h was maximized by: having modes, rotated about all 3 h to obtain worst position ble, varying antenna heigh s. The emissions worst-case peration. All the test modes hich was shown in this test
polarities were performed. If the EUT continuously work axis (X, Y & Z) and con- manipulating interconnectin from 1m to 4m in both horiz (Z axis) are shown in Test R We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra	am chamber. Measurements in During the test, each emission ing, investigated all operating isidered typical configuration g cables, rotating the turntal ontal and vertical polarizations esults of the following pages.	h both horizontal and vertica h was maximized by: having modes, rotated about all 3 h to obtain worst position ble, varying antenna heigh s. The emissions worst-case peration. All the test modes hich was shown in this test
polarities were performed. If the EUT continuously work axis (X, Y & Z) and con- manipulating interconnecting from 1m to 4m in both horized (Z axis) are shown in Test R We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra- was worst case.	am chamber. Measurements in During the test, each emission ing, investigated all operating isidered typical configuration g cables, rotating the turntal ontal and vertical polarizations esults of the following pages.	both horizontal and vertica was maximized by: having modes, rotated about all 3 n to obtain worst position ble, varying antenna height s. The emissions worst-case operation. All the test modes hich was shown in this test
polarities were performed. If the EUT continuously work axis (X, Y & Z) and con- manipulating interconnectin from 1m to 4m in both horiz (Z axis) are shown in Test R We have verified the constru- were carried out with the EU report and defined as follow Per-scan all kind of data ra was worst case. Mode	am chamber. Measurements in During the test, each emission ing, investigated all operating isidered typical configuration g cables, rotating the turntal ontal and vertical polarizations esults of the following pages.	both horizontal and vertica was maximized by: having modes, rotated about all 3 to obtain worst position ble, varying antenna heigh s. The emissions worst-case operation. All the test modes hich was shown in this test bund the follow list which in Data rate

13.5Mbps

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37R55T6KL2SE3	/	SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 0.94dBi.

5.2. Conducted Emission

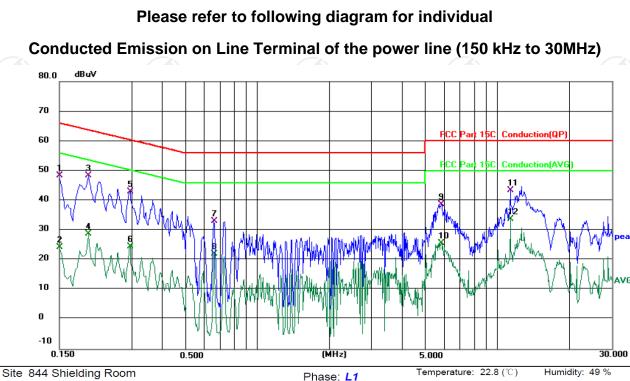
5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto			
	Frequency range	Limit (dBuV)		
	(MHz)	Quasi-peak	Average		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Referenc	e Plane			
	40cm	80cm LISN			
Test Setup:	E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization N Test table height=0.8m	EMI Receiver	- AC power		
Test Mode:	Charging + Transmittir	ng Mode			
Test Procedure:	 The E.U.T is connected to the main power through line impedance stabilization network (L.I.S.N.). Thi provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the mai power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Pleas refer to the block diagram of the test setup an photographs). Both sides of A.C. line are checked for maximur conducted interference. In order to find the maximur emission, the relative positions of equipment and all or 				
	the interface cables ANSI C63.10:2013	•			

Page 10 of 77

5.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)									
Equipmo	Equipment Manufac		Model	Serial Number	Calibration Due					
EMI Test Re	ceiver	R&S	ESCI3	100898	Jun. 29, 2024					
Line Impec Stabilisat Newtork(L	ion	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025					
Line-5		тст	CE-05	/	Jul. 03, 2024					
EMI Test So	ftware	Shurple Technology	EZ-EMC	1	1					

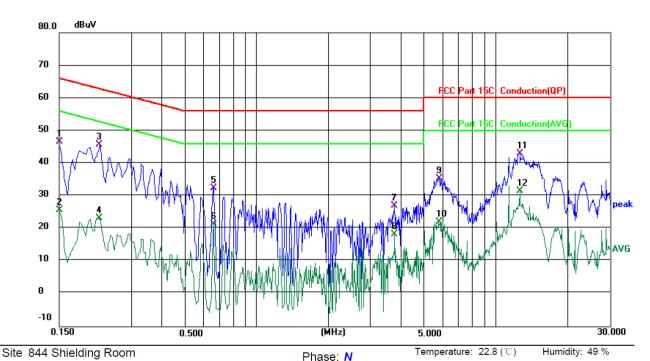


Page 11 of 77

5.2.3. Test data

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Limit: FCC Part 15C Conduction(QP) Power: DC 5V(Adapter Input AC 120V/60Hz)


				(· · /					
No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBu∨	dB	Detector	Comment
1		0.1500	38.31	10.02	48.33	66.00	-17.67	QP	
2		0.1500	14.33	10.02	24.35	56.00	-31.65	AVG	
3	*	0.1980	38.32	10.04	48.36	63.69	-15.33	QP	
4		0.1980	18.74	10.04	28.78	53.69	-24.91	AVG	
5		0.2939	33.18	9.85	43.03	60.41	-17.38	QP	
6		0.2939	14.77	9.85	24.62	50.41	-25.79	AVG	
7		0.6620	23.89	9.20	33.09	56.00	-22.91	QP	
8		0.6620	12.91	9.20	22.11	46.00	-23.89	AVG	
9		5.8500	28.33	10.45	38.78	60.00	-21.22	QP	
10		5.8500	15.14	10.45	25.59	50.00	-24.41	AVG	
11		11.3659	32.78	10.64	43.42	60.00	-16.58	QP	
12		11.3659	23.13	10.64	33.77	50.00	-16.23	AVG	

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Limit: F	CC Part 15	C Conduct	ion(QP)		Pow	er: DC 5V	(Adapter Inp	out AC 120V/60Hz)
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1500	36.48	10.00	46.48	66.00	-19.52	QP	
2	0.1500	15.58	10.00	25.58	56.00	-30.42	AVG	
3	0.2180	35.77	9.82	45.59	62.89	-17.30	QP	
4	0.2180	13.37	9.82	23.19	52.89	-29.70	AVG	
5	0.6620	23.33	9.17	32.50	56.00	-23.50	QP	
6	0.6620	12.29	9.17	21.46	46.00	-24.54	AVG	
7	3.7820	16.88	10.19	27.07	56.00	-28.93	QP	
8	3.7820	7.94	10.19	18.13	46.00	-27.87	AVG	
9	5.8020	24.99	10.38	35.37	60.00	-24.63	QP	
10	5.8020	11.74	10.38	22.12	50.00	-27.88	AVG	
11 *	12.6100	32.39	10.62	43.01	60.00	-16.99	QP	
12	12.6100	20.85	10.62	31.47	50.00	-18.53	AVG	

Note: 1. Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor \, (dB)$

- Limit $(dB\mu V) = Limit$ stated in standard
- Margin (dB) = Measurement (dB μ V) Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode (Lowest channel and 802.11n(HT40)) was submitted only.

5.3. Maximum Conducted (Peak) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	Power meter EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the Peak output power and record the results in the test report.
Test Result:	PASS

5.3.2. Test Instruments

RF Test Room							
Equipment Manufacturer		Model	Serial Number	Calibration Due			
Power Sensor	Agilent	8184A	MY41096530	Jun. 01, 2025			
Power Meter	Agilent	E4418B	MY45100357	Jun. 27, 2024			

5.4. Emission Bandwidth

5.4.1. Test Specification

FCC Part15 C Section 15	.247 (a)(2)
KDB 558074 D01 v05r02	
>500kHz	
Spectrum Analyzer	EUT
Transmitting mode with m	odulation
EUT transmit continuo 2. Make the measurement resolution bandwidth (Video bandwidth (VBW an accurate measuremt be greater than 500 kH	t with the spectrum analyzer's RBW) = 100 kHz. Set the V) = 300 kHz. In order to make nent. The 6dB bandwidth mus
PASS	
	KDB 558074 D01 v05r02 >500kHz Image: Spectrum Analyzer Transmitting mode with m 1. Set to the maximum por EUT transmit continuo 2. Make the measurement resolution bandwidth (VBV) an accurate measurement be greater than 500 kt 3. Measure and record the second that the second the second the second that the second the second that the second the second the second the second the second the second that the second the

5.4.2. Test Instruments

RF Test Room								
Equipment Manufacturer		Model	Serial Number	Calibration Due				
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024				
Combiner Box	Ascentest	AT890-RFB						

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15	.247 (e)	Ć
Test Method:	KDB 558074		C
Limit:	The peak power spectra than 8dBm in any 3kHz continuous transmission.		
Test Setup:	Spectrum Analyzer	EUT	
Test Mode:	Transmitting mode with m	odulation	
Test Procedure:	 The RF output of EUT of analyzer by RF cables was compensated to the maximum port of EUT transmit continuous. Set to the maximum port EUT transmit continuous. Make the measurement resolution bandwidth (kHz. Video bandwidth to at least 1.5 times the 4. Detector = RMS, Sweet 5. Employ trace averaging of 100 traces. Use the determine the maximut 6. Measure and record the formation of the solution of the sol	and attenuator. The pathe results for each ower setting and enable ously. It with the spectrum and RBW): 3 kHz \leq RBW \leq VBW \geq 3 x RBW. Set e OBW. In time = auto couple. g (RMS) mode over a peak marker function im power level.	ath loss e the alyzer's ≤ 100 the span minimum to
Test Result:	PASS		

5.5.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024			
Combiner Box	Ascentest	AT890-RFB	1				
			601				

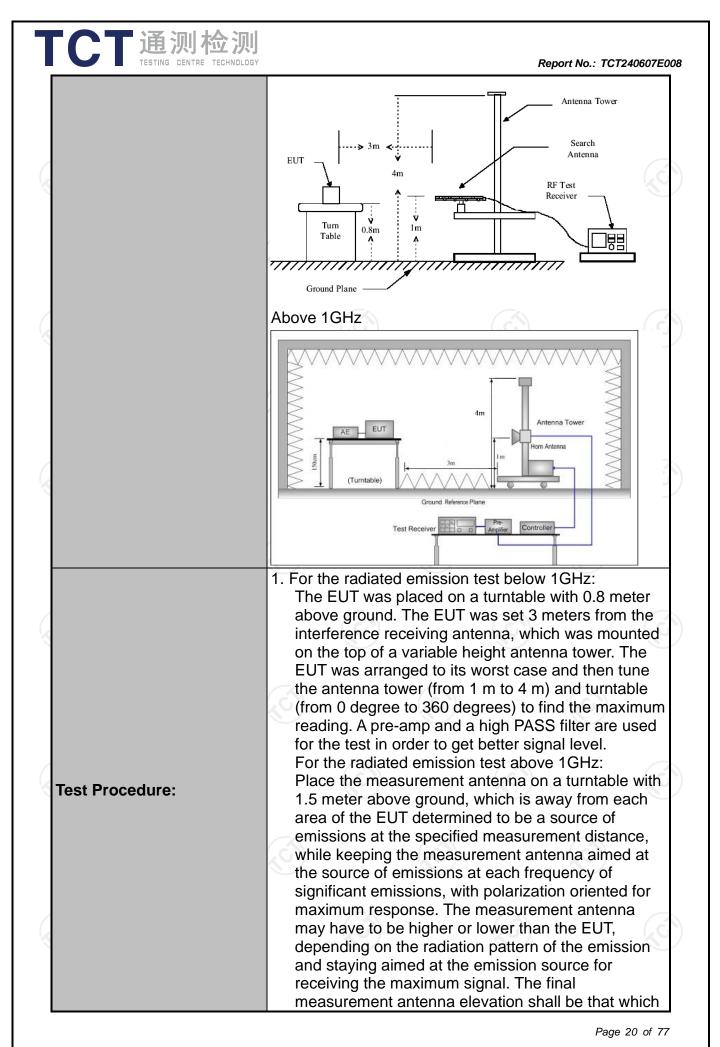
5.6. Conducted Band Edge and Spurious Emission Measurement

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector.
Test Procedure:	 Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5.6.2. Test Instruments

		R	F Test Room	ì			
E	quipment	Manufacturer	Model	Serial	Number	Calibration	ם Due
Spec	trum Analyzer	Agilent	N9020A	MY49	100619	Jun. 28, 2024	
Со	mbiner Box	Ascentest	AT890-RFB		/	1	
	(C)	Ś		S		(S)	
						Dana	18 of 7
Jotlin	e: 400-6611-140	Tel: 86-755-2767	2220 Eave 66	-755-2762	72222 64	tp://www.tct-la	



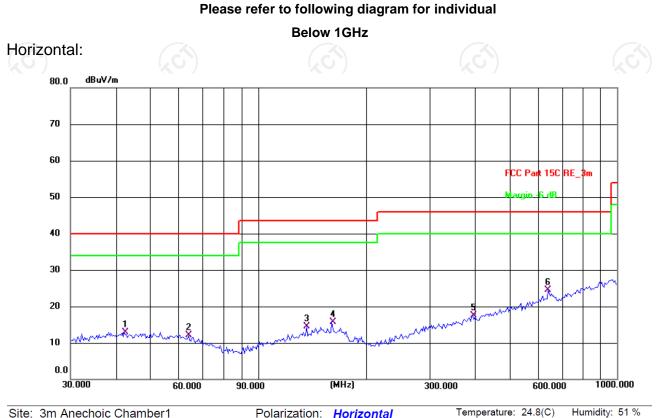
5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

Test Requirement:	FCC Part15	C Section	n 15.209	$\langle \mathcal{O} \rangle$		k
Test Method:	ANSI C63.10):2013				0
Frequency Range:	9 kHz to 25 (GHz				· .
Measurement Distance:	3 m		<u>(</u> 0)			
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Transmitting	mode wi	th modulat	ion		(
	Frequency	Detector	RBW	VBW	z Quasi-peak M Iz Quasi-peak M Iz Quasi-peak M z Peak Valu z Average Va Measureme Distance (me 300 30 30 30 30 30 30 30 30 30 30 30 30	Remark
	9kHz- 150kHz	Quasi-pea				
Receiver Setup:	150kHz- 30MHz	Quasi-pea		30kHz		
	30MHz-1GHz	Quasi-pea	k 120KHz	300KHz	Quas	si-peak Value
		Peak	1MHz	VBW Rem 1kHz Quasi-pe 30kHz Quasi-pe 30kHz Quasi-pe 3MHz Peak 10Hz Average Strength Measur Its/meter) Distance F(KHz) 30 G0 33 50 3 00 3 3 A 3 A 3 A 3 A <t< td=""><td>eak Value</td></t<>	eak Value	
	Above 1GHz	Peak	1MHz			
	Frequen	су	Field Str (microvolts			
	0.009-0.490		2400/F(
	0.490-1.705		24000/F			
	1.705-30		30		30	
	30-88		100		3	
	88-216		150		No.	3
Limit:	216-960		200			3
	Above 9	500		3		
	Frequency Above 1GHz	(micr	eld Strength ovolts/meter) 500 5000	Distan (meter 3	се	Detector Average Peak
	For radiated	emission stance = 3m	is below 30			

Page 19 of 77

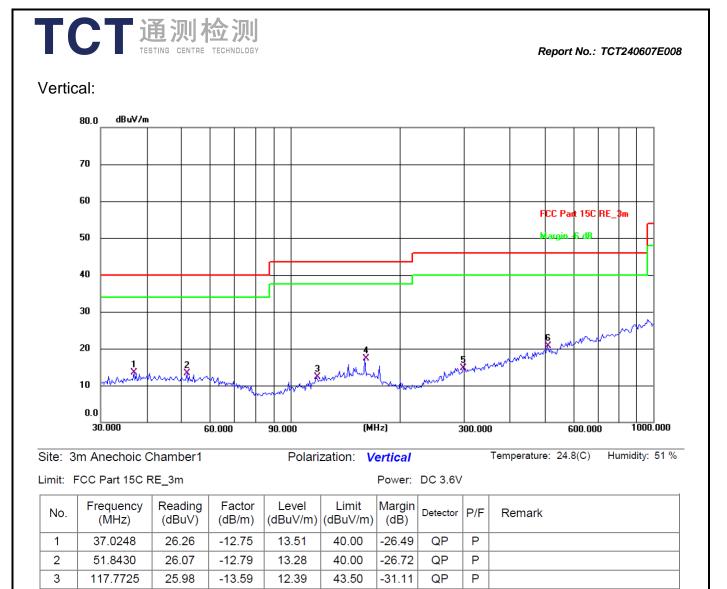
TCT通测检	
TESTING CENTRE TECHN	Report No.: TCT240607E008
	 Report No.: TCT240607E008 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is
	the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
	power control level for the tested mode of operation.
Test results:	PASS


5.7.2. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
EMI Test Software	Shurple Technology	EZ-EMC		/ 🕼

Page 22 of 77

5.7.3. Test Data


Site: 3m Anechoic Chamber1

Polarization: Horizontal

Temperature: 24.8(C)

Limit:	FCC Part 15C F	RE_3m				Power:	DC 3.6V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	42.3022	25.41	-12.43	12.98	40.00	-27.02	QP	Р	
2	63.9827	25.55	-13.53	12.02	40.00	-27.98	QP	Р	
3	136.4598	26.74	-12.22	14.52	43.50	-28.98	QP	Р	
4	160.3456	26.84	-11.09	15.75	43.50	-27.75	QP	Р	
5	396.2415	25.77	- <mark>8</mark> .35	17.42	46.00	-28.58	QP	Р	
6 *	642.8612	27.84	-3.37	24.47	46.00	-21.53	QP	Р	

Page 23 of 77

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

43.50

46.00

46.00

2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode (Lowest channel and 802.11n(HT40)) was submitted only.

-26.20

-31.21

-25.33

QP

QP

QP

Ρ

Ρ

Ρ

3. Freq. = Emission frequency in MHz

28.39

25.01

27.13

4

5

6

160.3456

299.3158

510.0435

- Measurement $(dB\mu V/m) = Reading \, level (dB\mu V) + Corr. Factor (dB)$
- Correction Factor= Antenna Factor + Cable loss Pre-amplifier

-11.09

-10.22

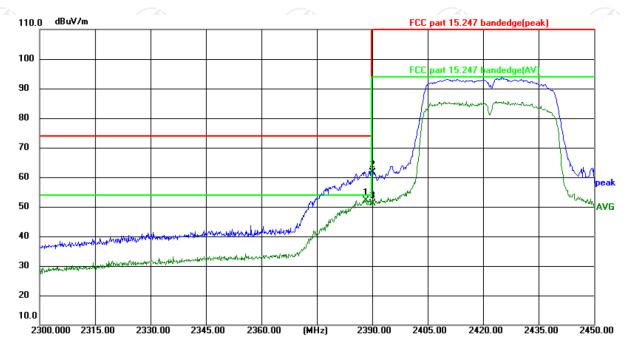
-6.46

17.30

14.79

20.67

- *Limit* $(dB\mu V/m) = Limit$ stated in standard
- Margin (dB) = Measurement (dB μ V/m) Limits (dB μ V/m)
- * is meaning the worst frequency has been tested in the test frequency range.


Page 24 of 77

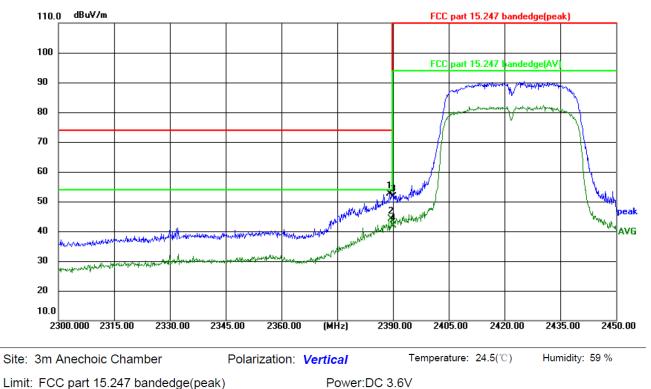
Test Result of Radiated Spurious at Band edges

Lowest channel 2422:

Horizontal:

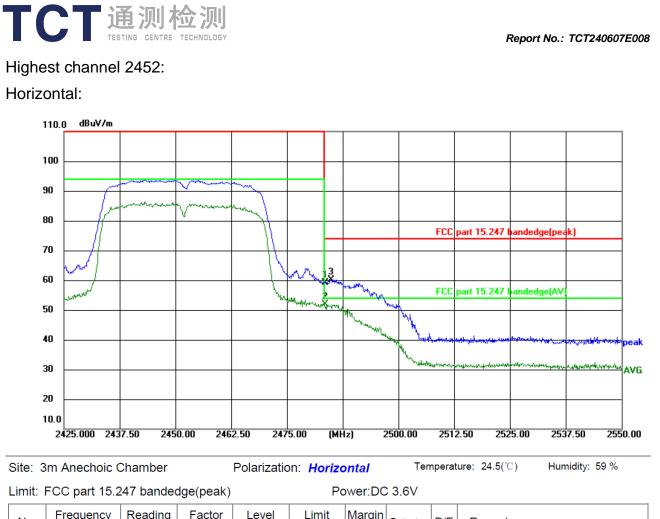
Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 24.5(°C) Humidity: 59 %

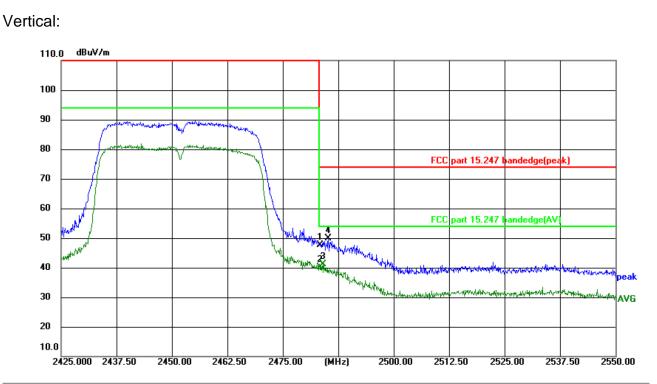
Limit: FCC part 15.247 bandedge(peak)


Power:DC 3.6V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	2388.350	68.08	-15.87	52.21	54.00	-1.79	AVG	Ρ	
2	2390.000	77.61	-15.86	61.75	74.00	-12.25	peak	Ρ	
3	2390.000	67.01	-15.86	51.15	54.00	-2.85	AVG	Ρ	

Vertical:


TCT 通测检测 TESTING CENTRE TECHNOLOGY


Limit: FCC part 15.247 bandedge(peak)

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark				
	1	2389.220	68.57	-15.86	52.71	74.00	-21.29	peak	Ρ					
	2 *	2389.760	60.08	-15.86	44.22	54.00	-9.78	AVG	Ρ					
	3	2390.000	67.38	-15.86	51.52	74.00	-22.48	peak	Ρ					
	4	2390.000	57.69	-15.86	41.83	54.00	-12.17	AVG	Ρ					
-î			1.1	1.1			1							

Note: Measurements were conducted in all two channels (high, low) and all modulation (802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode 802.11n(HT40) was submitted only.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	74.98	-15.87	59.11	74.00	-14.89	peak	Р	
2 *	2483.500	67.66	-15.87	51.79	54.00	-2.21	AVG	Ρ	
3	2484.950	76.03	-15.85	60.18	74.00	-13.82	peak	Ρ	

Site: 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24.5(℃) Humidity: 59 %

Report No.: TCT240607E008

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Limit:	FCC part 15.2	247 bandeo	dge(peak)		Po	wer:DC	3.6V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2483.500	63.57	-15.87	47.70	74.00	-26.30	peak	Р	
2	2483.500	56.12	-15.87	40.25	54.00	-13.75	AVG	Р	
3 *	2484.188	57.10	-15.85	41.25	54.00	-12.75	AVG	Р	
4	2485.350	65.71	-15.85	49.86	74.00	-24.14	peak	Р	
LCT)	1.0			6.61)			

Note:

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss – Pre-amplifier
- 3. Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20), 802.11n(HT40)), and the worst case Mode 802.11n(HT40) was submitted only.

Page 28 of 77

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Above 1GHz Modulation Type: 802.11b

	Low channel: 2412 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)			Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
4824	Н	45.09		0.75	45.84		74	54	-8.16			
7236	Н	35.27		9.87	45.14		74	54	-8.86			
	Н											
4824	V	45.83	6	0.75	46.58		74	54	-7.42			
7236	V	34.71		9.87	44.58	<u> </u>	74	54	-9.42			
	V		<u> </u>		2							

	Middle channel: 2437 MHz											
Frequency (MHz)	ncy Ant. Pol. Peak z) H/V Peak (dBµV) AV reading (dBµV) Correction Emission Leve Factor (dBµV) (dBµV) (dBµV) (dBµV/m) (dBµV/m)						Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)			
4874	Н	44.55		0.97	45.52		74	54	-8.48			
7311	Н	34.76		9.83	44.59		74	54	-9.41			
	H				(
	KU)		KO.		X	0		KU)				
4874	V	44.42		0.97	45.39		74	54	-8.61			
7311	V	34.81		9.83	44.64		74	54	-9.36			
	V	(
				((

			H	igh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	45.73		1.18	46.91		74	54	-7.09
7386	H	35.44		10.07	45.51		74	54	-8.49
	Н)	
4924	V	44.27		1.18	45.45		74	54	-8.55
7386	V	35.01		10.07	45.08		74	54	-8.92
	V								

Note:

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dBµV/m)-Average limit (dBµV/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

	TESTI	NG CENTRE TEC	HNOLOGY				Repo	ort No.: TCT2	40607E008
			Μ	odulation T	ype: 802.11	lg			
			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	45.71		0.75	46.46		74	54	-7.54
7236	Н	34.28		9.87	44.15		74	54	-9.85
	Н			0)		<u></u>		
4824	V	46.14		0.75	46.89		74	54	-7.11
7236	V	35.07	()	9.87	44.94	·	74	54	-9.06
	V		(20			G`}		(, G)	
					7		•		

			Mi	ddle chann	el: 2437 Mł	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	45.26		0.97	46.23		74	54	-7.77
7311	Н	35.31		9.83	45.14		74	54	-8.86
	Н								
				6	(
4874	V	44.67		0.97	45.64		74	54	-8.36
7311	V	34.42		9.83	44.25		74	54	-9.75
	V								

			F	ligh channe	el: 2462 MH	z	(\mathbf{c})		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	45.13		1.18	46.31		74	54	-7.69
7386	н	35.48		10.07	45.55	<u> </u>	74	54	-8.45
	H.			/	`	<u> </u>			
4924	V	45.78		1.18	46.96		74	54	-7.04
7386	V	35.15		10.07	45.22		74	54	-8.78
(\mathbf{G})	V	- (2 6)		(, (5)		\mathcal{S}^{+}		(
Madai			7						

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

ГСТ通测检测

TC) 测检					Repo	ort No.: TCT2	40607E008
			Modu	lation Type	: 802.11n (l	HT20)			
			L	ow channe.	I: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	46.06		0.75	46.81		74	54	-7.19
7236	Н	35.72		9.87	45.59		74	54	-8.41
	Н			()				
4824	V	45.44		0.75	46.19		74	54	-7.81
7236	V	35.65	(9.87	45.52	~~	74	54	-8.48
	V)	(G`)		(<u>,</u> G)	

			Mi	iddle chann	el: 2437 Mł	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	45.06		0.97	46.03		74	54	-7.97
7311	Н	34.39		9.83	44.22		74	54	-9.78
	Н								
				6	(
4874	V	45.04		0.97	46.01	<u> </u>	74	54	-7.99
7311	V	35.51		9.83	45.34		74	54	-8.66
	V								

			h F	ligh channe	el: 2462 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	45.34		1.18	46.52		74	54	-7.48
7386	H	35.16		10.07	45.23	<u> </u>	74	54	-8.77
	Н			/	<	<u> </u>			
4924	V	45.37		1.18	46.55		74	54	-7.45
7386	V	35.08		10.07	45.15		74	54	-8.85
	V	Up		(, ($\mathcal{C}^{\rightarrow}$		
Mada			/						

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

TC		的加检					Rep	ort No.: TCT2	40607E008
			Modu	lation Type	: 802.11n (l	HT40)			
			L	ow channe.	I: 2422 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4844	Н	45.26		0.75	46.01		74	54	-7.99
7266	Н	34.49		9.87	44.36		74	54	-9.64
	Н			(· · · ·				
4824	V	45.07		0.75	45.82		74	54	-8.18
7236	N	34.52		9.87	44.39	~	74	54	-9.61
	V)	(<u> </u>			

			Mi	iddle chann	el: 2437 Mł	Ηz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4874	Н	45.46		0.97	46.43		74	54	-7.57
7311	Н	35.12		9.83	44.95		74	54	-9.05
	Н								
				6	(
4874	V	46.01		0.97	46.98		74	54	-7.02
7311	V	35.89		9.83	45.72		74	54	-8.28
	V								

(c)		(6)) F	ligh channe	el: 2452 MH	Z	(a)		
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4904	H	45.48		1.18	46.66		74	54	-7.34
7356	Н	35.36		10.07	45.43	<u> </u>	74	54	-8.57
	H			/					
4904	V	44.93		1.18	46.11		74	54	-7.89
7356	V	35.15		10.07	45.22		74	54	-8.78
(\mathbf{G})	V	- (2 6)		(, (5)				
Mada									

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

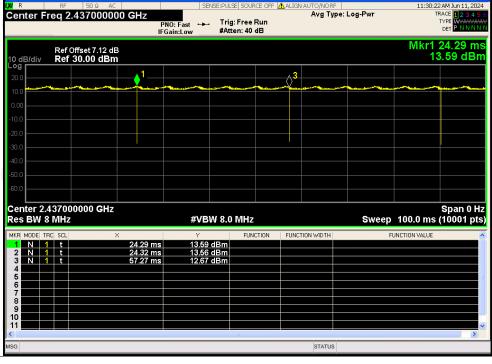
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

		Duty Cycle	
Condition	Mode	Frequency (MHz)	Duty Cycle (%)
NVNT	b	2412	99.94
NVNT	b	2437	99.94
NVNT	b	2462	99.91
NVNT	g	2412	100
NVNT	g	2437	100
NVNT	g	2462	100
NVNT	n20	2412	100
NVNT	n20	2437	100
NVNT	n20	2462	100
NVNT	n40	2422	100
NVNT	n40	2437	100
NVNT	n40	2452	100

gilent Spectrum Analyzer - Swept SA


TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Graphs Duty Cycle NVNT b 2412MHz

Duty Cycle NVNT b 2437MHz

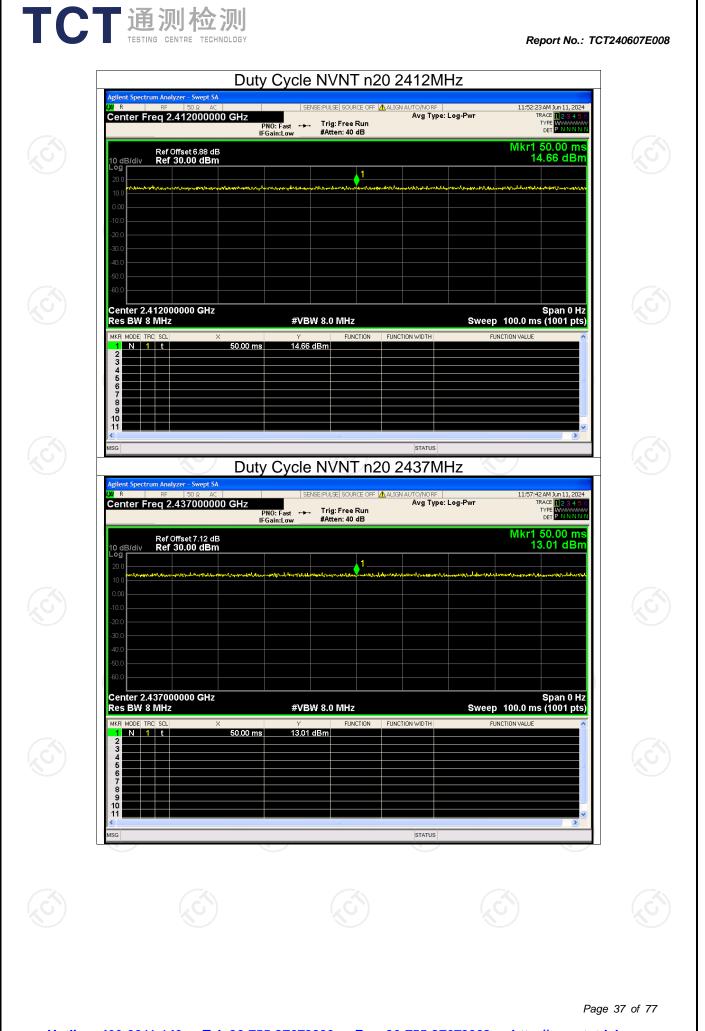
STATUS

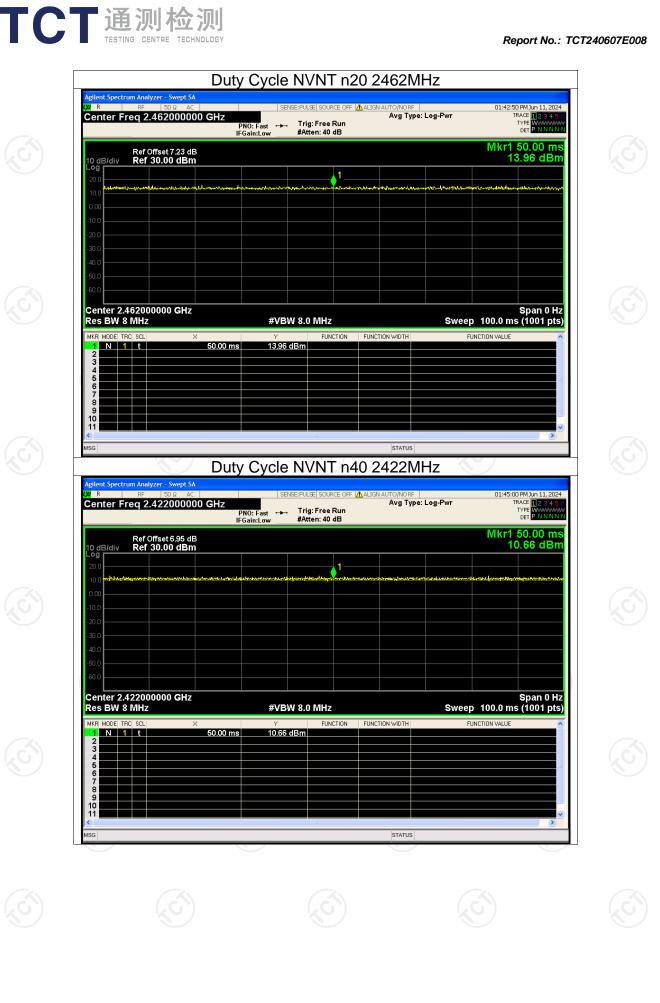
Report No.: TCT240607E008

Page 34 of 77

	SENSE:PULSE] SOURCE OFF [▲ ALIGN AUTO/N Avg PNO: Fast → Trig: Free Run IFGain:Low #Atten: 40 dB	NORF 11:34:47 AM Jun 11, 202 Type: Log-Pwr TRACE 12:34 B TYPE WANNAM DET P111111	4 6
	IFGain:Low #Atten: 40 db		
Ref Offset 7.23 dB) dB/div Ref 30.00 dBm		Mkr1 19.28 m 12.61 dBr	s
	<u>3</u>		
.00			
	#VBW 8.0 MHz		
		TH FUNCTION VALUE	
3 N 1 t 52.26 ms 4 5	s 12.93 dBm		
8			
		5	•
ilent Spectrum Analyzer - Swept SA			
enter Freq 2.412000000 GHz	Avg PNO: Fast 🔸 Trig: Free Run	Type: Log-Pwr TRACE 1 2 3 4 5	6
Ref Offset 6.88 dB		Mkr1 50.00 m 13.17 dBr	s
.00			
0.0			
0.0			
enter 2.412000000 GHz es BW 8 MHz	#VBW 8.0 MHz	Span 0 H Sweep 100.0 ms (1001 pt	z ŝ)
1 N 1 t 50.00 ms		TH FUNCTION VALUE	^
4			
8			
		<u>></u>	~
à	STA	ITUS	
	000 000 000 000 000 000 000 000	000 0	Company Company

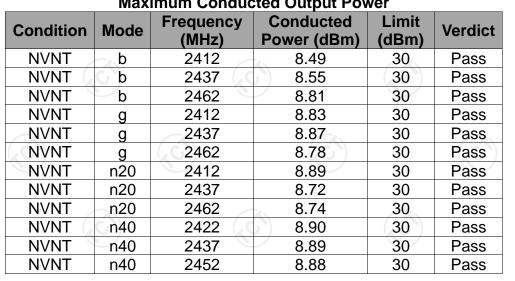
TCT通测检测 TESTING CENTRE TECHNOLOGY


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


				-	VO 101240007E0
		Duty Cycle NV	NT g 2437M⊦	lz	
LXI R	ectrum Analyzer - Swept SA RF 50 Ω AC Freq 2.437000000 GHz		URCE OFF ALIGN AUTO/NORF	11:43:06 AM Jun 1 e: Log-Pwr TRACE 1 2 TYPE WA DET P N	1, 2024 3 4 5 6
	Pof Offect 7 42 dP	PNO: Fast ++ Irig: Fre IFGain:Low #Atten: 4		Mkr1 50.00	ms
10 dB/d 20.0	Ref Offset 7.12 dB Ref 30.00 dBm		1	14.46 c	IBm
10.0	มนตาสกระที่ประกาศประกาศ มีประเทศการให้สุดและการ 	Manaha yan San Salana Mahampangka Armangangka Salah	in megaablasse, geste addesse the	ะการให้รับรายประสา ⁴⁵ ายกะโอยู่หาว่าได้หน่าง _{เป็} นรากไปกรรไป <mark>ได้สุดป่าย</mark> ไก่งา	
-10.0					
-20.0					
-40.0					
	2.437000000 GHz			Span	
MKR MO	N 8 MHZ	#VBW 8.0 MH	Z	Sweep 100.0 ms (1007 FUNCTION VALUE	pts)
2 3 4	1 t 50.00	0 ms 14.46 dBm			
5 6 7					
8 9 10					
MSG		II.	STATUS		
		Duty Cycle NV	NT g 2462M⊦	Hz	
LXI R	ectrum Analyzer - Swept SA RF 50 Ω AC • Freq 2.462000000 GHz	Z Tulu Fue	URCE OFF 🛕 ALIGN AUTO/NORF Avg Type	11:46:21 AM Jun 1 e: Log-Pwr TRACE 1 2 TYPE WW	1,2024 3 4 5 6
	Ref Offset 7.23 dB	PNO: Fast 🛶 Trig: Fre IFGain:Low #Atten: 4	0 dB	DET PN Mkr1 50.00	
10 dB/d 20.0	Ref 30.00 dBm		1	14.91 c	Bm
10.0	n dagaan to allang da namaya ngan baga antida m	mannonmalalannonallisetteteenentlinnes	_{สุน} ปัจรังสามาร์ เป็นสามาร์ เป็นสามาร์ เป็นสามาร์ เป็นสามาร์ เป็นสามาร์ เป็นสามาร์ เป็นสามาร์ เป็นสามาร์ เป็นสามาร์	มหรื _{อเ} ลกุปหรือจากระกรุปประว _ั นการ _{เป็นส} าย 	
-10.0					
-30.0					
-50.0					
Cente	2.462000000 GHz		_	Span	0 Hz
MKR MO	V 8 MHz E TRC SCL × 1 t 50.00		NCTION FUNCTION WIDTH	Sweep 100.0 ms (1007 FUNCTION VALUE	
2 3 4					
5 6 7 8					
9 10 11					
MSG			STATUS		

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 36 of 77


Report No.: TCT240607E008

Report No.:	TCT240607E008
-------------	---------------

Maximum Conducted Output Power

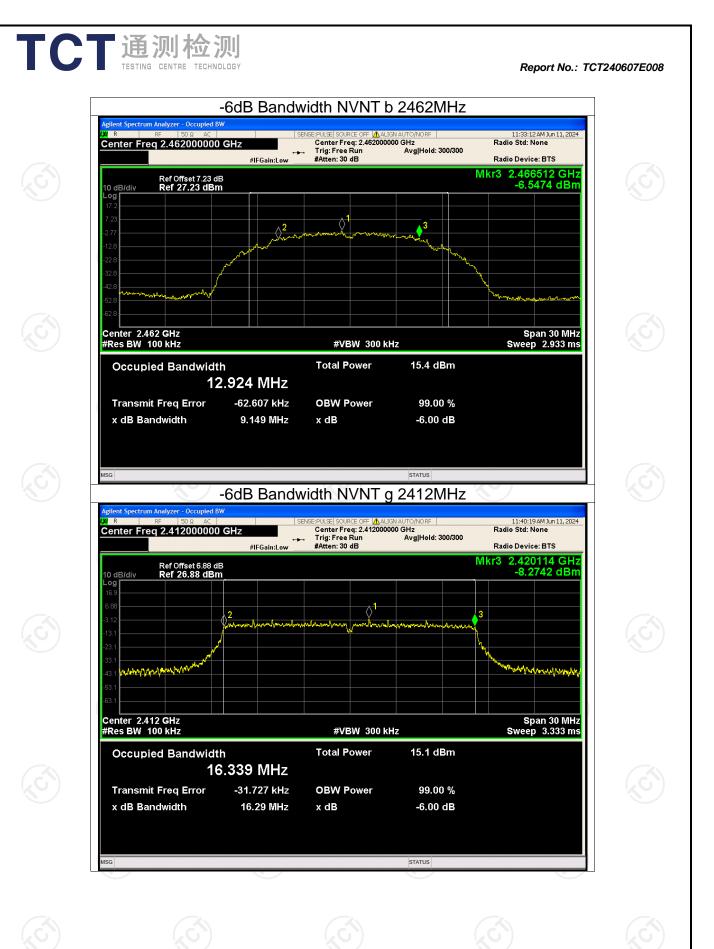
Page 40 of 77

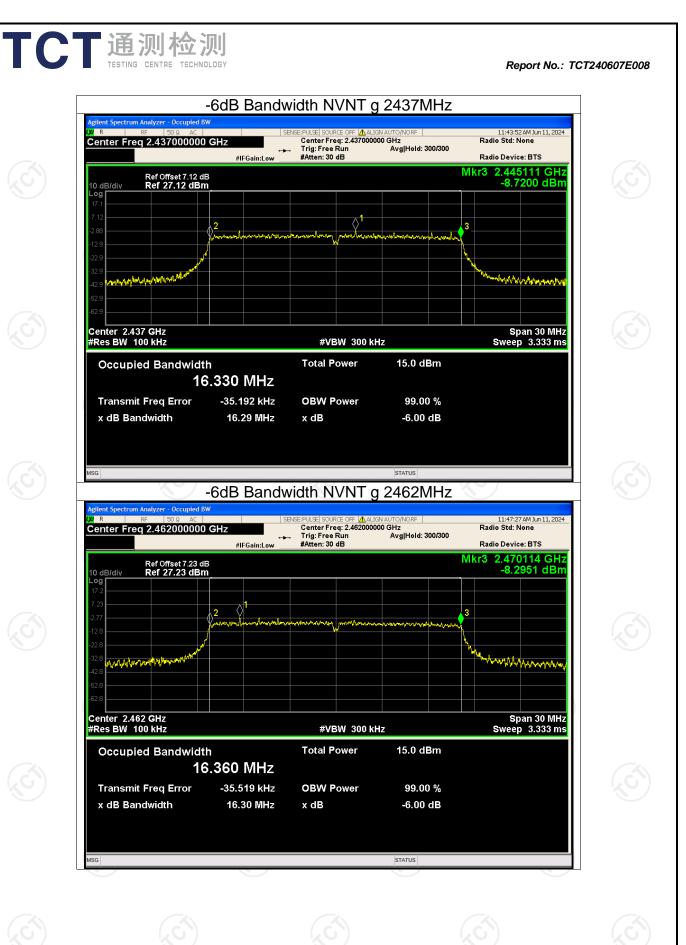
Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com Hotline: 400-6611-140

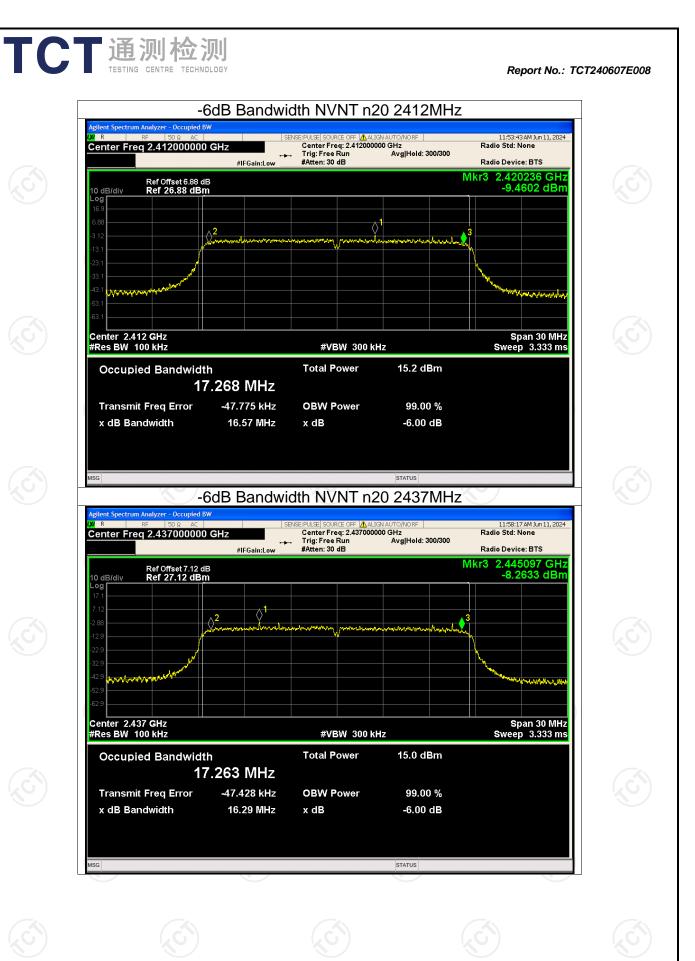
TCT 通测检测 TESTING CENTRE TECHNOLOGY

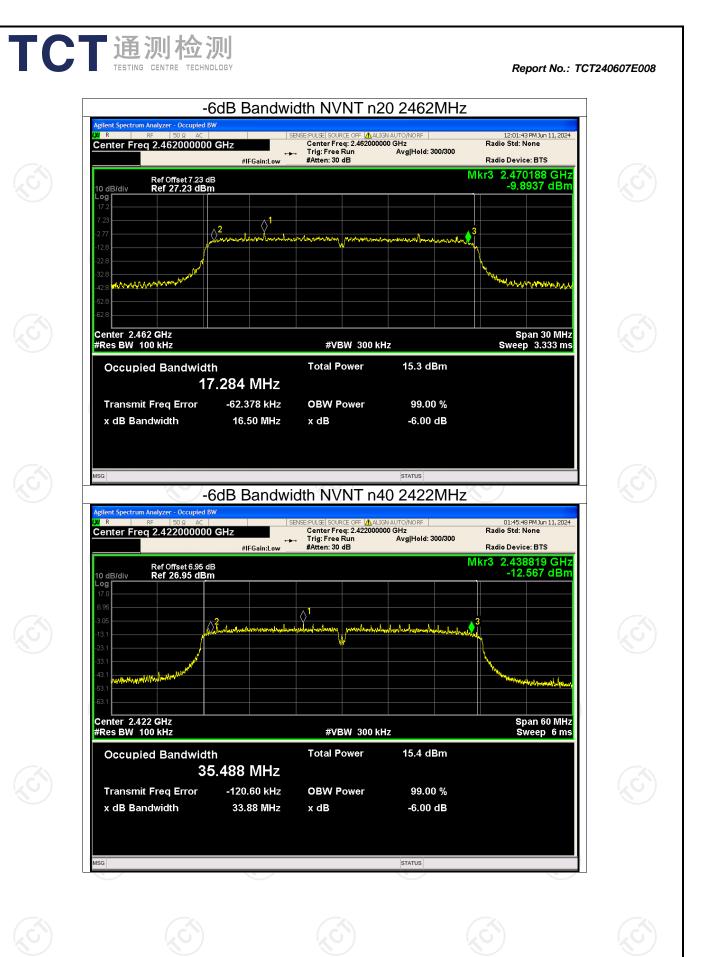

Report No.: TCT240607E008

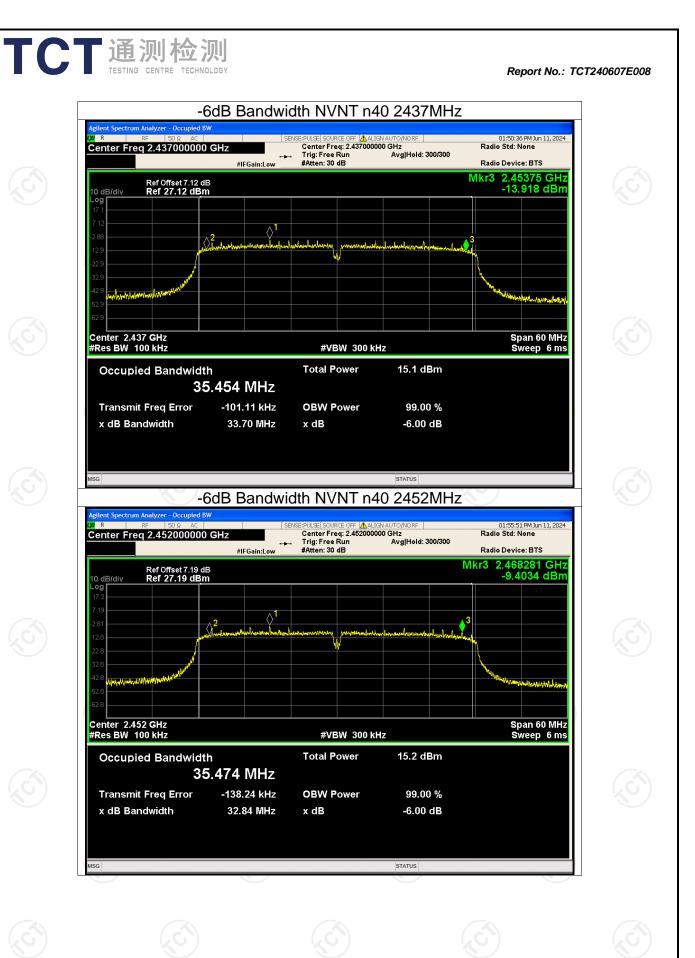
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict	
NVNT	b	2412	10.053	0.5	Pass	
NVNT	b	2437	8.720	0.5	Pass	
NVNT	b	2462	9.149	0.5	Pass	
NVNT	g	2412	16.292	0.5	Pass	
NVNT	g	2437	16.292	0.5	Pass	
NVNT	g	2462	16.300	0.5	Pass	
NVNT	n20	2412	16.568	0.5	Pass	
NVNT	n20	2437	16.288	0.5	Pass	
NVNT	n20	2462	16.501	0.5	Pass	
NVNT	n40	2422	33.880	0.5	Pass	
NVNT	n40	2437	33.702	0.5	Pass	
NVNT	n40	2452	32.839	0.5	Pass	




Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Report No.: TCT240607E008

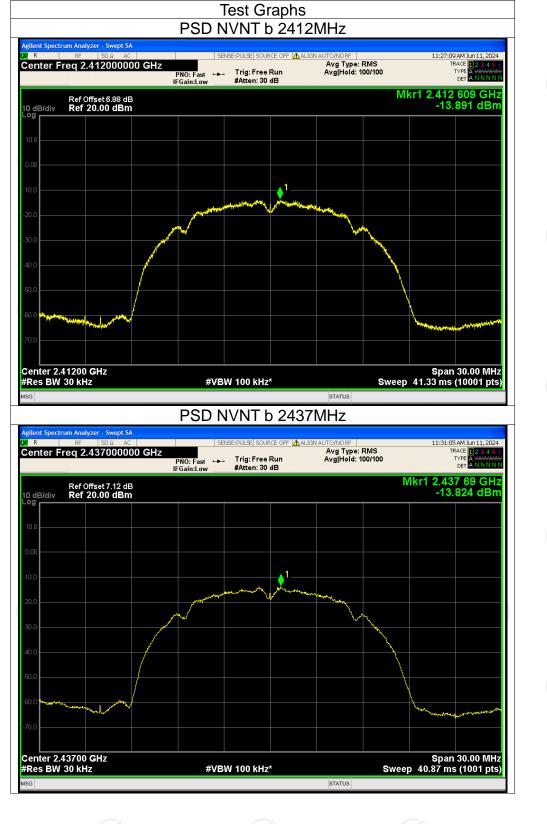



Page 42 of 77

Page 47 of 77

Condition	Mode	Frequency (MHz)	Conducted PSD (dBm/30kHz)	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	b	2412	-13.89	-23.89	<u>)</u> 8	Pass
NVNT	b	2437	-13.82	-23.82	8	Pass
NVNT	b	2462	-13.60	-23.60	8	Pass
NVNT	g	2412	-16.14	-26.14	8	Pass
NVNT	g	2437	-15.91	-25.91	8 ()	Pass
NVNT	g	2462	-16.76	-26.76	8	Pass
NVNT	n20	2412	-15.26	-25.26	8	Pass
NVNT	n20	2437	-15.27	-25.27	8	Pass
NVNT	n20	2462	-16.16	-26.16	6 8	Pass
NVNT	n40	2422	-18.56	-28.56	8	Pass
NVNT	n40	2437	-18.88	-28.88	8	Pass
NVNT	n40	2452	-18.55	-28.55	8	Pass

Maximum Power Spectral Density Level


TCT 通测检测 TESTING CENTRE TECHNOLOGY


Note: Conducted PSD (dBm/3kHz) = Conducted PSD (dBm/30kHz) +10log(3kHz/30kHz)

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

-40.0		WARMMAN MAN	
-50.0			wwwww
-60.0			
Center 2.43700 GHz #Res BW 30 kHz	#VBW 100 kHz*	Sweep 40.87 m	30.00 MHz s (1001 pts)
MSG	PSD NVNT g 246	same second seco	
Agilent Spectrum Analyzer - Swept SA V4 R RF 50 Ω AC Center Freq 2.462000000 GH	SENSE:PULSE SOURCE OFF ▲ PNO: Fast ↔ Trig: Free Run IFGain:Low #Atten: 30 dB	LIGN AUTO/NORF 11:47:3 Avg Type: RMS Avg Hold: 100/100	7 AM Jun 11, 2024 RACE 1 2 3 4 5 6 TYPE A WAWWAW DET A N N N N N
Ref Offset 7.23 dB 10 dB/div Ref 20.00 dBm Log		Mkr1 2.46 -16	1 64 GHz 756 dBm
10.0			
0.00			
-10.0			
	mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	14444444444444444444	
-20.0		a a li â a na a a h fi fi â â li î â â li î â â li	
-30.0		V	
-30.0			
-30.0			wwww
-30.0 -40.0 -50.0			wwww
-30.0 -40.0 -50.0			10.00 MHz

PNO: Fast +--- Trig: Free Run IFGain:Low #Atten: 30 dB

PSD NVNT g 2437MHz

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF AVG Type: RMS

TCT 通测检测 TESTING CENTRE TECHNOLOGY

> 10 dB/div Log

gilent Spectrum Analyzer - Swept SA

Center Freq 2.437000000 GHz

Ref Offset 7.12 dB Ref 20.00 dBm

Report No.: TCT240607E008

11:44:02 AM Jun 11, 2024 TRACE 1 2 3 4 5 TYPE A WAMM DET A N N N N

Mkr1 2.436 64 GHz -15.905 dBm

PSD NVNT n20 2412MHz

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF AVG Type: RMS

TCT通测检测 TESTING CENTRE TECHNOLOGY

R

gilent Spectrum Analyzer - Swept SA

Center Freq 2.412000000 GHz

Report No.: TCT240607E008

11:53:54 AM Jun 11, 2024 TRACE 1 2 3 4 5 6

TYPE DET

PSD NVNT n20 2462MHz

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF AVG Type: RMS

gilent Spectrum Analyzer - Swept SA

Center Freq 2.462000000 GHz

R

Report No.: TCT240607E008

Page 53 of 77

12:01:54 PM Jun 11, 2024 TRACE 1 2 3 4 5 6

TYPE DET

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF AVG Type: RMS PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.434 48 GHz -18.878 dBm Ref Offset 7.12 dB Ref 20.00 dBm 10 dB/div Dg V AMMANAMA MANAMANA WWWW Center 2.43700 GHz #Res BW 30 kHz Span 60.00 MHz Sweep 81.73 ms (1001 pts) #VBW 100 kHz* STATUS PSD NVNT n40 2452MHz Swept S/ 01:56:07 PM Jun 11, 2024 l R SENSE: PULSE SOURCE OFF ALIGN A Center Freq 2.452000000 GHz Avg Type: RMS Avg|Hold: 100/100 TRACE 1 TYPE A DET A PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.454 46 GHz -18.546 dBm Ref Offset 7.19 dB Ref 20.00 dBm 10 dB/div Log **♦**¹ NWWh MANAMANA www.hu Center 2.45200 GHz #Res BW 30 kHz Span 60.00 MHz Sweep 81.73 ms (1001 pts) #VBW 100 kHz* STATUS

PSD NVNT n40 2437MHz

Report No.: TCT240607E008

Page 54 of 77

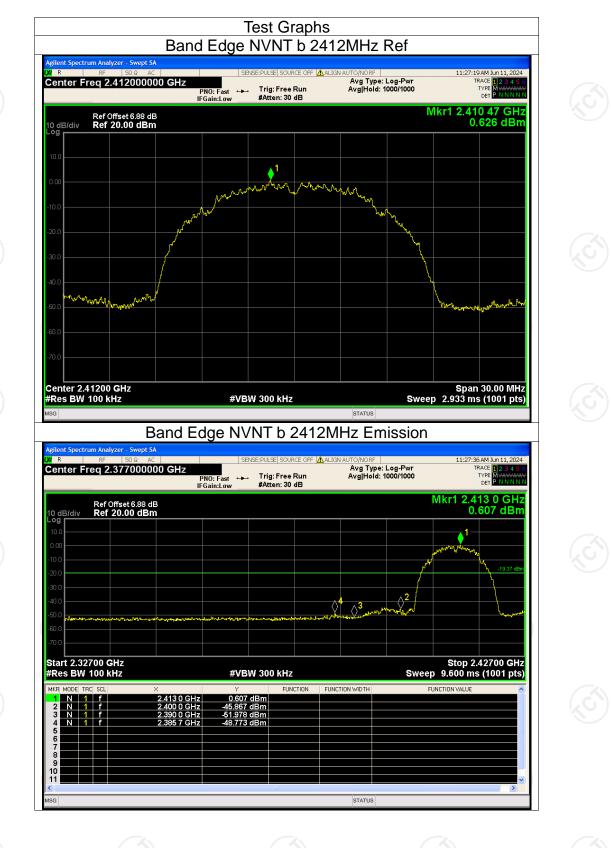
01:50:52 PM Jun 11, 2024 TRACE 1 2 3 4 5 6

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectrum Analyzer - Swept SA

Center Freq 2.437000000 GHz

R


Band Edge							
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	b	2412	-49.40	-20	Pass		
NVNT	b	2462	-50.92	-20	Pass		
NVNT	g	2412	-41.15	-20	Pass		
NVNT	g	2462	-41.54	-20	Pass		
NVNT	n20	2412	-42.80	-20	Pass		
NVNT	n20	2462	-42.93	-20	Pass		
	n40	2422	-38.71	-20	Pass		
NVNT	n40	2452	-41.64	-20	Pass		

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 55 of 77

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT240607E008

Page 56 of 77

Ref Offset 7.23 dB Ref 20.00 dBm

10 dB/di Log **[**

Page 57 of 77

Mkr1 2.460 5 GHz 1.115 dBm

SENSE:PULSE SOURCE OFF |▲ ALIGN AUTO/NORF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000 11:47:50 AM Jun 11, 2024 TRACE 1 2 3 4 5 1 TYPE MWWWW DET P N N N N Center Freq 2.462000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.463 23 GHz -1.839 dBm Ref Offset 7.23 dB Ref 20.00 dBm 10 dB/div 1 Numb april manus manus montrante m. d. Www.winterwinte mannen Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT g 2462MHz Emission 11:48:07 AM Jun 11, 2024 TRACE 1 2 3 4 5 TYPE MWWWWW DET P N N N N U F SENSE:PULSE SOURCE OFF 🛕 ALIGN Center Freq 2.497000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.463 3 GHz -1.869 dBm Ref Offset 7.23 dB Ref 20.00 dBm 10 d Log ١ -21.84 d **∧**2 \Diamond^3 Start 2.44700 GHz #Res BW 100 kHz Stop 2.54700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE -1.869 dBm -43.381 dBm -50.868 dBm -43.381 dBm N 1 f N 1 f N 1 f 483 5 GHz 500 0 GHz 2 483 5 GH 10 11 STATUS ISG

Band Edge NVNT g 2462MHz Ref

FCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectrum Analyze

Band Edge NVNT n20 2412MHz Ref

FCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectr SENSE:PULSE| SOURCE OFF |▲ ALIGN AUTO/NORF | Avg Type: Log-Pwr -→ Trig: Free Run Avg|Hold: 1000/1000 01:56:25 PM Jun 11, 2024 TRACE 1 2 3 4 5 0 TYPE MWWWW DET P N N N N Center Freq 2.452000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.443 24 GHz -4.430 dBm Ref Offset 7.19 dB Ref 20.00 dBm 10 dB/div 1new for hall and get have a strate of the strate Marloomathalith hun. n with Center 2.45200 GHz #Res BW 100 kHz Span 60.00 MHz Sweep 5.800 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT n40 2452MHz Ref

U F

Center Freq 2.472000000 GHz

Band Edge NVNT n40 2452MHz Emission SENSE: PULSE SOURCE OFF

PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB

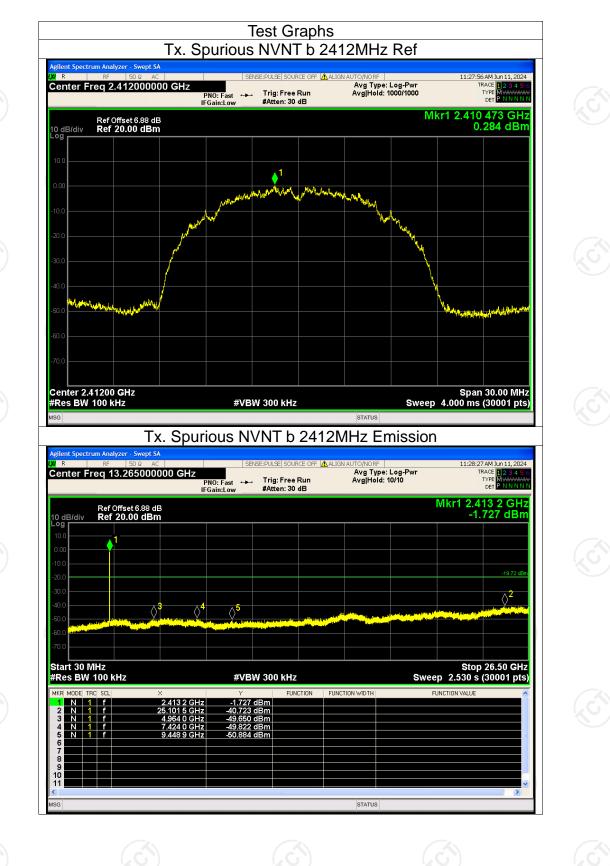
Avg Type: Log-Pwr Avg|Hold: 1000/1000

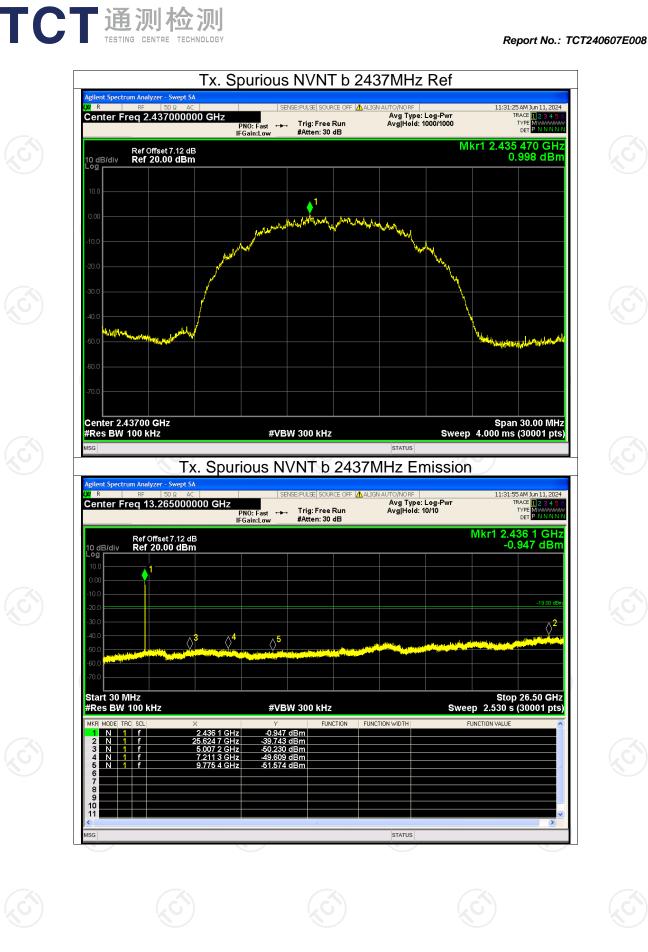
Report No.: TCT240607E008

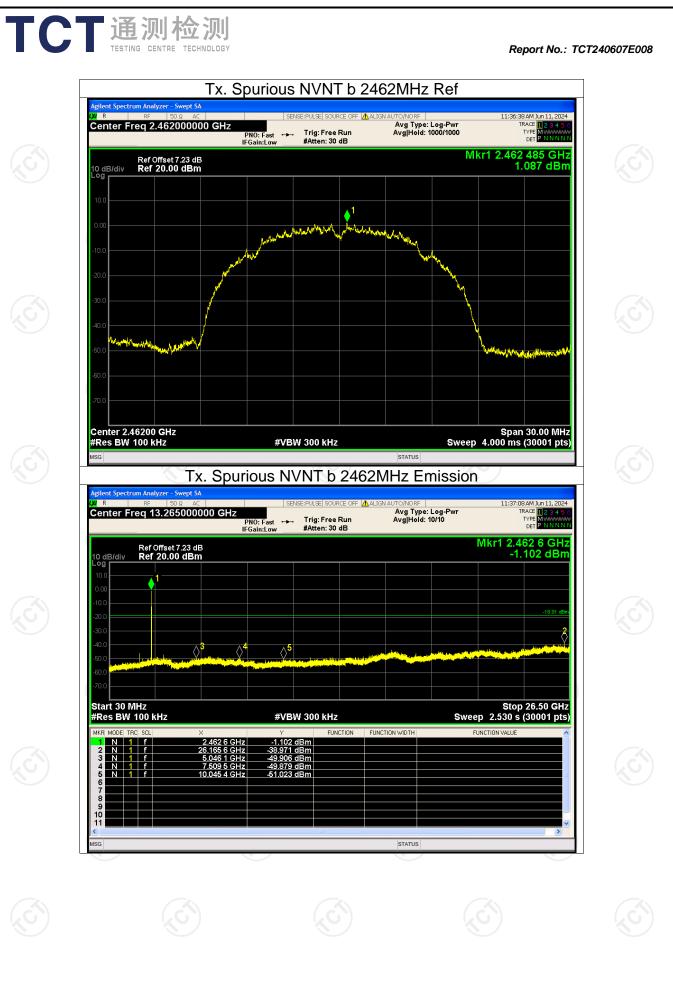
01:56:42 PM Jun 11, 2024 TRACE **1 2 3 4 5** TYPE MWWWW DET P N N N N

TYPE DET

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	b	2412	-41.00	-20	Pass		
NVNT	b	2437	-40.74	-20	Pass		
NVNT	b	2462	-40.06	-20	Pass		
NVNT	g	2412	-37.06	-20	Pass		
NVNT	g	2437	-36.93	-20	Pass		
NVNT	g	2462	-43.25	-20	Pass		
NVNT 🖉	n20	2412	-38.26	-20	Pass		
NVNT	n20	2437	-37.50	-20	Pass		
NVNT	n20	2462	-48.10	-20	Pass		
NVNT	n40	2422	-45.72	-20	Pass		
	n40	2437	-45.54	-20	Pass		
NVNT	n40	2452	-45.41	-20	Pass		


Conducted RF Spurious Emission


TCT通测检测 TESTING CENTRE TECHNOLOGY


Page 64 of 77

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

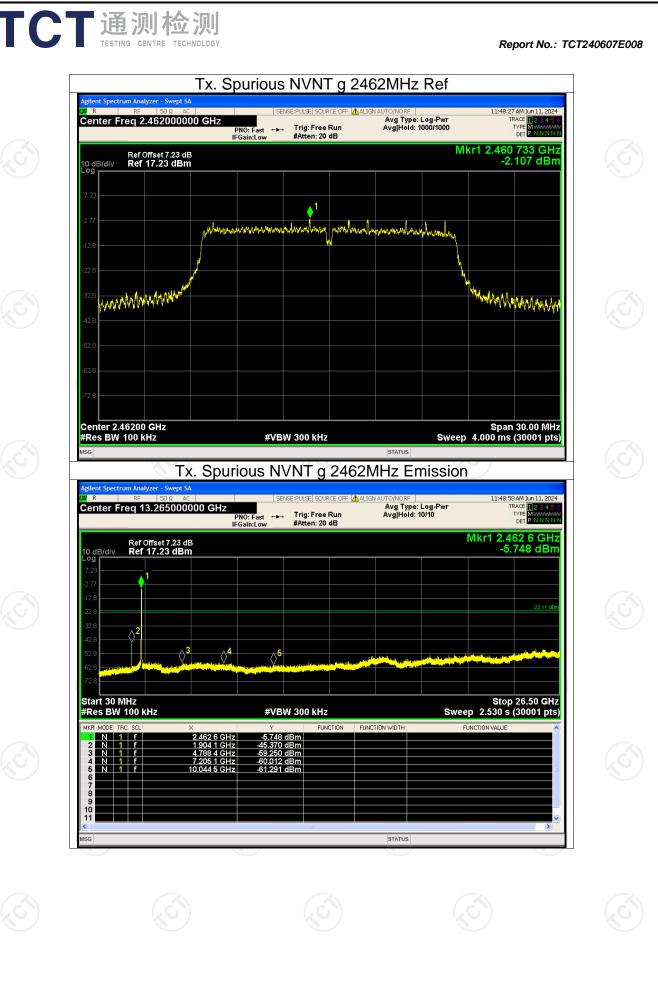
Page 66 of 77

Page 67 of 77

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 1000/1000

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

TCT通测检测 Tx. Spurious NVNT g 2437MHz Ref


gilent Spectr

Center Freq 2.437000000 GHz


Report No.: TCT240607E008

11:44:22 AM Jun 11, 2024 TRACE 1 2 3 4 5 0 TYPE MWWWW DET P N N N N

Page 69 of 77

Page 70 of 77

Tx. Spurious NVNT n20 2412MHz Ref

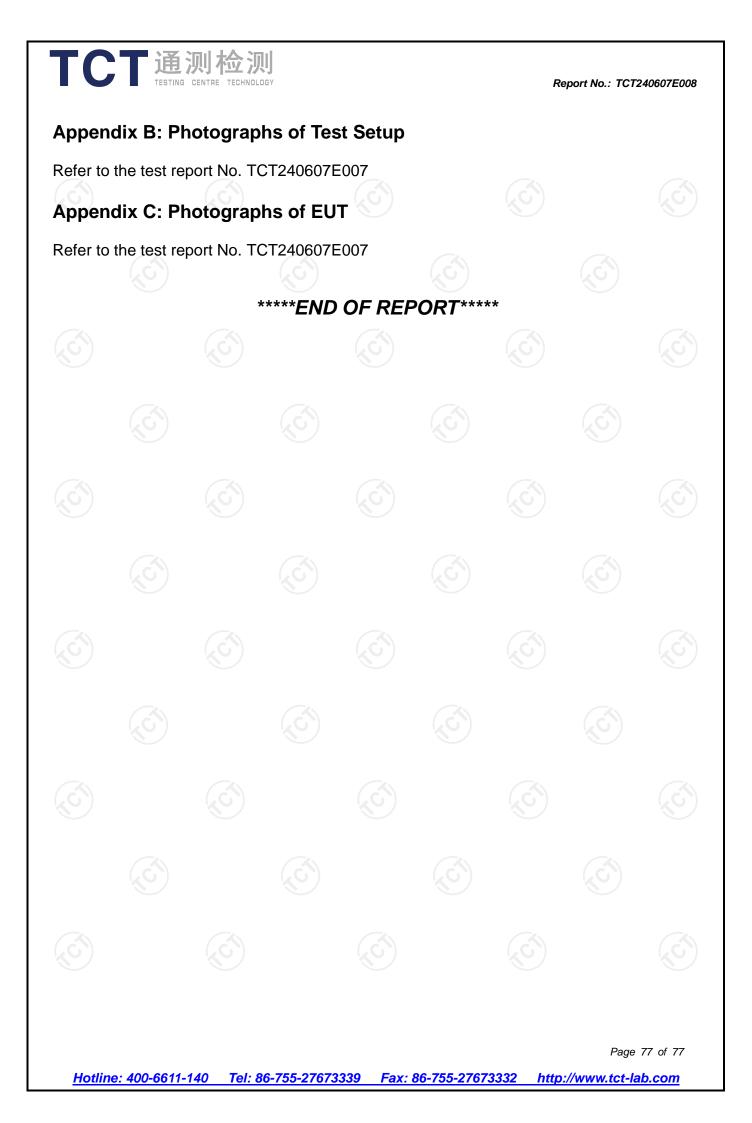
Page 72 of 77

SENSE:PULSE| SOURCE OFF |▲ ALIGN AUTO/NORF | Avg Type: Log-Pwr -→ Trig: Free Run Avg|Hold: 1000/1000 12:02:15 PM Jun 11, 2024 TRACE 1 2 3 4 5 1 TYPE MWWWW DET P N N N N Center Freq 2.462000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB TYPE DET Mkr1 2.455 711 GHz -1.156 dBm Ref Offset 7.23 dB Ref 17.23 dBm 10 dB/div and an Iron lance and and an malandanationaland MMMMMM Whenter Center 2.46200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 4.000 ms (30001 pts) #VBW 300 kHz STATUS

Tx. Spurious NVNT n20 2462MHz Ref

U F

Tx. Spurious NVNT n20 2462MHz Emission


Page 74 of 77

Page 75 of 77

Report No.: TCT240607E008

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 76 of 77

