

Report No.....: ZHT-250424123W02-1

Product.....: Intelligent motorcycle diagnostic instrument

Trademark.....:: /

Model(s).....: : M400

M100PLUS, M200PLUS, M400PRO, M400MAX, M406, M408, M435

Model Difference.....: M400 is tested model, other models are derivative models. The models

are identical in circuit, only different on the model names. So the test data

of M400 can represent the remaining models.

Applicant.....: JDiag Electronics Technology Co.,Ltd.

Address.....: 3rd Floor,B2,Jindida Science Park,Langkou Community,Dalang

Street, Longhua District, Shenzhen China

Manufacturer.....: JDiag Electronics Technology Co.,Ltd.

Address.....: 3rd Floor,B2,Jindida Science Park,Langkou Community,Dalang

Street, Longhua District, Shenzhen China

: Guangdong Zhonghan Testing Technology Co., Ltd.

Address.....: Room 104/201, Building 1, Yibaolai Industrial Park, Qiaotou, Fuhai

Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Date of Receipt..... : May 8, 2025

Date of Test(s)..... : May 8, 2025-May 15, 2025

Date of Issue.....: : May 15, 2025

Test Standard(s).....: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Test procedure..... KDB558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10:2013

In the configuration tested, the EUT complied with the standards specified above.

Prepared by:

Reviewed by:

Approved by:

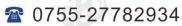
Kimi Lu/ Engineer

Baret Wu/ Director

Levi Lee/ Manager

Note: The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report shall not be reproduced except in full, without prior written approval of ZHT. This document may be altered or revised by ZHT, personnel only, and shall be noted in the revision of the document.

Page


Table of Contents

1. VERSION	4
2. SUMMARY OF TEST RESULTS	5
3. GENERAL INFORMATION	6
3.1 GENERAL DESCRIPTION OF EUT	6
3.2 DESCRIPTION OF TEST MODES	75) 7
3.3 TEST SETUP CONFIGURATION	
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED M	
4. TEST FACILITY AND TEST INSTRUMENT USED	
4.1 TEST FACILITY	
4.2 EQUIPMENTS LIST FOR ALL TEST ITEMS	9
4.3 TESTING SOFTWARE	10
4.4 MEASUREMENT UNCERTAINTY	11
5. EMC EMISSION TEST	15) 12
5.1 CONDUCTED EMISSION MEASUREMENT	
5.1.1 POWER LINE CONDUCTED EMISSION Limits	
5.1.2 TEST PROCEDURE	
5.1.3 DEVIATION FROM TEST STANDARD	
5.1.4 TEST SETUP	
5.1.5 EUT OPERATING CONDITIONS	
5.1.6 TEST RESULTS	
5.2 RADIATED EMISSION MEASUREMENT	-
5.2.2 TEST PROCEDURE	
5.2.3 DEVIATION FROM TEST STANDARD	
5.2.4 TEST SETUP	17
5.2.5 EUT OPERATING CONDITIONS	18
6.RADIATED BAND EMISSION MEASUREMENT	23
6.1 TEST REQUIREMENT:	23
6.2 TEST PROCEDURE	
6.3 DEVIATION FROM TEST STANDARD	_
6.4 TEST SETUP	
6.6 TEST RESULT	
7.POWER SPECTRAL DENSITY TEST	

Table of Contents	Page
7.1 APPLIED PROCEDURES / LIMIT	26
7.2 TEST PROCEDURE	26
7.3 DEVIATION FROM STANDARD	26
7.4 TEST SETUP	26
7.5 EUT OPERATION CONDITIONS	26
7.6 TEST RESULTS	27
7.1 APPLIED PROCEDURES / LIMIT	30
7.2 TEST PROCEDURE	30
7.3 DEVIATION FROM STANDARD	30
7.4 TEST SETUP	31
7.5 EUT OPERATION CONDITIONS	31
7.6 TEST RESULTS	31
8.PEAK OUTPUT POWER TEST8.1 APPLIED PROCEDURES / LIMIT	
8.1 APPLIED PROCEDURES / LIMIT	
8.3 DEVIATION FROM STANDARD	
8.5 EUT OPERATION CONDITIONS	
8.6 TEST RESULTS	
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	40
9.1 APPLICABLE STANDARD	40
9.2 TEST PROCEDURE	40
9.3 DEVIATION FROM STANDARD	
9.4 TEST SETUP	
9.5 EUT OPERATION CONDITIONS	40
10.ANTENNA REQUIREMENT	
IU.AN I ENNA KEQUIKEMEN I	49
11. TEST SETUP PHOTO	50

Project No.: ZHT-250424123W02-1 Page 4 of 50

1. VERSION

Report No.	Version	Description	Approved
ZHT-250424123W02-1	Rev.01	Initial issue of report	May 15, 2025
15	150	15	150

Project No.: ZHT-250424123W02-1 Page 5 of 50

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C						
Standard Section	Judgment	Remark				
FCC part 15.203/15.247 (b)(4)	Antenna requirement	PASS				
FCC part 15.207	AC Power Line Conducted Emission	PASS				
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS				
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS				
FCC part 15.247 (e)	Power Spectral Density	PASS				
FCC part 15.247(d)	Band Edge	PASS	1			
FCC part 15.205/15.209	Spurious Emission	PASS				

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Project No.: ZHT-250424123W02-1 Page 6 of 50

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Intelligent motorcycle diagnostic instrument
Test Model No.:	M400
Hardware Version:	V1.0
Software Version:	V1.0
Sample(s) Status:	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	FPC antenna
Antenna gain:	1.6dBi
Power supply:	Input: DC 12-24 V, 2 A or USB-C: 5 V/2 A or DC 3.7 V powered by battery
Sample Number:	250424123YP-001

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Guangdong Zhonghan Testing Technology Co., Ltd. does not assume any responsibility.

Project No.: ZHT-250424123W02-1 Page 7 of 50

	41		41	9.5		41			
Operation	Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz		
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz		
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz		
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz		
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz		
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz		
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz		
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz		
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz		
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz		

Note

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode
-------------------	--

Remark: EUT use new battery during the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

3.3 TEST SETUP CONFIGURATION

Conducted Emission

Adapter EUT

Radiated Emission

EUT

Project No.: ZHT-250424123W02-1 Page 8 of 50

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

				5 24	
Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Adapter	N/A	HW-059200CHQ	N/A	AE
		4			
	1	()	(4)	1:0	

Item	Shielded Type	Ferrite Core	Length	N	lote
	1	44.			44.
711)	(1))		

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in FLength a column.
- (3) The test software is the adb.exe which can set the EUT into the individual test modes.TX Power:default

Page 9 of 50

4.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd.

Add.: Room 104/201, Building 1, Yibaolai Industrial Park, Qiaotou, Fuhai Subdistrict, Bao'an District,

Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

4.2 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Model	Serial No.	Last Cal.	Next Cal.
1	Receiver	R&S	ESCI	100874	May 6, 2025	May 5, 2026
2	Loop Antenna	TESEQ	HLA6121	58357	Oct. 11, 2024	Oct. 10, 2025
3	Amplifier	Schwarzbeck	BBV 9743 B	00378	May 6, 2025	May 5, 2026
4	Amplifier	Schwarzbeck	BBV 9718 B	00040	May 7, 2025	May 6, 2026
5	Bilog Antenna	Schwarzbeck	VULB9162	00498	May 28, 2024	May 27, 2025
6	Horn Antenna	Schwarzbeck	BBHA9120D	02623	May 16, 2024	May 15, 2025
7	Horn Antenna	A.H.SYSTEMS	SAS574	588	Oct. 21, 2024	Oct. 20, 2025
8	Amplifier	AEROFLEX	100KHz-40GHz	097	Oct. 21, 2024	Oct. 20, 2025
9	Spectrum Analyzer	R&S	FSV40	101413	Oct. 21, 2024	Oct. 20, 2025
10	Spectrum Analyzer	KEYSIGHT	N9020A	MY53420208	May 7, 2025	May 6, 2026
11	WIDBAND RADIO COMMUNICATION TESTER	R&S	CMW500	109863	May 7, 2025	May 6, 2026
12	Single Generator	Agilent	N5182A	MY48180575	May 7, 2025	May 6, 2026
13	Power Sensor	MWRFtest	MW100-RFCB	(1)	May 7, 2025	May 6, 2026
14	Power Amplifier Shielding Room	EMToni	2m3m3m	1	Nov. 25, 2021	Nov. 24, 2026
15	CABLE	EMToni	DA800-NM- NM-11000MM	1	May 6, 2025	May 5, 2026

Conduction Test equipment

Equipment	Manufacturer	Model	Serial No.	Last Cal.	Next Cal.	
Receiver	R&S	ESCI	100874	May 6, 2025	May 5, 2026	
LISN R&S ISN CAT 6 Schwarzbeck		ENV216	102794	May 6, 2025	May 5, 2026 May 6, 2026	
		NTFM 8158	00318	May 7, 2025		
ISN CAT 5	ISN CAT 5 Schwarzbeck Capacitive Voltage Probe Schwarzbeck		00343 May	May 7, 2025	May 6, 2026	
			00101	May 8, 2025	May 7, 2026	
Current Transformer Clamp	Schwarzbeck	SW 9605	SW9605 #209	May 8, 2025	May 7, 2026	
CABLE	EMToni	G223-NM-BNCM -2000MM	1	May 7, 2025	May 6, 2026	

Conducted Test equipment

Item	em Equipment Manufacturer		uipment Manufacturer Model Serial No.		Last Cal.	Next Cal.
1	Spectrum Analyzer	R&S	FSV40	101413	Oct. 21, 2024	Oct. 20, 2025
2	Spectrum Analyzer	KEYSIGHT	N9020A	MY53420208	May 7, 2025	May 6, 2026
3	Power Sensor	MWRFtest	MW100-RFCB	1	May 7, 2025	May 6, 2026

4.3 TESTING SOFTWARE

Project	Software name	Edition
RF Conducted	MTS 8310	2.0.0.0
Conducted Emission	EZ-EMC	EMC-CON 3A1.1+
Radiated Emission	EZ-EMC	FA-03A2 RE+

Project No.: ZHT-250424123W02-1 Page 11 of 50

4.4 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 providing a level of confidence of approximately 95 %。

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF conducted power	±0.16dB
3	Conducted spurious emissions	±0.21dB
4	All radiated emissions (9k-30MHz)	±4.68dB
5	All radiated emissions (<1G)	±4.68dB
6	All radiated emissions (>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96%

Decision Rule

□ Uncertainty is not included

Uncertainty is included

Project No.: ZHT-250424123W02-1

Page 12 of 50

5. EMC EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

5.1.1 POWER LINE CONDUCTED EMISSION Limits

EDECHENCY (MH-)	Limit (d	Ctandard	
FREQUENCY (MHz)	QP	AVG	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

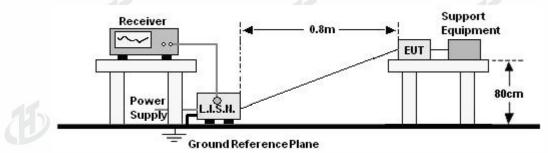
(1) *Decreases with the logarithm of the frequency.

5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

No deviation


□ admin@zht-lab.cn

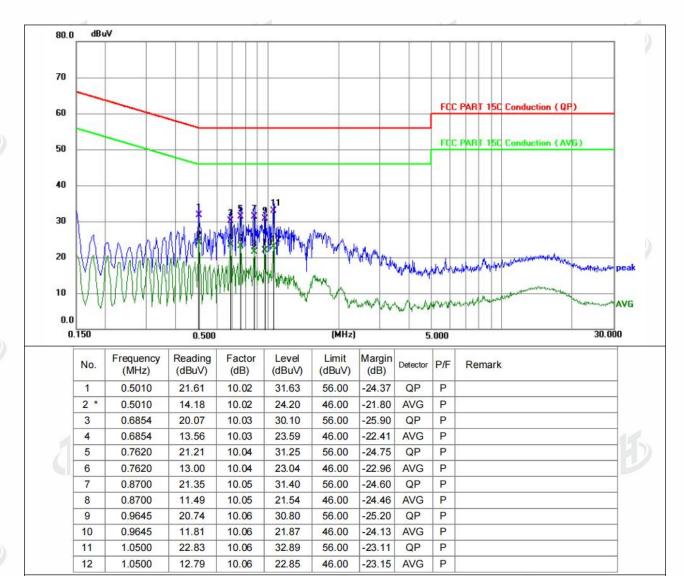
http://www.zht-lab.cn

Project No.: ZHT-250424123W02-1 Page 13 of 50

5.1.4 TEST SETUP

5.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

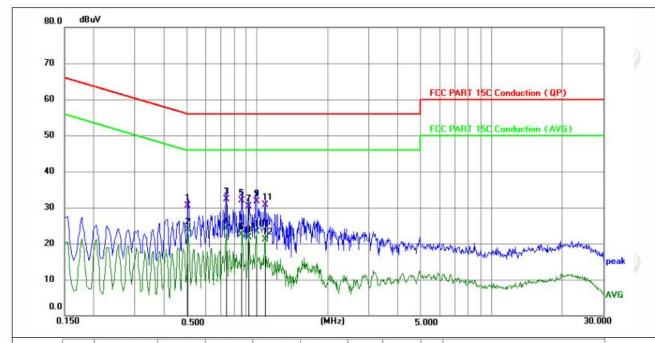


Project No.: ZHT-250424123W02-1 Page 14 of 50

5.1.6 TEST RESULTS

Temperature:	24.3℃	Relative Humidity :	53.2%	
Pressure:	1010kPa	Phase :	L	
Test Voltage:	AC 120V/60Hz			

Notes:


- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor
- 4. The test data shows only the worst case GFSK-1M mode(Low Channel:2402MHz).

Project No.: ZHT-250424123W02-1 Page 15 of 50

Temperature:	24.3℃	Relative Humidity :	53.2%	
Pressure:	1010kPa	Phase :	N	
Test Voltage:	AC 120V/60Hz			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.5054	20.57	10.02	30.59	56.00	-25.41	QP	Р		
2	0.5054	13.86	10.02	23.88	46.00	-22.12	AVG	Р		
3	0.7350	22.26	10.04	32.30	56.00	-23.70	QP	Р		
4 *	0.7350	14.14	10.04	24.18	46.00	-21.82	AVG	Р		
5	0.8610	21.83	10.05	31.88	56.00	-24.12	QP	Р		
6	0.8610	12.43	10.05	22.48	46.00	-23.52	AVG	Р		
7	0.9194	20.17	10.05	30.22	56.00	-25.78	QP	Р		
8	0.9194	11.70	10.05	21.75	46.00	-24.25	AVG	Р		
9	0.9915	21.69	10.06	31.75	56.00	-24.25	QP	Р		
10	0.9915	13.25	10.06	23.31	46.00	-22.69	AVG	Р		
11	1.0814	20.69	10.06	30.75	56.00	-25.25	QP	Р		
12	1.0814	10.98	10.06	21.04	46.00	-24.96	AVG	Р		

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor
- 4. The test data shows only the worst case GFSK-1M mode(Low Channel:2402MHz).

Project No.: ZHT-250424123W02-1 Page 16 of 50

5.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	9kHz to 25GHz Measurement Distance: 3m					
Test site:						
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak	
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak	
	Al 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
	The Part of the Pa		INCH PHI IC. 1		The second secon	

5.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

212131		2 L 2 N				
		Limit (dBuV/m) (at 3M)				
	FREQUENCY (MHz)	PEAK	AVERAGE			
Above 1000		74	54			

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

□ admin@zht-lab.cn

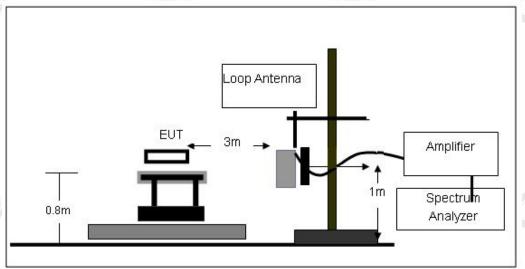
Project No.: ZHT-250424123W02-1 Page 17 of 50

5.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:

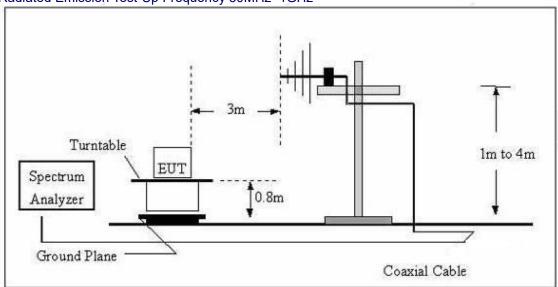
Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Note:

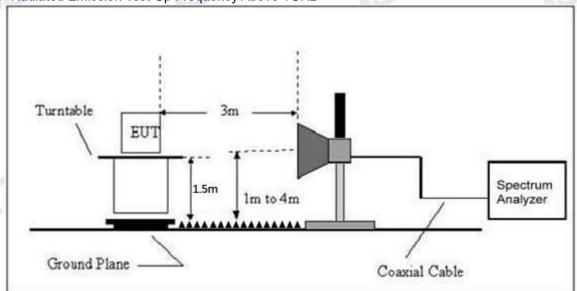

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.2.3 DEVIATION FROM TEST STANDARD

No deviation


5.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



Project No.: ZHT-250424123W02-1 Page 18 of 50

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

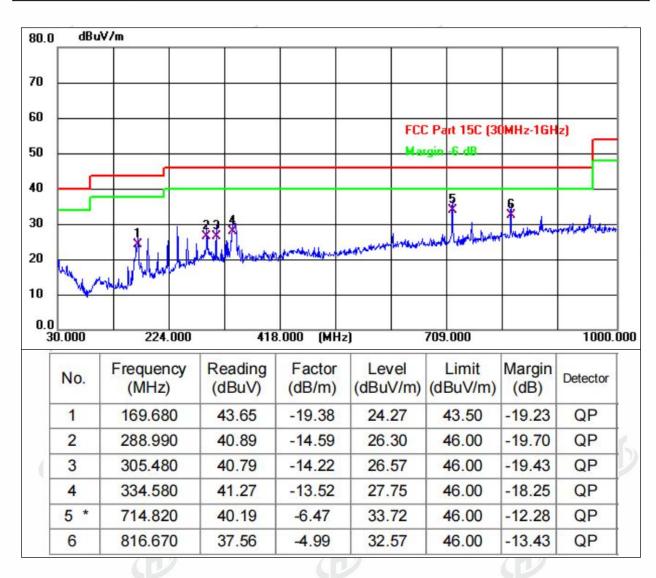
(C) Radiated Emission Test-Up Frequency Above 1GHz

5.2.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

5.2.6 TEST RESULTS (Between 9KHz – 30 MHz)

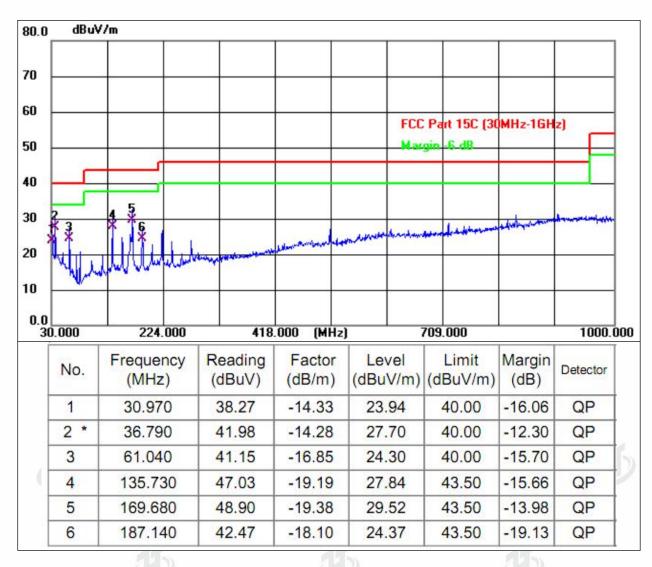
The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



Project No.: ZHT-250424123W02-1 Page 19 of 50

Between 30MHz - 1GHz

Temperature:	25.2℃	Relative Humidity:	50%
Pressure:	1010kPa	Polarization:	Horizontal
Test Voltage:	DC 3.7 V		



Project No.: ZHT-250424123W02-1 Page 20 of 50

Temperature:	25.2℃	Relative Humidity:	50%
Pressure:	1010kPa	Polarization:	Vertical
Test Voltage:	DC 3.7 V		


Remarks:

- 1.Final Level =Receiver Read level + Antenna Factor + Cable Loss
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The test data shows only the worst case GFSK-1M mode(Low Channel:2402MHz).

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector	
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Туре	
	GFSK-1M									
	50		555	_ow Cha	nnel:2402M	Hz				
V	4804.00	58.24	30.55	5.77	24.66	58.12	74	-15.88	Pk	
V	4804.00	43.81	30.55	5.77	24.66	43.69	54	-10.31	AV	
V	7206.00	56.87	30.33	6.32	24.55	57.41	74	-16.59	Pk	
V	7206.00	43.57	30.33	6.32	24.55	44.11	54	-9.89	AV	
V	9608.00	57.53	30.55	5.77	24.66	57.41	74	-16.59	Pk	
V	9608.00	41.8	30.55	5.77	24.66	41.68	54	-12.32	AV	
V	12010.00	58.82	30.33	6.32	24.55	59.36	74	-14.64	Pk	
V	12010.00	42.28	30.33	6.32	24.55	42.82	54	-11.18	AV	
Н	4804.00	57.73	30.55	5.77	24.66	57.61	74	-16.39	Pk	
Н	4804.00	41.55	30.55	5.77	24.66	41.43	54	-12.57	AV	
Н	7206.00	56.3	30.33	6.32	24.55	56.84	74	-17.16	Pk	
H	7206.00	41.36	30.33	6.32	24.55	41.9	54	-12.1	AV	
H	9608.00	57.78	30.55	5.77	24.66	57.66	74	-16.34	Pk	
Н	9608.00	41.56	30.55	5.77	24.66	41.44	54	-12.56	AV	
Н	12010.00	59.84	30.33	6.32	24.55	60.38	74	-13.62	Pk	
Н	12010.00	41.85	30.33	6.32	24.55	42.39	54	-11.61	AV	

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector	
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Туре	
	GFSK-1M									
			Ad N	/liddle Ch	nannel:2440)MHz				
V	4880.00	57.3	30.55	5.77	24.66	57.18	74	-16.82	Pk	
V	4880.00	41.32	30.55	5.77	24.66	41.2	54	-12.8	AV	
V	7320.00	56.28	30.33	6.32	24.55	56.82	74	-17.18	Pk	
V	7320.00	44.53	30.33	6.32	24.55	45.07	54	-8.93	AV	
V	9760.00	58.46	30.55	5.77	24.66	58.34	74	-15.66	Pk	
V	9760.00	41.81	30.55	5.77	24.66	41.69	54	-12.31	AV	
V	12200.00	57.98	30.33	6.32	24.55	58.52	74	-15.48	Pk	
V	12200.00	41.23	30.33	6.32	24.55	41.77	54	-12.23	AV	
Н	4880.00	59.86	30.55	5.77	24.66	59.74	74	-14.26	Pk	
Н	4880.00	42.66	30.55	5.77	24.66	42.54	54	-11.46	AV	
Н	7320.00	59.77	30.33	6.32	24.55	60.31	74	-13.69	Pk	
H	7320.00	44.25	30.33	6.32	24.55	44.79	54	-9.21	AV	
HŽ	9760.00	58.54	30.55	5.77	24.66	58.42	74	-15.58	Pk	
Н	976000	41.28	30.55	5.77	24.66	41.16	54	-12.84	AV	
Н	12200.00	58.15	30.33	6.32	24.55	58.69	74	-15.31	Pk	
Н	12200.00	41.03	30.33	6.32	24.55	41.57	54	-12.43	AV	

Project No.: ZHT-250424123W02-1 Page 22 of 50

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector	
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Туре	
	GFSK-1M									
	75			High Cha	nnel:2480N	1Hz		- 4	5	
V	4960.00	59.17	30.55	5.77	24.66	59.05	74	-14.95	Pk	
V	4960.00	41.62	30.55	5.77	24.66	41.5	54	-12.5	AV	
V	7440.00	59.69	30.33	6.32	24.55	60.23	74	-13.77	Pk	
V	7440.00	43.59	30.33	6.32	24.55	44.13	54	-9.87	AV	
V	9920.00	56.14	30.55	5.77	24.66	56.02	74	-17.98	Pk	
V	9920.00	41.56	30.55	5.77	24.66	41.44	54	-12.56	AV	
V	12400.00	59.5	30.33	6.32	24.55	60.04	74	-13.96	Pk	
V	12400.00	41.22	30.33	6.32	24.55	41.76	54	-12.24	AV	
Н	4960.00	55.4	30.55	5.77	24.66	55.28	74	-18.72	Pk	
Н	4960.00	41.01	30.55	5.77	24.66	40.89	54	-13.11	AV	
Н	7440.00	55.65	30.33	6.32	24.55	56.19	74	-17.81	Pk	
H	7440.00	41.65	30.33	6.32	24.55	42.19	54	-11.81	AV	
H	9920.00	57.84	30.55	5.77	24.66	57.72	74	-16.28	Pk	
Н	9920.00	43.77	30.55	5.77	24.66	43.65	54	-10.35	AV	
Н	12400.00	59.44	30.33	6.32	24.55	59.98	74	-14.02	Pk	
Н	12400.00	44.86	30.33	6.32	24.55	45.4	54	-8.6	AV	

Remark:

^{1.} Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit

^{2.} If peak below the average limit, the average emission was no test.

^{3.} The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

6.RADIATED BAND EMISSION MEASUREMENT

6.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:	2013						
Test Frequency Range:	7 (4 1)	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement	Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	Above Peak 1MHz 3MHz Peak							
	1GHz	Average	1MHz	3MHz	Average			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	Limit (dBuV/	m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

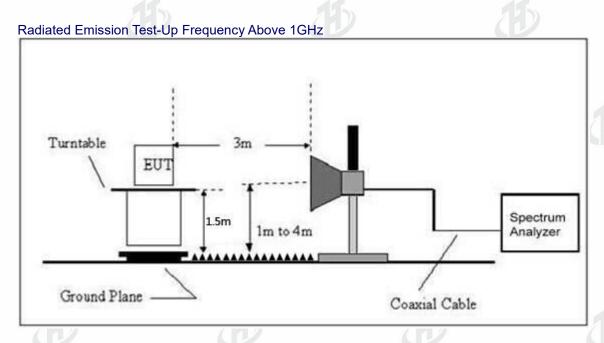
6.2 TEST PROCEDURE

Above 1GHz test procedure as below:

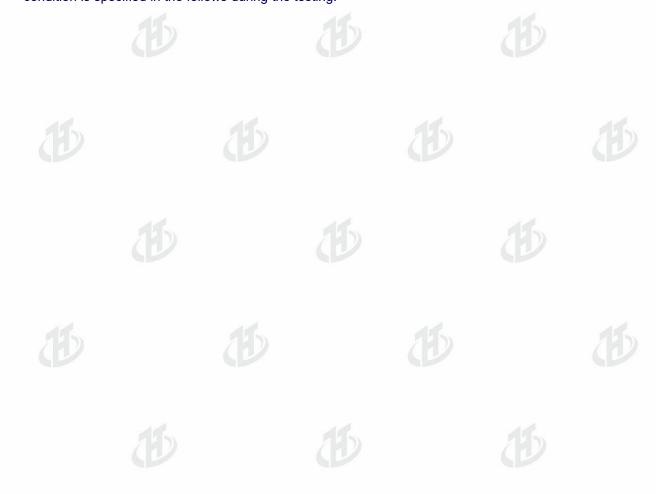
- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported


6.3 DEVIATION FROM TEST STANDARD

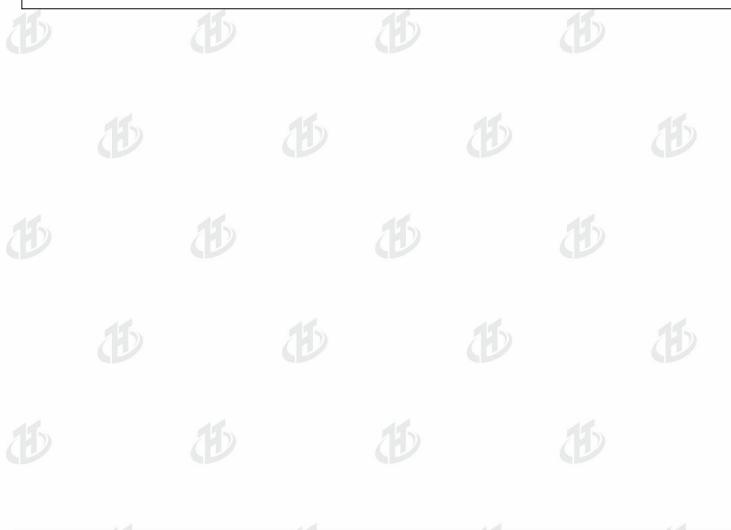
No deviation


Project No.: ZHT-250424123W02-1 Page 24 of 50

6.4 TEST SETUP

6.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.



Project No.: ZHT-250424123W02-1 Page 25 of 50

6.6 TEST RESULT

	Polar	Frequenc	Meter	Pre-	Cable	Antenna	Emission	Limit	Margi	Detec	Desult
	(H/V)	y (MHz)	Reading (dBuV)	amplifier (dB)	Loss (dB)	Factor (dB/m)	level (dBuV/m)	(dBuV /m)	n (dB)	tor Type	Result
	Low Channel: 2402MHz										
	H	2390.00	61.63	30.22	4.85	23.98	60.24	74.00	-13.76	PK	PASS
	H	2390.00	47.01	30.22	4.85	23.98	45.62	54.00	-8.38	AV	PASS
	Н	2400.00	59.10	30.22	4.85	23.98	57.71	74.00	-16.29	PK	PASS
	H	2400.00	47.04	30.22	4.85	23.98	45.65	54.00	-8.35	AV	PASS
	V	2390.00	61.94	30.22	4.85	23.98	60.55	74.00	-13.45	PK	PASS
	V	2390.00	48.52	30.22	4.85	23.98	47.13	54.00	-6.87	AV	PASS
	V	2400.00	60.99	30.22	4.85	23.98	59.60	74.00	-14.40	PK	PASS
OFOK 4M	V	2400.00	48.86	30.22	4.85	23.98	47.47	54.00	-6.53	AV	PASS
GFSK-1M	High Channel: 2480MHz									- (
	Н	2483.50	60.21	30.22	4.85	23.98	58.82	74.00	-15.18	PK	PASS
	Н	2483.50	48.28	30.22	4.85	23.98	46.89	54.00	-7.11	AV	PASS
	Н	2500.00	62.06	30.22	4.85	23.98	60.67	74.00	-13.33	PK	PASS
	Н	2500.00	46.37	30.22	4.85	23.98	44.98	54.00	-9.02	AV	PASS
	V	2483.50	60.46	30.22	4.85	23.98	59.07	74.00	-14.93	PK	PASS
	/ V	2483.50	47.89	30.22	4.85	23.98	46.50	54.00	-7.50	AV	PASS
	V	2500.00	60.20	30.22	4.85	23.98	58.81	74.00	-15.19	PK	PASS
	V	2500.00	46.94	30.22	4.85	23.98	45.55	54.00	-8.45	AV	PASS

^{1.} Emission Level = Meter Reading + Antenna Factor + Cable Loss - Pre-amplifier, Margin= Emission Level - Limit

7.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

	FCC Part15 (15.	247) , Subpart C		
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247	Power Spectral Density	dBm/3kHz	2400-2483.5	PASS


7.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

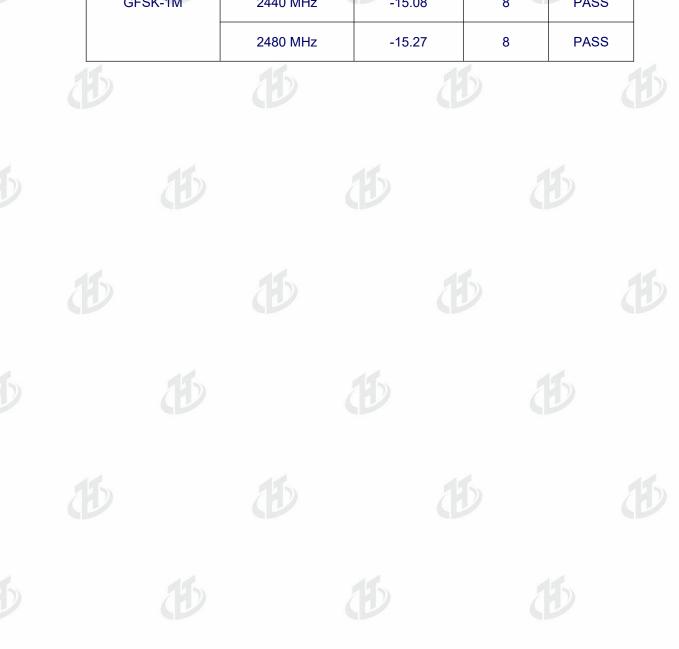
7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

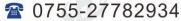


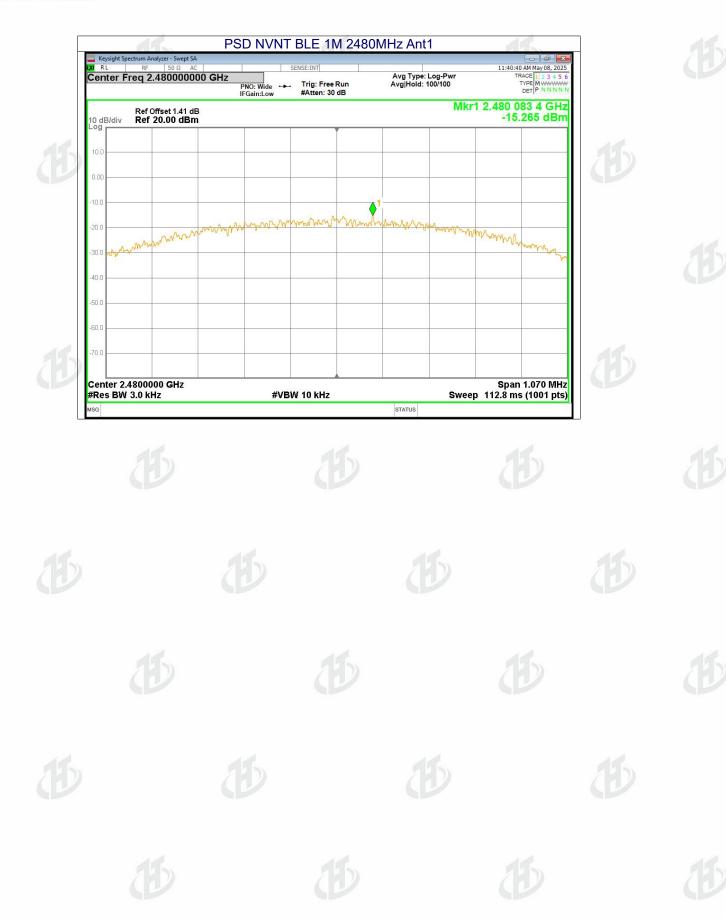
Project No.: ZHT-250424123W02-1 Page 27 of 50

7.6 TEST RESULTS

Temperature :	25.6℃	Relative Humidity:	51%
Test Mode :	GFSK	Test Voltage :	DC 3.7 V

		and the second s	The second secon	
Modulation	Frequency	Frequency Power Spectral Lim Density (dBm/3kHz) (dBm/3		Result
	2402 MHz	-14.67	8	PASS
GFSK-1M	2440 MHz	-15.08	8	PASS
	2480 MHz	-15.27	8	PASS




Project No.: ZHT-250424123W02-1 Page 28 of 50

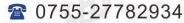
Project No.: ZHT-250424123W02-1 Page 29 of 50

Project No.: ZHT-250424123W02-1 Page 30 of 50

7. Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT


		2 5 1		
FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
- 1. Set RBW = 30 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30KHz RBW and 100 KHz VBW record the 99% bandwidth.

7.3 DEVIATION FROM STANDARD

No deviation.

□ admin@zht-lab.cn

Project No.: ZHT-250424123W02-1 Page 31 of 50

7.4 TEST SETUP

SPECTRUM EUT **ANALYZER**

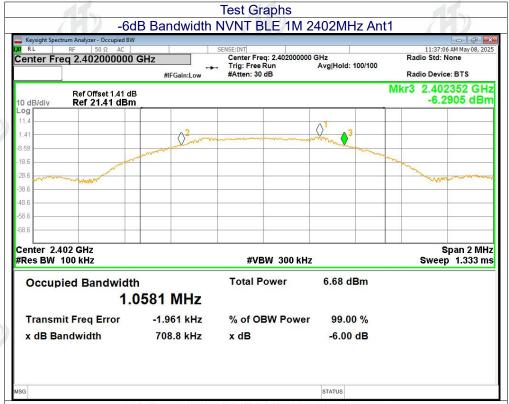
7.5 EUT OPERATION CONDITIONS

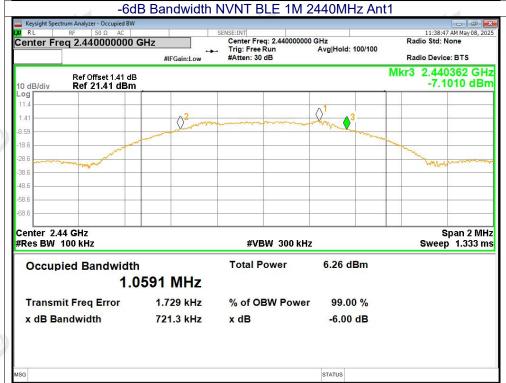
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

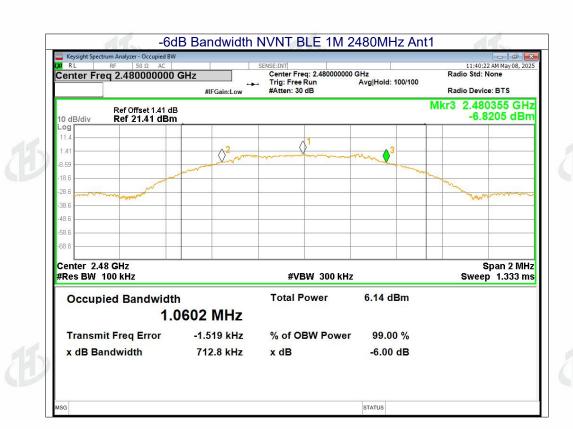
Temperature :	25.3℃	Relative Humidity:	52.3%
Test Mode :	GFSK	Test Voltage :	DC 3.7 V

Modulation	Test channel	6dB bandwidth (MHz)	Channel Bandwidth (MHz)	Limit(KHz)	Result
	Lowest	0.709	1.056		
GFSK-1M	Middle	0.721	1.054	>= 500	Pass
	Highest	0.713	1.06	1:0	

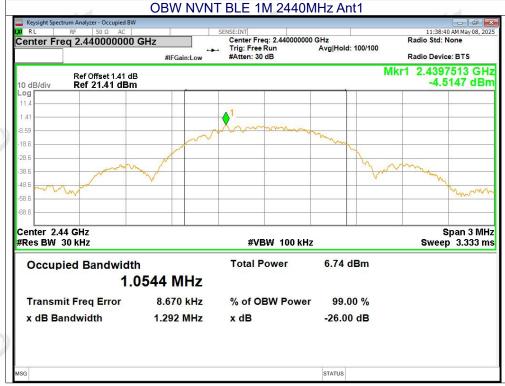



2 0755-27782934

□ admin@zht-lab.cn


Project No.: ZHT-250424123W02-1 Page 32 of 50

ZHONGHAN



Project No.: ZHT-250424123W02-1 Page 34 of 50

ZHONGHAN

Project No.: ZHT-250424123W02-1 Page 35 of 50

Page 36 of 50

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

8.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

- a. 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the
 - 2. Set the spectrum analyzer: RBW = 2MHz. VBW =6MHz. Sweep = auto; Detector Function = Peak.
 - 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

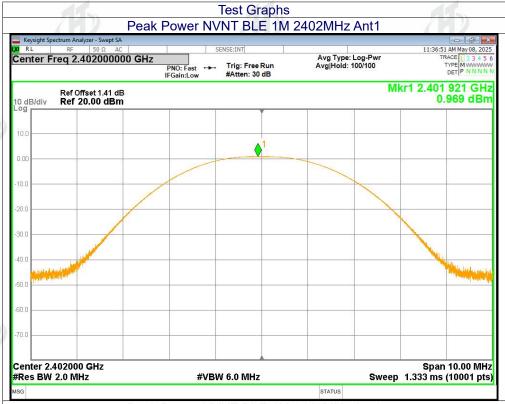
EUT	SPECTRUM
SACROPOLICION X	ANALYZER

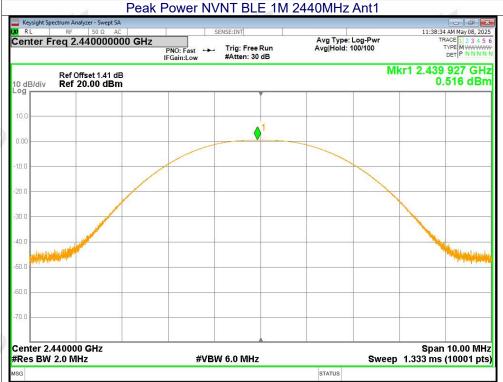
8.5 EUT OPERATION CONDITIONS

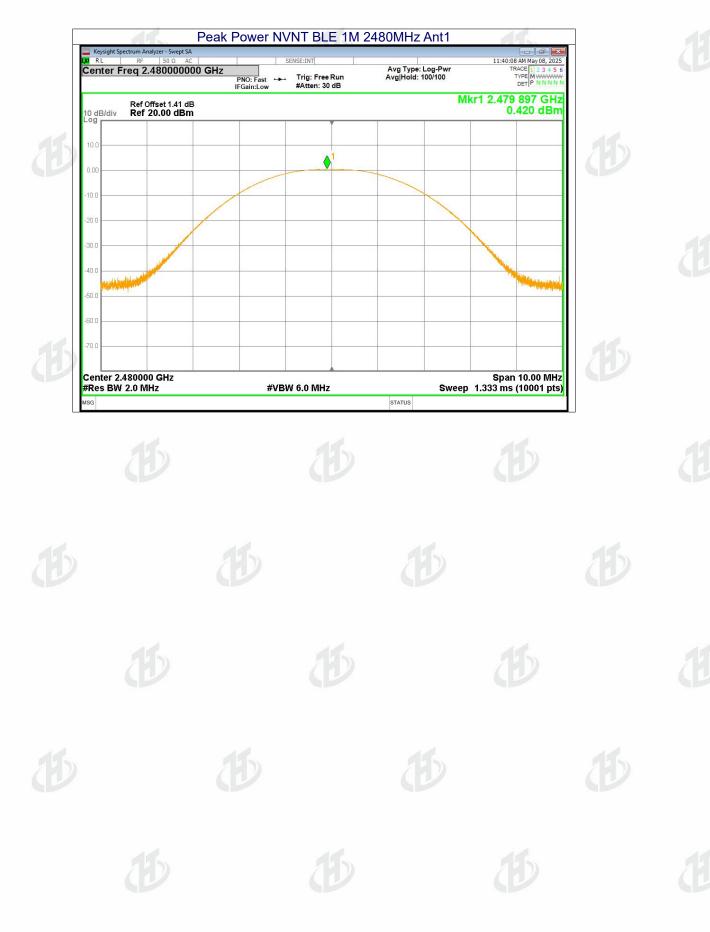
The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Project No.: ZHT-250424123W02-1 Page 37 of 50

8.6 TEST RESULTS


Modulation	Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
	Lowest	0.97		
GFSK-1M	Middle	0.52	30.00	Pass
	Highest	0.42		5




Project No.: ZHT-250424123W02-1 Page 38 of 50

Project No.: ZHT-250424123W02-1 Page 39 of 50

Project No.: ZHT-250424123W02-1 Page 40 of 50

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test	t Requirement:	FCC Part15 C Section 15.247 (d)
Test	t Method:	KDB558074 D0115.247 Meas Guidance v05r02

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

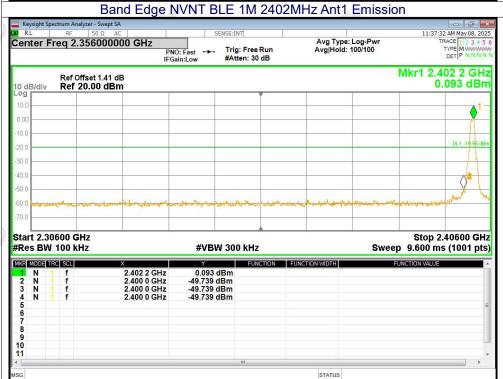
9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

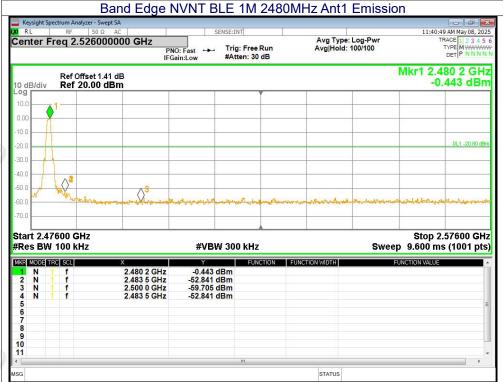




9.6 TEST RESULTS

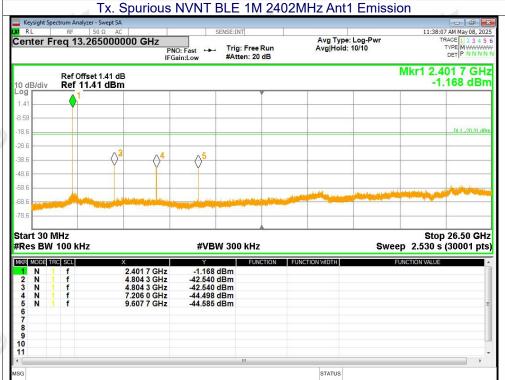
Band Edge

Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
BLE 1M	2402	Ant1	-49.78	-20	Pass
BLE 1M	2480	Ant1	-52.04	-20	Pass



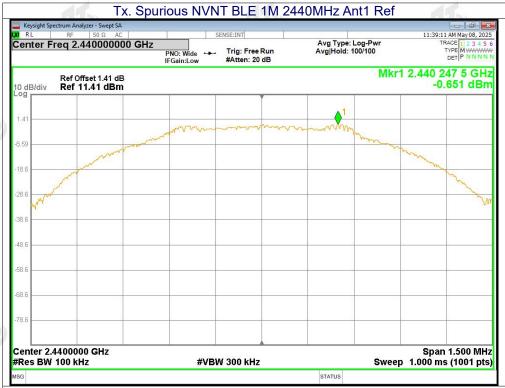
Project No.: ZHT-250424123W02-1 Page 42 of 50

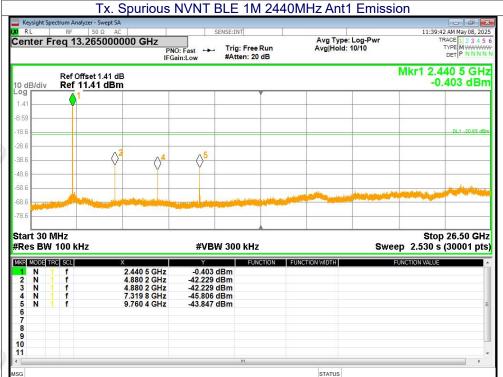
Project No.: ZHT-250424123W02-1 Page 43 of 50

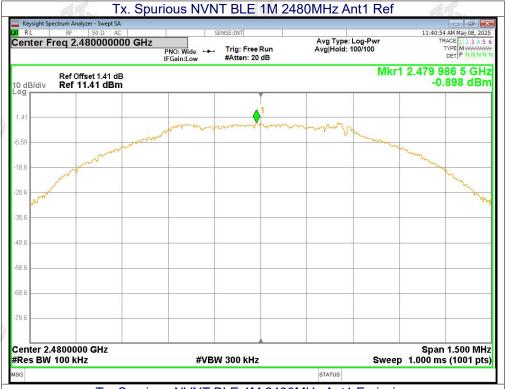

Conducted RF Spurious Emission

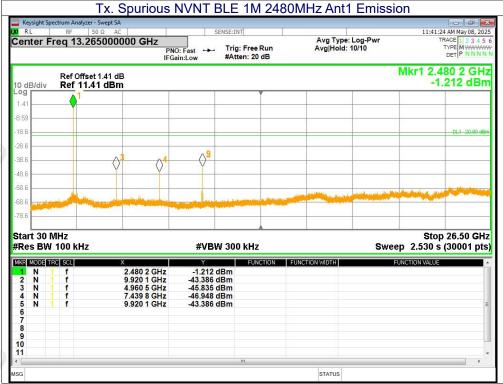
Conducted it. Opunious Enhancement					
Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
BLE 1M	2402	Ant1	-42.22	-20	Pass
BLE 1M	2440	Ant1	-41.57	-20	Pass
BLE 1M	2480	Ant1	-42.48	-20	Pass

B	(E)	B	(15)

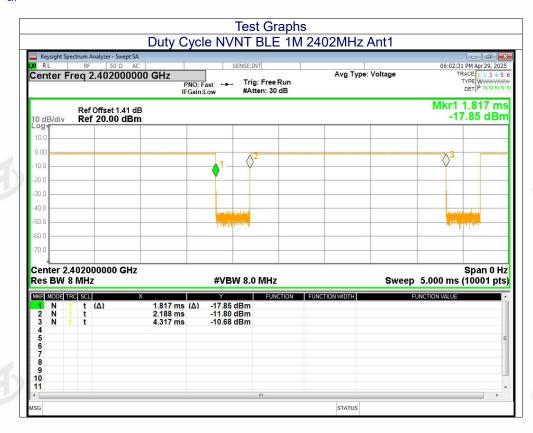

Project No.: ZHT-250424123W02-1 Page 44 of 50




Project No.: ZHT-250424123W02-1 Page 45 of 50



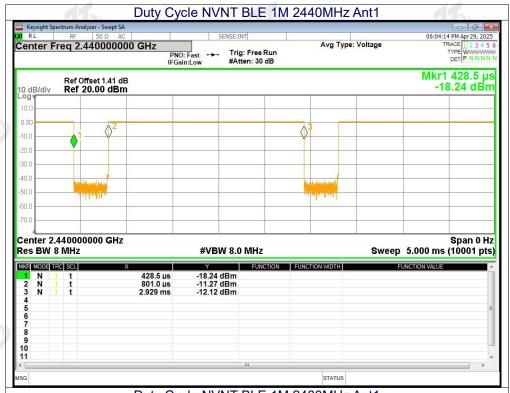
Project No.: ZHT-250424123W02-1 Page 46 of 50

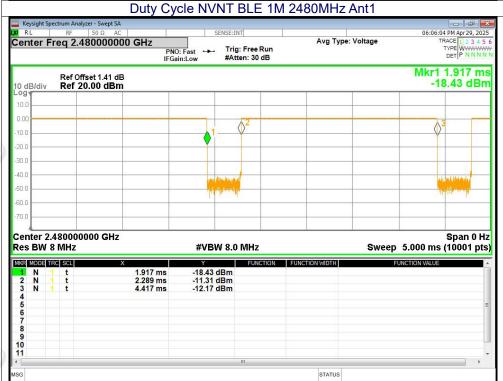

Project No.: ZHT-250424123W02-1 Page 47 of 50

Duty Cycle

Mode	Frequency	Ton	Total	Duty Cycle	Correction Factor	1/T
	(MHz)	ms	ms	(%)	(dB)	(kHz)
BLE 1M	2402	2.129	2.500	85.16	0.7	0.47
BLE 1M	2440	2.128	2.501	85.10	0.7	0.47
BLE 1M	2480	2.128	2.500	85.12	0.7	0.47

Note:


- 1. Duty Cycle = Ton / Total
- 2.Correction Factor = 10 log (1/ Duty Cycle).
- $3.1/T=1/T_{on}$



Project No.: ZHT-250424123W02-1 Page 48 of 50

Project No.: ZHT-250424123W02-1 Page 49 of 50

10.ANTENNA REQUIREMENT

FCC Part15 C Section 15.203 /247(b)(4)	

15.203 requirement:

Standard requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is FPC antenna, the best case gain of the antennas is 1.6dBi, reference to the appendix II for details

Project No.: ZHT-250424123W02-1 Page 50 of 50

11. TEST SETUP PHOTO

Reference to the appendix I for details.

12. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

