

Report No.: SZEM150900579803

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594

Email: ee.shenzhen@sgs.com Page: 1 of 115

FCC REPORT

Application No: SZEM1509005798HR

Applicant: WUXI IDATA TECHNOLOGY COMPANY LTD.

Manufacturer: WUXI IDATA TECHNOLOGY COMPANY LTD.

Factory: WUXI IDATA TECHNOLOGY COMPANY LTD.

Product Name: New Mobile Computer

Model No.(EUT): iData 50
Trade Mark: iData

FCC ID: 2ADE3IDATA50

Standards: 47 CFR Part 15, Subpart C (2014)

Date of Receipt: 2015-09-18

Date of Test: 2015-09-26 to 2015-10-12

Date of Issue: 2015-11-05

Test Result: PASS *

. * In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

Report No.: SZEM150900579803

Page: 2 of 115

2 Version

Revision Record							
Version Chapter Date Modifier Remark							
01		2015-11-05		Original			

Authorized for issue by:		
Tested By	Exic Fu (Eric Fu) /Project Engineer	2015-10-12 Date
	Hedy Wen.	2015-11-05
Prepared By	(Hedy Wen) /Clerk	Date
	Jihn Hog	
		2015-11-05
Checked By	(Jim Huang) /Reviewer	Date

Report No.: SZEM150900579803

Page: 3 of 115

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2009	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2009	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2009	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2009	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2009	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2009	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

Report No.: SZEM150900579803

Page: 4 of 115

4 Contents

		Fage
COV	VER PAGE	1
VER	RSION	2
TEQ	ET CLIMMADY	2
CON	NTENTS	4
GEN	NERAL INFORMATION	5
5.1		
-		
-		
-		
5.10	EQUIPMENT LIST	9
TES	ST RESULTS AND MEASUREMENT DATA	12
6.1	ANTENNA REQUIREMENT	12
6.2		
6.3	CONDUCTED PEAK OUTPUT POWER	17
6.4	6DB OCCUPY BANDWIDTH	26
6.5		_
6.6		
6.7		
6.8		
6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	96
PHO	DTOGRAPHS - EUT TEST SETUP	114
7.1	CONDUCTED EMISSION	114
7.2		
7.3		
PHO		
	VEF TES COI GEI 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 TES 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 PHC 7.1 7.2 7.3	5.2 GENERAL DESCRIPTION OF EUT 5.3 TEST ENVIRONMENT AND MODE 5.4 DESCRIPTION OF SUPPORT UNITS 5.5 TEST LOCATION 5.6 TEST FACILITY 5.7 DEVIATION FROM STANDARDS 5.8 ABNORMALITIES FROM STANDARD CONDITIONS 5.9 OTHER INFORMATION REQUESTED BY THE CUSTOMER. 5.10 EQUIPMENT LIST TEST RESULTS AND MEASUREMENT DATA 6.1 ANTENNA REQUIREMENT 6.2 CONDUCTED EMISSIONS 6.3 CONDUCTED PEAK OUTPUT POWER 6.4 6DB OCCUPY BANDWIDTH 6.5 POWER SPECTRAL DENSITY 6.6 BAND-EDGE FOR RF CONDUCTED EMISSIONS 6.7 RF CONDUCTED SPURIOUS EMISSIONS 6.8 RADIATED SPURIOUS EMISSIONS 6.8.1 Radiated emission below 1GHz 6.8.2 Transmitter emission above 1 GHz 6.9 RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY. PHOTOGRAPHS - EUT TEST SETUP 7.1 CONDUCTED EMISSION

Report No.: SZEM150900579803

Page: 5 of 115

5 General Information

5.1 Client Information

Applicant:	WUXI IDATA TECHNOLOGY COMPANY LTD.			
Address of Applicant:	Floor 11, Building B1, Wuxi (Binhu) National Sensing Information Center, No.999 Gaolang East Road, Wuxi City, P.R.C.			
Manufacturer:	WUXI IDATA TECHNOLOGY COMPANY LTD.			
Address of Manufacturer:	Floor 11, Building B1, Wuxi (Binhu) National Sensing Information Center, No.999 Gaolang East Road, Wuxi City, P.R.C.			
Factory:	WUXI IDATA TECHNOLOGY COMPANY LTD.			
Address of Factory:	Floor 11, Building B1, Wuxi (Binhu) National Sensing Information Center, No.999 Gaolang East Road, Wuxi City, P.R.C.			

5.2 General Description of EUT

Product Name:	New Mobile Computer			
Model No.:	iData 50			
Trade Mark:	iData			
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz			
	IEEE 802.11n(HT40): 2422MHz to 2452MHz			
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n(HT20): 11 Channels			
	IEEE 802.11n(HT40): 7 Channels			
Channel Separation:	5MHz			
Type of Modulation:	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)			
	IEEE for 802.11g : OFDM(64QAM, 16QAM, QPSK, BPSK)			
	IEEE for 802.11n(HT20 and HT40): OFDM (64QAM, 16QAM,			
	QPSK,BPSK)			
Sample Type:	Portable production			
Antenna Type:	Monopole			
Antenna Gain:	2dBi			
Battery:	Lithium-ion battery:3.7V 3300mAh(charge by USB)			
EUT Power Supply or	MODEL: FJ-SW1260502000UU			
Adapter:	INPUT: AC 100-240V 50/60Hz 0.4A MAX			
	OUTPUT: DC 5.0V 2000mA			

Report No.: SZEM150900579803

Page: 6 of 115

Operation Frequency each of channel(802.11b/g/n HT20)											
Channel	Fr	equency	Channe	I Frequency	Channel	Fre	Frequency		nel	Frequency	
1	24	112MHz	4	2427MHz	7	244	12MHz	10)	2457MHz	
2	24	117MHz	5	2432MHz	8	244	17MHz	11		2462MHz	
3	24	122MHz	6	2437MHz	9	2452MHz					
Operation F	requ	ency each	of channe	el(802.11n HT40)						
Channel Frequency			ency	Channel	Frequency		Channel		ſ	Frequency	
1		2422	ИНz	4	2437MF	2437MHz 7 2		7		2452MHz	
2		2427	2427MHz 5 2442MHz		lz						
3 2432MHz			ИНz	6	2447MF	lz					

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency		
The Lowest channel	2412MHz		
The Middle channel	2437MHz		
The Highest channel	2462MHz		

For 802.11n (HT40):

Channel	Frequency
The Lowest channel	2422MHz
The Middle channel	2437MHz
The Highest channel	2452MHz

[&]quot;This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at www.sqs.com/terms and conditions.htm and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sqs.com/terms e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

Report No.: SZEM150900579803

Page: 7 of 115

5.3 Test Environment and Mode

Operating Environment:	Operating Environment:							
Temperature:	25.0 °C							
Humidity:	53 % RH							
Atmospheric Pressure:	1010mbar							
Test mode:								
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.							

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM150900579803

Page: 8 of 115

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

The 3m Semi-anechoic chambers and the 10m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-2, 4620C-3.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM150900579803

Page: 9 of 115

5.10Equipment List

	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2015-05-13	2016-05-13		
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-09	2016-10-09		
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-13	2016-05-13		
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T8-02	SEL0162	2015-08-30	2016-08-30		
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T4-02	SEL0163	2015-08-30	2016-08-30		
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLIS N-T2-02	SEL0164	2015-08-30	2016-08-30		
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-13	2016-05-13		
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-13	2016-05-13		
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09		
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	2016-10-24		
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-13	2016-05-13		

Report No.: SZEM150900579803

Page: 10 of 115

	RE in Chamber							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-05-13	2016-05-13		
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16	2016-09-16		
3	EMI Test software	AUDIX	E3	SEL0050	N/A	N/A		
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2014-11-15	2017-11-15		
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-17	2016-10-17		
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2014-11-24	2017-11-24		
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-13	2016-05-13		
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-17	2016-10-17		
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-13	2016-05-13		
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-13	2016-05-13		
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-13	2016-05-13		
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13		
13	Band filter	Amindeon	82346	SEL0094	2015-05-13	2016-05-13		
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-13	2016-05-13		
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09		
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	2016-10-24		
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-13	2016-05-13		
18	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-05-13	2016-05-13		

Report No.: SZEM150900579803

Page: 11 of 115

	RF connected test							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)		
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-09	2016-10-09		
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24	2016-10-24		
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-17	2016-10-17		
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-13	2016-05-13		
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-13	2016-05-13		
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-13	2016-05-13		
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-04-25	2016-04-25		
8	POWER METER	R & S	NRVS	SEL0144	2015-10-09	2016-10-09		
9	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-04-25	2016-04-25		

Report No.: SZEM150900579803

Page: 12 of 115

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard 47 CFR Part 15C Section 15.203 /247(c) requirement:

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

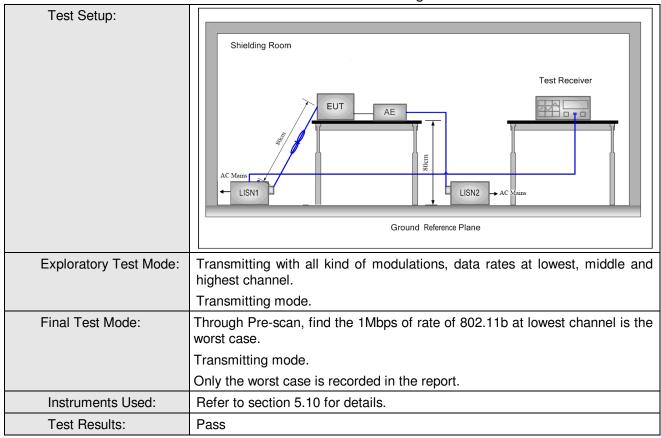
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2dBi.

Report No.: SZEM150900579803

Page: 13 of 115

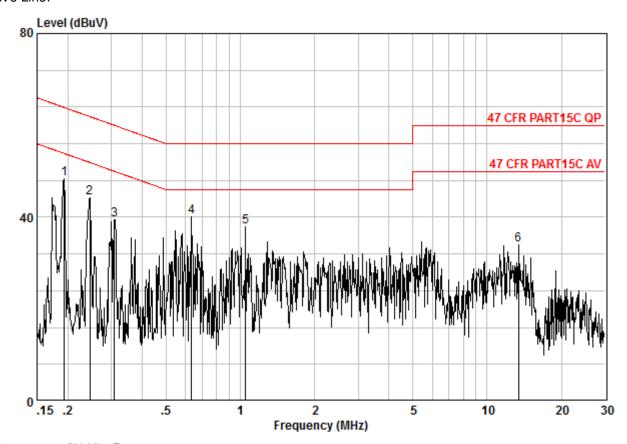

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.207				
Test Method:	ANSI C63.10: 2009				
Test Frequency Range:	150kHz to 30MHz				
Limit:	Francisco (MIII-)	Limit (c	Limit (dBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithm	n of the frequency.		Ī	
Test Procedure:	 Test Procedure: 1) The mains terminal disturbance voltage test was conducted in a shi room. 2) The EUT was connected to AC power source through a LISN 1 Impedance Stabilization Network) which provides a 50Ω/50μH linear impedance. The power cables of all other units of the EUT connected to a second LISN 2, which was bonded to the greference plane in the same way as the LISN 1 for the unit measured. A multiple socket outlet strip was used to connect mapower cables to a single LISN provided the rating of the LISN was exceeded. 				
	3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.				
	 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2. 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2009 on conducted measurement. 				

Report No.: SZEM150900579803

Page: 14 of 115

Report No.: SZEM150900579803


Page: 15 of 115

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

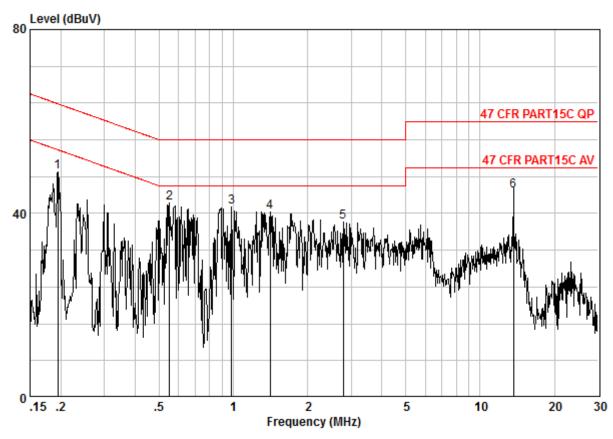
Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

Site : Shielding Room

Condition : 47 CFR PART15C AV CE LINE

Job No. : 5798HR Test Mode : WIFI TX mode


		Cable	LISN	Read		Limit	Over		
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark	
									_
	MHz	dB	dB	dBuV	dBuV	dBuV	dB		
1	0.19344	0.02	9.60	38.80	48.42	53.89	-5.47	Peak	
2	0.24552	0.02	9.60	34.53	44.15	51.91	-7.76	Peak	
3	0.30834	0.01	9.59	29.96	39.56	50.02	-10.45	Peak	
4	0.63383	0.02	9.61	30.49	40.12	46.00	-5.88	Peak	
5	1.049	0.02	9.62	28.24	37.88	46.00	-8.12	Peak	
6	13.408	0.01	9.75	24.28	34.04	50.00	-15.96	Peak	

Report No.: SZEM150900579803

Page: 16 of 115

Neutral Line:

Site : Shielding Room

Condition : 47 CFR PART15C AV CE NEUTRAL

Job No. : 5798HR Test Mode : WIFI TX mode

		Freq		LISN Factor			Limit Line		Remark
		MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	@	0.19447	0.02	9.62	39.33	48.96	53.84	-4.88	Peak
2	@	0.55226	0.01	9.63	32.71	42.35	46.00	-3.65	Peak
3	@	0.98391	0.02	9.65	31.70	41.37	46.00	-4.63	Peak
4		1.411	0.02	9.64	30.77	40.43	46.00	-5.57	Peak
5		2.794	0.02	9.67	28.43	38.12	46.00	-7.88	Peak
6	@	13.623	0.01	9.87	34.92	44.80	50.00	-5.20	Peak

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.

Report No.: SZEM150900579803

Page: 17 of 115

6.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(3)		
Test Method:	ANSI C63.10 2009		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
	Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Test Instruments:	Refer to section 5.10 for details.		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).		
Limit:	30dBm		
Test Results:	Pass		

Report No.: SZEM150900579803

Page: 18 of 115

Pre-scan und	Pre-scan under all rate at lowest channel 1							
Mode		802	.11b			_		
Data Rate	1Mbps	2Mbps	5.5Mbps	11Mbps				
Power (dBm)	17.80	17.46	17.22	17.03				
Mode				802	2.11g			
Data Rate	6Mbps	9Mbps	12Mbps	18Mbps	24Mbps	36Mbps	48Mbps	54Mbps
Power (dBm)	19.69	19.48	19.32	19.27	19.15	19.05	18.99	18.88
Mode				802.11	n(HT20)			
Data Rate	6.5Mbps	13Mbps	19.5Mbps	26Mbps	39Mbps	52Mbps	58.5Mbps	65Mbps
Power (dBm)	20.17	20.08	20.02	19.97	19.85	19.73	19.69	19.68
Mode 802.11n(HT40)								
Data Rate	13.5Mbps	27Mbps	40.5Mbps	54Mbps	81Mbps	108Mbps	121.5Mbps	135Mbps
Power (dBm)	18. 47	18.42	18.32	18.24	18.11	18.02	17.89	17.69

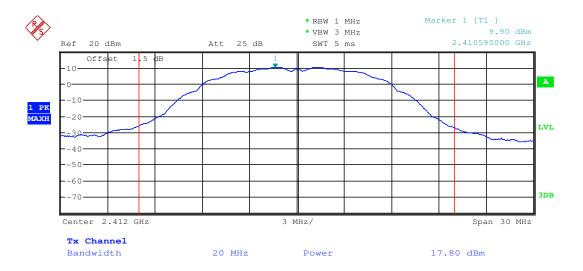
Through Pre-scan, 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).

Report No.: SZEM150900579803

Page: 19 of 115

Measurement Data

	802.11b mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	17.80	30.00	Pass			
Middle	17.27	30.00	Pass			
Highest	16.92	30.00	Pass			
	802.11g mo	de				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	19.69	30.00	Pass			
Middle	19.06	30.00	Pass			
Highest	18.56	30.00	Pass			
	802.11n(HT20)	mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	20.17	30.00	Pass			
Middle	19.73	30.00	Pass			
Highest	19.20	30.00	Pass			
	802.11n(HT40)	mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result			
Lowest	18.47	30.00	Pass			
Middle	18.56	30.00	Pass			
Highest	18.45	30.00	Pass			



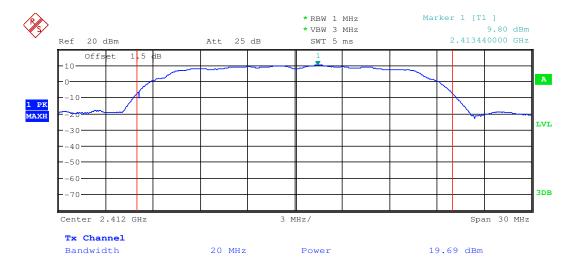
Report No.: SZEM150900579803

Page: 20 of 115

Test plot as follows:

Test mode: 802.11b Test channel: Lowest

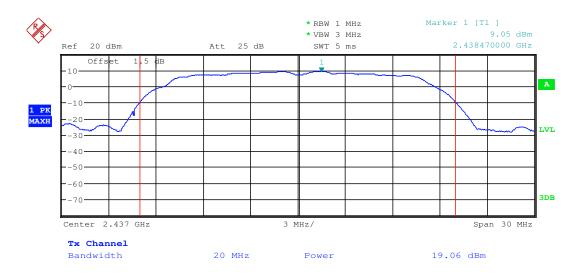
Test mode: 802.11b Test channel: Middle

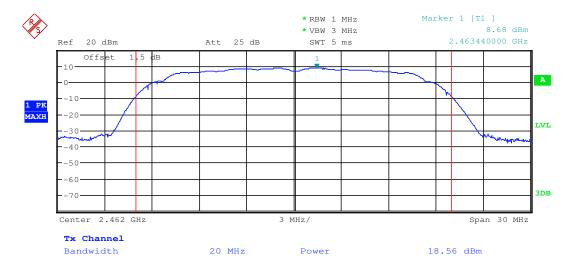

Report No.: SZEM150900579803

Page: 21 of 115

Test mode: 802.11b Test channel: Highest

Test mode:	802.11g	Test channel:	Lowest
10011110001	00=9	1 000 0114111011	20000




Report No.: SZEM150900579803

Page: 22 of 115

Test mode: 802.11g Test channel: Middle

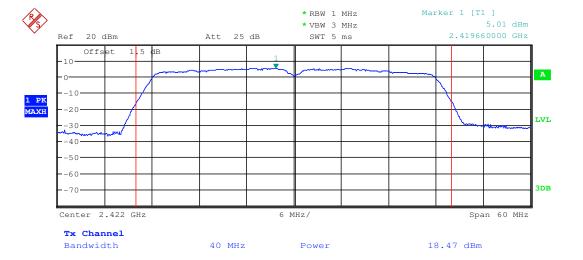


Report No.: SZEM150900579803

Page: 23 of 115

Test mode: 802.11n(HT20) Test channel: Lowest

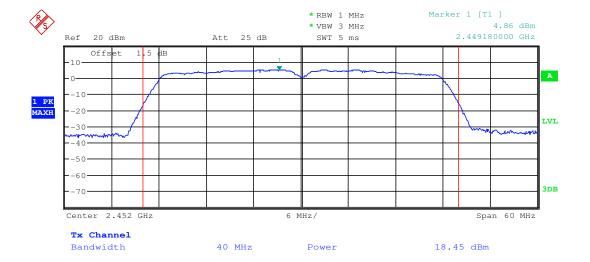
Test mode: 802.11n(HT20) Test channel: Middle


Report No.: SZEM150900579803

Page: 24 of 115

Test mode: 802.11n(HT20) Test channel: Highest

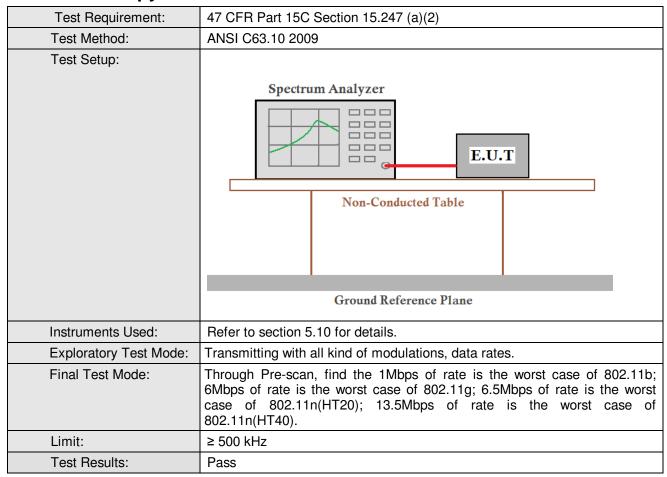
Test mode: 802.11n(HT40) Test channel: Lowest


Report No.: SZEM150900579803

Page: 25 of 115

Test mode: 802.11n(HT40) Test channel: Middle

Test mode: 802.11n(HT40) Test channel: Highest



Report No.: SZEM150900579803

Page: 26 of 115

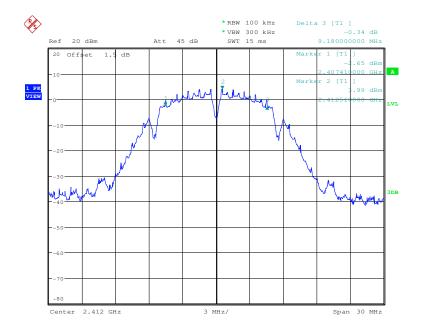
6.4 6dB Occupy Bandwidth

Report No.: SZEM150900579803

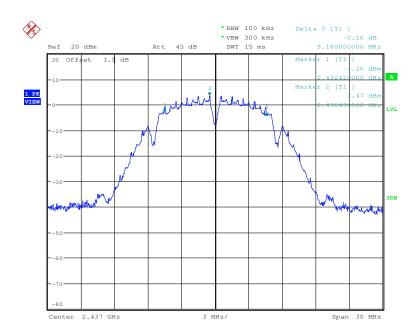
Page: 27 of 115

Measurement Data

802.11b mode					
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	9.180	≥500	Pass		
Middle	9.180	≥500	Pass		
Highest	9.180	≥500	Pass		
	802.11g mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	16.440	≥500	Pass		
Middle	16.440	≥500	Pass		
Highest	16.440	≥500	Pass		
	802.11n(HT20) mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	17.640	≥500	Pass		
Middle	17.640	≥500	Pass		
Highest	17.640	≥500	Pass		
	802.11n(HT40)mode				
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result		
Lowest	36.480	≥500	Pass		
Middle	36.480	≥500	Pass		
Highest	36.480	≥500	Pass		



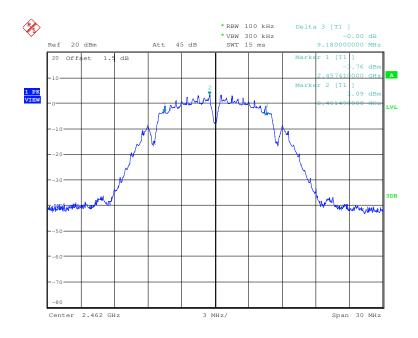
Report No.: SZEM150900579803

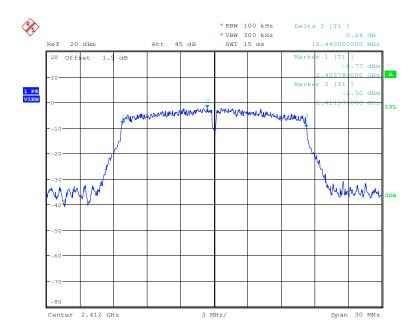

Page: 28 of 115

Test plot as follows:

Test mode: 802.11b Test channel: Lowest

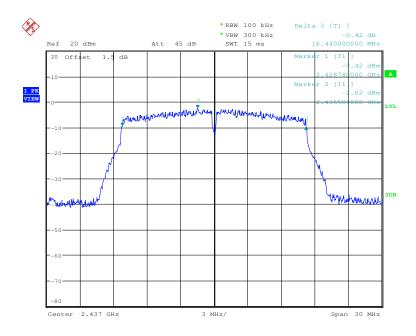
Test mode: 802.11b Test channel: Middle

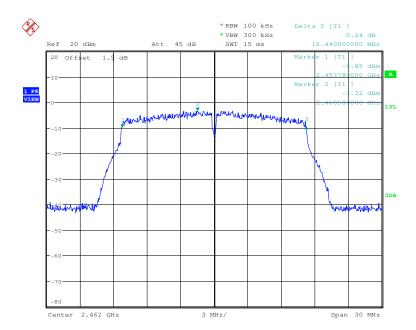



Report No.: SZEM150900579803

Page: 29 of 115

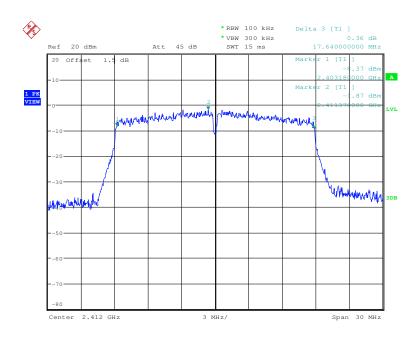
Test mode: 802.11b Test channel: Highest

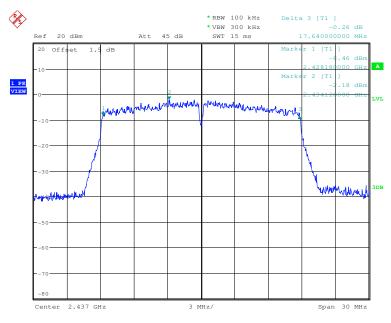



Report No.: SZEM150900579803

Page: 30 of 115

Test mode: 802.11g Test channel: Middle

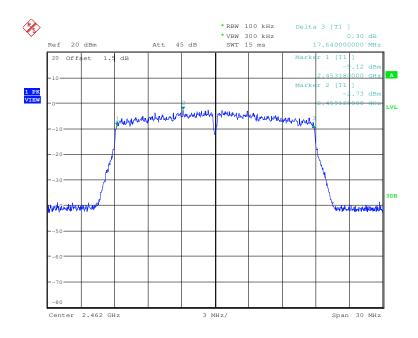


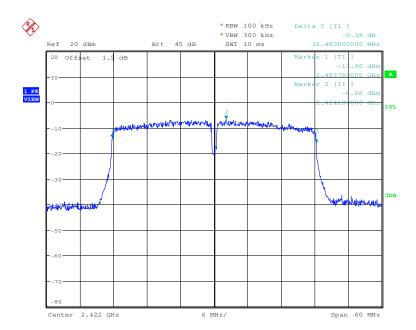

Report No.: SZEM150900579803

Page: 31 of 115

Test mode: 802.11n(HT20) Test channel: Lowest

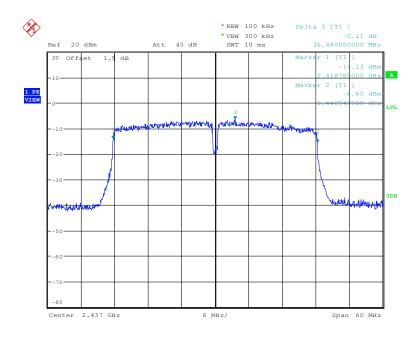
Test mode: 802.11n(HT20) Test channel: Middle

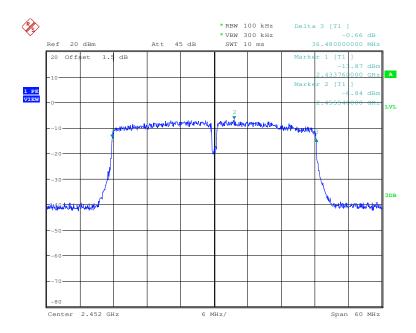



Report No.: SZEM150900579803

Page: 32 of 115

Test mode: 802.11n(HT20) Test channel: Highest




Report No.: SZEM150900579803

Page: 33 of 115

Test mode: 802.11n(HT40) Test channel: Middle

Report No.: SZEM150900579803

Page: 34 of 115

6.5 Power Spectral Density

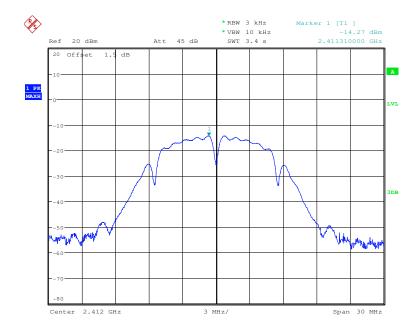
Test Requirement:	47 CFR Part 15C Section 15.247 (e)		
Test Method:	ANSI C63.10 2009		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
	Remark:		
	Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.		
Test Instruments:	Refer to section 5.10 for details.		
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.		
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).		
Limit:	≤8.00dBm/3kHz		
Test Results:	Pass		

Report No.: SZEM150900579803

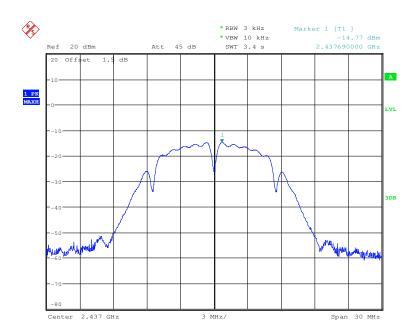
Page: 35 of 115

Measurement Data

802.11b mode					
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-14.27	≤8.00	Pass		
Middle	-14.77	≤8.00	Pass		
Highest	-15.17	≤8.00	Pass		
	802.11g mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-15.67	≤8.00	Pass		
Middle	-16.37	≤8.00	Pass		
Highest	-16.85	≤8.00	Pass		
	802.11n(HT20) mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-15.78	≤8.00	Pass		
Middle	-16.27	≤8.00	Pass		
Highest	-16.73	≤8.00	Pass		
	802.11n(HT40) mode				
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result		
Lowest	-19.15	≤8.00	Pass		
Middle	-20.11	≤8.00	Pass		
Highest	-19.46	≤8.00	Pass		



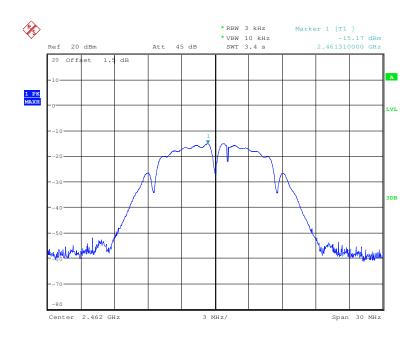
Report No.: SZEM150900579803

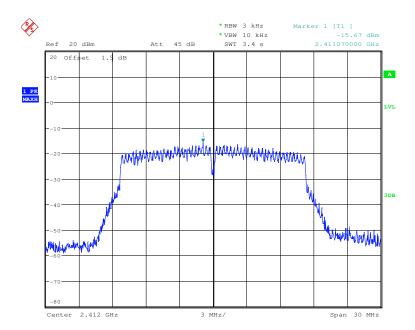

Page: 36 of 115

Test plot as follows:

Test mode: 802.11b Test channel: Lowest

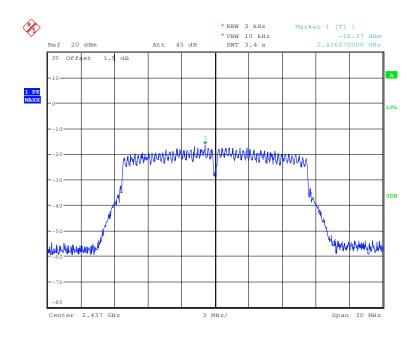
Test mode: 802.11b Test channel: Middle

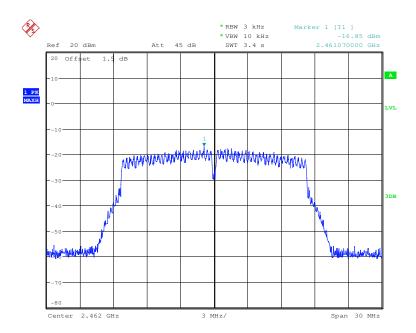



Report No.: SZEM150900579803

Page: 37 of 115

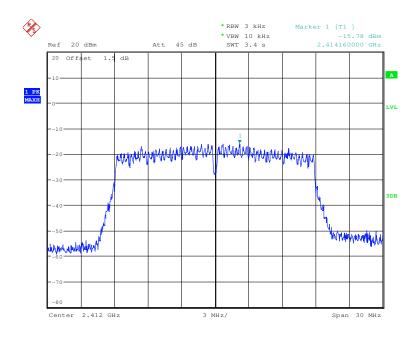
Test mode: 802.11b Test channel: Highest

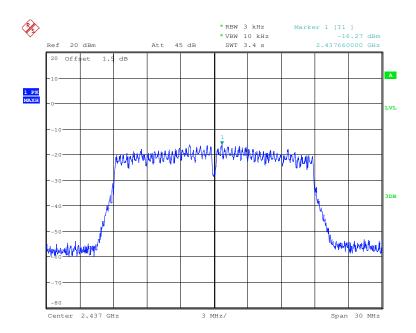



Report No.: SZEM150900579803

Page: 38 of 115

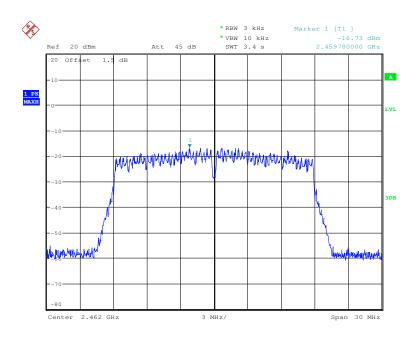
Test mode: 802.11g Test channel: Middle

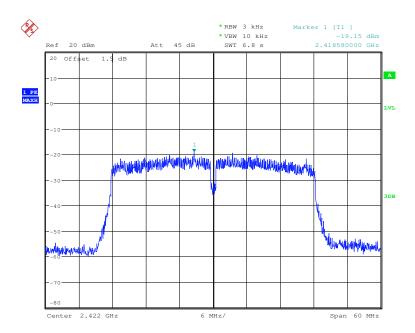



Report No.: SZEM150900579803

Page: 39 of 115

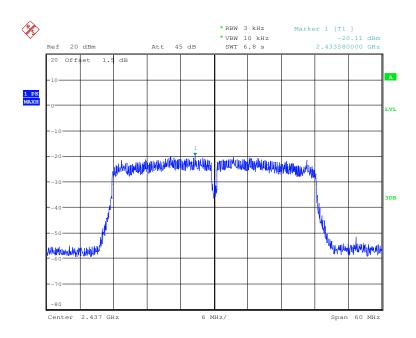
Test mode: 802.11n(HT20) Test channel: Lowest

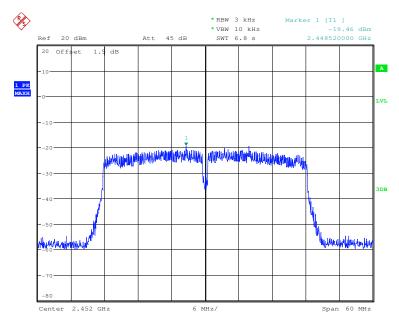



Report No.: SZEM150900579803

Page: 40 of 115

Test mode: 802.11n(HT20) Test channel: Highest




Report No.: SZEM150900579803

Page: 41 of 115

Test mode: 802.11n(HT40) Test channel: Middle

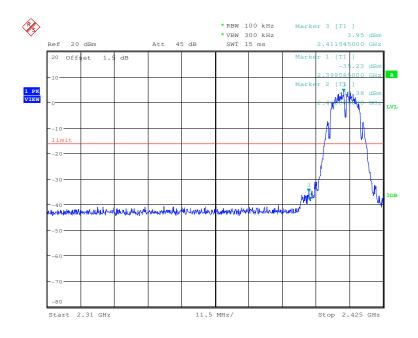
Test mode: 802.11n(HT40) Test channel: Highest

Report No.: SZEM150900579803

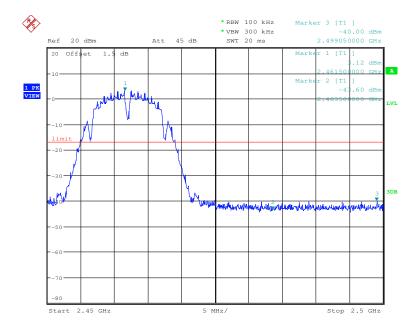
Page: 42 of 115

6.6 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2009
Test Setup:	Spectrum Analyzer Non-Conducted Table Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass



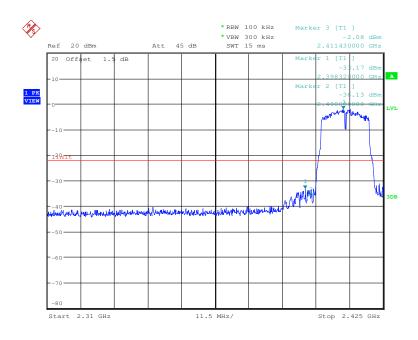
Report No.: SZEM150900579803

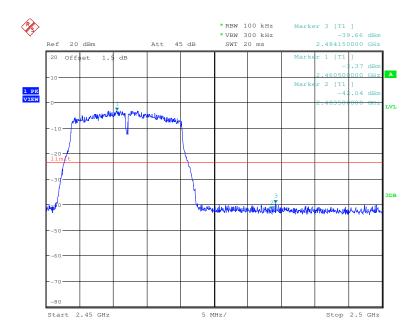

Page: 43 of 115

Test plot as follows:

Test mode: 802.11b Test channel: Lowest

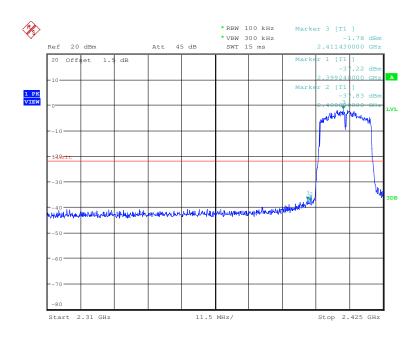
Test mode: 802.11b Test channel: Highest

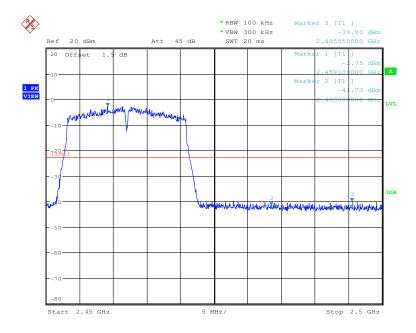



Report No.: SZEM150900579803

Page: 44 of 115

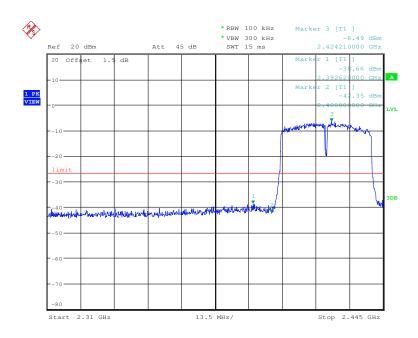
Test mode: 802.11g Test channel: Lowest

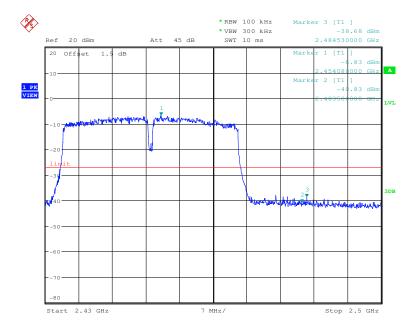



Report No.: SZEM150900579803

Page: 45 of 115

Test mode: 802.11n(HT20) Test channel: Lowest




Report No.: SZEM150900579803

Page: 46 of 115

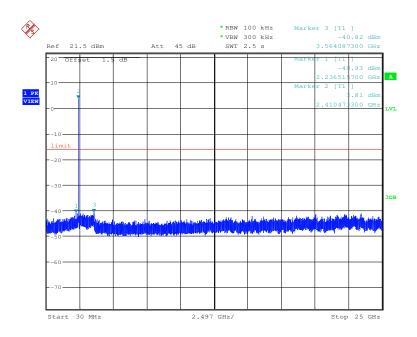
Test mode: 802.11n(HT40) Test channel: Lowest

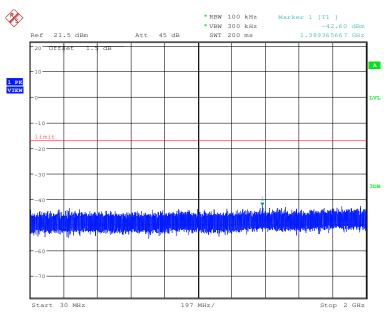
Report No.: SZEM150900579803

Page: 47 of 115

6.7 RF Conducted Spurious Emissions

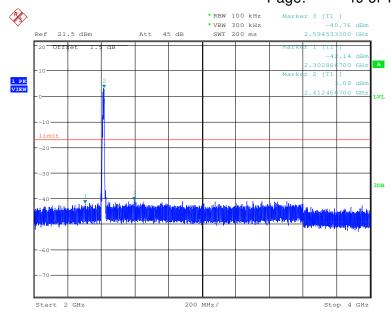
Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10 2009
Test Setup:	Spectrum Analyzer Non-Conducted Table Remark: Offset the High-Frequency cable loss 1.5dB in the spectrum analyzer.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

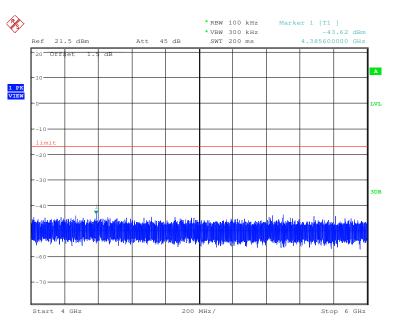


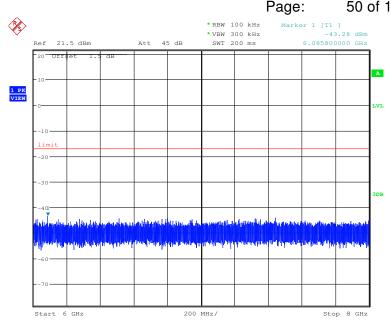

Report No.: SZEM150900579803

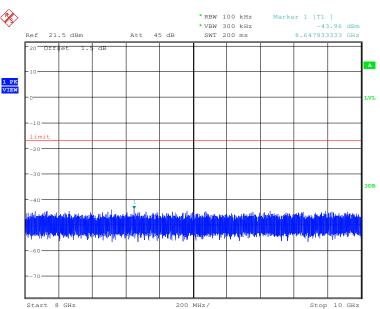
Page: 48 of 115

Test plot as follows:

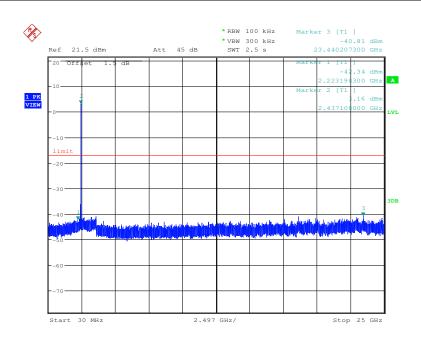

Test mode: 802.11b Test channel: Lowest

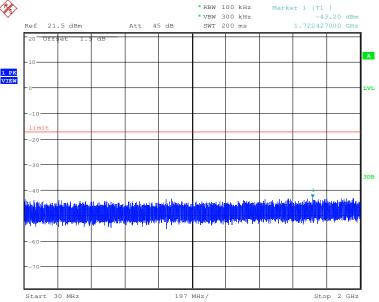



Report No.: SZEM150900579803 Page: 49 of 115



Report No.: SZEM150900579803 Page: 50 of 115

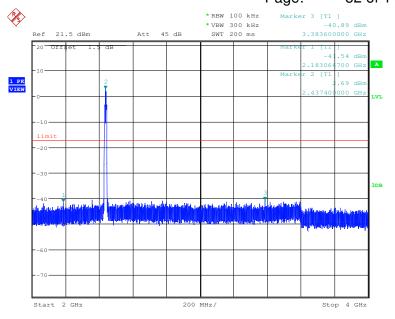


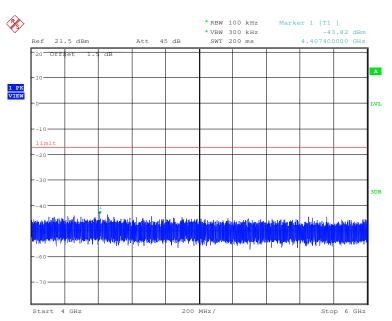


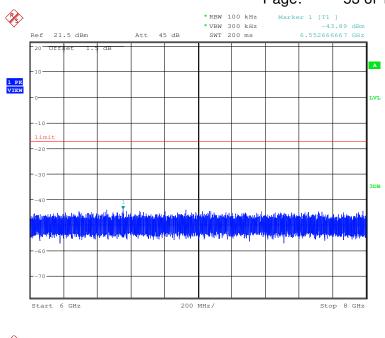
Report No.: SZEM150900579803

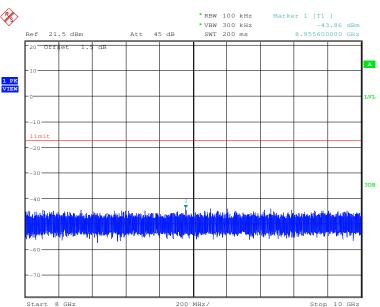
Page: 51 of 115

Test mode: 802.11b Test channel: Middle

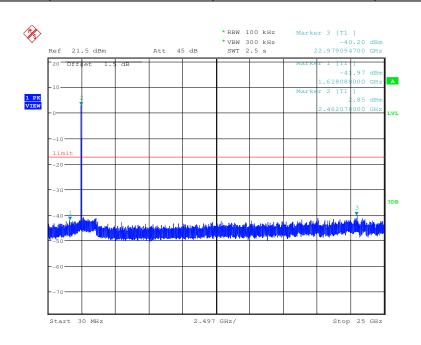


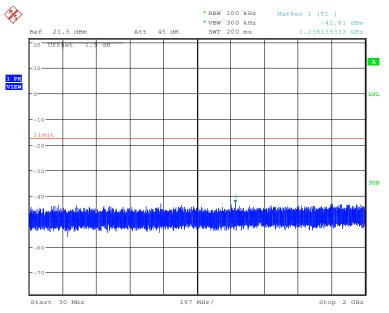



Report No.: SZEM150900579803 Page: 52 of 115



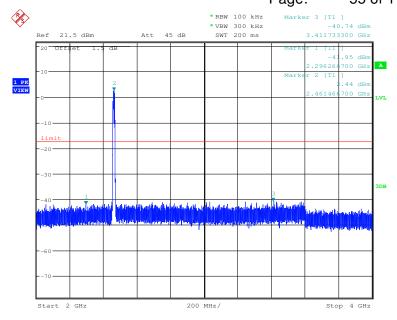
Report No.: SZEM150900579803 Page: 53 of 115

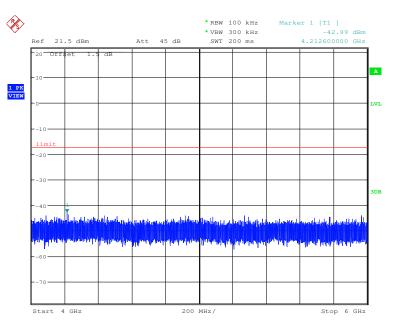


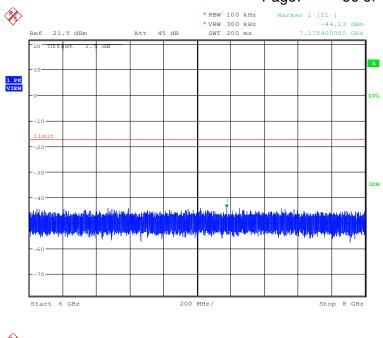


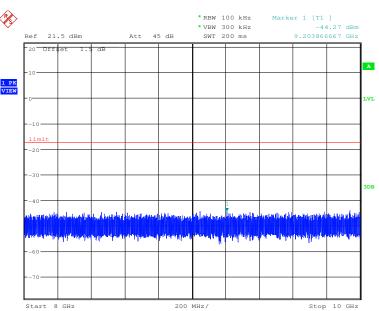
Report No.: SZEM150900579803

Page: 54 of 115

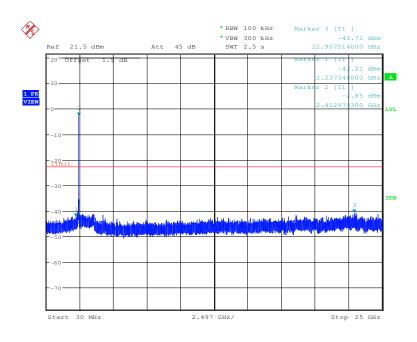

Test mode: 802.11b Test channel: Highest

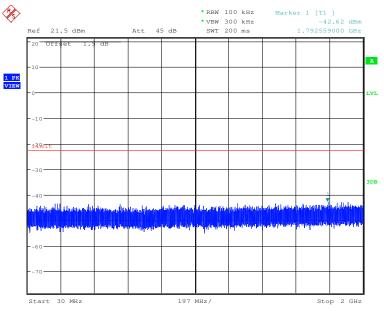



Report No.: SZEM150900579803 Page: 55 of 115



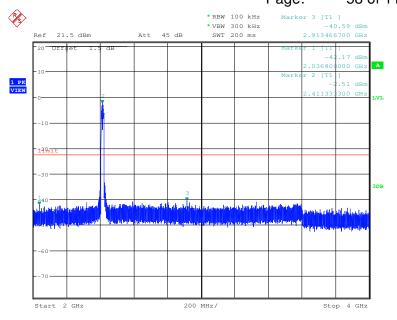
Report No.: SZEM150900579803 Page: 56 of 115

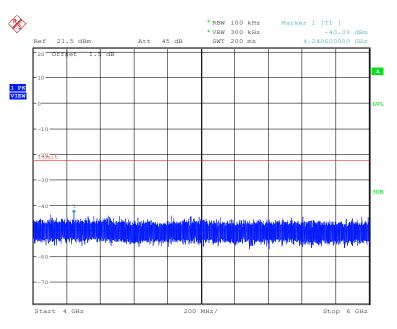


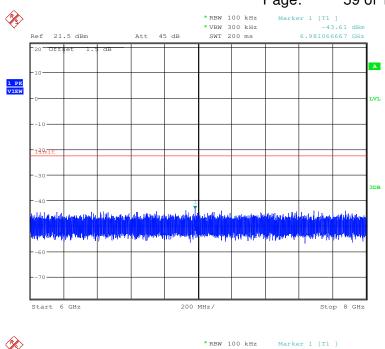


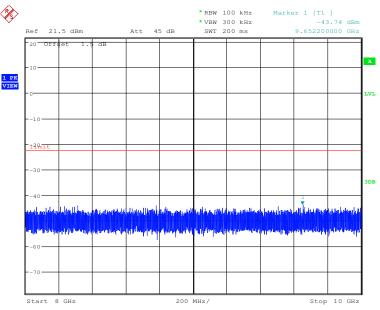
Report No.: SZEM150900579803

Page: 57 of 115

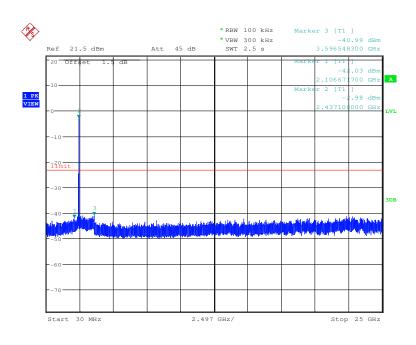

Test mode: 802.11g Test channel: Lowest

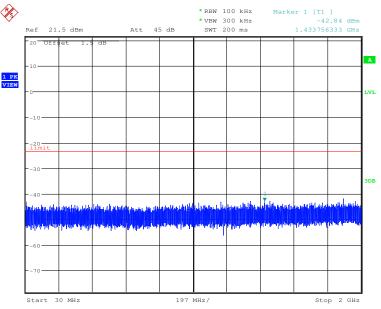



Report No.: SZEM150900579803 Page: 58 of 115



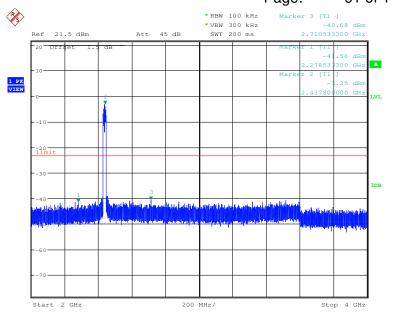
Report No.: SZEM150900579803 Page: 59 of 115

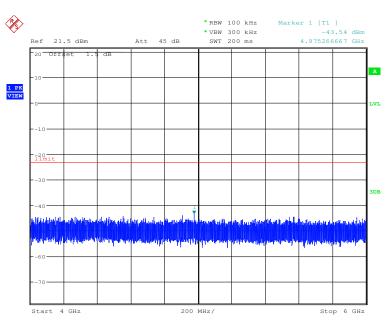




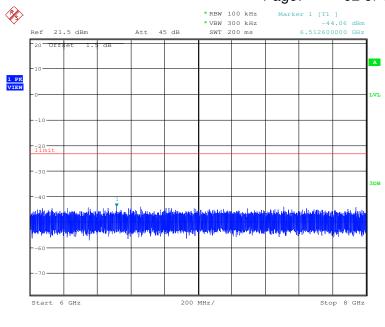
Report No.: SZEM150900579803

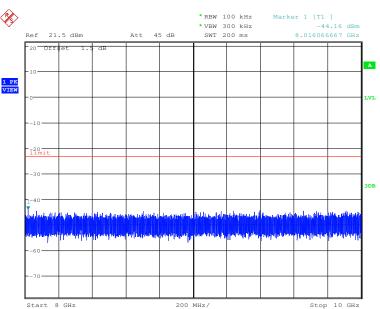
Page: 60 of 115


Test mode: 802.11g Test channel: Middle

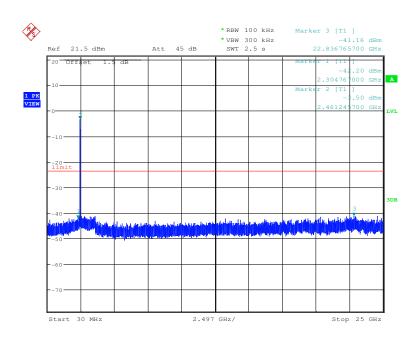


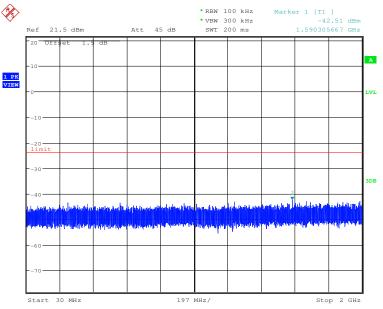
Report No.: SZEM150900579803 Page: 61 of 115





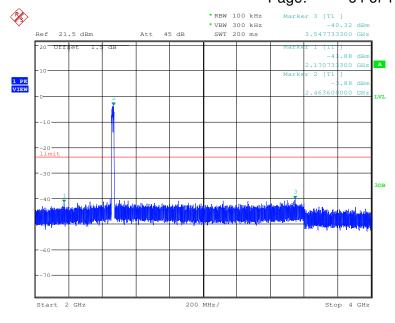
Report No.: SZEM150900579803 Page: 62 of 115

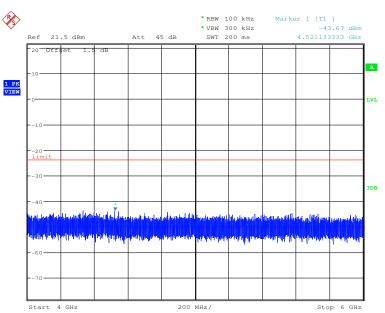


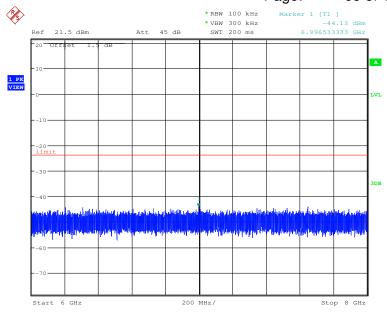


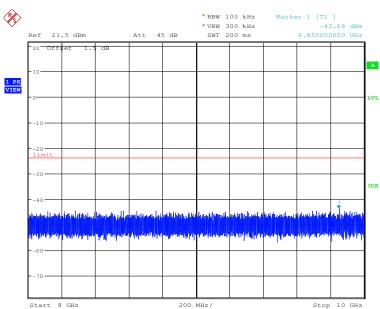
Report No.: SZEM150900579803

Page: 63 of 115

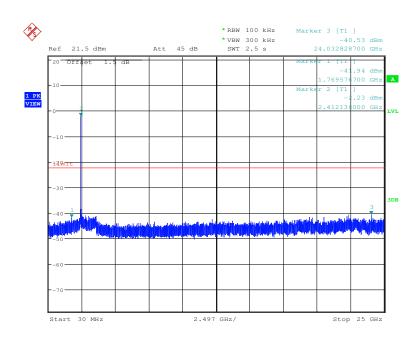

Test mode: 802.11g Test channel: Highest

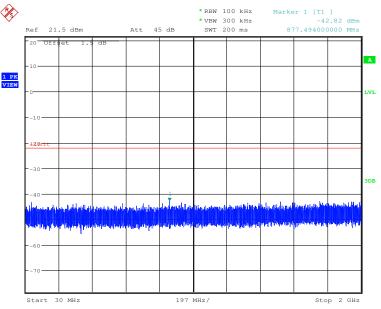



Report No.: SZEM150900579803 Page: 64 of 115



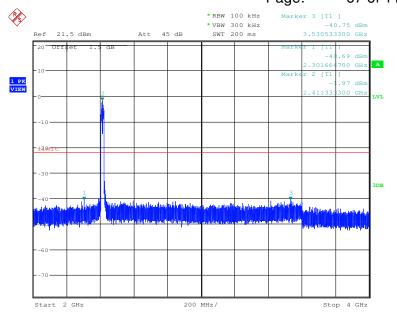
Report No.: SZEM150900579803 Page: 65 of 115

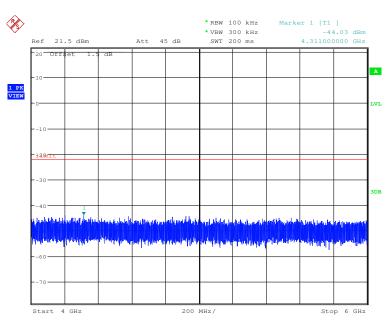


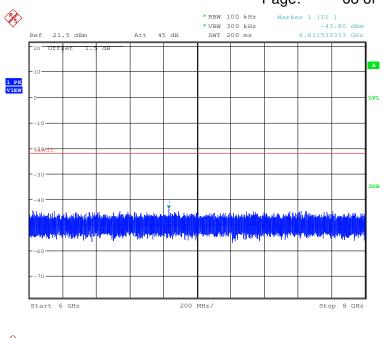


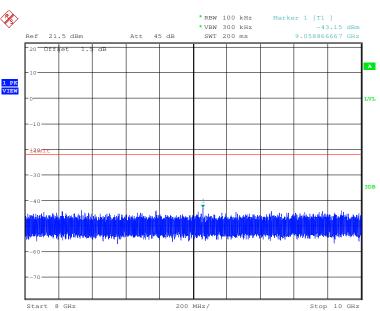
Report No.: SZEM150900579803

Page: 66 of 115

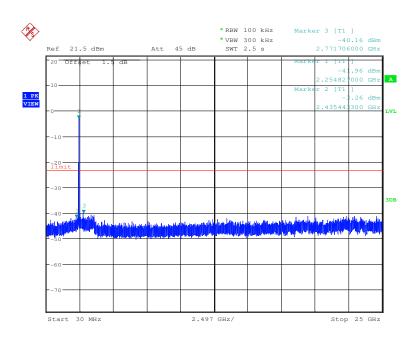

Test mode: 802.11n(HT20) Test channel: Lowest

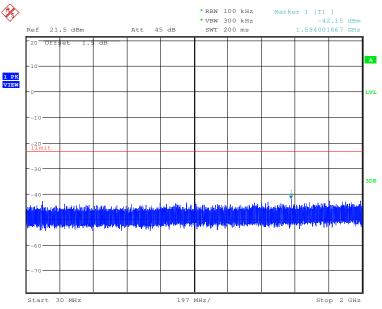



Report No.: SZEM150900579803 Page: 67 of 115



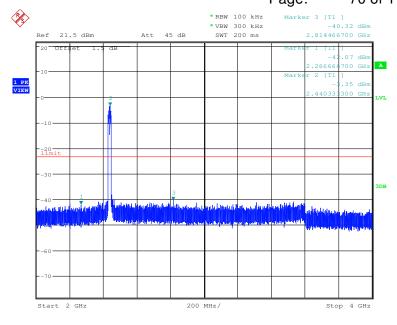
Report No.: SZEM150900579803 Page: 68 of 115

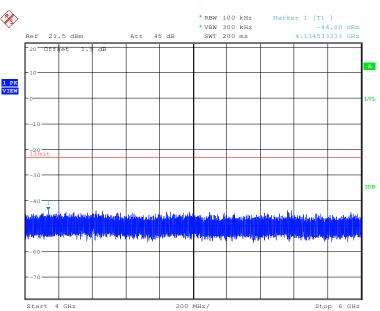


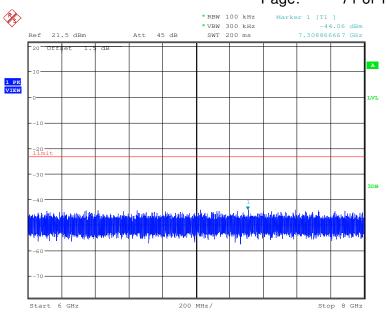


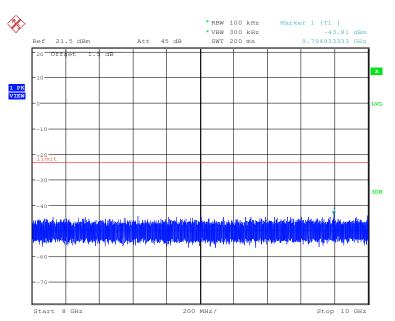
Report No.: SZEM150900579803

Page: 69 of 115

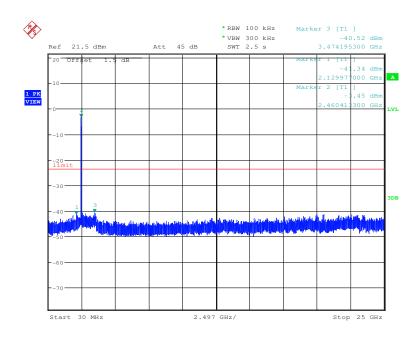

Test mode: 802.11n(HT20) Test channel: Middle

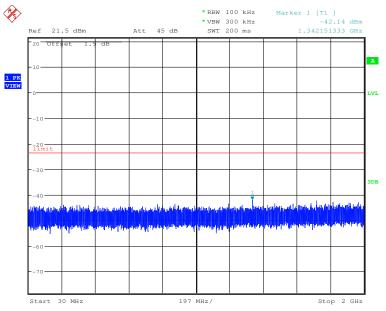



Report No.: SZEM150900579803 Page: 70 of 115



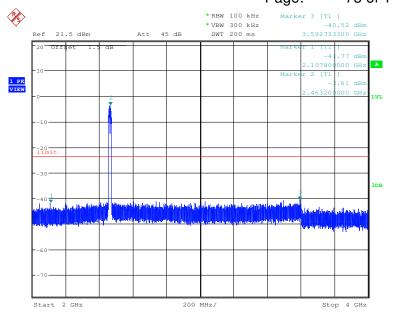
Report No.: SZEM150900579803 Page: 71 of 115

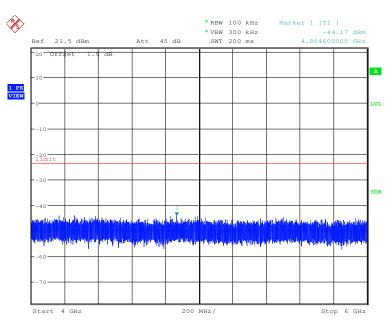


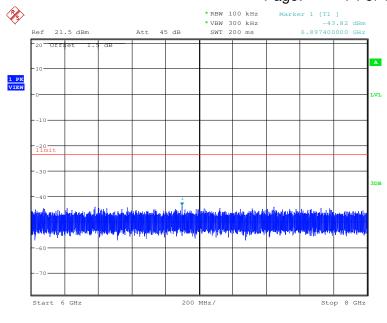


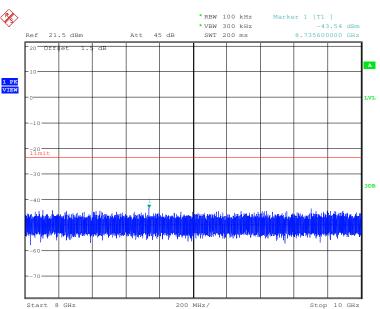
Report No.: SZEM150900579803

Page: 72 of 115

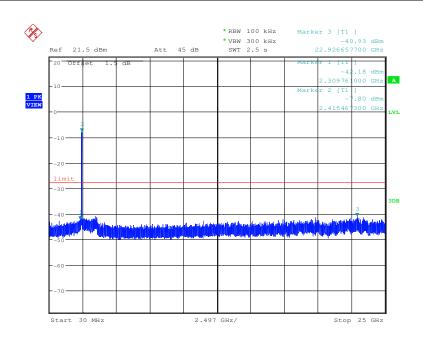

Test mode: 802.11n(HT20) Test channel: Highest

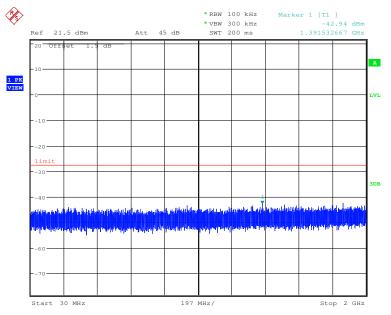



Report No.: SZEM150900579803 Page: 73 of 115



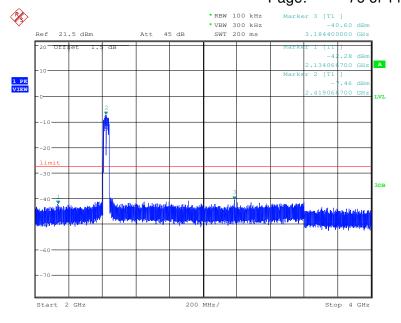
Report No.: SZEM150900579803 Page: 74 of 115

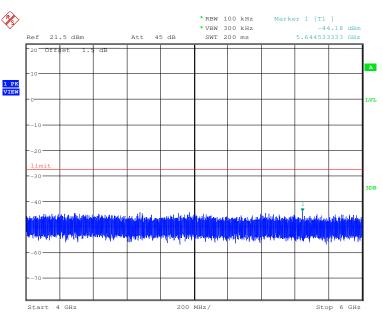


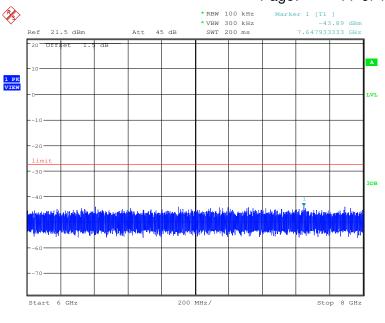


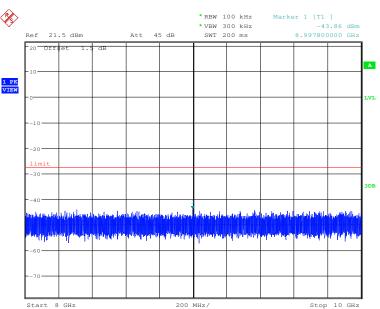
Report No.: SZEM150900579803

Page: 75 of 115

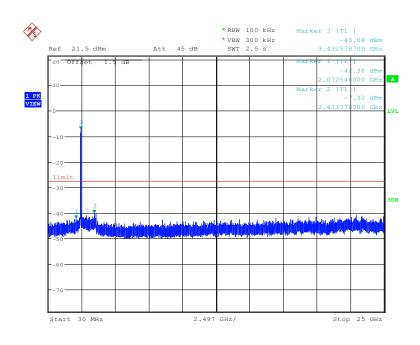

Test mode: 802.11n(HT40) Test channel: Lowest

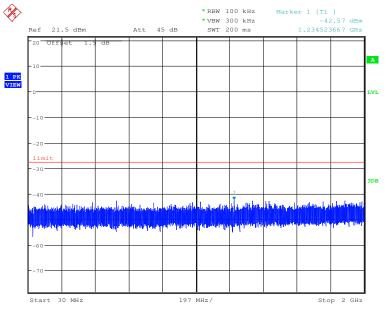



Report No.: SZEM150900579803 Page: 76 of 115



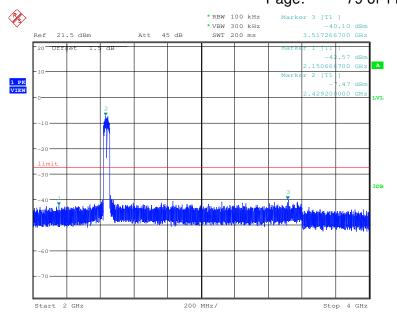
Report No.: SZEM150900579803 Page: 77 of 115

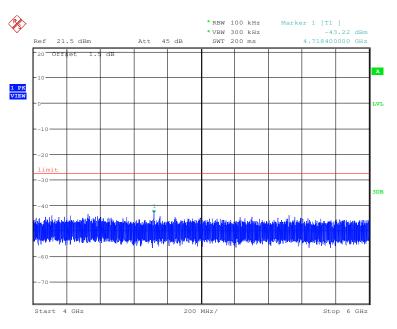


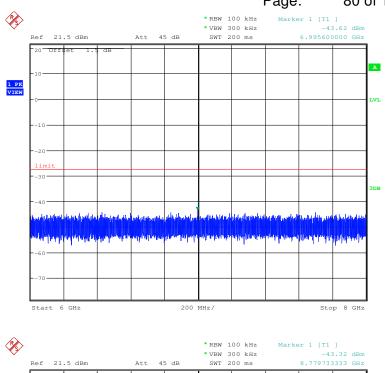


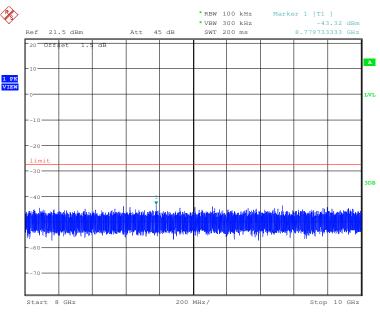
Report No.: SZEM150900579803

Page: 78 of 115

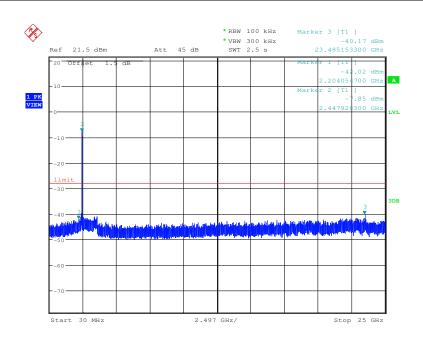

Test mode: 802.11n(HT40) Test channel: Middle

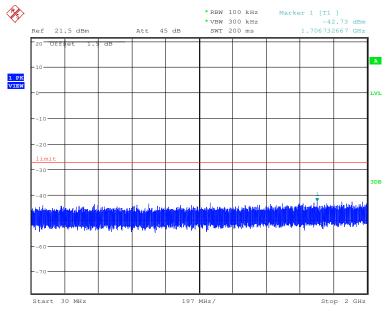



Report No.: SZEM150900579803 Page: 79 of 115



Report No.: SZEM150900579803 Page: 80 of 115

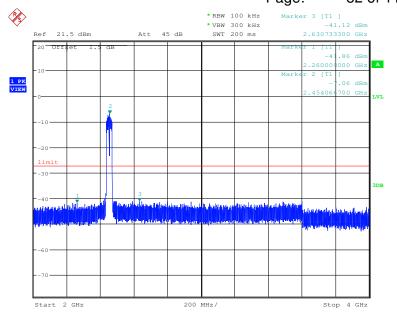


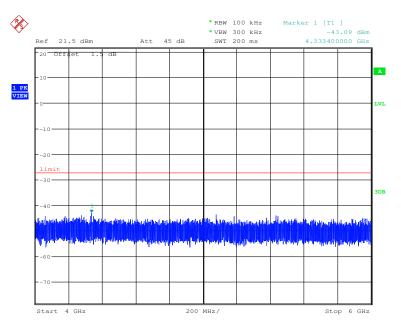


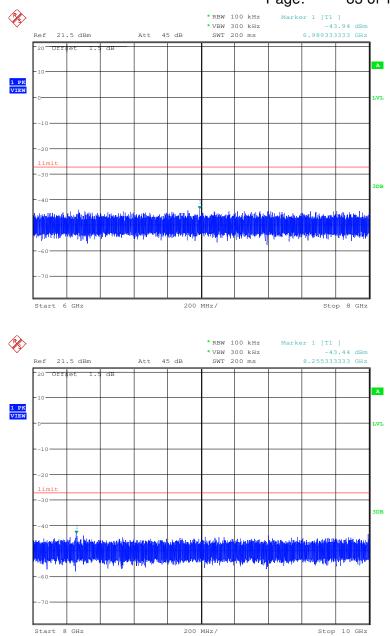
Report No.: SZEM150900579803

Page: 81 of 115

Test mode: 802.11n(HT40) Test channel: Highest






Report No.: SZEM150900579803 Page: 82 of 115

Report No.: SZEM150900579803 Page: 83 of 115

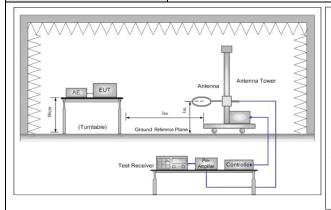
Remark:

Pretest 9kHz to 25GHz, find the highest point when testing, so only the worst data were shown in the test report. Per FCC Part 15.33 (a) and 15.31 (o) ,The amplitude of spurious emissions from intentional radiators which are attenuated more than 20 dB below the permissible value need not be reported unless specifically required elsewhere in this part.

Report No.: SZEM150900579803

Page: 84 of 115

6.8 Radiated Spurious Emissions


Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205									
Test Method:	ANSI C63.10 2009									
Test Site:	Measurement Distance:	3m (Semi-Anecho	ic Chamber)							
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark					
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak					
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average					
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak					
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average					
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak					
	30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak					
	Above 1GHz	Peak	1MHz	3MHz	Peak					
	Above TGHZ	Peak	1MHz	10Hz	Average					
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)					
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300					
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30					
	1.705MHz-30MHz	30	-	-	30					
	30MHz-88MHz	100	40.0	Quasi-peak	3					
	88MHz-216MHz	150	43.5	Quasi-peak	3					
	216MHz-960MHz	200	46.0	Quasi-peak	3					
	960MHz-1GHz	500	54.0	Quasi-peak	3					
	Above 1GHz	500	54.0	Average	3					
	applicable to the	otherwise specif B above the max equipment under el radiated by the	kimum perm test. This p	itted average	e emission limit					

Report No.: SZEM150900579803

Page: 85 of 115

Test Setup:

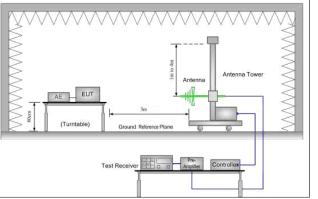


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

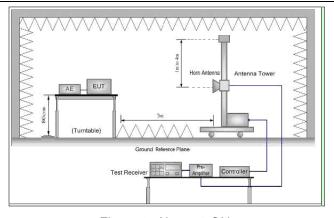


Figure 3. Above 1 GHz

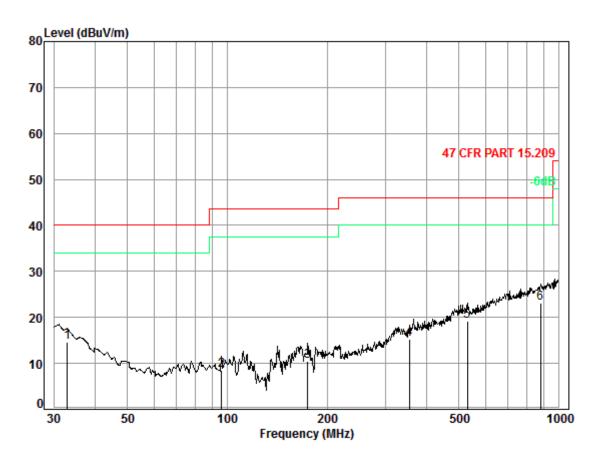
Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average

Report No.: SZEM150900579803

Page: 86 of 115

•					
method as specified and then reported in a data sheet.					
g. Test the EUT in the lowest channel ,the middle channel ,the Highest channel.					
h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.					
i. Repeat above procedures until all frequencies measured was complete.					
Transmitting with all kind of modulations, data rates.					
Fransmitting mode.					
Transmitting mode.					
Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).					
For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.					
Only the worst case is recorded in the report.					
Refer to section 5.10 for details.					
Pass					



Report No.: SZEM150900579803

Page: 87 of 115

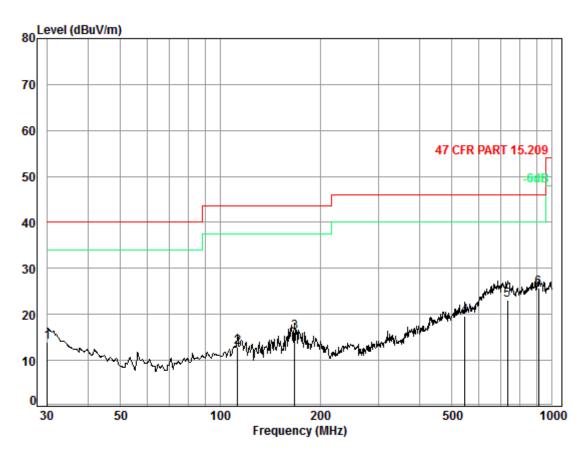
6.8.1 Radiated emission below 1GHz

30MHz~1GHz (QP)		
Test mode:	Transmitting mode	Vertical

Condition: 47 CFR PART 15.209 3m 3142C Vertical

Job No. : 5798HR

Test Mode: WiFi TX mode


		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	32.86	0.60	17.16	27.35	24.14	14.55	40.00	-25.45
2	96.10	1.16		27.21				
3	174.42	1.36	9.68	26.79	26.13	10.38	43.50	-33.12
4	354.18	2.07	15.57	26.83	24.47	15.28	46.00	-30.72
5	530.10	2.63	18.52	27.65	25.58	19.08	46.00	-26.92
6	881.41	3.53	22.90	26.85	23.60	23.18	46.00	-22.82

Report No.: SZEM150900579803

Page: 88 of 115

Condition: 47 CFR PART 15.209 3m 3142C Horizontal

Job No. : 5798HR

Test Mode: WiFi TX mode

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
4	30.00	0.00	10.00	27.26	24 76	14.00	40.00	26.00
1	30.00	0.60	19.00	27.36	21./6	14.00	40.00	-26.00
2	112.52	1.23	8.54	27.11	30.13	12.79	43.50	-30.71
3	167.82	1.35	9.54	26.82	31.99	16.06	43.50	-27.44
4	547.10	2.65	18.93	27.62	25.74	19.70	46.00	-26.30
5	734.49	3.01	21.60	27.37	25.97	23.21	46.00	-22.79
6	912.86	3.61	23.30	26.71	25.42	25.62	46.00	-20.38

Report No.: SZEM150900579803

Page: 89 of 115

6.8.2 Transmitter emission above 1GHz

Test mode:	8	02.11b	Test ch	annel:	Lowest	Rema	ark:	Peak
Frequency (MHz)	Cable Loss (dB)	_	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m	I I imit	Polarization
3615.000	-31.2	32.40	0.00	41.80	43.00	74.00	-31.00	Vertical
4824.000	-30.4	34.40	0.00	40.80	44.80	74.00	-29.20	Vertical
5925.000	-29.1	34.70	0.00	39.00	44.60	74.00	-29.40	Vertical
7236.000	-27.9	35.80	0.00	37.30	45.20	74.00	-28.80	Vertical
9648.000	-25.0	37.20	0.00	35.90	48.10	74.00	-25.90	Vertical
12555.000	-22.9	38.00	0.00	33.90	49.00	74.00	-25.00	Vertical
3615.000	-31.2	32.40	0.00	45.60	46.80	74.00	-27.20	Horizontal
4824.000	-30.4	34.40	0.00	41.90	45.90	74.00	-28.10	Horizontal
6000.000	-28.8	34.90	0.00	39.80	45.90	74.00	-28.10	Horizontal
7236.000	-27.9	35.80	0.00	38.30	46.20	74.00	-27.80	Horizontal
9648.000	-25.0	37.20	0.00	34.90	47.10	74.00	-26.90	Horizontal
12300.000	-22.5	37.90	0.00	33.50	48.90	74.00	-25.10	Horizontal

Test mode:	802	.11b	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3645.000	-31.20	32.50	0.00	46.30	47.60	74.00	-26.40	Vertical
4874.000	-30.40	34.50	0.00	40.90	45.00	74.00	-29.00	Vertical
5925.000	-29.10	34.70	0.00	39.30	44.90	74.00	-29.10	Vertical
7311.000	-27.90	35.70	0.00	38.70	46.50	74.00	-27.50	Vertical
9748.000	-25.00	37.30	0.00	35.70	48.00	74.00	-26.00	Vertical
12135.000	-23.00	37.90	0.00	33.90	48.80	74.00	-25.20	Vertical
3840.000	-31.20	33.30	0.00	38.90	41.00	74.00	-33.00	Horizontal
4874.000	-30.40	34.50	0.00	39.80	43.90	74.00	-30.10	Horizontal
5985.000	-28.90	34.80	0.00	38.50	44.40	74.00	-29.60	Horizontal
7311.000	-27.90	35.70	0.00	37.00	44.80	74.00	-29.20	Horizontal
9748.000	-25.00	37.30	0.00	33.80	46.10	74.00	-27.90	Horizontal
12120.000	-23.00	37.90	0.00	33.90	48.80	74.00	-25.20	Horizontal

Report No.: SZEM150900579803

Page: 90 of 115

Test mode:	802	.11b	Test ch	annel:	Highest	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3690.000	-31.10	32.70	0.00	46.20	47.80	74.00	-26.20	Vertical
4924.000	-30.30	34.60	0.00	39.30	43.60	74.00	-30.40	Vertical
6015.000	-28.90	34.90	0.00	38.70	44.70	74.00	-29.30	Vertical
7386.000	-27.90	35.70	0.00	38.70	46.50	74.00	-27.50	Vertical
9848.000	-24.20	37.30	0.00	34.60	47.70	74.00	-26.30	Vertical
12105.000	-23.00	37.90	0.00	34.30	49.20	74.00	-24.80	Vertical
3690.000	-31.10	32.70	0.00	49.40	51.00	74.00	-23.00	Horizontal
4924.000	-30.30	34.60	0.00	38.70	43.00	74.00	-31.00	Horizontal
5955.000	-29.00	34.70	0.00	38.60	44.30	74.00	-29.70	Horizontal
7386.000	-27.90	35.70	0.00	40.20	48.00	74.00	-26.00	Horizontal
9848.000	-24.20	37.30	0.00	34.60	47.70	74.00	-26.30	Horizontal
12045.000	-23.10	37.80	0.00	34.50	49.20	74.00	-24.80	Horizontal

Test mode:	802	.11g	Test cha	annel:	Lowest	Remark:		Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3615.000	-31.20	32.40	0.00	43.00	44.20	74.00	-29.80	Vertical
4824.000	-30.40	34.40	0.00	40.70	44.70	74.00	-29.30	Vertical
6015.000	-28.90	34.90	0.00	39.10	45.10	74.00	-28.90	Vertical
7236.000	-27.90	35.80	0.00	38.50	46.40	74.00	-27.60	Vertical
9648.000	-25.00	37.20	0.00	35.30	47.50	74.00	-26.50	Vertical
11895.000	-23.10	37.70	0.00	34.20	48.80	74.00	-25.20	Vertical
3615.000	-31.20	32.40	0.00	47.30	48.50	74.00	-25.50	Horizontal
4824.000	-30.40	34.40	0.00	40.80	44.80	74.00	-29.20	Horizontal
6000.000	-28.80	34.90	0.00	38.90	45.00	74.00	-29.00	Horizontal
7236.000	-27.90	35.80	0.00	40.20	48.10	74.00	-25.90	Horizontal
9648.000	-25.00	37.20	0.00	36.20	48.40	74.00	-25.60	Horizontal
12015.000	-23.10	37.80	0.00	34.30	49.00	74.00	-25.00	Horizontal

Report No.: SZEM150900579803

Page: 91 of 115

Test mode:	8	302.11g	Т	Test channel:		Middle	Remar	k:	Peak
Frequency (MHz)	Cable Loss (dB)	Facto	r Fa	eamp actor dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3645.000	-31.2	0 32.50) 0	.00	43.20	44.50	74.00	-29.50	Vertical
4874.000	-30.4	0 34.50) 0	.00	38.70	42.80	74.00	-31.20	Vertical
5895.000	-29.2	0 34.60) 0	.00	39.00	44.40	74.00	-29.60	Vertical
7311.000	-27.9	0 35.70	0	.00	40.20	48.00	74.00	-26.00	Vertical
9748.000	-25.0	0 37.30) 0	.00	38.10	50.40	74.00	-23.60	Vertical
12555.000	-22.9	0 38.00) 0	.00	34.30	49.40	74.00	-24.60	Vertical
3645.000	-31.2	0 32.50	0	.00	45.70	47.00	74.00	-27.00	Horizontal
4874.000	-30.4	0 34.50	0	.00	40.00	44.10	74.00	-29.90	Horizontal
5955.000	-29.0	0 34.70) 0	.00	38.40	44.10	74.00	-29.90	Horizontal
7311.000	-27.9	0 35.70) 0	.00	43.00	50.80	74.00	-23.20	Horizontal
9748.000	-25.0	0 37.30) 0	.00	38.00	50.30	74.00	-23.70	Horizontal
12630.000	-23.0	0 38.10	0	.00	34.90	50.00	74.00	-24.00	Horizontal

Test mode:	802	.11g	Test ch	annel:	Highest	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3690.000	-31.10	32.70	0.00	43.00	44.60	74.00	-29.40	Vertical
4924.000	-30.30	34.60	0.00	39.90	44.20	74.00	-29.80	Vertical
6120.000	-29.20	35.00	0.00	38.80	44.60	74.00	-29.40	Vertical
7386.000	-27.90	35.70	0.00	42.20	50.00	74.00	-24.00	Vertical
9848.000	-24.20	37.30	0.00	37.10	50.20	74.00	-23.80	Vertical
12255.000	-22.60	37.90	0.00	33.70	49.00	74.00	-25.00	Vertical
3690.000	-31.10	32.70	0.00	44.60	46.20	74.00	-27.80	Horizontal
4924.000	-30.30	34.60	0.00	39.90	44.20	74.00	-29.80	Horizontal
5925.000	-29.10	34.70	0.00	40.60	46.20	74.00	-27.80	Horizontal
7386.000	-27.90	35.70	0.00	45.50	53.30	74.00	-20.70	Horizontal
9848.000	-24.20	37.30	0.00	36.00	49.10	74.00	-24.90	Horizontal
12645.000	-23.10	38.10	0.00	34.20	49.20	74.00	-24.80	Horizontal

Report No.: SZEM150900579803

Page: 92 of 115

Test mode:	8	302.	11n(HT20)	Test cha	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	Cabl Loss (dB)	s	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3615.000	-31.2	20	32.40	0.00	41.10	42.30	74.00	-31.70	Vertical
4824.000	-30.4	10	34.40	0.00	40.30	44.30	74.00	-29.70	Vertical
6045.000	-29.0	00	35.00	0.00	39.10	45.10	74.00	-28.90	Vertical
7236.000	-27.9	90	35.80	0.00	39.90	47.80	74.00	-26.20	Vertical
9648.000	-25.0	00	37.20	0.00	39.50	51.70	74.00	-22.30	Vertical
12525.000	-22.9	90	38.00	0.00	33.80	48.90	74.00	-25.10	Vertical
3615.000	-31.2	20	32.40	0.00	46.30	47.50	74.00	-26.50	Horizontal
4824.000	-30.4	10	34.40	0.00	41.20	45.20	74.00	-28.80	Horizontal
5985.000	-28.9	90	34.80	0.00	38.60	44.50	74.00	-29.50	Horizontal
7236.000	-27.9	90	35.80	0.00	41.70	49.60	74.00	-24.40	Horizontal
9648.000	-25.0	00	37.20	0.00	39.10	51.30	74.00	-22.70	Horizontal
12645.000	-23.1	0	38.10	0.00	34.50	49.50	74.00	-24.50	Horizontal

Test mode:	802	.11n(HT20)	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3645.000	-31.20	32.50	0.00	42.80	44.10	74.00	-29.90	Vertical
4874.000	-30.40	34.50	0.00	39.10	43.20	74.00	-30.80	Vertical
6030.000	-28.90	34.90	0.00	38.60	44.60	74.00	-29.40	Vertical
7311.000	-27.90	35.70	0.00	40.80	48.60	74.00	-25.40	Vertical
9748.000	-25.00	37.30	0.00	36.90	49.20	74.00	-24.80	Vertical
12645.000	-23.10	38.10	0.00	34.00	49.00	74.00	-25.00	Vertical
3645.000	-31.20	32.50	0.00	47.00	48.30	74.00	-25.70	Horizontal
4874.000	-30.40	34.50	0.00	39.20	43.30	74.00	-30.70	Horizontal
6000.000	-28.80	34.90	0.00	39.00	45.10	74.00	-28.90	Horizontal
7311.000	-27.90	35.70	0.00	45.20	53.00	74.00	-21.00	Horizontal
9748.000	-25.00	37.30	0.00	38.80	51.10	74.00	-22.90	Horizontal
12630.000	-23.00	38.10	0.00	34.10	49.20	74.00	-24.80	Horizontal

Report No.: SZEM150900579803

Page: 93 of 115

Test mode:		802	.11n(HT20)	Test ch	annel:	Highest	Remark	:	Peak
Frequency (MHz)	Cal Lo: (df	SS	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3690.000	-31.	.10	32.70	0.00	43.10	44.70	74.00	-29.30	Vertical
4924.000	-30.	.30	34.60	0.00	39.30	43.60 74.00		-30.40	Vertical
6030.000	-28.	.90	34.90	0.00	38.70	44.70 74.00		-29.30	Vertical
7386.000	-27.	.90	35.70	0.00	41.70	49.50	74.00	-24.50	Vertical
9848.000	-24.	.20	37.30	0.00	35.60	48.70	74.00	-25.30	Vertical
12660.000	-23.	.20	38.10	0.00	34.30	49.20	74.00	-24.80	Vertical
3690.000	-31.	.10	32.70	0.00	46.10	47.70	74.00	-26.30	Horizontal
4924.000	-30.	.30	34.60	0.00	39.40	43.70	74.00	-30.30	Horizontal
5910.000	-29.	.20	34.60	0.00	39.00	44.40	74.00	-29.60	Horizontal
7386.000	-27.	.90	35.70	0.00	45.80	53.60	74.00	-20.40	Horizontal
9848.000	-24.	.20	37.30	0.00	35.10	48.20	74.00	-25.80	Horizontal
12330.000	-22.	.60	37.90	0.00	33.40	48.70	74.00	-25.30	Horizontal

Test mode:		802	.11n(HT40)	Test ch	annel:	Lowest	Remark	:	Peak
Frequency (MHz)	_	ble ss B)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3630.000	-31	.20	32.50	0.00	41.90	43.20	74.00	-30.80	Vertical
4844.000	-30	.40	34.50	0.00	39.30	43.40	74.00	-30.60	Vertical
6000.000	-28	.80	34.90	0.00	38.10	44.20	74.00	-29.80	Vertical
7266.000	-27	.90	35.70	0.00	38.70	46.50	74.00	-27.50	Vertical
9688.000	-25	.00	37.20	0.00	37.00	49.20	74.00	-24.80	Vertical
12645.000	-23	.10	38.10	0.00	34.20	49.20	74.00	-24.80	Vertical
3630.000	-31	.20	32.50	0.00	46.20	47.50	74.00	-26.50	Horizontal
4844.000	-30	.40	34.50	0.00	41.90	46.00	74.00	-28.00	Horizontal
6045.000	-29	.00	35.00	0.00	38.90	44.90	74.00	-29.10	Horizontal
7266.000	-27	.90	35.70	0.00	40.80	48.60	74.00	-25.40	Horizontal
9688.000	-25	.00	37.20	0.00	39.10	51.30	74.00	-22.70	Horizontal
12075.000	-23	.10	37.80	0.00	34.10	48.80	74.00	-25.20	Horizontal

Report No.: SZEM150900579803

Page: 94 of 115

Test mode:	8	802.	11n(HT40)	Test ch	annel:	Middle	Remark	:	Peak
Frequency (MHz)	Cabl Loss (dB)	s	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
3645.000	-31.2	20	32.50	0.00	42.00	43.30	74.00	-30.70	Vertical
4874.000	-30.4	10	34.50	0.00	39.60	43.70	74.00	-30.30	Vertical
6045.000	-29.0	00	35.00	0.00	39.20	45.20	74.00	-28.80	Vertical
7311.000	-27.9	90	35.70	0.00	40.70	48.50	74.00	-25.50	Vertical
9748.000	-25.0	00	37.30	0.00	37.60	49.90	74.00	-24.10	Vertical
12525.000	-22.9	90	38.00	0.00	35.30	50.40	74.00	-23.60	Vertical
3645.000	-31.2	20	32.50	0.00	45.70	47.00	74.00	-27.00	Horizontal
4874.000	-30.4	10	34.50	0.00	39.80	43.90	74.00	-30.10	Horizontal
6000.000	-28.8	30	34.90	0.00	38.80	44.90	74.00	-29.10	Horizontal
7311.000	-27.9	90	35.70	0.00	41.40	49.20	74.00	-24.80	Horizontal
9748.000	-25.0	00	37.30	0.00	37.30	49.60	74.00	-24.40	Horizontal
12630.000	-23.0	00	38.10	0.00	34.60	49.70	74.00	-24.30	Horizontal

Test mode:		802	.11n(HT40)	Test ch	annel:	Highest		Remark		Peak
Frequency (MHz)	Cal Lo (dl	SS	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)		it Line suV/m)	Over Limit (dB)	Polarization
3675.000	-31	.20	32.60	0.00	41.20	42.60	7	4.00	-31.40	Vertical
4904.000	-30	.30	34.60	0.00	39.00	43.30	7	4.00	-30.70	Vertical
6000.000	-28	.80	34.90	0.00	38.20	44.30	7	4.00	-29.70	Vertical
7356.000	-27	.90	35.70	0.00	38.90	46.70	7	4.00	-27.30	Vertical
9808.000	-24	.50	37.30	0.00	36.70	49.50	7	4.00	-24.50	Vertical
12630.000	-23	.00	38.10	0.00	34.20	49.30	7	4.00	-24.70	Vertical
3675.000	-31	.20	32.60	0.00	45.30	46.70	7	4.00	-27.30	Horizontal
4904.000	-30	.30	34.60	0.00	39.40	43.70	7	4.00	-30.30	Horizontal
6000.000	-28	.80	34.90	0.00	39.00	45.10	7	4.00	-28.90	Horizontal
7356.000	-27	.90	35.70	0.00	41.40	49.20	7	4.00	-24.80	Horizontal
9808.000	-24	.50	37.30	0.00	36.50	49.30	7	4.00	-24.70	Horizontal
12645.000	-23	.10	38.10	0.00	34.50	49.50	7	4.00	-24.50	Horizontal

Report No.: SZEM150900579803

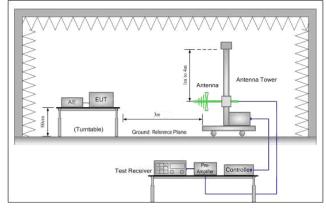
Page: 95 of 115

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.



Report No.: SZEM150900579803

Page: 96 of 115

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2009	ANSI C63.10 2009								
Test Site:	Measurement Distance: 3m	n (Semi-Anechoic Chambe	er)							
Limit:	Frequency	Frequency Limit (dBuV/m @3m) Remark								
	30MHz-88MHz									
	88MHz-216MHz	43.5	Quasi-peak Value							
	216MHz-960MHz	46.0	Quasi-peak Value							
	960MHz-1GHz	54.0	Quasi-peak Value							
	Above 1GHz	54.0	Average Value							
	74.0 Peak Value									
Test Setup:										

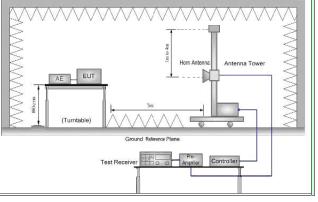


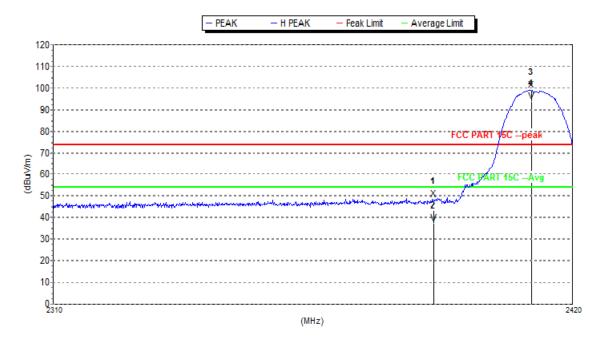
Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM150900579803

Page: 97 of 115

Test Procedure:	a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel
	g. Test the EUT in the lowest channel, the Highest channel
	h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.
	Transmitting mode.
Final Test Mode:	Transmitting mode.
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20); 13.5Mbps of rate is the worst case of 802.11n(HT40).
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details.
Test Results:	Pass

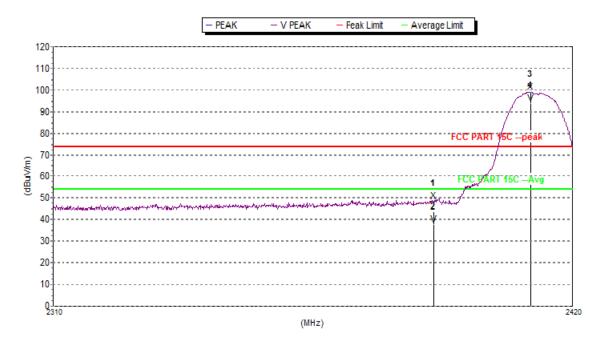


Report No.: SZEM150900579803

Page: 98 of 115

Test plot as follows:

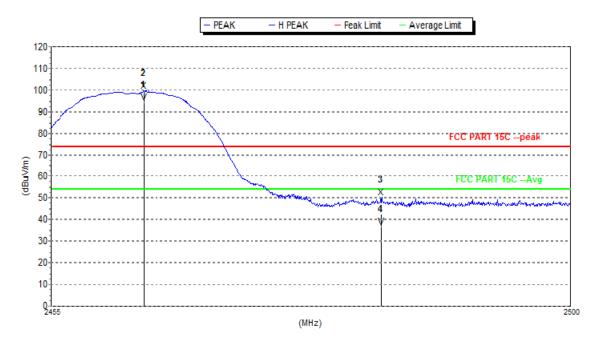
802.11b



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	48.7	74.0	25.3	32.5	0.0	-19.3	Н
2 F	2410.980	99.3	74.0	-25.3	32.6	0.0	-19.3	Н
Avg								
1	2390	37.4	54.0	16.6	32.5	0.0	-19.3	Н
2 F	2410.980	94.0	54.0	-40.0	32.6	0.0	-19.3	Н

Report No.: SZEM150900579803

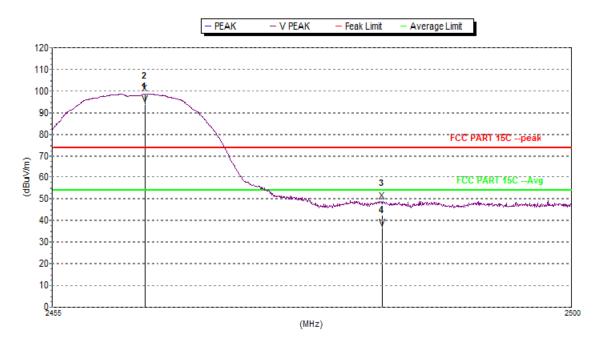
Page: 99 of 115



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	48.7	74.0	25.3	32.5	0.0	-19.3	٧
2 F	2410.870	99.3	74.0	-25.3	32.6	0.0	-19.3	٧
Avg								
1	2390	37.7	54.0	16.3	32.5	0.0	-19.3	٧
2 F	2410.870	94.1	54.0	-40.1	32.6	0.0	-19.3	٧

Report No.: SZEM150900579803

Page: 100 of 115

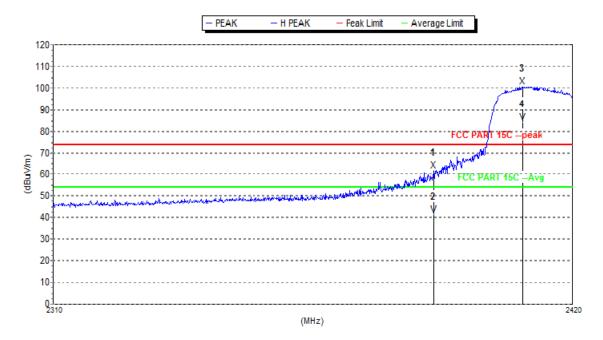


Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2462.965	99.5	74.0	-25.5	32.5	0.0	-19.2	Н
2	2483.5	50.3	74.0	23.7	32.5	0.0	-19.1	Н
Avg								
1 F	2462.965	94.5	54.0	-40.5	32.5	0.0	-19.2	Н
2	2483.5	36.7	54.0	17.3	32.5	0.0	-19.1	Н

Report No.: SZEM150900579803

Page: 101 of 115

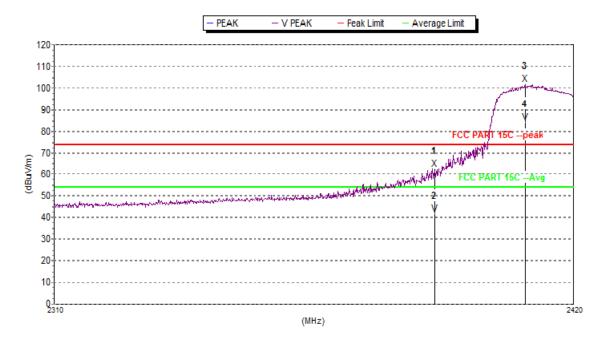
Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2462.965	98.9	74.0	-24.9	32.5	0.0	-19.2	٧
2	2483.5	49.1	74.0	24.9	32.5	0.0	-19.1	٧
Avg								
1 F	2462.965	94.0	54.0	-40.0	32.5	0.0	-19.2	٧
2	2483.5	36.4	54.0	17.6	32.5	0.0	-19.1	٧



Report No.: SZEM150900579803

Page: 102 of 115

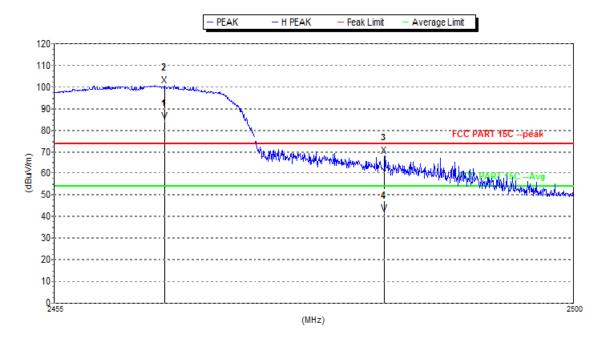
802.11g



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	62.0	74.0	12.0	32.5	0.0	-19.3	Н
2 F	2409.110	100.6	74.0	-26.6	32.6	0.0	-19.3	Н
Avg								
1	2390	41.4	54.0	12.6	32.5	0.0	-19.3	Н
2 F	2409.110	84.1	54.0	-30.1	32.6	0.0	-19.3	Н

Report No.: SZEM150900579803

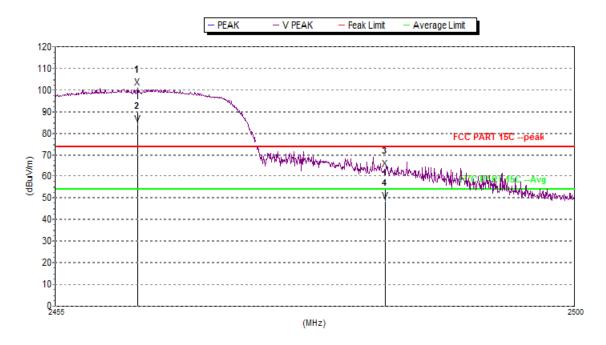
Page: 103 of 115



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	62.8	74.0	11.2	32.5	0.0	-19.3	٧
2 F	2409.440	101.9	74.0	-27.9	32.6	0.0	-19.3	٧
Avg								
1	2390	41.9	54.0	12.1	32.5	0.0	-19.3	٧
2 F	2409.440	84.2	54.0	-30.2	32.6	0.0	-19.3	٧

Report No.: SZEM150900579803

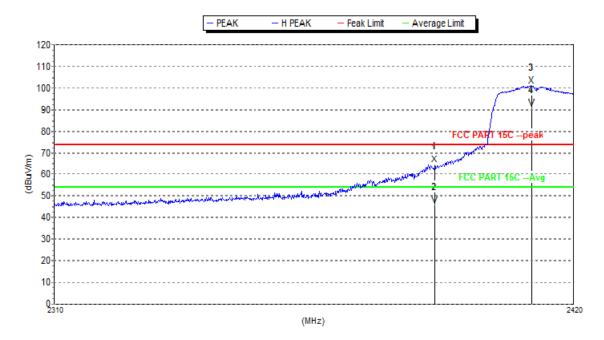
Page: 104 of 115



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2464.540	100.9	74.0	-26.9	32.5	0.0	-19.2	Н
2	2483.5	68.3	74.0	5.7	32.5	0.0	-19.1	Н
Avg								
1 F	2464.540	84.2	54.0	-30.2	32.5	0.0	-19.2	Н
2	2483.5	41.5	54.0	12.5	32.5	0.0	-19.1	Н

Report No.: SZEM150900579803

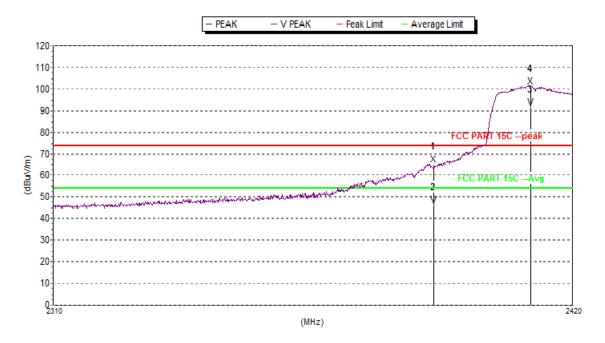
Page: 105 of 115


Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2462.110	101.0	74.0	-27.0	32.5	0.0	-19.2	٧
2	2483.5	63.4	74.0	10.6	32.5	0.0	-19.1	٧
Avg								
1 F	2462.110	84.4	54.0	-30.4	32.5	0.0	-19.2	٧
2	2483.5	48.4	54.0	5.6	32.5	0.0	-19.1	٧

Report No.: SZEM150900579803

Page: 106 of 115

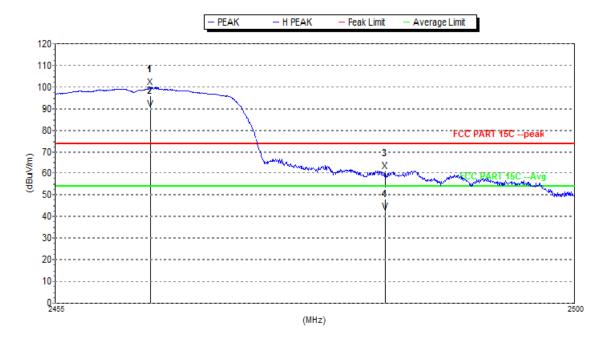
802.11n(HT20)



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	64.6	74.0	9.4	32.5	0.0	-19.3	Н
2 F	2410.870	101.1	74.0	-27.1	32.5	0.0	-19.3	Н
Avg								
1	2390	45.7	54.0	8.3	32.5	0.0	-19.3	
2 F	2410.870	90.9	54.0	-36.9	32.6	0.0	-19.3	Н

Report No.: SZEM150900579803

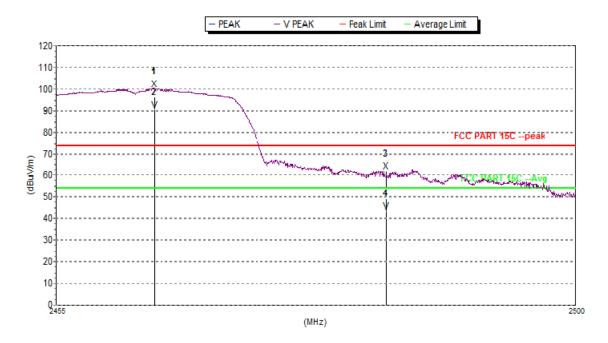
Page: 107 of 115



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	65.2	74.0	8.8	32.5	0.0	-19.3	٧
2 F	2410.870	101.3	74.0	-27.3	32.6	0.0	-19.3	٧
Avg								
1	2390	46.3	54.0	7.7	32.5	0.0	-19.3	
2 F	2410.870	91.4	54.0	-37.4	32.6	0.0	-19.3	٧

Report No.: SZEM150900579803

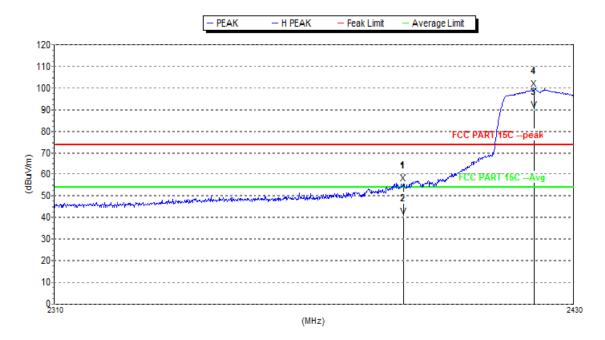
Page: 108 of 115



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2463.190	99.8	74.0	-25.8	32.5	0.0	-19.2	Н
2	2483.5	61.2	74.0	12.8	32.5	0.0	-19.2	Н
Avg								
1 F	2463.190	89.8	54.0	-35.8	32.5	0.0	-19.2	
2	2483.5	42.2	54.0	11.8	32.5	0.0	-19.1	Н

Report No.: SZEM150900579803

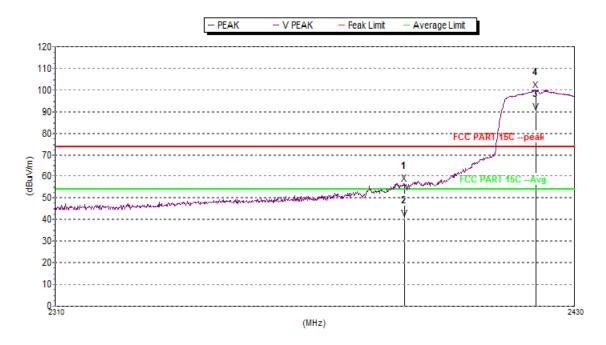
Page: 109 of 115


Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2463.460	100.1	74.0	-26.1	32.5	0.0	-19.2	٧
2	2483.5	62.0	74.0	12.0	32.5	0.0	-19.2	٧
Avg								
1 F	2463.460	90.3	54.0	-36.3	32.5	0.0	-19.2	
2	2483.5	43.5	54.0	10.5	32.5	0.0	-19.1	٧

Report No.: SZEM150900579803

Page: 110 of 115

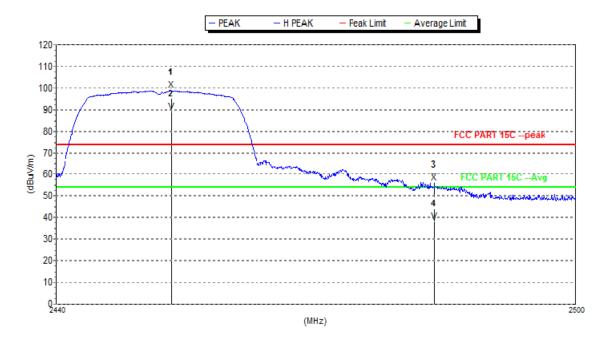
802.11n(HT40)



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	55.6	74.0	18.4	32.5	0.0	-19.3	Н
2 F	2420.520	99.4	74.0	-25.4	32.5	0.0	-19.4	Н
Avg								
1	2390	40.5	54.0	13.5	32.5	0.0	-19.3	
2 F	2420.520	89.7	54.0	-35.7	32.5	0.0	-19.4	Н

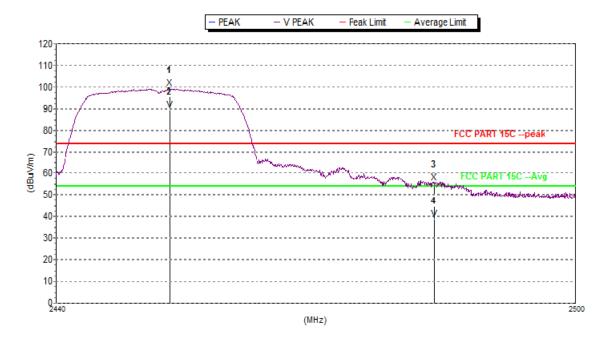
Report No.: SZEM150900579803

Page: 111 of 115


Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1	2390	56.4	74.0	17.6	32.5	0.0	-19.3	٧
2 F	2420.880	99.9	74.0	-25.9	32.5	0.0	-19.4	٧
Avg								
1	2390	40.6	54.0	13.4	32.5	0.0	-19.3	
2 F	2420.880	90.1	54.0	-36.1	32.5	0.0	-19.4	٧

Report No.: SZEM150900579803

Page: 112 of 115



Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2453.260	99.1	74.0	-25.1	32.5	0.0	-19.2	Н
2	2483.5	56.2	74.0	17.8	32.5	0.0	-19.1	Н
Avg								
1 F	2453.260	89.1	54.0	-35.1	32.5	0.0	-19.2	Н
2	2483.5	38.1	54.0	15.9	32.5	0.0	-19.1	Н

Report No.: SZEM150900579803

Page: 113 of 115

Mk.	Freq.(MHz)	Level(dBuV/m)	Limit(dBuV/m)	Margin(dB)	Ant.F.(dB/m)	Amp.G.(dB)	Cbl.L.(dB)	Pol.
Peak:								
1 F	2453.080	99.4	74.0	-25.4	32.5	0.0	-19.2	٧
2	2483.5	55.9	74.0	18.1	32.5	0.0	-19.1	٧
Avg								
1 F	2453.080	89.5	54.0	-35.5	32.5	0.0	-19.2	
2	2483.5	38.8	54.0	15.2	32.5	0.0	-19.1	٧

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Report No.: SZEM150900579803

Page: 114 of 115

7 Photographs - EUT Test Setup

Test model No.: iData 50

7.1 Conducted Emission

7.2 Radiated Emission

Report No.: SZEM150900579803

Page: 115 of 115

7.3 Radiated Spurious Emission

8 Photographs - EUT Constructional Details

Test model No.: iData 50

Refer to Report No. SZEM150900579801 for EUT external and internal photos.