

74.00 -22.66

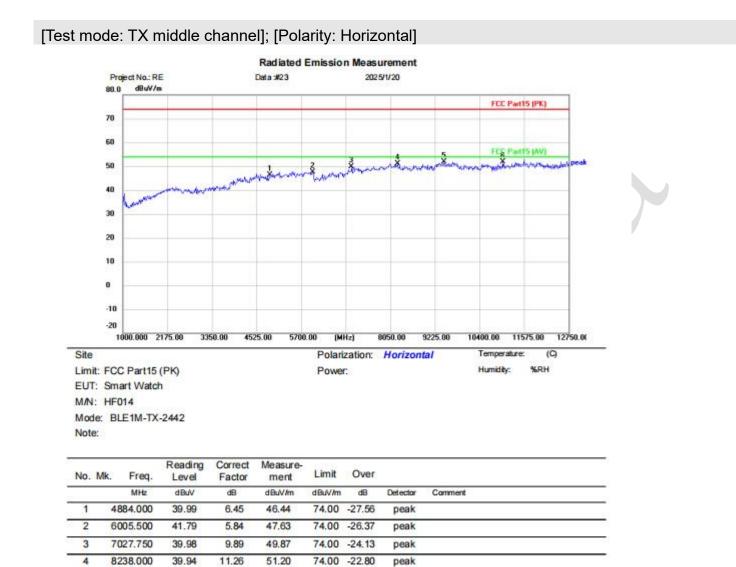
peak

Test Result: Pass

6

11422.25

36.94


14.40

51.34

Blue Asia of technical Services (Shenzhen) Co., Ltd.

Page 32 of 73

Test Result: Pass

9460.000

11011.00

5

6

38.91

38.87

12.97

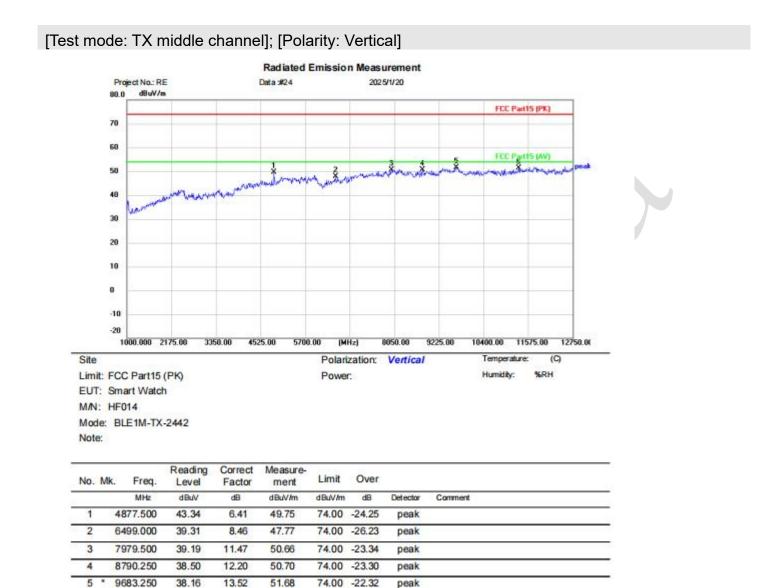
13.00

51.88

51.87

74.00 -22.12

74.00 -22.13


peak

peak

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 33 of 73

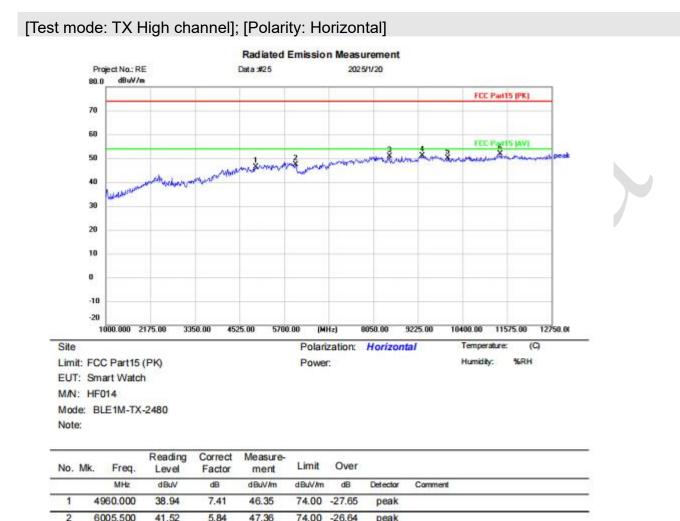
Test Result: Pass

11328.25

37.80

13.47

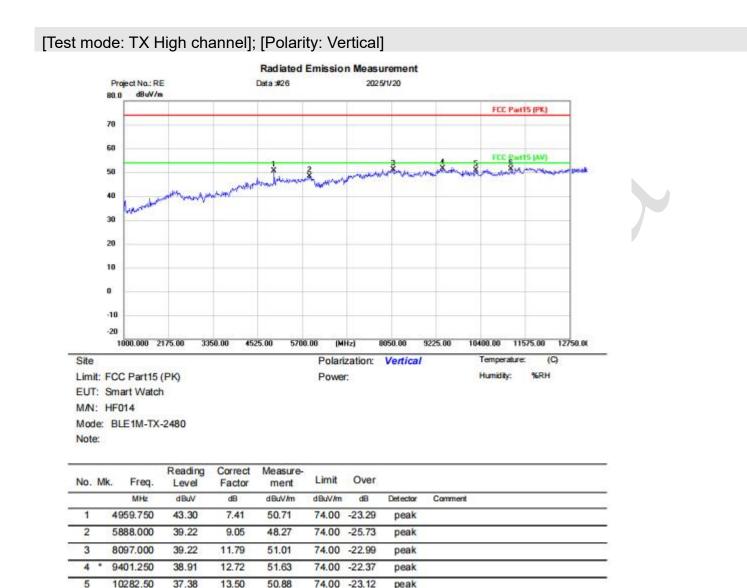
51.27


74.00 -22.73

peak

6

Blue Asia of technical Services (Shenzhen) Co., Ltd.



5	9342.500 10012.25	37.74 36.83	13.35	51.09 50.06	-22.91	peak	
8 *	11398.75	37.61	14.26	51.87	-22.13	peak	

Test Result: Pass

Blue Asia of technical Services (Shenzhen) Co., Ltd.

Test Result: Pass

11210.75

6

Blue Asia of technical Services (Shenzhen) Co., Ltd.

13.26

51.27

74.00 -22.73

peak

38.01

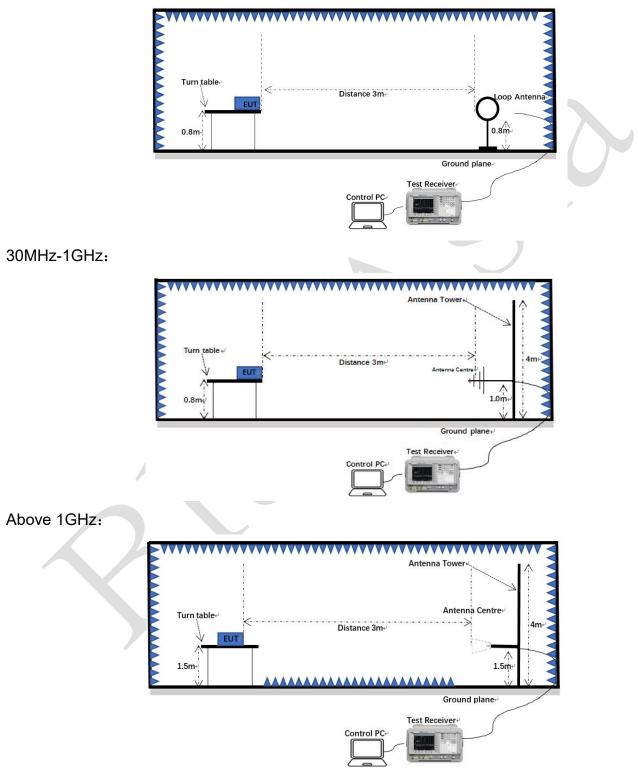
6.9 Radiated emissions which fall in the restricted bands

Test Standard	47 CFR Part 15, Subpart C 15.247(d)
Test Method	ANSI C63.10-2013 Cluase 6.12
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ

6.9.1 Limit

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.


Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 37 of 73

6.9.2 Test setup

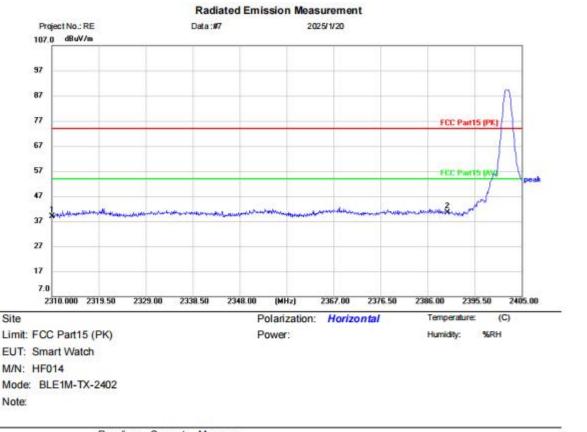
Below 1GHz:

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

6.9.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

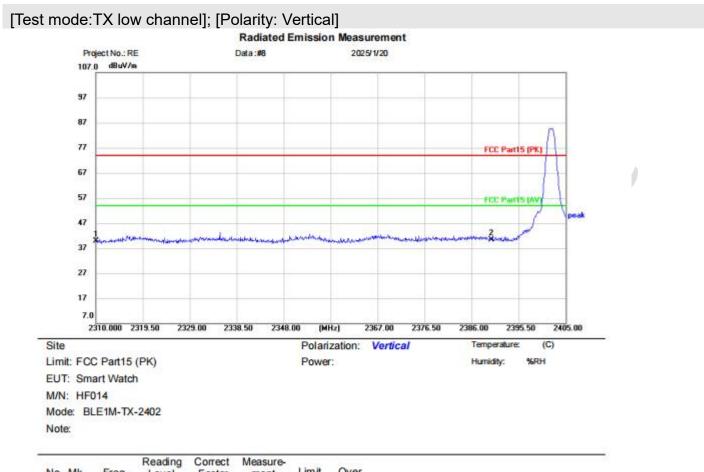
Note 1: Level (dBuV) = Reading (dBuV) + Factor (dB/m)


Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

6.9.4 Test data

Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M mode which it is worse case. [Test mode: TX low channel]; [Polarity: Horizontal]


No.	M	k. Freq.	Reading Level		Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBu\//m	dB	Detector	Comment	
1		2310.000	41.86	-2.87	38.99	74.00	-35.01	peak		
2	•	2390.000	42.76	-2.44	40.32	74.00	-33.68	peak		
_	_									

Test Result: Pass

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

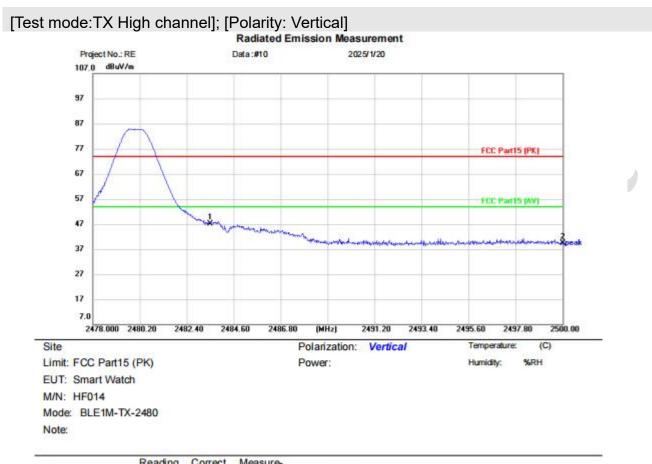
Page 40 of 73

No.	M	k. Freq.	Level	Factor	ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuWm	dB	Detector	Comment	
1		2310.000	42.80	-2.87	39.93	74.00	-34.07	peak		
2	*	2390.000	42.75	-2.44	40.31	74.00	-33.69	peak		

Test Result: Pass

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Page 41 of 73


No.	Mk	. Freq.	Reading Level	Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBu√/m	dB	Detector	Comment	
1	*	2483.500	49.38	-2.91	46.47	74.00	-27.53	peak		
2		2500.000	44.15	-3.00	41.15	74.00	-32.85	peak		

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Page 42 of 73

Mł	k. Freq.		Factor	ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
* 0	2483.500	49.99	-2.91	47.08	74.00	-26.92	peak		
	2500.000	42.50	-3.00	39.50	74.00	-34.50	peak		
		MHz * 2483.500	Mk. Freq. Level MHz dBuV * 2483.500 49.99	Mk. Freq. Level Factor MHz dBuV dB * 2483.500 49.99 -2.91	Mk. Freq. Level Factor ment MHz dBuV dB dBuV/m * 2483.500 49.99 -2.91 47.08	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV/m dBuV/m * 2483.500 49.99 -2.91 47.08 74.00	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB * 2483.500 49.99 -2.91 47.08 74.00 -26.92	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector * 2483.500 49.99 -2.91 47.08 74.00 -26.92 peak	Mk. Freq. Level Factor ment Limit Over MHz dBuV dB dBuV/m dBuV/m dB Detector Comment * 2483.500 49.99 -2.91 47.08 74.00 -26.92 peak

Test Result: Pass

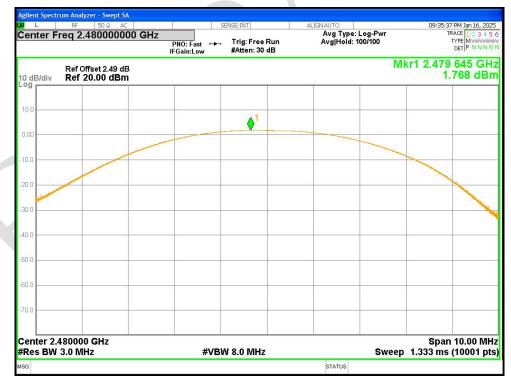
Blue Asia of technical Services (Shenzhen) Co., Ltd.

7 Appendix A

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	1.71	30	Pass
NVNT	BLE 1M	2442	Ant1	2.645	30	Pass
NVNT	BLE 1M	2480	Ant1	1.768	30	Pass
NVNT	BLE 2M	2402	Ant1	2.585	30	Pass
NVNT	BLE 2M	2442	Ant1	2.746	30	Pass
NVNT	BLE 2M	2480	Ant1	1.852	30	Pass

7.1 Maximum Conducted Output Power

Power NVNT BLE 1M 2442MHz Ant1


Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 44 of 73

Power NVNT BLE 1M 2480MHz Ant1



Power NVNT BLE 2M 2402MHz Ant1

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 45 of 73

Power NVNT BLE 2M 2442MHz Ant1

Power NVNT BLE 2M 2480MHz Ant1

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 46 of 73

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 47 of 73

7.2-6dB Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.656	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.693	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.675	0.5	Pass
NVNT	BLE 2M	2402	Ant1	1.117	0.5	Pass
NVNT	BLE 2M	2442	Ant1	1.101	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.087	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

L RF 50Ω AC			ALIGNAUTO		09:32:59 PM Jan 16, 202
enter Freq 2.402000000	GHz #IFGain:Low	Center Freq: 2.4020000 Trig: Free Run #Atten: 30 dB	000 GHz Avg Hold: 100/100		dio Std: None dio Device: BTS
Ref Offset 2.28 dB dB/div Ref 22.28 dBm				Mkr3	2.402329 GH -3.6453 dBr
3		4			
8	Q ²	P.	3		
2			Norman		
1				man	
mannaphan	8			3 N N	Manyan
				9 9 F	2
7					
nter 2.402 GHz es BW 100 kHz		#VBW 300 ki	Hz		Span 2 MH Sweep 1.333 n
Occupied Bandwidth	1	Total Power	8.72 dBm		
1.0	0385 MHz				
	580 Hz	OBW Power	99.00 %		
Fransmit Freq Error					
	656.2 kHz	x dB	-6.00 dB		
Transmit Freq Error x dB Bandwidth	656.2 kHz	x dB	-6.00 dB		

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

Blue Asia of technical Services (Shenzhen) Co., Ltd.

Page 48 of 73

-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

Page 49 of 73

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1

Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481

Page 50 of 73

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 51 of 73

7.3 Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.0247
NVNT	BLE 1M	2442	Ant1	1.0250
NVNT	BLE 1M	2480	Ant1	1.0468
NVNT	BLE 2M	2402	Ant1	2.0332
NVNT	BLE 2M	2442	Ant1	2.0247
NVNT	BLE 2M	2480	Ant1	2.0244

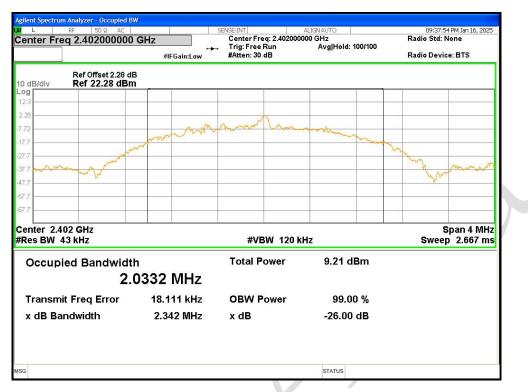
OBW NVNT BLE 1M 2402MHz Ant1

Center Freq 2.402000000	GHz #IFGain:Low	SENSE:INT Center Freq: 2.4020000 Trig: Free Run #Atten: 30 dB	ALIGNAUTO 00 GHz Avg Hold: 100/100	09:32:53 PM Jan 10 Radio Std: None Radio Device: BTS
Ref Offset 2.28 dE				
10 dB/div Ref 22.28 dBm				
2.28				
-7.72		mon	An	
-17.7	~~~		mont	
-27.7	and the second s	r		
-37.7	mod		har	many
-47.7 how how and				- more
-67.7				
Center 2.402 GHz #Res BW 30 kHz		#VBW 100 kH	Hz	Span 3 Sweep 3.33
Occupied Bandwidth		Total Power	9.77 dBm	
1.0	0247 MHz			
Transmit Freq Error	6.849 kHz	OBW Power	99.00 %	
x dB Bandwidth	1.221 MHz	x dB	-26.00 dB	
MSG			STATUS	
MSG			STATUS	

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 52 of 73

OBW NVNT BLE 1M 2480MHz Ant1

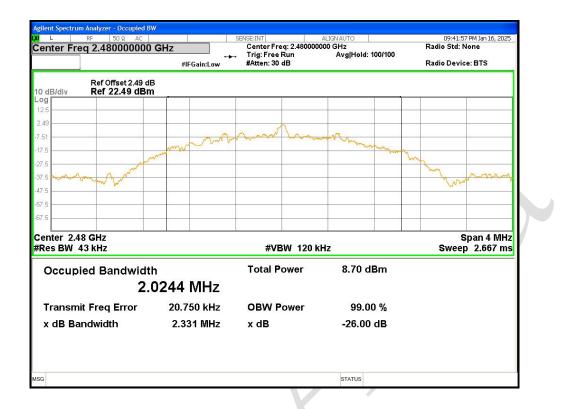


OBW NVNT BLE 2M 2402MHz Ant1

Blue Asia of technical Services (Shenzhen) Co., Ltd.

Page 53 of 73

OBW NVNT BLE 2M 2442MHz Ant1



OBW NVNT BLE 2M 2480MHz Ant1

Blue Asia of technical Services (Shenzhen) Co., Ltd.

Page 54 of 73

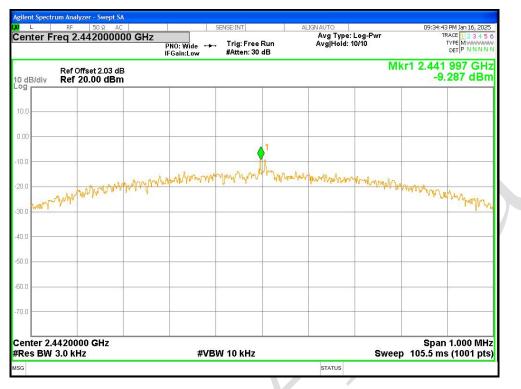
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 55 of 73

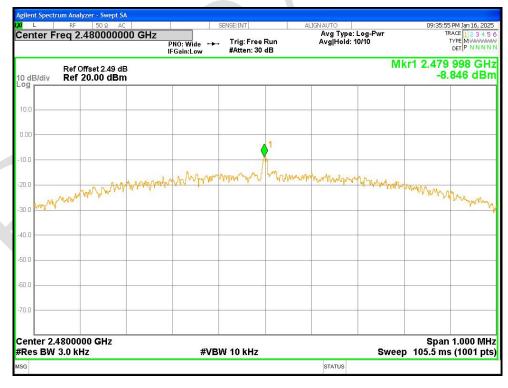
7.4 Power spectrum density

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-8.122	8	Pass
NVNT	BLE 1M	2442	Ant1	-9.287	8	Pass
NVNT	BLE 1M	2480	Ant1	-8.846	8	Pass
NVNT	BLE 2M	2402	Ant1	-8.982	8	Pass
NVNT	BLE 2M	2442	Ant1	-8.69	8	Pass
NVNT	BLE 2M	2480	Ant1	-9.434	8	Pass

PSD NVNT BLE 1M 2402MHz Ant1



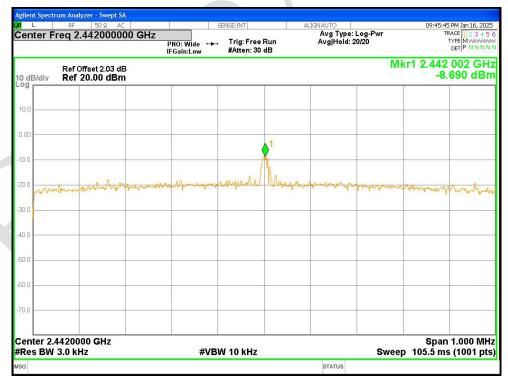
PSD NVNT BLE 1M 2442MHz Ant1


Blue Asia of technical Services (Shenzhen) Co., Ltd.

Page 56 of 73

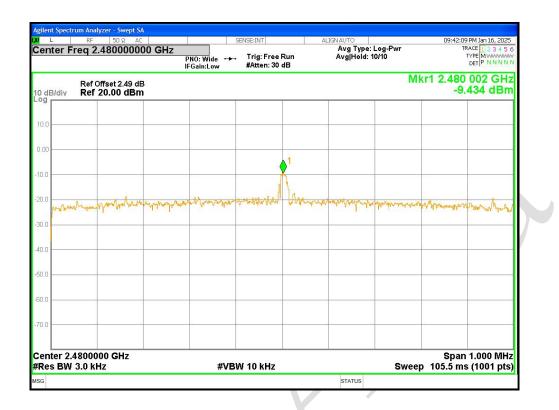
PSD NVNT BLE 1M 2480MHz Ant1

PSD NVNT BLE 2M 2402MHz Ant1


Blue Asia of Technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 57 of 73

PSD NVNT BLE 2M 2442MHz Ant1



PSD NVNT BLE 2M 2480MHz Ant1

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

Page 58 of 73

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 59 of 73

7.5 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-55.71	-20	Pass
NVNT	BLE 1M	2480	Ant1	-49.98	-20	Pass
NVNT	BLE 2M	2402	Ant1	-56.91	-20	Pass
NVNT	BLE 2M	2480	Ant1	-52.92	-20	Pass

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Page 60 of 73

Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

Blue Asia of technical Services (Shenzhen) Co., Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com