

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No...... CTA24082601102

FCC ID.:: 2ASJR-LYNXFLEET52L

Compiled by

(position+printed name+signature)... File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)... Project Engineer Xudong Zhang

Approved by

(position+printed name+signature)... RF Manager Eric Wang

Date of issue Sep. 23, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Globetracker, ApS

Address Strandgade 91, 4th floor DK-1401 Copenhagen K Denmark

Test specification:

Standard.....FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description: ML3 Asset Tracker

Trade Mark.....N/A

Manufacturer Globetracker, ApS

Model/Type referenceLYNXFLEET-52L

Listed ModelsN/A

Frequency 907MHz-923MHz

Ratings DC 3.7V From battery

Input: AC 12-36V, 50/60Hz

DC 9-18V

CTATESTIN

Result......PASS

CTA TESTIN

Report No.: CTA24082601102 Page 2 of 29

TEST REPORT

Equipment under Test : ML3 Asset Tracker

Model /Type : LYNXFLEET-52L

Listed Models : N/A

Applicant : Globetracker, ApS

Address : Strandgade 91, 4th floor DK-1401 Copenhagen K Denmark

Manufacturer : Globetracker, ApS

Address : Strandgade 91, 4th floor DK-1401 Copenhagen K Denmark

Test Result:	PASS
	1G

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 29 Report No.: CTA24082601102

Contents

			Contents	
	1_	TEST STANDARDS		<u>4</u>
	2	SUMMARY		<u> 5</u>
	1104	CI	STING	
	2.1	General Remarks	under Toot (EUT)	5
	2.1	Product Description		5
	2.3	Equipment Under Test		5
	2.4	Short description of the Equipment u	Inder Test (FIIT)	5
	2.5	EUT operation mode	mider rest (LOT)	6
	2.6	Block Diagram of Test Setup		6
	2.7	Related Submittal(s) / Grant (s)		6
TATI	2.8	Modifications		6
CAL	2.0	modifications		
ř				
	<u>3</u>	TEST ENVIRONMENT		<u> 7</u>
			GTATES!!	
	3.1	Address of the test laboratory	CIAIL	7
	3.2	Test Facility		25171
	3.3	Environmental conditions		7
	3.4	Summary of measurement results	CIA	8
	3.5	Statement of the measurement uncer	rtainty	8
	3.6	Equipments Used during the Test		9
				_
		TEST CONDITIONS AND DE		
	<u>4</u>	TEST CONDITIONS AND RE	:SULIS	<u> 11</u>
		TAIL		
	4.1	AC Power Conducted Emission		11
	4.2	Radiated Emissions and Band Edge	ES. CTATESTING	12
	4.3	Maximum Peak Output Power		18
	4.4	Power Spectral Density		19
	4.5	6dB Bandwidth	CTA	21
	4.6	Out-of-band Emissions		23
	4.7	Antenna Requirement		27
	= .NG	TEST SETUP PHOTOS OF 1	TUE EUT	28
	2	TEST SETUP PHOTOS OF I	INE EUI	Zo
	<u>6</u>	PHOTOS OF THE EUT		29
CTATE				
		CTA		
		CTATES!	ESTI	
			C V	
			CTATESTING CTAT	
			CTATILE CTATI	

Page 4 of 29 Report No.: CTA24082601102

1 TEST STANDARDS

CTATESTING

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices CTATE KDB558074 D01 V05r02: Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating Under §15.247

Page 5 of 29 Report No.: CTA24082601102

2 SUMMARY

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample		Sep. 16, 2024	GTING
Testing commenced on		Sep. 16, 2024	CTATES
Testing concluded on	:	Sep. 23, 2024	

2.2 Product Description

Product Description: ML3 Asset Tracker Model/Type reference: LYNXFLEET-52L Power supply: DC 3.7V From battery Input: AC 12-36V, 50/60Hz DC 9-18V PC information (Auxiliary test supplied by testing Lab): Testing sample ID: CTA240826011-1# (Engineer sample) (CTA240826011-2# (Normal sample)) Lora Modulation Technology: Hybrid system Operation frequency: 907MHz-923MHz Antenna type: Internal antenna Antenna gain: 0.00 dBi	2.2 Product Descrip	
Power supply: DC 3.7V From battery Input: AC 12-36V, 50/60Hz DC 9-18V PC information (Auxiliary test supplied by testing Lab): Testing sample ID: CTA240826011-1# (Engineer sample), CTA240826011-2# (Normal sample) Lora Modulation Technology: Hybrid system Operation frequency: 907MHz-923MHz Channel number: 3 Antenna type: Internal antenna	Product Description:	ML3 Asset Tracker
Power supply: Input: AC 12-36V, 50/60Hz DC 9-18V PC information (Auxiliary test supplied by testing Lab): Model: E470C Trade Mark: thinkpad Testing sample ID: CTA240826011-1# (Engineer sample), CTA240826011-2# (Normal sample) Lora Modulation Technology: Hybrid system Operation frequency: 907MHz-923MHz Channel number: 3 Antenna type: Internal antenna	Model/Type reference:	7611
(Auxiliary test supplied by testing Lab): Testing sample ID: CTA240826011-1# (Engineer sample), CTA240826011-2# (Normal sample) Lora Modulation Technology: Hybrid system Operation frequency: 907MHz-923MHz Channel number: 3 Antenna type: Internal antenna	CVIN	Input: AC 12-36V, 50/60Hz
Lora Modulation Technology: Hybrid system Operation frequency: 907MHz-923MHz Channel number: 3 Antenna type: Internal antenna	(Auxiliary test supplied by	
Modulation Technology: Hybrid system Operation frequency: 907MHz-923MHz Channel number: 3 Antenna type: Internal antenna	Testing sample ID:	
Operation frequency: 907MHz-923MHz Channel number: 3 Antenna type: Internal antenna	Lora	
Channel number: 3 Antenna type: Internal antenna	Modulation Technology:	Hybrid system
Antenna type: Internal antenna	Operation frequency:	907MHz-923MHz
	Channel number:	3 TES\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Antenna gain: 0.00 dBi	Antenna type:	Internal antenna
	Antenna gain:	0.00 dBi

2.3 Equipment Under Test

Power supply system utilised

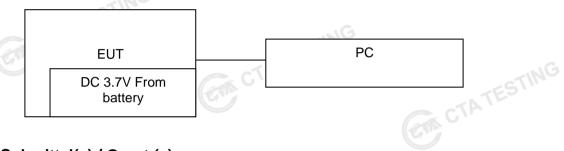
Power supply voltage	.(0	0	230V / 50 Hz	0	120V / 60Hz	
-57	10	0	12 V DC	0	24 V DC	
TATE		•	Other (specified in blank below)			

DC 3.7V From battery Input: AC 12-36V, 50/60Hz DC 9-18V

Short description of the Equipment under Test (EUT)

This is a ML3 Asset Tracker.

or to For more details, refer to the user's manual of the EUT. Report No.: CTA24082601102 Page 6 of 29


2.5 EUT operation mode

The Applicant provides communication tools software (Engineer mode) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 3 channels provided to the EUT and Channel 00/01/02 were selected to test.

Operation Frequency:

Channel	Frequency (MHz)
00	907
01	913
02	923

2.6 Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 Modifications

No modifications were implemented to meet testing criteria.

Page 7 of 29 Report No.: CTA24082601102

TEST ENVIRONMENT 3

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

tadiated Efficient.		
Temperature:		23 ° C
	Security .	CVI
Humidity:	CAL	44 %
	A paragraph	
Atmospheric pressure:		950-1050mbar

AC Main Conducted testing:

Temperature:	24 ° C
100	
Humidity:	47 %
ESTIN	
Atmospheric pressure:	950-1050mbar

050 4050	
950-1050mbar	
24 ° C	ATESTI
46 %	
950-1050mbar	
CTATESTING	
	46 % 950-1050mbar

Report No.: CTA24082601102 Page 8 of 29

Summary of measurement results

	Test Specification clause	Test case	Test Mode	Test Channel		ecorded Report	Test result
	§15.247(e)	Power spectral density	Hybrid system	✓ Lowest✓ Middle✓ Highest	Hybrid system	✓ Lowest✓ Middle✓ Highest	complies
	§15.247(a)(2)	Spectrum bandwidth – 6 dB bandwidth	Hybrid system	Lowest Middle Highest	Hybrid system	Lowest Middle Highest	complies
	§15.247(b)(3)	Maximum output Peak power	Hybrid system	✓ Lowest✓ Middle✓ Highest	Hybrid system	✓ Lowest✓ Middle✓ Highest	complies
CTATE	§15.247(d)	Band edge compliance conducted	Hybrid system	☑ Lowest☑ Highest	Hybrid system	☑ Lowest☑ Highest	complies
7	§15.205	Band edge compliance radiated	Hybrid system	☑ Lowest☑ Highest	Hybrid system	☑ Lowest☑ Highest	complies
	§15.247(d)	TX spurious emissions conducted	Hybrid system	✓ Lowest✓ Middle✓ Highest	Hybrid system	☑ Lowest☑ Middle☑ Highest	complies
	§15.247(d)	TX spurious emissions radiated	Hybrid system	✓ Lowest✓ Middle✓ Highest	Hybrid system	✓ Lowest✓ Middle✓ Highest	complies
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	Hybrid system	-/-	Hybrid system	-/-	complies
	§15.107(a) §15.207	Conducted Emissions < 30 MHz	Hybrid system	1NG -/-	Hybrid system	-/-	N/A
		rement uncertainty is all test mode and reco		n the test result. se in report		TESTING	
	3.5 Statemer	nt of the measure	ment unce	rtainty	GW CV		

Remark:

- 1. The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM):Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)

Page 9 of 29 Report No.: CTA24082601102

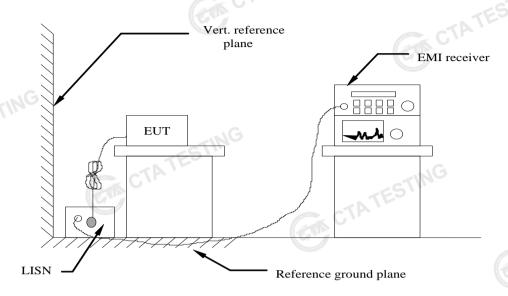
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)
--	----------	---------	-----

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/0
LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/0
EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/0
EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/0
Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/0
Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/0
Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/0
Analog Signal Generator	G R&S	SML03	CTA-304	2024/08/03	2025/08/0
WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/0
Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/0
Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/1
Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/
Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/
Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2024/10/
Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/0
Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/0
Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/0
High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/0
High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/0
Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/0
Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/0
Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/0
	GW.		CTA CTA	TESTING	

Page 10 of 29 Report No.: CTA24082601102


	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
CTATE	STING					GTA .
CTATE		CTATESTING				

Page 11 of 29 Report No.: CTA24082601102

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

TEST CONFIGURATION

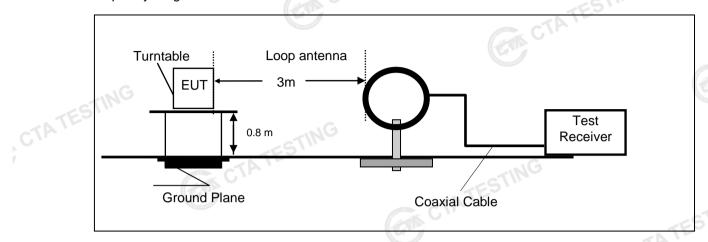
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

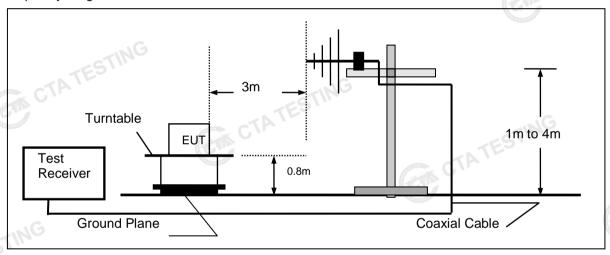
AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

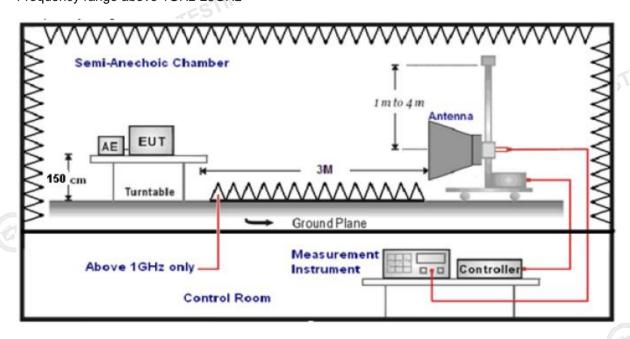
Eroguenov renge (MILI-	Lim	it (dBuV)	
Frequency range (IVIIIZ)	Quasi-peak	Average	
0.15-0.5		66 to 56*	56 to 46*	
0.5-5		56	46	
5-30		60	50	
* Decreases with the logarith	m of the frequency.	GING	•	
TEST RESULTS	CTAT		CTATESTING	
Not applicable			CTATES	


TEST RESULTS

Report No.: CTA24082601102 Page 12 of 29


4.2 Radiated Emissions and Band Edge

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24082601102 Page 13 of 29

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz –1GHz;the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The EUT minimum operation frequency was 32.768KHz and maximum operation frequency was 2480MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

7. Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	
1GHz-40GHz	Sweep time=Auto	Peak
10112 400112	Average Value: RBW=1MHz/VBW=10Hz,	1 Cak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

RA = Read
AF = Anten

Transd=AF +CL-AG

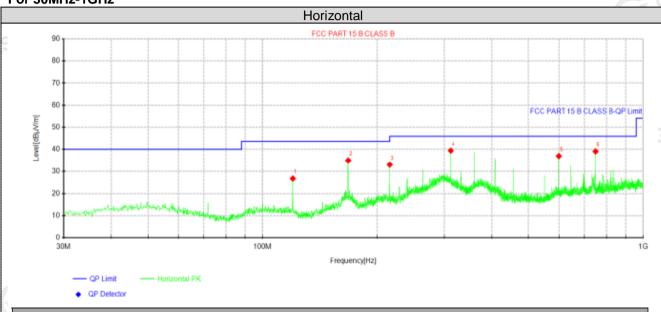
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200

Report No.: CTA24082601102 Page 14 of 29

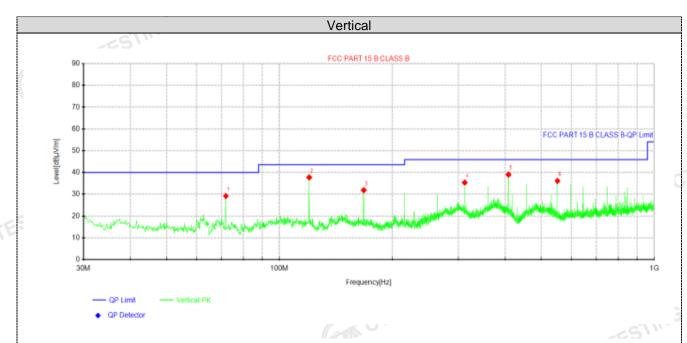

A.I. 000		540	
Ahove 960	٦ ٦	54 ()	500
ADOVC 300	9	J-1.0	300

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- 2. Lora were tested From 30MHz to 1GHz at Low, Middle, and High channel and recorded worst mode at High channel
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz



5	Suspected Data List													
	NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorita				
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
	1	119.967	40.72	26.86	-13.86	43.50	16.64	100	317	Horizontal				
	2	167.982	50.17	35.00	-15.17	43.50	8.50	100	189	Horizontal				
	3	215.997	45.68	33.10	-12.58	43.50	10.40	100	0	Horizontal				
	4	312.027	50.33	39.43	-10.90	46.00	6.57	100	235	Horizontal				
	5	599.996	42.90	36.99	-5.91	46.00	9.01	100	247	Horizontal				
	6	750.103	44.06	39.08	-4.98	46.00	6.92	100	165	Horizontal				

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB) CTATESTING
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA24082601102 Page 15 of 29

Susp	Suspected Data List												
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolorita				
	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity				
1	71.9525	44.43	29.20	-15.23	40.00	10.80	100	100	Vertical				
2	119.967	51.64	37.78	-13.86	43.50	5.72	100	228	Vertical				
3	167.982	47.01	31.84	-15.17	43.50	11.66	100	360	Vertical				
4	311.906	46.35	35.46	-10.89	46.00	10.54	100	147	Vertical				
5	408.057	49.16	39.05	-10.11	46.00	6.95	100	309	Vertical				
6	551.981	44.96	36.21	-8.75	46.00	9.79	100	333	Vertical				

CIA CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

CTA TESTING

Page 16 of 29 Report No.: CTA24082601102

For 1GHz to 10GHz

Frequency(MHz):			907		Polarity:		HORIZONTAL		
Frequency (MHz)			Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1814.00	58.35	PK	74	15.65	70.50	25.62	3.63	41.4	-12.15
1814.00	42.15	AV	54	11.85	54.30	25.62	3.63	41.4	-12.15
2721.00	50.60	PK	74	23.40	59.70	28.46	5.14	42.7	-9.1
2721.00	41.41	AV	54	12.59	50.51	28.46	5.14	42.7	-9.1

Freque	ncy(MHz)	:	907		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1814.00	58.84	PK	74	15.16	70.99	25.62	3.63	41.4	-12.15
1814.00	40.61	AV	54	13.39	52.76	25.62	3.63	41.4	-12.15
2721.00	51.09	PK	74	22.91	60.19	28.46	5.14	42.7	-9.1
2721.00	39.62	AV	54	14.38	48.72	28.46	5.14	42.7	-9.1
								TE	511

				19. Rev 10 to					
Freque	ncy(MHz)	:	9	13	Pola	arity:	Н	IORIZONTA	۱L
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1826.00	58.04	PK	74	15.96	70.19	25.62	3.63	41.4	-12.15
1826.00	42.66	AV	54	11.34	54.81	25.62	3.63	41.4	-12.15
2739.00	50.67	PK	74	23.33	59.77	28.46	5.14	42.7	-9.1
2739.00	40.82	AV	54	13.18	49.92	28.46	5.14	42.7	-9.1

Freque	ncy(MHz)	:	91	13	Pola	arity:		VERTICAL	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1826.00	58.56	PK	74	15.44	70.71	25.62	3.63	41.4	-12.15
1826.00	42.08	AV	54	11.92	54.23	25.62	3.63	41.4	-12.15
2739.00	50.59	PK	74	23.41	59.69	28.46	5.14	42.7	-9.1
2739.00	40.43	AV	54	13.57	49.53	28.46	5.14	42.7	-9.1

Freque	ncy(MHz)):	92	23	Pola	arity:	Н	IORIZONTA	۱L
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1846.00	57.56	PK	74	16.44	69.71	25.62	3.63	41.4	-12.15
1846.00	42.50	AV	54	11.50	54.65	25.62	3.63	41.4	-12.15
2769.00	50.23	PK	74	23.77	59.33	28.46	5.14	42.7	-9.1
2769.00	40.74	PK	54	13.26	49.84	28.46	5.14	42.7	-9.1

Freque	ncy(MHz)	:	92	23	Pola	arity:		VERTICAL	
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
1846.00	58.01	PK	74	15.99	70.16	25.62	3.63	41.4	-12.15
1846.00	42.52	AV	54	11.48	54.67	25.62	3.63	41.4	-12.15
2769.00	50.68	PK	74	23.32	59.78	28.46	5.14	42.7	-9.1
2769.00	40.06	PK	54	13.94	49.16	28.46	5.14	42.7	-9.1

REMARKS:

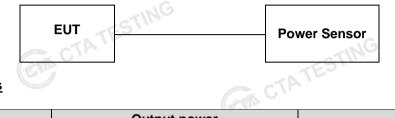
Report No.: CTA24082601102 Page 17 of 29

1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)

- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Report No.: CTA24082601102 Page 18 of 29

Maximum Peak Output Power


Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration

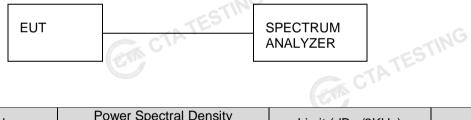
Test Results

Test Results		TES.	ESTING
Channel	Output power (dBm)	Limit (dBm)	Result
00	6.29	30.00	Pass
01	5.89	30.00	Pass
02	4.90	30.00	Pass

Note: 1.The test results including the cable lose.

Page 19 of 29 Report No.: CTA24082601102

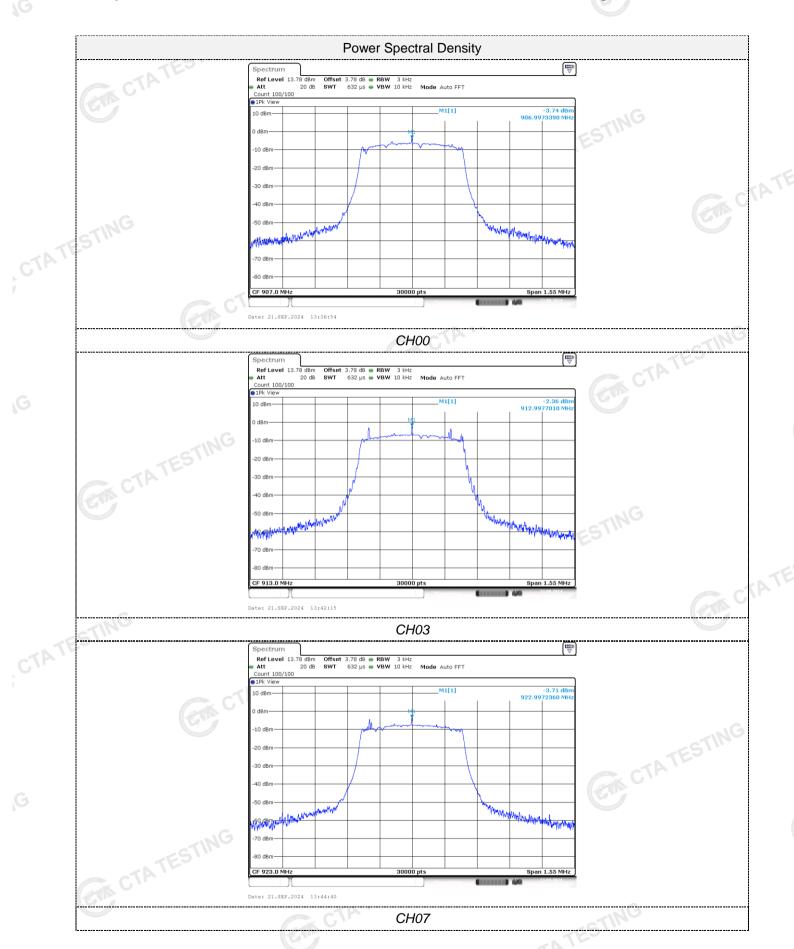
Power Spectral Density


Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW ≥ 3 kHz.
- Set the VBW ≥ 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.


Test Configuration

Test Results

	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result
	-1NG 00	-3.74	8.00	Pass
	01	-2.36	8.00	Pass
CIL	02	-3.71	8.00	Pass
į	Test plot as follows:	TATES	TATESTING	CTATESTING

Page 20 of 29 Report No.: CTA24082601102

Report No.: CTA24082601102 Page 21 of 29

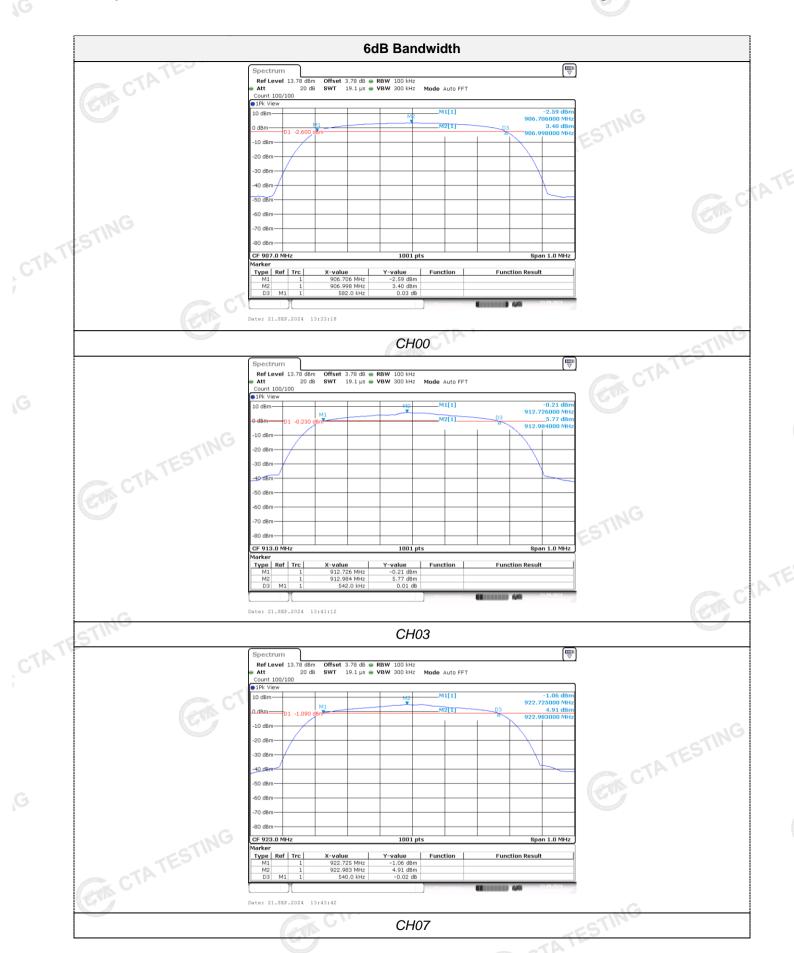
4.5 6dB Bandwidth

Limit

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.


Test Configuration

Test Results

Results	Com C	(P.,	CTATEST
Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
00	0.582	≥500	Pass
01	0.542	≥500	Pass
02	0.540	≥500	Pass

Report No.: CTA24082601102 Page 22 of 29

Page 23 of 29 Report No.: CTA24082601102

Out-of-band Emissions

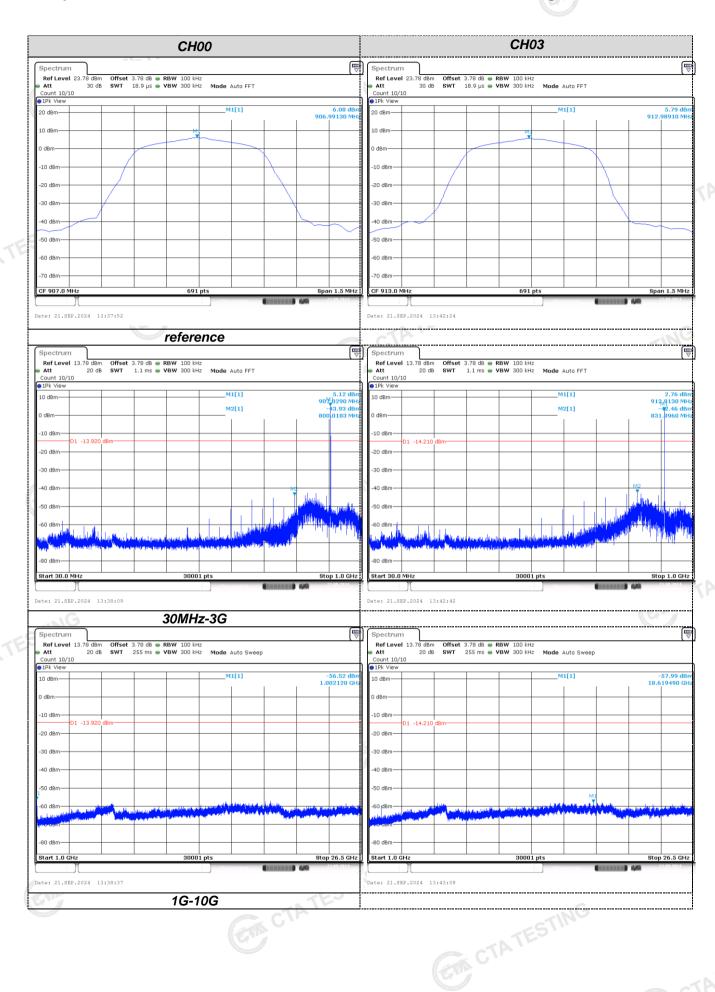
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

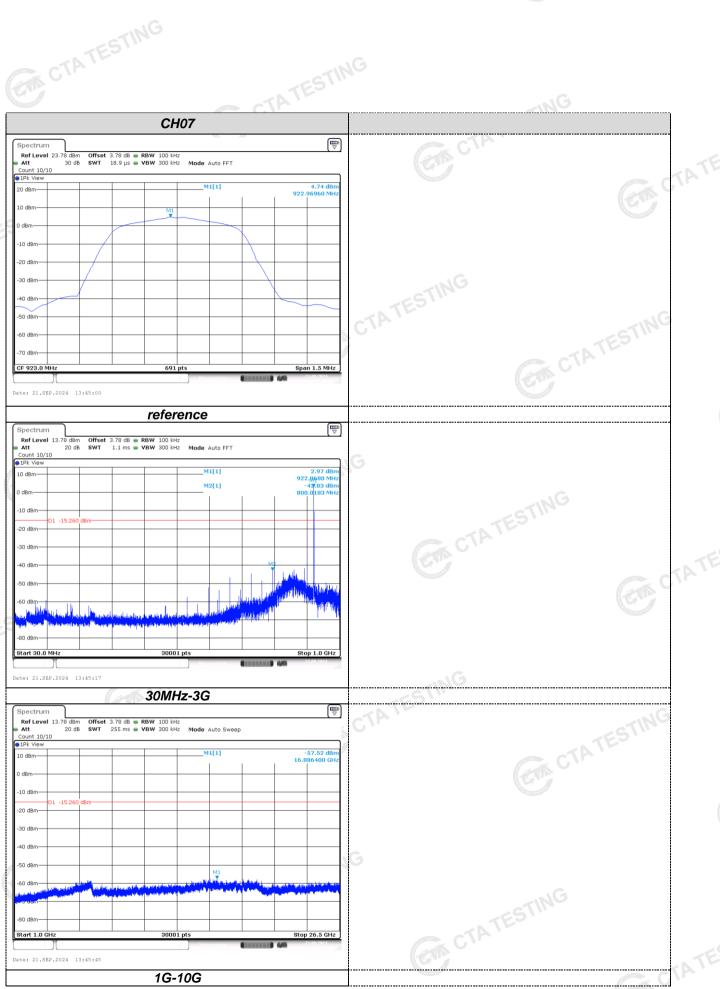
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration

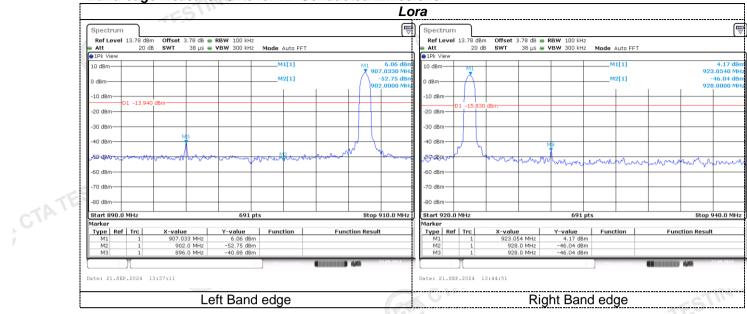


Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

Test plot as follows: CTATESTING

Report No.: CTA24082601102 Page 24 of 29



Page 25 of 29 Report No.: CTA24082601102

Page 26 of 29 Report No.: CTA24082601102

Band-edge Measurements for RF Conducted Emissions:

Page 27 of 29 Report No.: CTA24082601102

Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The maximum gain of antenna was 0.00 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTA TESTING

Page 28 of 29 Report No.: CTA24082601102

Test Setup Photos of the EUT

Page 29 of 29 Report No.: CTA24082601102

Photos of the EUT 6

Reference to the test report No. CTA24082601101 CTA TESTING