

# Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202408403F01

# **TEST Report**

Applicant: Shenzhen Qishun Innovation Technology Development Co.,

LTD

Address of Applicant: 1906, Block A, RongchuangZhihui Building, Minzhi Street,

Longhua District, Shenzhen

Manufacturer: Shenzhen Qishun Innovation Technology Development Co.,

LTD

Address of 1906, Block A, RongchuangZhihui Building, Minzhi Street,

**Manufacturer:** Longhua District, Shenzhen

**Equipment Under Test (EUT)** 

Product Name: true wireless BT earphones

Model No.: TF-T39

Series model: N/A

Trade Mark: TRANSFORMERS

FCC ID: 2BAQF-TF-T39

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Aug. 20, 2024

**Date of Test:** Aug. 20, 2024 ~ Aug. 26, 2024

Date of report issued: Aug. 26, 2024

Test Result: PASS \*

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.



# 1. Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | Aug. 26, 2024 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

| Tested/ Prepared By | Heber He             | Date: | Aug. 26, 2024 |
|---------------------|----------------------|-------|---------------|
|                     | Project Engineer     |       |               |
| Check By:           | Bruce Zhu            | Date: | Aug. 26, 2024 |
|                     | Reviewer             | _     |               |
| Approved By :       | Kein Yang            | Date: | Aug. 26, 2024 |
|                     | Authorized Signature |       |               |



### 2. Contents

|                                                                                                                                                                                                                                                                                                                                                                 | Page |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1. VERSION                                                                                                                                                                                                                                                                                                                                                      | 2    |
| 2. CONTENTS                                                                                                                                                                                                                                                                                                                                                     | 3    |
| 3. TEST SUMMARY                                                                                                                                                                                                                                                                                                                                                 | 4    |
| 4. GENERAL INFORMATION                                                                                                                                                                                                                                                                                                                                          | 5    |
| 4.1. GENERAL DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                 |      |
| 4.3. DESCRIPTION OF SUPPORT UNITS                                                                                                                                                                                                                                                                                                                               | 7    |
| 4.5. ABNORMALITIES FROM STANDARD CONDITIONS                                                                                                                                                                                                                                                                                                                     | 7    |
| 4.8. Additional Instructions                                                                                                                                                                                                                                                                                                                                    | 7    |
| 5. TEST INSTRUMENTS LIST                                                                                                                                                                                                                                                                                                                                        |      |
| 6. TEST RESULTS AND MEASUREMENT DATA                                                                                                                                                                                                                                                                                                                            | 9    |
| 6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED PEAK OUTPUT POWER 6.3. 20DB EMISSION BANDWIDTH 6.4. FREQUENCIES SEPARATION 6.5. HOPPING CHANNEL NUMBER 6.6. DWELL TIME 6.7. BAND EDGE 6.7.1. Conducted Emission Method 6.7.2. Radiated Emission Method 6.8. SPURIOUS EMISSION 6.8.1. Conducted Emission Method 6.8.2. Radiated Emission Method 6.9. ANTENNA REQUIREMENT |      |
| 7. TEST SETUP PHOTO                                                                                                                                                                                                                                                                                                                                             |      |
| 8. EUT CONSTRUCTIONAL DETAILS                                                                                                                                                                                                                                                                                                                                   |      |



# 3. Test Summary

| Test Item                        | Section in CFR 47  | Result |
|----------------------------------|--------------------|--------|
| Antenna Requirement              | 15.203/15.247 (c)  | Pass   |
| AC Power Line Conducted Emission | 15.207             | Pass   |
| Conducted Peak Output Power      | 15.247 (b)(1)      | Pass   |
| 20dB Occupied Bandwidth          | 15.247 (a)(1)      | Pass   |
| Carrier Frequencies Separation   | 15.247 (a)(1)      | Pass   |
| Hopping Channel Number           | 15.247 (a)(1)(iii) | Pass   |
| Dwell Time                       | 15.247 (a)(1)(iii) | Pass   |
| Radiated Emission                | 15.205/15.209      | Pass   |
| Band Edge                        | 15.247(d)          | Pass   |

#### Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

#### **Measurement Uncertainty**

| •                                                                                                     |                 |                         |       |  |  |  |
|-------------------------------------------------------------------------------------------------------|-----------------|-------------------------|-------|--|--|--|
| Test Item                                                                                             | Frequency Range | Measurement Uncertainty | Notes |  |  |  |
| Radiated Emission                                                                                     | 30~1000MHz      | 4.37 dB                 | (1)   |  |  |  |
| Radiated Emission                                                                                     | 1~18GHz         | 5.40 dB                 | (1)   |  |  |  |
| Radiated Emission                                                                                     | 18-40GHz        | 5.45 dB                 | (1)   |  |  |  |
| Conducted Disturbance                                                                                 | 0.15~30MHz      | 2.68 dB                 | (1)   |  |  |  |
| Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%. |                 |                         |       |  |  |  |



# 4. General Information

# 4.1. General Description of EUT

| D 1 (N                                | DT                                                   |
|---------------------------------------|------------------------------------------------------|
| Product Name:                         | true wireless BT earphones                           |
| Model No.:                            | TF-T39                                               |
| Series model:                         | N/A                                                  |
| Test sample(s) ID:                    | HTT202408403-1(Engineer sample)                      |
|                                       | HTT202408403-2(Normal sample)                        |
| Operation Frequency:                  | 2402MHz~2480MHz                                      |
| Channel numbers:                      | 79                                                   |
| Channel separation:                   | 1MHz                                                 |
| Modulation type:                      | GFSK, π/4-DQPSK                                      |
| Antenna Type:                         | Chip Antenna                                         |
| Antenna gain:                         | 3.00 dBi                                             |
| Power Supply:                         | DC 3.7V From Battery and DC 5V From External Circuit |
| Adapter Information                   | Mode: GS-0500200                                     |
| (Auxiliary test provided by the lab): | Input: AC100-240V, 50/60Hz, 0.3A max                 |
|                                       | Output: DC 5V, 2A                                    |



| Operation | Operation Frequency each of channel |         |           |         |           |         |           |  |
|-----------|-------------------------------------|---------|-----------|---------|-----------|---------|-----------|--|
| Channel   | Frequency                           | Channel | Frequency | Channel | Frequency | Channel | Frequency |  |
| 1         | 2402MHz                             | 21      | 2422MHz   | 41      | 2442MHz   | 61      | 2462MHz   |  |
| 2         | 2403MHz                             | 22      | 2423MHz   | 42      | 2443MHz   | 62      | 2463MHz   |  |
| 3         | 2404MHz                             | 23      | 2424MHz   | 43      | 2444MHz   | 63      | 2464MHz   |  |
| 4         | 2405MHz                             | 24      | 2425MHz   | 44      | 2445MHz   | 64      | 2465MHz   |  |
| 5         | 2406MHz                             | 25      | 2426MHz   | 45      | 2446MHz   | 65      | 2466MHz   |  |
| 6         | 2407MHz                             | 26      | 2427MHz   | 46      | 2447MHz   | 66      | 2467MHz   |  |
| 7         | 2408MHz                             | 27      | 2428MHz   | 47      | 2448MHz   | 67      | 2468MHz   |  |
| 8         | 2409MHz                             | 28      | 2429MHz   | 48      | 2449MHz   | 68      | 2469MHz   |  |
| 9         | 2410MHz                             | 29      | 2430MHz   | 49      | 2450MHz   | 69      | 2470MHz   |  |
| 10        | 2411MHz                             | 30      | 2431MHz   | 50      | 2451MHz   | 70      | 2471MHz   |  |
| 11        | 2412MHz                             | 31      | 2432MHz   | 51      | 2452MHz   | 71      | 2472MHz   |  |
| 12        | 2413MHz                             | 32      | 2433MHz   | 52      | 2453MHz   | 72      | 2473MHz   |  |
| 13        | 2414MHz                             | 33      | 2434MHz   | 53      | 2454MHz   | 73      | 2474MHz   |  |
| 14        | 2415MHz                             | 34      | 2435MHz   | 54      | 2455MHz   | 74      | 2475MHz   |  |
| 15        | 2416MHz                             | 35      | 2436MHz   | 55      | 2456MHz   | 75      | 2476MHz   |  |
| 16        | 2417MHz                             | 36      | 2437MHz   | 56      | 2457MHz   | 76      | 2477MHz   |  |
| 17        | 2418MHz                             | 37      | 2438MHz   | 57      | 2458MHz   | 77      | 2478MHz   |  |
| 18        | 2419MHz                             | 38      | 2439MHz   | 58      | 2459MHz   | 78      | 2479MHz   |  |
| 19        | 2420MHz                             | 39      | 2440MHz   | 59      | 2460MHz   | 79      | 2480MHz   |  |
| 20        | 2421MHz                             | 40      | 2441MHz   | 60      | 2461MHz   |         |           |  |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

| Channel             | Frequency |  |  |
|---------------------|-----------|--|--|
| The lowest channel  | 2402MHz   |  |  |
| The middle channel  | 2441MHz   |  |  |
| The Highest channel | 2480MHz   |  |  |



#### 4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

### 4.3. Description of Support Units

None.

#### 4.4. Deviation from Standards

None.

#### 4.5. Abnormalities from Standard Conditions

None.

### 4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

#### A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### 4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

#### 4.8. Additional Instructions

| Test Software     | Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode |
|-------------------|---------------------------------------------------------------------------------------------------------------------|
| Power level setup | Default                                                                                                             |



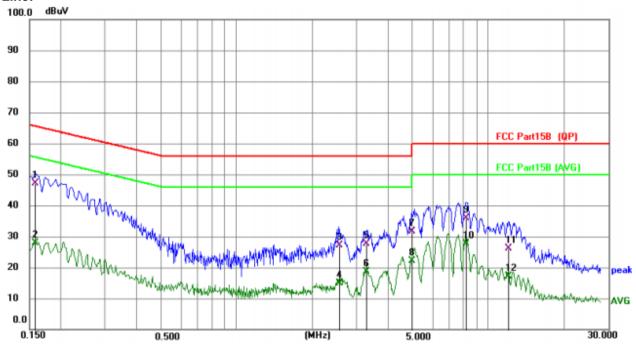
# 5. Test Instruments list

| <u>J.</u> | Test manual                        |                                        |                    |                  |                        | 1                          |
|-----------|------------------------------------|----------------------------------------|--------------------|------------------|------------------------|----------------------------|
| Item      | Test Equipment                     | Manufacturer                           | Model No.          | Inventory<br>No. | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |
| 1         | 3m Semi- Anechoic                  | Shenzhen C.R.T                         | 9*6*6              | HTT-E028         | Aug. 10 2024           | Aug. 09 2027               |
|           | Chamber                            | technology co., LTD<br>Shenzhen C.R.T  |                    |                  | 7.09. 10 202 1         | 7.ag. 00 202.              |
| 2         | Control Room                       | technology co., LTD                    | 4.8*3.5*3.0        | HTT-E030         | Aug. 10 2024           | Aug. 09 2027               |
| 3         | EMI Test Receiver                  | Rohde&Schwar                           | ESCI7              | HTT-E022         | Apr. 26 2024           | Apr. 25 2025               |
| 4         | Spectrum Analyzer                  | Rohde&Schwar                           | FSP                | HTT-E037         | Apr. 26 2024           | Apr. 25 2025               |
| 5         | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-NJ-0.6M    | HTT-E018         | Apr. 26 2024           | Apr. 25 2025               |
| 6         | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-2M    | HTT-E019         | Apr. 26 2024           | Apr. 25 2025               |
| 7         | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-0.6M  | HTT-E020         | Apr. 26 2024           | Apr. 25 2025               |
| 8         | Coaxial Cable                      | ZDecl                                  | ZT26-NJ-SMAJ-8.5M  | HTT-E021         | Apr. 26 2024           | Apr. 25 2025               |
| 9         | Composite logarithmic antenna      | Schwarzbeck                            | VULB 9168          | HTT-E017         | May. 21 2024           | May. 20 2025               |
| 10        | Horn Antenna                       | Schwarzbeck                            | BBHA9120D          | HTT-E016         | May. 20 2024           | May. 19 2025               |
| 11        | Loop Antenna                       | Zhinan                                 | ZN30900C           | HTT-E039         | Apr. 26 2024           | Apr. 25 2025               |
| 12        | Horn Antenna                       | Beijing Hangwei Dayang                 | OBH100400          | HTT-E040         | Apr. 26 2024           | Apr. 25 2025               |
| 13        | low frequency Amplifier            | Sonoma Instrument                      | 310                | HTT-E015         | Apr. 26 2024           | Apr. 25 2025               |
| 14        | high-frequency Amplifier           | HP                                     | 8449B              | HTT-E014         | Apr. 26 2024           | Apr. 25 2025               |
| 15        | Variable frequency power supply    | Shenzhen Anbiao<br>Instrument Co., Ltd | ANB-10VA           | HTT-082          | Apr. 26 2024           | Apr. 25 2025               |
| 16        | EMI Test Receiver                  | Rohde & Schwarz                        | ESCS30             | HTT-E004         | Apr. 26 2024           | Apr. 25 2025               |
| 17        | Artificial Mains                   | Rohde & Schwarz                        | ESH3-Z5            | HTT-E006         | May. 23 2024           | May. 22 2025               |
| 18        | Artificial Mains                   | Rohde & Schwarz                        | ENV-216            | HTT-E038         | May. 23 2024           | May. 22 2025               |
| 19        | Cable Line                         | Robinson                               | Z302S-NJ-BNCJ-1.5M | HTT-E001         | Apr. 26 2024           | Apr. 25 2025               |
| 20        | Attenuator                         | Robinson                               | 6810.17A           | HTT-E007         | Apr. 26 2024           | Apr. 25 2025               |
| 21        | Variable frequency power<br>supply | Shenzhen Yanghong<br>Electric Co., Ltd | YF-650 (5KVA)      | HTT-E032         | Apr. 26 2024           | Apr. 25 2025               |
| 22        | Control Room                       | Shenzhen C.R.T technology co., LTD     | 8*4*3.5            | HTT-E029         | Aug. 10 2024           | Aug. 09 2027               |
| 23        | DC power supply                    | Agilent                                | E3632A             | HTT-E023         | Apr. 26 2024           | Apr. 25 2025               |
| 24        | EMI Test Receiver                  | Agilent                                | N9020A             | HTT-E024         | Apr. 26 2024           | Apr. 25 2025               |
| 25        | Analog signal generator            | Agilent                                | N5181A             | HTT-E025         | Apr. 26 2024           | Apr. 25 2025               |
| 26        | Vector signal generator            | Agilent                                | N5182A             | HTT-E026         | Apr. 26 2024           | Apr. 25 2025               |
| 27        | Power sensor                       | Keysight                               | U2021XA            | HTT-E027         | Apr. 26 2024           | Apr. 25 2025               |
| 28        | Temperature and humidity meter     | Shenzhen Anbiao<br>Instrument Co., Ltd | TH10R              | HTT-074          | Apr. 28 2024           | Apr. 27 2025               |
| 29        | Radiated Emission Test<br>Software | Farad                                  | EZ-EMC             | N/A              | N/A                    | N/A                        |
| 30        | Conducted Emission Test Software   | Farad                                  | EZ-EMC             | N/A              | N/A                    | N/A                        |
| 31        | RF Test Software                   | panshanrf                              | TST                | N/A              | N/A                    | N/A                        |



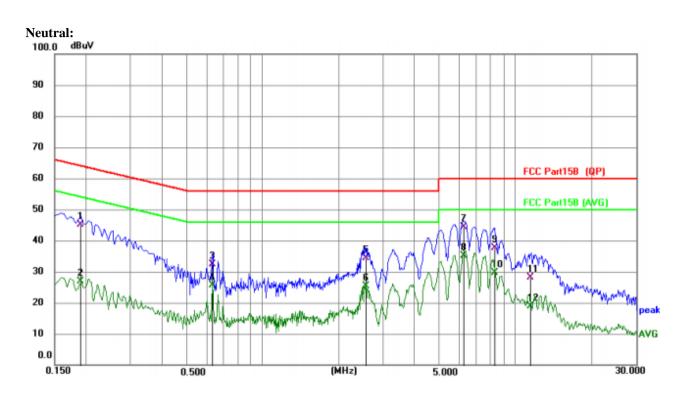
### 6. Test results and Measurement Data

### 6.1. Conducted Emissions


| Test Requirement:     | FCC Part15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                               |                                                            |  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|--|--|--|
| Test Method:          | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                                            |  |  |  |
| Test Frequency Range: | 150KHz to 30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                            |  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Class B                                                                                       |                                                            |  |  |  |
| Receiver setup:       | RBW=9KHz, VBW=30KHz, Sv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | weep time=auto                                                                                |                                                            |  |  |  |
| Limit:                | Francisco de Contra de Con | Limit                                                                                         | (dBuV)                                                     |  |  |  |
|                       | Frequency range (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Quasi-peak                                                                                    | Average                                                    |  |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66 to 56*                                                                                     | 56 to 46*                                                  |  |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56                                                                                            | 46                                                         |  |  |  |
|                       | 5-30 * Decreases with the logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60                                                                                            | 50                                                         |  |  |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                            |  |  |  |
| Test procedure:       | Remark: E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m  1. The E.U.T and simulators are connected to the main power throu line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment.  2. The peripheral devices are also connected to the main power throu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                                            |  |  |  |
|                       | termination. (Please refer to photographs).  3. Both sides of A.C. line are interference. In order to fine positions of equipment and according to ANSI C63.10:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | checked for maximur<br>d the maximum emis<br>I all of the interface ca<br>2013 on conducted n | m conducted<br>sion, the relative<br>ables must be changed |  |  |  |
| Test Instruments:     | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                             |                                                            |  |  |  |
| Test mode:            | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                             |                                                            |  |  |  |
| Test environment:     | Temp.: 25 °C Hun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nid.: 52%                                                                                     | Press.: 1012mbar                                           |  |  |  |
| Test voltage:         | AC 120V, 60Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>.                                      </u>                                                | <u>.</u>                                                   |  |  |  |
| Test results:         | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                               |                                                            |  |  |  |

Remark: Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and withthe worst case as below:




### Measurement data:

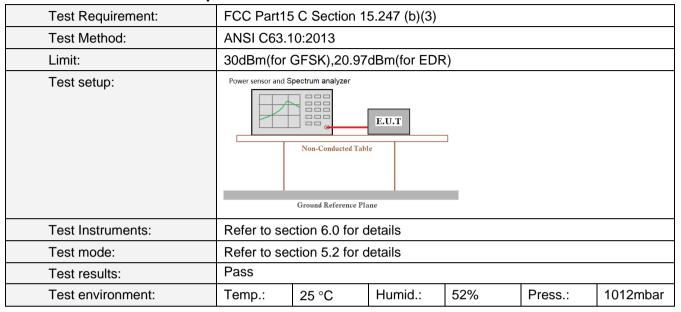




|         | _       | Reading | Correct | Measure- |       | Over   |          |
|---------|---------|---------|---------|----------|-------|--------|----------|
| No. Mk. | Freq.   | Level   | Factor  | ment     | Limit | Over   |          |
|         | MHz     |         | dB      | dBuV     | dBuV  | dB     | Detector |
| 1 *     | 0.1587  | 36.91   | 10.17   | 47.08    | 65.53 | -18.45 | QP       |
| 2       | 0.1587  | 17.80   | 10.17   | 27.97    | 55.53 | -27.56 | AVG      |
| 3       | 2.5595  | 16.59   | 10.46   | 27.05    | 56.00 | -28.95 | QP       |
| 4       | 2.5595  | 4.31    | 10.46   | 14.77    | 46.00 | -31.23 | AVG      |
| 5       | 3.2941  | 17.12   | 10.53   | 27.65    | 56.00 | -28.35 | QP       |
| 6       | 3.2941  | 8.18    | 10.53   | 18.71    | 46.00 | -27.29 | AVG      |
| 7       | 4.9849  | 21.01   | 10.61   | 31.62    | 56.00 | -24.38 | QP       |
| 8       | 4.9849  | 11.42   | 10.61   | 22.03    | 46.00 | -23.97 | AVG      |
| 9       | 8.1902  | 25.12   | 10.65   | 35.77    | 60.00 | -24.23 | QP       |
| 10      | 8.1902  | 17.07   | 10.65   | 27.72    | 50.00 | -22.28 | AVG      |
| 11      | 12.0268 | 15.37   | 10.85   | 26.22    | 60.00 | -33.78 | QP       |
| 12      | 12.0268 | 6.20    | 10.85   | 17.05    | 50.00 | -32.95 | AVG      |
|         |         |         |         |          |       |        |          |





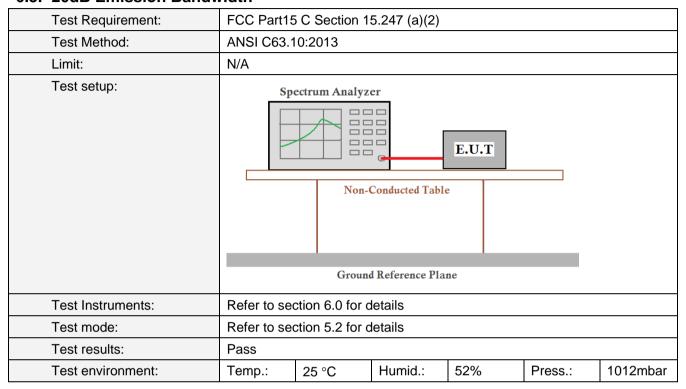

| No. Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|---------|---------|------------------|-------------------|------------------|-------|--------|----------|
|         | MHz     |                  | dB                | dBuV             | dBuV  | dB     | Detector |
| 1       | 0.1897  | 34.91            | 10.20             | 45.11            | 64.05 | -18.94 | QP       |
| 2       | 0.1897  | 16.68            | 10.20             | 26.88            | 54.05 | -27.17 | AVG      |
| 3       | 0.6330  | 22.15            | 10.35             | 32.50            | 56.00 | -23.50 | QP       |
| 4       | 0.6330  | 15.24            | 10.35             | 25.59            | 46.00 | -20.41 | AVG      |
| 5       | 2.5613  | 23.96            | 10.43             | 34.39            | 56.00 | -21.61 | QP       |
| 6       | 2.5613  | 14.86            | 10.43             | 25.29            | 46.00 | -20.71 | AVG      |
| 7       | 6.2547  | 33.64            | 10.65             | 44.29            | 60.00 | -15.71 | QP       |
| 8 *     | 6.2547  | 24.56            | 10.65             | 35.21            | 50.00 | -14.79 | AVG      |
| 9       | 8.2527  | 26.76            | 10.77             | 37.53            | 60.00 | -22.47 | QP       |
| 10      | 8.2527  | 18.89            | 10.77             | 29.66            | 50.00 | -20.34 | AVG      |
| 11      | 11.4832 | 17.03            | 10.98             | 28.01            | 60.00 | -31.99 | QP       |
| 12      | 11.4832 | 7.79             | 10.98             | 18.77            | 50.00 | -31.23 | AVG      |
|         |         |                  |                   |                  |       |        |          |

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los



### 6.2. Conducted Peak Output Power



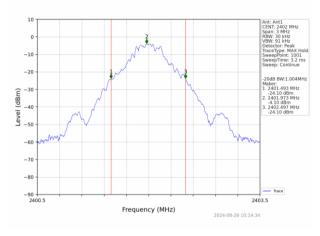

#### **Measurement Data**

|           | =            |                         |             |        |
|-----------|--------------|-------------------------|-------------|--------|
| Mode      | Test channel | Peak Output Power (dBm) | Limit (dBm) | Result |
|           | Lowest       | -1.54                   |             |        |
| GFSK      | Middle       | -1.72                   | 30.00       | Pass   |
|           | Highest      | -1.97                   |             |        |
|           | Lowest       | -0.62                   |             |        |
| π/4-DQPSK | Middle       | -0.80                   | 20.97       | Pass   |
|           | Highest      | -1.04                   |             |        |

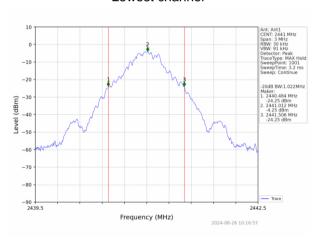


### 6.3. 20dB Emission Bandwidth

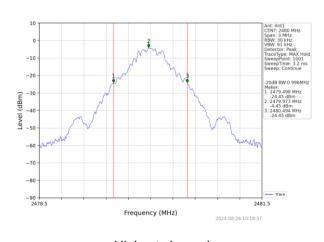



#### **Measurement Data**

| Mode      | Test channel | 20dB Emission Bandwidth (MHz) | Result |  |  |
|-----------|--------------|-------------------------------|--------|--|--|
|           | Lowest       | 1.004                         | Pass   |  |  |
| GFSK      | Middle       | 1.022                         |        |  |  |
| GFSK      | Highest      | 0.996                         |        |  |  |
|           | Lowest       | 1.291                         |        |  |  |
| π/4-DQPSK | Middle       | 1.291                         | Pass   |  |  |
|           | Highest      | 1.291                         |        |  |  |



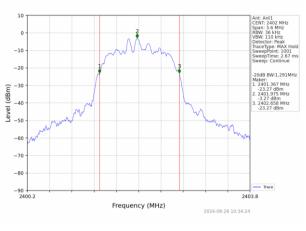

### Test plot as follows:


Test mode: GFSK mode

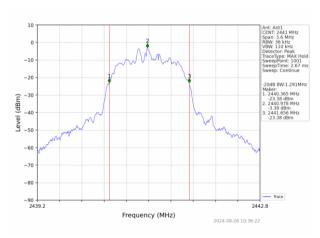


#### Lowest channel




### Middle channel




Highest channel



Test mode: π/4-DQPSK mode



#### Lowest channel



### Middle channel



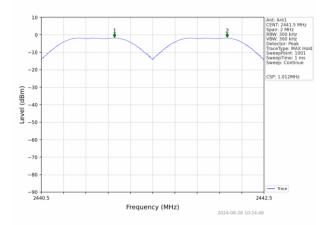
Highest channel



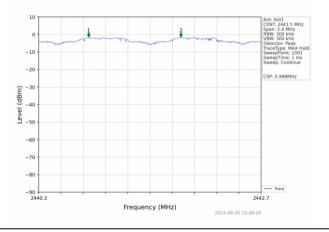
# 6.4. Frequencies Separation

| Test Requirement: | FCC Part1   | FCC Part15 C Section 15.247 (a)(1)                                                           |         |     |         |          |  |  |  |
|-------------------|-------------|----------------------------------------------------------------------------------------------|---------|-----|---------|----------|--|--|--|
| Test Method:      | ANSI C63.   | 10:2013                                                                                      |         |     |         |          |  |  |  |
| Receiver setup:   | RBW=100h    | RBW=100KHz, VBW=300KHz, detector=Peak                                                        |         |     |         |          |  |  |  |
| Limit:            |             | GFSK: 20dB bandwidth π/4-DQPSK: 0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater) |         |     |         |          |  |  |  |
| Test setup:       | Sp          |                                                                                              |         |     |         |          |  |  |  |
| Test Instruments: | Refer to se | ction 6.0 for o                                                                              | details |     |         |          |  |  |  |
| Test mode:        | Refer to se | ction 5.2 for o                                                                              | details |     |         |          |  |  |  |
| Test results:     | Pass        |                                                                                              |         |     |         |          |  |  |  |
| Test environment: | Temp.:      | 25 °C                                                                                        | Humid.: | 52% | Press.: | 1012mbar |  |  |  |

#### **Measurement Data**


| Micasarcinent Bate | 4            |                              |                      |        |
|--------------------|--------------|------------------------------|----------------------|--------|
| Mode               | Test channel | Frequencies Separation (MHz) | Limit (kHz)          | Result |
| GFSK               | Middle       | 1.012                        | 25KHz or<br>2/3*20dB | Pass   |
|                    |              |                              | bandwidth            |        |
|                    |              |                              | 25KHz or             |        |
| π/4-DQPSK          | Middle       | 0.998                        | 2/3*20dB             | Pass   |
|                    |              |                              | bandwidth            |        |

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle




Test plot as follows:

Modulation mode: GFSK



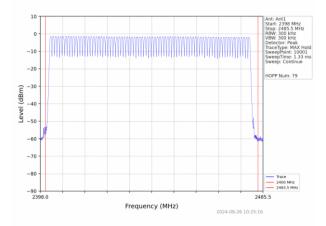
Test mode: π/4-DQPSK



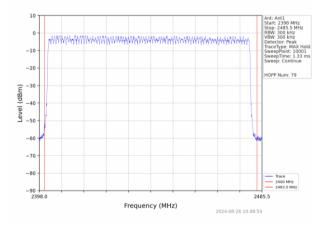


# 6.5. Hopping Channel Number

| Test Requirement: | FCC Part15  | FCC Part15 C Section 15.247 (a)(1)(iii)                                  |         |     |         |          |  |  |  |
|-------------------|-------------|--------------------------------------------------------------------------|---------|-----|---------|----------|--|--|--|
| Test Method:      | ANSI C63.   | ANSI C63.10:2013                                                         |         |     |         |          |  |  |  |
| Receiver setup:   |             | RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak |         |     |         |          |  |  |  |
| Limit:            | 15 channel  | S                                                                        |         |     |         |          |  |  |  |
| Test setup:       | Spe         | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane    |         |     |         |          |  |  |  |
| Test Instruments: | Refer to se | ction 6.0 for o                                                          | details |     |         |          |  |  |  |
| Test mode:        | Refer to se | ction 5.2 for o                                                          | details |     |         |          |  |  |  |
| Test results:     | Pass        | Pass                                                                     |         |     |         |          |  |  |  |
| Test environment: | Temp.:      | 25 °C                                                                    | Humid.: | 52% | Press.: | 1012mbar |  |  |  |


#### **Measurement Data:**

| Mode      | Hopping channel numbers | Limit | Result |
|-----------|-------------------------|-------|--------|
| GFSK      | 79                      | >4F   | Pass   |
| π/4-DQPSK | 79                      | ≥15   | Pass   |




Test plot as follows:

Test mode: GFSK



Test mode: π/4-DQPSK





# 6.6. Dwell Time

| Test Requirement: | FCC Part1   | FCC Part15 C Section 15.247 (a)(1)(iii)                               |             |               |         |          |  |  |  |
|-------------------|-------------|-----------------------------------------------------------------------|-------------|---------------|---------|----------|--|--|--|
| Test Method:      | ANSI C63.   | ANSI C63.10:2013                                                      |             |               |         |          |  |  |  |
| Receiver setup:   | RBW=1MH     | lz, VBW=1MH                                                           | lz, Span=0H | z, Detector=F | Peak    |          |  |  |  |
| Limit:            | 0.4 Second  |                                                                       |             |               |         |          |  |  |  |
| Test setup:       | Sp          | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |             |               |         |          |  |  |  |
| Test Instruments: | Refer to se | ction 6.0 for c                                                       | letails     |               |         |          |  |  |  |
| Test mode:        | Refer to se | ction 5.2 for c                                                       | letails     |               |         |          |  |  |  |
| Test results:     | Pass        | Pass                                                                  |             |               |         |          |  |  |  |
| Test environment: | Temp.:      | 25 °C                                                                 | Humid.:     | 52%           | Press.: | 1012mbar |  |  |  |

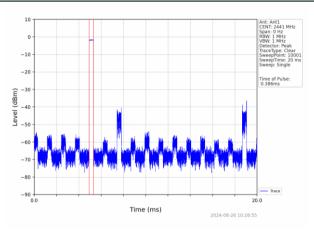


#### **Measurement Data**

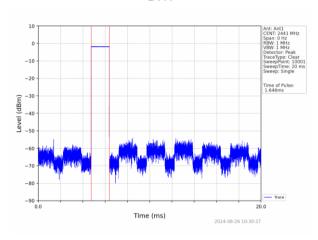
| Modulation | Packet | Burst time<br>(ms) | Dwell time<br>(ms) | Limit (ms) | Result |  |
|------------|--------|--------------------|--------------------|------------|--------|--|
|            | DH1    | 0.386              | 123.520            |            |        |  |
| GFSK       | DH3    | 1.646              | 274.882            | 400        | Pass   |  |
|            | DH5    | 2.890              | 320.790            |            |        |  |
|            | 2-DH1  | 0.396              | 126.720            |            |        |  |
| π/4DQPSK   | 2-DH3  | 1.646              | 263.360            | 400        | Pass   |  |
|            | 2-DH5  | 2.900              | 345.100            |            |        |  |

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

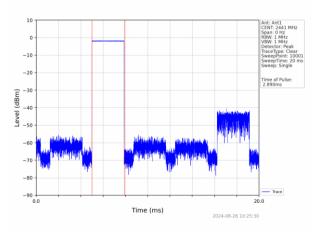
Dwell time=Pulse time (ms)  $\times$  (1600  $\div$  2  $\div$  79)  $\times$ 31.6 Second for DH1, 2-DH1


Dwell time=Pulse time (ms) x (1600  $\div$  4  $\div$  79) x31.6 Second for DH3, 2-DH3

Dwell time=Pulse time (ms) x (1600  $\div$  6  $\div$  79) x31.6 Second for DH5, 2-DH5

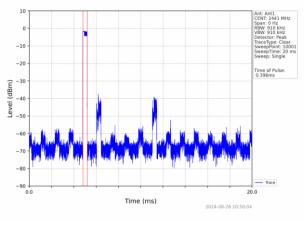



### Test plot as follows:

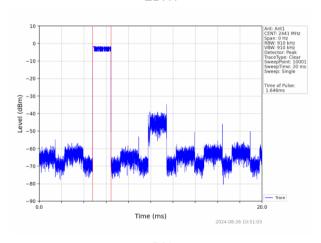

### **GFSK** mode



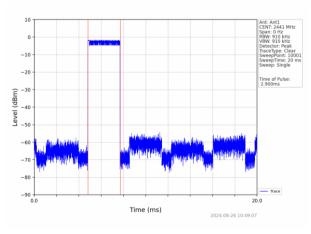





#### DH3







### π/4-DQPSK mode



### 2DH1



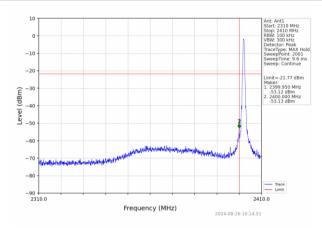
### 2DH3

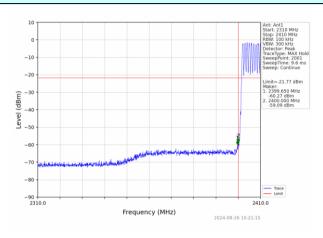




# 6.7. Band Edge

### 6.7.1. Conducted Emission Method


| Test Requirement: | FCC Part15                                               | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |              |          |         |          |  |  |  |
|-------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---------|----------|--|--|--|
| Test Method:      | ANSI C63.1                                               | ANSI C63.10:2013                                                                                                                                                                                                                                                                                                                                                                        |              |          |         |          |  |  |  |
| Receiver setup:   | RBW=100k                                                 | Hz, VBW=30                                                                                                                                                                                                                                                                                                                                                                              | 00kHz, Detec | tor=Peak |         |          |  |  |  |
| Limit:            | spectrum in<br>is produced<br>the 100 kHz<br>the desired | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |              |          |         |          |  |  |  |
| Test setup:       | Spec                                                     | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |              |          |         |          |  |  |  |
| Test Instruments: | Refer to see                                             | ction 6.0 for o                                                                                                                                                                                                                                                                                                                                                                         | details      |          |         |          |  |  |  |
| Test mode:        | Refer to se                                              | ction 5.2 for o                                                                                                                                                                                                                                                                                                                                                                         | details      |          |         |          |  |  |  |
| Test results:     | Pass                                                     |                                                                                                                                                                                                                                                                                                                                                                                         |              |          |         |          |  |  |  |
| Test environment: | Temp.:                                                   | 25 °C                                                                                                                                                                                                                                                                                                                                                                                   | Humid.:      | 52%      | Press.: | 1012mbar |  |  |  |
|                   |                                                          |                                                                                                                                                                                                                                                                                                                                                                                         |              |          |         |          |  |  |  |

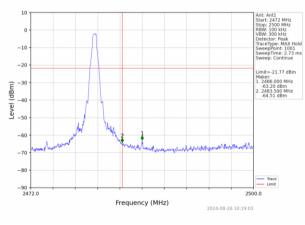


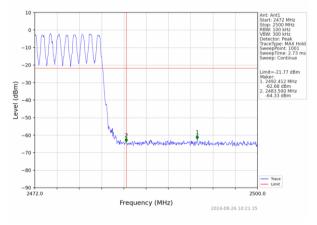

# Test plot as follows:

### **GFSK Mode:**

### Test channel Lowest channel







No-hopping mode

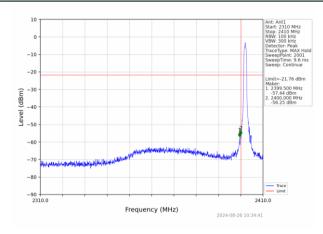
Hopping mode

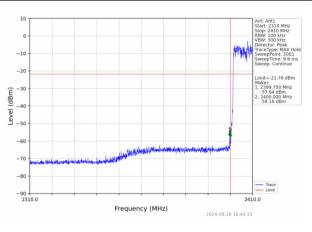
### Test channel:

### Highest channel






No-hopping mode

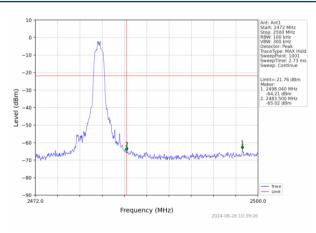

Hopping mode

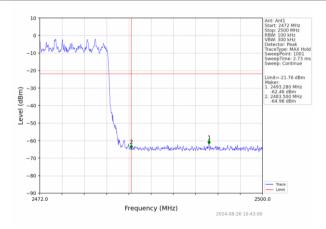


### π/4-DQPSK Mode:

### Test channel Lowest channel







No-hopping mode

Hopping mode

### Test channel:

### Highest channel





No-hopping mode

Hopping mode



### 6.7.2. Radiated Emission Method

| 6.7.2. Radiated Effission Wethod |                                                                                                                                                                                          |                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test Requirement:                | FCC Part15 C Section 15.209 and 15.205                                                                                                                                                   |                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |
| Test Method:                     | ANSI C63.1                                                                                                                                                                               | 0:2013                                                                                                                                                                                                                                |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |
| Test Frequency Range:            |                                                                                                                                                                                          | estrict bands<br>data was sho                                                                                                                                                                                                         |                                                                                                                   | tested, onl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | y the wo                                                                                  | orst band's (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2310MHz to                                                                                                                                     |  |
| Test site:                       | Measureme                                                                                                                                                                                | nt Distance:                                                                                                                                                                                                                          | 3m                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |
| Receiver setup:                  | Frequenc                                                                                                                                                                                 | y Detec                                                                                                                                                                                                                               | ctor                                                                                                              | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VBV                                                                                       | V Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | emark                                                                                                                                          |  |
| ·                                | Above 1GI                                                                                                                                                                                | Hz Pea                                                                                                                                                                                                                                |                                                                                                                   | 1MHz<br>1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3MH<br>10H:                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | k Value<br>ge Value                                                                                                                            |  |
| Limit:                           | Fre                                                                                                                                                                                      | equency                                                                                                                                                                                                                               | L                                                                                                                 | ₋imit (dBu\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | //m @3n                                                                                   | n) Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | emark                                                                                                                                          |  |
|                                  | Abo                                                                                                                                                                                      | ve 1GHz                                                                                                                                                                                                                               |                                                                                                                   | 54.<br>74.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ge Value<br>k Value                                                                                                                            |  |
| Test setup:                      | Test Antenna+  Tum Table+  <150cm >   Receiver+  Preamplifier+                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |
| Test Procedure:                  |                                                                                                                                                                                          | was placed                                                                                                                                                                                                                            |                                                                                                                   | top of a ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tating tal                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |
|                                  | determine 2. The EUT antenna, tower. 3. The ante ground to horizonta measure. 4. For each and then and the rmaximum 5. The test-Specified 6. If the emilimit specified EUT would 10dB ma | t a 3 meter ce the position was set 3 meter which was not man height is determine the and vertical ment.  suspected enthe antenna ota table was neceiver system is sion level of cified, then tended by method as spected as spected. | of the eters a nounted varied he max I polarize mission was turned em was turned of the E sting ced. Other re-tes | highest randway from a don the to from one cimum valuations of the control of the | meter to ue of the anter to was arraghts from egrees to mode wopped an emission y one usi | ference-receitriable-height four meters field strength nna are set to anged to its vance and the peak vance to the peak vance to the the tod ing peak, quaite triable in the peak, quaite triable in the peak, quaite triable in the the tod in the peak, quaite triable in the triable in triable in the triable in the triable in triable in the triable in triable | ving antenna above the above the beautiful Both o make the worst case 4 meters s to find the and wer than the alues of the ot have asi-peak or |  |
| Test Instruments:                |                                                                                                                                                                                          | tion 6.0 for c                                                                                                                                                                                                                        |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |
| Test mode:                       | Refer to sec                                                                                                                                                                             | tion 5.2 for c                                                                                                                                                                                                                        | letails                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |
| Test results:                    | Pass                                                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                |  |
| Test environment:                | Temp.:                                                                                                                                                                                   | 25 °C                                                                                                                                                                                                                                 | Humi                                                                                                              | d.: 52°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | %                                                                                         | Press.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1012mbar                                                                                                                                       |  |

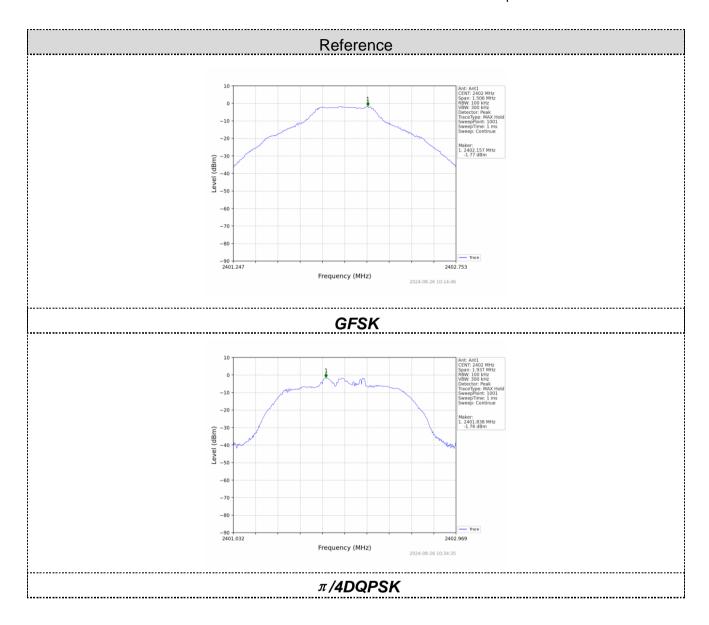


### **Measurement Data**

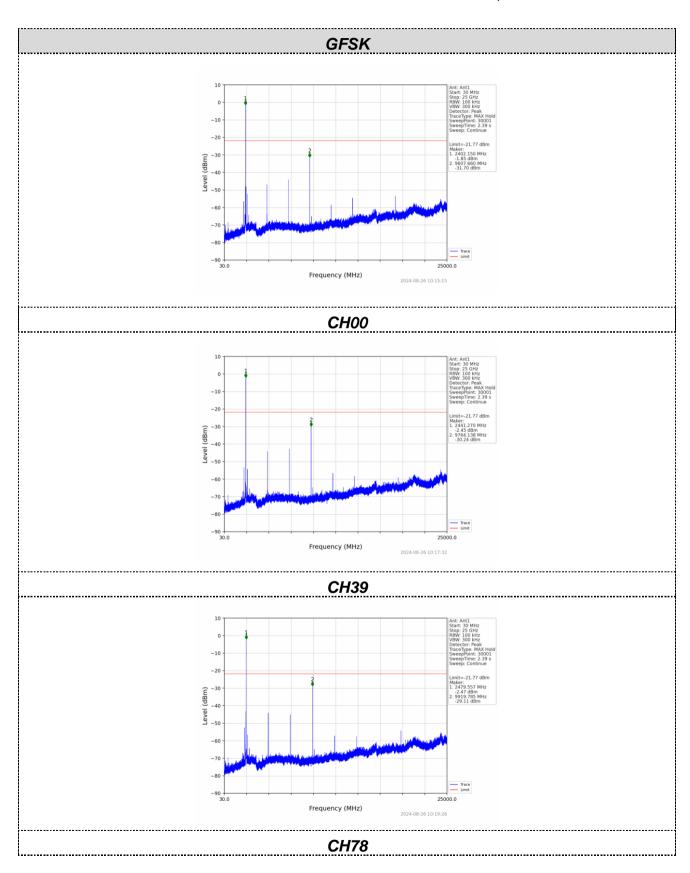
Remark: GFSK, Pi/4 DQPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK

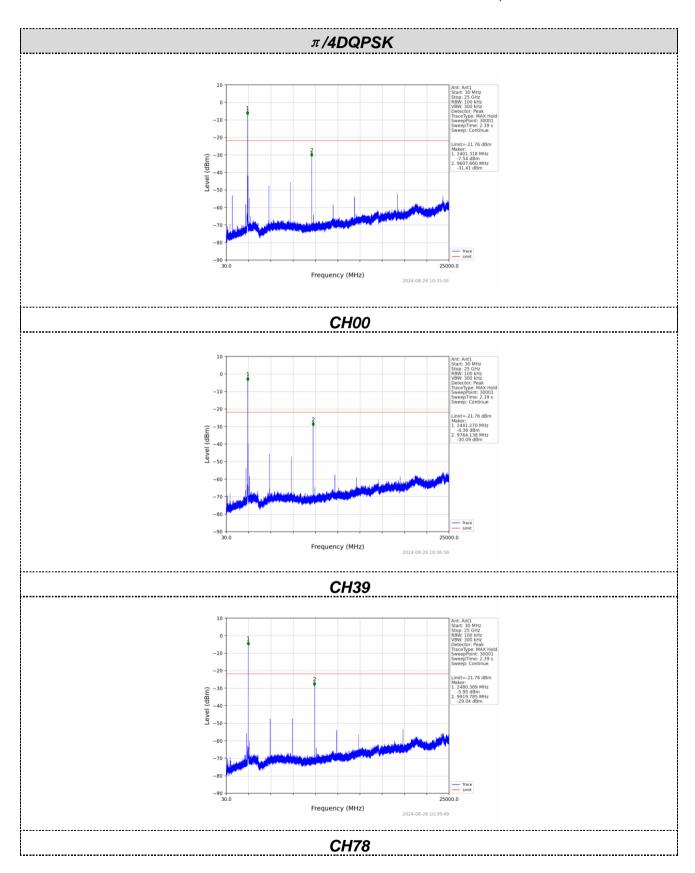
| Freque             | ncy(MHz)                        | :   | 24                | 02             | Pola                   | arity:                      | HORIZONTAL              |                           |                                |
|--------------------|---------------------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu              | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna Factor (dB/m)       | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 60.50                           | PK  | 74                | 13.50          | 61.89                  | 27.2                        | 4.31                    | 32.9                      | -1.39                          |
| 2390.00            | 44.26                           | AV  | 54                | 9.74           | 45.65                  | 27.2                        | 4.31                    | 32.9                      | -1.39                          |
| Freque             | ncy(MHz)                        | :   | 24                | 02             | Pola                   | arity:                      |                         | VERTICAL                  |                                |
| Frequency<br>(MHz) | Emis<br>Le <sup>,</sup><br>(dBu | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 58.73                           | PK  | 74                | 15.27          | 60.12                  | 27.2                        | 4.31                    | 32.9                      | -1.39                          |
| 2390.00            | 47.15                           | AV  | 54                | 6.85           | 48.54                  | 27.2                        | 4.31                    | 32.9                      | -1.39                          |
| Freque             | ncy(MHz)                        | :   | 2480              |                | P olarity:             |                             | HORIZONTAL              |                           |                                |
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu              | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 55.88                           | PK  | 74                | 18.12          | 56.81                  | 27.4                        | 4.47                    | 32.8                      | -0.93                          |
| 2483.50            | 46.01                           | AV  | 54                | 7.99           | 46.94                  | 27.4                        | 4.47                    | 32.8                      | -0.93                          |
| Freque             | ncy(MHz)                        | :   | 24                | 80             | Pola                   | arity:                      |                         | VERTICAL                  |                                |
| Frequency<br>(MHz) | Emis<br>Le                      | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna Factor (dB/m)       | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 56.04                           | PK  | 74                | 17.96          | 56.97                  | 27.4                        | 4.47                    | 32.8                      | -0.93                          |
| 2483.50            | 45.05                           | AV  | 54                | 8.95           | 45.98                  | 27.4                        | 4.47                    | 32.8                      | -0.93                          |




# 6.8. Spurious Emission


### 6.8.1. Conducted Emission Method

| Test Requirement: | FCC Part15                                      | FCC Part15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                         |         |     |         |          |  |  |  |  |  |
|-------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|---------|----------|--|--|--|--|--|
| Test Method:      | ANSI C63.1                                      | 10:2013                                                                                                                                                                                                                                                                                                                                                                                 |         |     |         |          |  |  |  |  |  |
| Limit:            | spectrum in is produced the 100 kHz the desired | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |         |     |         |          |  |  |  |  |  |
| Test setup:       | Sp                                              | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |         |     |         |          |  |  |  |  |  |
| Test Instruments: | Refer to see                                    | Refer to section 6.0 for details                                                                                                                                                                                                                                                                                                                                                        |         |     |         |          |  |  |  |  |  |
| Test mode:        | Refer to see                                    | Refer to section 5.2 for details                                                                                                                                                                                                                                                                                                                                                        |         |     |         |          |  |  |  |  |  |
| Test results:     | Pass                                            | Pass                                                                                                                                                                                                                                                                                                                                                                                    |         |     |         |          |  |  |  |  |  |
| Test environment: | Temp.:                                          | 25 °C                                                                                                                                                                                                                                                                                                                                                                                   | Humid.: | 52% | Press.: | 1012mbar |  |  |  |  |  |

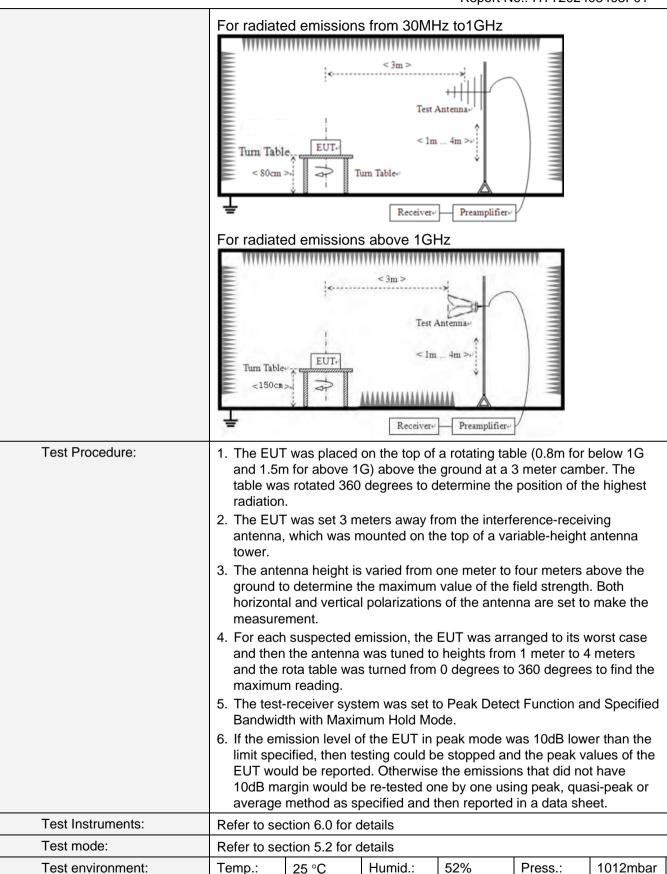













### 6.8.2. Radiated Emission Method

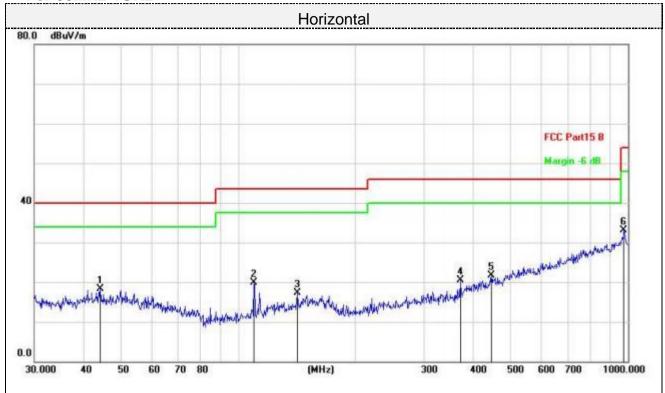
| 0.0.2. Radialed       | Ellission wethou                        |                  |           |         |     |       |          |                      |  |  |  |
|-----------------------|-----------------------------------------|------------------|-----------|---------|-----|-------|----------|----------------------|--|--|--|
| Test Requirement:     | FCC Part15 C Section                    | on 15            | 5.209     |         |     |       |          |                      |  |  |  |
| Test Method:          | ANSI C63.10:2013                        | ANSI C63.10:2013 |           |         |     |       |          |                      |  |  |  |
| Test Frequency Range: | 9kHz to 25GHz                           | 9kHz to 25GHz    |           |         |     |       |          |                      |  |  |  |
| Test site:            | Measurement Distar                      | nce: 3           | 3m        |         |     |       |          |                      |  |  |  |
| Receiver setup:       | Frequency                               |                  | Detector  | RB∖     | Ν   | VBW   | '        | Value                |  |  |  |
|                       | 9KHz-150KHz                             | Qı               | ıasi-peak | 200H    | Ηz  | 600Hz | Z        | Quasi-peak           |  |  |  |
|                       | 150KHz-30MHz                            | Qı               | ıasi-peak | 9KH     | lz  | 30KH  | Z        | Quasi-peak           |  |  |  |
|                       | 30MHz-1GHz                              | Qı               | ıasi-peak | 120K    | Hz  | 300KH | lz       | Quasi-peak           |  |  |  |
|                       | Above 1GHz                              |                  | Peak      | 1MF     | łz  | 3MHz  | <u> </u> | Peak                 |  |  |  |
|                       | Above IGHZ                              |                  | Peak      | 1MF     | łz  | 10Hz  |          | Average              |  |  |  |
| Limit:                | Frequency                               |                  | Limit (u\ | //m)    | ٧   | alue  | N        | Measurement Distance |  |  |  |
|                       | 0.009MHz-0.490M                         | lHz              | 2400/F(k  | (Hz)    |     | QP    |          | 300m                 |  |  |  |
|                       | 0.490MHz-1.705M                         | lHz              | 24000/F(  | KHz)    |     | QP    |          | 30m                  |  |  |  |
|                       | 1.705MHz-30MH                           | lz               | 30        |         |     | QP    |          | 30m                  |  |  |  |
|                       | 30MHz-88MHz                             | 100              |           |         |     | QP    |          |                      |  |  |  |
|                       | 88MHz-216MHz                            | <u> </u>         | 150       |         |     | QP    |          |                      |  |  |  |
|                       | 216MHz-960MH                            | z 20             |           |         |     | QP    |          | 3m                   |  |  |  |
|                       | 960MHz-1GHz                             |                  | 500       |         | QP  |       |          | 5111                 |  |  |  |
|                       | Above 1GHz                              | 500              |           |         |     | erage |          |                      |  |  |  |
|                       | 7.100.101.12                            |                  | 5000      | )       | F   | eak   |          |                      |  |  |  |
| Test setup:           | For radiated emiss                      | sions            | from 9kH  | z to 30 | MH: | Z     |          |                      |  |  |  |
|                       | < 3m ><br>← Test Antenna                |                  |           |         |     |       |          |                      |  |  |  |
|                       | Turn Table   EUT+   Im   Im   Receiver+ |                  |           |         |     |       |          |                      |  |  |  |







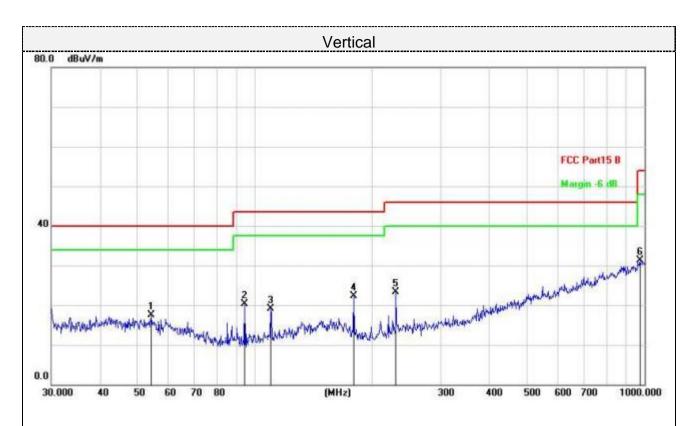
| Test voltage: | AC 120V, 60Hz |
|---------------|---------------|
| Test results: | Pass          |


#### Measurement data:

#### Remarks:

- 1. During the test, pre-scan the GFSK,  $\pi/4$ -DQPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- 4. Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as DH5 2402MHz as below:




### For 30MHz-1GHz



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dB/m  | dB     | Detector |
| 1   |     | 44.2752  | 28.57            | -10.28            | 18.29            | 40.00 | -21.71 | peak     |
| 2   |     | 109.7960 | 34.04            | -14.09            | 19.95            | 43.50 | -23.55 | peak     |
| 3   |     | 141.8262 | 28.99            | -11.65            | 17.34            | 43.50 | -26.16 | peak     |
| 4   |     | 372.0045 | 29.45            | -8.95             | 20.50            | 46.00 | -25.50 | peak     |
| 5   |     | 446.4141 | 28.04            | -6.41             | 21.63            | 46.00 | -24.37 | peak     |
| 6   | *   | 975.7529 | 29.63            | 3.41              | 33.04            | 54.00 | -20.96 | peak     |

Final Level =Receiver Read level + Correct Factor





| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dB/m  | dB     | Detector |
| 1   |     | 54.2610  | 28.97            | -11.54            | 17.43            | 40.00 | -22.57 | peak     |
| 2   |     | 94.0979  | 35.73            | -15.33            | 20.40            | 43.50 | -23.10 | peak     |
| 3   |     | 109.7960 | 33.18            | -14.09            | 19.09            | 43.50 | -24.41 | peak     |
| 4   | *   | 179.3863 | 35.01            | -12.69            | 22.32            | 43.50 | -21.18 | peak     |
| 5   |     | 230.0985 | 35.85            | -12.47            | 23.38            | 46.00 | -22.62 | peak     |
| 6   |     | 972.3374 | 27.84            | 3.38              | 31.22            | 54.00 | -22.78 | peak     |

Final Level =Receiver Read level + Correct Factor



### For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK were test at Low, Middle, and High

channel; only the worst result of GFSK was reported as below:

| Frequency(MHz):    |       |                      | 2402              |                | Polarity:              |                             | HORIZONTAL              |                           |                                |
|--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) |       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 59.25 | PK                   | 74                | 14.75          | 53.55                  | 31                          | 6.5                     | 31.8                      | 5.7                            |
| 4804.00            | 41.88 | AV                   | 54                | 12.12          | 36.18                  | 31                          | 6.5                     | 31.8                      | 5.7                            |
| 7206.00            | 53.94 | PK                   | 74                | 20.06          | 41.29                  | 36                          | 8.15                    | 31.5                      | 12.65                          |
| 7206.00            | 43.95 | AV                   | 54                | 10.05          | 31.30                  | 36                          | 8.15                    | 31.5                      | 12.65                          |

| Frequency(MHz):    |       |                      | 2402              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) |       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 59.17 | PK                   | 74                | 14.83          | 53.47                  | 31                          | 6.5                     | 31.8                      | 5.7                            |
| 4804.00            | 43.87 | AV                   | 54                | 10.13          | 38.17                  | 31                          | 6.5                     | 31.8                      | 5.7                            |
| 7206.00            | 53.38 | PK                   | 74                | 20.62          | 40.73                  | 36                          | 8.15                    | 31.5                      | 12.65                          |
| 7206.00            | 42.48 | AV                   | 54                | 11.52          | 29.83                  | 36                          | 8.15                    | 31.5                      | 12.65                          |

| Freque             | Frequency(MHz):    |    |                   | 2441           |                        | Polarity:                   |                         | HORIZONTAL                |                                |  |
|--------------------|--------------------|----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu |    | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4882.00            | 60.60              | PK | 74                | 13.40          | 54.44                  | 31.2                        | 6.61                    | 31.65                     | 6.16                           |  |
| 4882.00            | 44.34              | AV | 54                | 9.66           | 38.18                  | 31.2                        | 6.61                    | 31.65                     | 6.16                           |  |
| 7323.00            | 53.73              | PK | 74                | 20.27          | 40.78                  | 36.2                        | 8.23                    | 31.48                     | 12.95                          |  |
| 7323.00            | 42.95              | AV | 54                | 11.05          | 30.00                  | 36.2                        | 8.23                    | 31.48                     | 12.95                          |  |



| Freque                                              | Frequency(MHz): |          |            | 2441   |        | Polarity: |           | VERTICAL |            |  |
|-----------------------------------------------------|-----------------|----------|------------|--------|--------|-----------|-----------|----------|------------|--|
| Frequency Emission  (MHz) Emission  Level  (dBuV/m) | Emission        |          | Limit      | Margin | Raw    | Antenna   | Cable     | Pre-     | Correction |  |
|                                                     | vel             | (dBuV/m) |            | Value  | Factor | Factor    | amplifier | Factor   |            |  |
|                                                     | (dBuV/m)        |          | (ubuv/III) | (dB)   | (dBuV) | (dB/m)    | (dB)      | (dB)     | (dB/m)     |  |
| 4882.00                                             | 61.27           | PK       | 74         | 12.73  | 55.11  | 31.2      | 6.61      | 31.65    | 6.16       |  |
| 4882.00                                             | 43.65           | AV       | 54         | 10.35  | 37.49  | 31.2      | 6.61      | 31.65    | 6.16       |  |
| 7323.00                                             | 52.63           | PK       | 74         | 21.37  | 39.68  | 36.2      | 8.23      | 31.48    | 12.95      |  |
| 7323.00                                             | 43.41           | AV       | 54         | 10.59  | 30.46  | 36.2      | 8.23      | 31.48    | 12.95      |  |

| Freque             | Frequency(MHz): |                      |                   | 2480           |                        | Polarity:                   |                         | HORIZONTAL                |                                |  |
|--------------------|-----------------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|--|
| Frequency<br>(MHz) | Le              | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |  |
| 4960.00            | 61.78           | PK                   | 74                | 12.22          | 55.12                  | 31.4                        | 6.76                    | 31.5                      | 6.66                           |  |
| 4960.00            | 41.45           | AV                   | 54                | 12.55          | 34.79                  | 31.4                        | 6.76                    | 31.5                      | 6.66                           |  |
| 7440.00            | 53.46           | PK                   | 74                | 20.54          | 40.16                  | 36.4                        | 8.35                    | 31.45                     | 13.3                           |  |
| 7440.00            | 46.01           | AV                   | 54                | 7.99           | 32.71                  | 36.4                        | 8.35                    | 31.45                     | 13.3                           |  |

| Frequency(MHz): |          |       | 2480     |        | Polarity: |         | VERTICAL  |        |            |
|-----------------|----------|-------|----------|--------|-----------|---------|-----------|--------|------------|
| Frequency       | Emission |       | l imais  | Monein | Raw       | Antenna | Cable     | Pre-   | Correction |
| Frequency       | Level    | Limit | Margin   | Value  | Factor    | Factor  | amplifier | Factor |            |
| (MHz)           | (dBuV/m) |       | (dBuV/m) | (dB)   | (dBuV)    | (dB/m)  | (dB)      | (dB)   | (dB/m)     |
| 4960.00         | 62.60    | PK    | 74       | 11.40  | 55.94     | 31.4    | 6.76      | 31.5   | 6.66       |
| 4960.00         | 43.78    | AV    | 54       | 10.22  | 37.12     | 31.4    | 6.76      | 31.5   | 6.66       |
| 7440.00         | 54.41    | PK    | 74       | 19.59  | 41.11     | 36.4    | 8.35      | 31.45  | 13.3       |
| 7440.00         | 44.64    | AV    | 54       | 9.36   | 31.34     | 36.4    | 8.35      | 31.45  | 13.3       |

### Remark:

<sup>(1)</sup> Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

<sup>(2)</sup> When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.



### 6.9. Antenna Requirement

### **Standard Applicable**

### For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

### FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### **Antenna Connected Construction**

The maximum gain of antenna was 3.00 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.



# 7. Test Setup Photo

Reference to the appendix I for details.

# 8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----