FCC TEST REPORT FCC ID: 2A82I-DX21004

Report Number	: ZKT-220927L7241
Date of Test	Aug. 25, 2022- Nov. 7, 2022
Date of issue	: Nov. 7, 2022
Total number of pages	. 39
Test Result	: PASS
Testing Laboratory	: Shenzhen ZKT Technology Co., Ltd.
Address	1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	: Dongguan DaXian Lighting Technology CO., LTD
Address	No. 72, Tai'an, Liyuan Road, Zhangmutou town, Dongguan City, Guangdong Province
Manufacturer's name	: Dongguan DaXian Lighting Technology CO., LTD
Address	No. 72, Tai'an, Liyuan Road, Zhangmutou town, Dongguan City, Guangdong Province
Test specification:	
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10:2013
Test procedure	: /
Non-standard test method	: N/A
Test Report Form No	: TRF-EL-110_V0
Test Report Form(s) Originator	ZKT Testing
Master TRF	: Dated: 2020-01-06
test (EUT) is in compliance with the identified in the report. This report shall not be reproduced e	en tested by ZKT, and the test results show that the equipment under FCC requirements. And it is applicable only to the tested sample except in full, without the written approval of ZKT, this document may al only, and shall be noted in the revision of the document.
Product name	: Corner atmosphere light (Bluetooth)
Trademark	: N/A
Model/Type reference	: DX21004-03,DX21004-01,DX21004-05,DX21004-07,DX21004-XX(XX=01-10)
Ratings	: DC 12V 2A from adapter or others

Testing procedure and testing location:	
Testing Laboratory: Address	Shenzhen ZKT Technology Co., Ltd. 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China
Tested by (name + signature):	Alen He Aren Me
Reviewer (name + signature):	Joe Liu
Approved (name + signature):	Approved

Table of Contents

	Page
1. VERSION	5
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	7
2.2 MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
3.5EQUIPMENTS LIST FOR ALL TEST ITEMS	11
4. EMC EMISSION TEST	12
4.1 CONDUCTED EMISSION MEASUREMENT	
4.1.1 POWER LINE CONDUCTED EMISSION Limits	
4.1.2 TEST PROCEDURE 4.1.3 DEVIATION FROM TEST STANDARD	
4.1.4 TEST SETUP	
4.1.5 EUT OPERATING CONDITIONS	
4.1.6 TEST RESULT	
4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS	-
4.2.2 TEST PROCEDURE	
4.2.3 DEVIATION FROM TEST STANDARD	
4.2.4 TEST SETUP 4.2.5 EUT OPERATING CONDITIONS	
4.2.6 TEST RESULTS	-
5.RADIATED BAND EMISSIONMEASUREMENT	23
5.1 TEST REQUIREMENT:	23
5.2 TEST PROCEDURE	23
5.3 DEVIATION FROM TEST STANDARD	23
5.4 TEST SETUP	24
5.5 EUT OPERATING CONDITIONS	24
5.6 TEST RESULT	25
6.POWER SPECTRAL DENSITY TEST	26
6.1 APPLIED PROCEDURES / LIMIT	26
6.2 TEST PROCEDURE	26
6.3 DEVIATION FROM STANDARD	26
6.4 TEST SETUP	26
6.5 EUT OPERATION CONDITIONS	26

6.6 TEST RESULT	,
7. OCCUPY BANDWIDTH)
7.1 APPLIED PROCEDURES / LIMIT)
7.2 TEST PROCEDURE	,
7.3 DEVIATION FROM STANDARD 29	•
7.4 TEST SETUP)
7.5 EUT OPERATION CONDITIONS)
7.6 TEST RESULT)
8.PEAK OUTPUT POWER TEST	2
8.1 APPLIED PROCEDURES/LIMIT	2
8.2 TEST PROCEDURE	2
8.3 DEVIATION FROM STANDARD 32	2
8.4 TEST SETUP	2
8.5 EUT OPERATION CONDITIONS	
8.6 TEST RESULT	2
9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION	\$
9.1 APPLICABLE STANDARD	;
9.2 TEST PROCEDURE	;
9.3 DEVIATION FROM STANDARD	;
9.4 TEST SETUP	;
9.5 EUT OPERATION CONDITIONS	
9.6 TEST RESULTS	;
10. ANTENNA REQUIREMENT	;
11. TEST SETUP PHOTO)
12. EUT CONSTRUCTIONAL DETAILS)

1. VERSION

Report No.	Version	Description	Approved
ZKT-220927L7241	Rev.01	Initial issue of report	Nov. 7, 2022

2. SUMMARY OF TEST RESULTS

FCC Part15 (15.247) , Subpart C					
Standard Section	Test Item	Result	Remark		
FCC part 15.203/15.247 (c)	Antenna requirement	PASS			
FCC part 15.207	AC Power Line Conducted Emission	PASS			
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS			
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS			
FCC part 15.205/15.209	Spurious Emission	PASS			

Test procedures according to the technical standards:

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen ZKT Technology Co., Ltd. Add. : 1/F, No. 101, Building B, No. 6, Tangwei Community Industrial Avenue, Fuhai Street, Bao'an District, Shenzhen, China

FCC Test Firm Registration Number: 692225 Designation Number: CN1299 IC Registered No.: 27033

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U \cdot where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2 \cdot providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF power conducted	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All emissions radiated(<1G)	±4.68dB
5	All emissions radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Corner atmosphere light (Bluetooth)
Model No.:	DX21004-03
Serial No.:	DX21004-01,DX21004-05,DX21004-07,DX21004-XX(XX=01-10)
Hardware Version:	V1.0
Software Version:	V1.0
Sample(s) Status:	Engineer sample
Channel numbers:	40
Channel separation:	2402MHz~2480MHz
Modulation technology:	GFSK
Antenna Type:	PCB Antenna
Antenna gain:	0 dBi
Power supply:	DC 12V 2A from adapter or others
POWER ADAPTER:	Model: HP24L-1202000-AVU-S
	Input: AC100-240V~50Hz/60Hz 0.8A
	Output: DC12V 2.0A

Operatio	Operation Frequency each of channel						
Channe I	Frequency	Chann el	Frequency	Chann el	Frequency	Chann el	Frequency
1	2402	11	2422	21	2442	31	2462
2	2404	12	2424	22	2444	32	2464
3	2406	13	2426	23	2446	33	2466
4	2408	14	2428	24	2448	34	2468
5	2410	15	2430	25	2450	35	2470
6	2412	16	2432	26	2452	36	2472
7	2414	17	2434	27	2454	37	2474
8	2416	18	2436	28	2456	38	2476
9	2418	19	2438	29	2458	39	2478
10	2420	20	2440	30	2460	40	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode
nominal rated supply vo	t, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the oltage, and found that the worst case was under the nominal rated supply just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Test Software	Realtek Test Tool
Power level setup	<0dBm

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

AC Line EUT

Radiated Emission

AC Line EUT

Conducted Spurious

AC Line EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Switching Power Supply	DONG GUAN HP-POWER TECHNOLOG Y .,LIMITED	LID241 4202000 AV41 S	1	SDOC

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in ^r Length ^a column.

3.5EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	9020A	MY55370835	Oct. 18, 2021	Oct. 17, 2022
2	Spectrum Analyzer (1GHz-40GHz)	R&S	FSQ	100363	Oct. 17, 2021	Oct. 16, 2022
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	101169	Oct. 18, 2021	Oct. 17, 2022
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	N/A	Oct. 17, 2021	Oct. 16, 2022
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	Oct. 17, 2021	Oct. 16, 2022
6	Loop Antenna	TESEQ	HLA6121	58357	Oct. 17, 2021	Oct. 16, 2022
7	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	060747	Oct. 17, 2021	Oct. 16, 2022
8	Amplifier (1GHz-26.5GHz)	Agilent	8449B	3008A00315	Oct. 18, 2021	Oct. 17, 2022
9	RF cables1 (9kHz-30MHz)	N/A	9kHz-30MHz	N/A	Oct. 18, 2021	Oct. 17, 2022
10	RF cables2 (30MHz-1GHz)	N/A	30MHz-1GH z	N/A	Oct. 18, 2021	Oct. 17, 2022
11	RF cables3 (1GHz-40GHz)	N/A	1GHz-40GHz	N/A	Oct. 18, 2021	Oct. 17, 2022
12	ESG Signal Generator	Agilent	E4421B	N/A	Oct. 18, 2021	Oct. 17, 2022
13	Signal Generator	Agilent	N5182A	N/A	Oct. 22, 2021	Oct. 21, 2022
14	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	Oct. 17, 2021	Oct. 16, 2022
15	MWRF Power Meter Test system	MW	MW100-RPC B	N/A	Oct. 22, 2021	Oct. 21, 2022
16	D.C. Power Supply	LongWei	TPR-6405D	N/A	١	\
17	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	١	١
18	RF Software	MW	MTS8310	V2.0.0.0	Ν.	\ \
19	Turntable	MF	MF-7802BS	N/A	\	\
20	Antenna tower	MF	MF-7802BS	N/A	λ	λ

Conduction Test equipment

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	Oct. 22, 2021	Oct. 21, 2022
2	LISN	CYBERTEK	EM5040A	E1850400149	Oct. 22, 2021	Oct. 21, 2022
3	Test Cable	N/A	C01	N/A	Oct. 18, 2021	Oct. 17, 2022
4	Test Cable	N/A	C02	N/A	Oct. 18, 2021	Oct. 17, 2022
5	EMI Test Receiver	R&S	ESCI3	101393	Oct. 17, 2021	Oct. 16, 202
6	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	١	λ

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

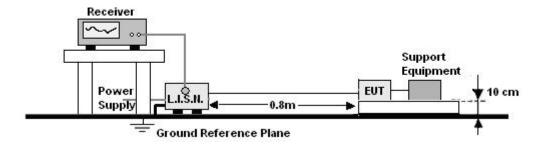
Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (Standard	
	Quasi-peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.

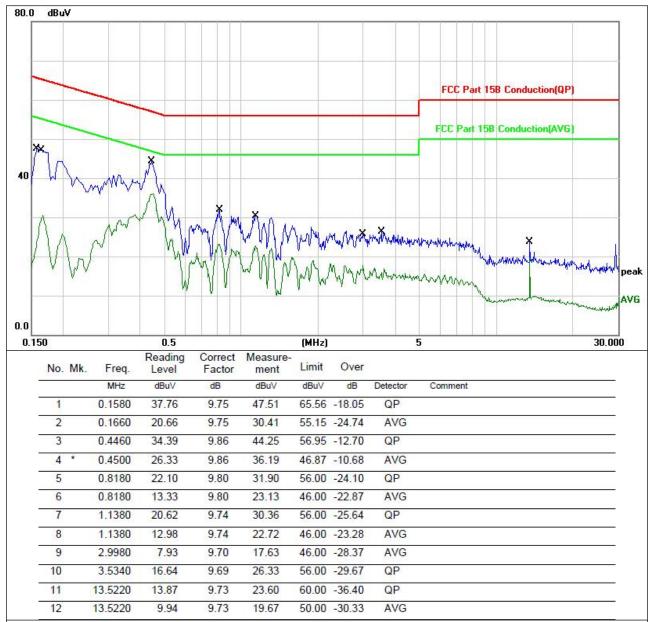

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.1 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

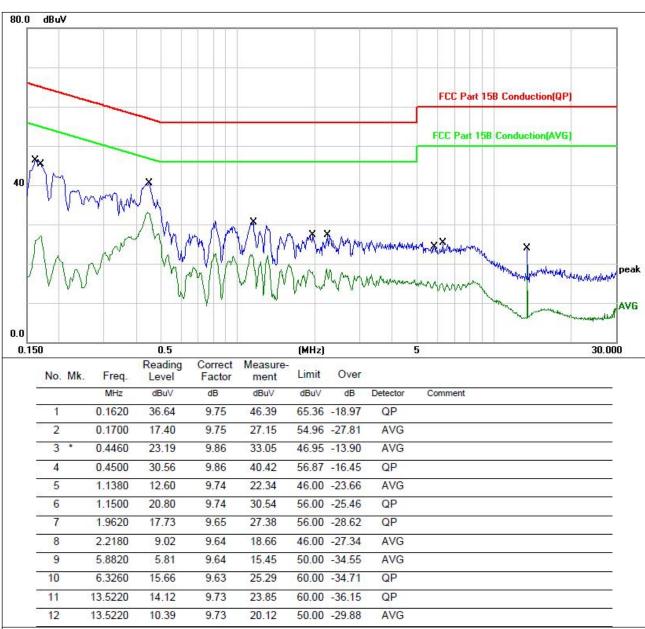

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

4.1.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	L
Test Voltage :	AC 120V/60Hz		


Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 3.Mesurement Level = Reading level + Correct Factor

Project No.: ZKT-220727L7241 Page 15 of 39

Temperature :	26 ℃	Relative Humidity:	54%
Pressure :	101kPa	Phase :	N
Test Voltage :	AC 120V/60Hz		

Notes:

1.An initial pre-scan was performed on the line and neutral lines with peak detector.

2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission. 3.Mesurement Level = Reading level + Correct Factor

4.2 RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209					
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013				
Test Frequency Range:	9kHz to 25GHz					
Test site:	Measurement Dista	nce: 3m				
Receiver setup:	Frequency Detector RBW VBW Value					
	9KHz-150KHz Quasi-peak 200Hz 600Hz Quasi-peak				Quasi-peak	
	150KHz-30MHz Quasi-peak 9KHz 30KHz Quasi-peak				Quasi-peak	
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak	
	Above 1GHz Peak 1MHz 3MHz			3MHz	Peak	
		Peak	1MHz	10Hz	Average	

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

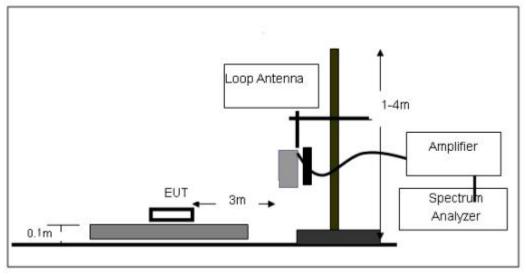
- a. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter semi-anechoiccamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of avariable-height antenna tower.

- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum valueof the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned toheights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.

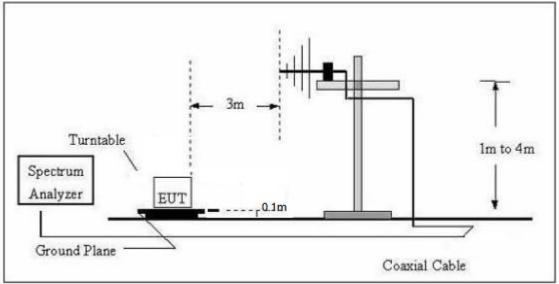
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel

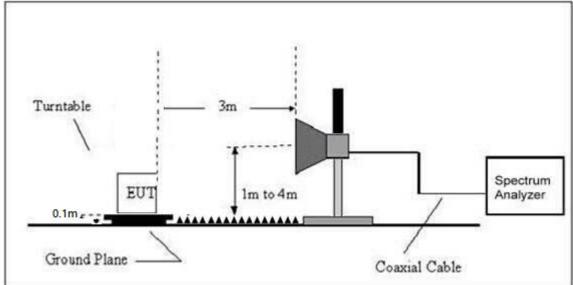
Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD


No deviation

4.2.4 TEST SETUP

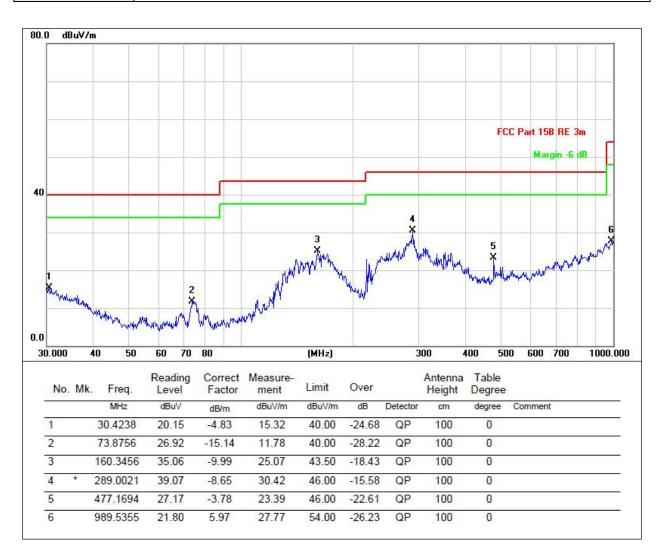

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

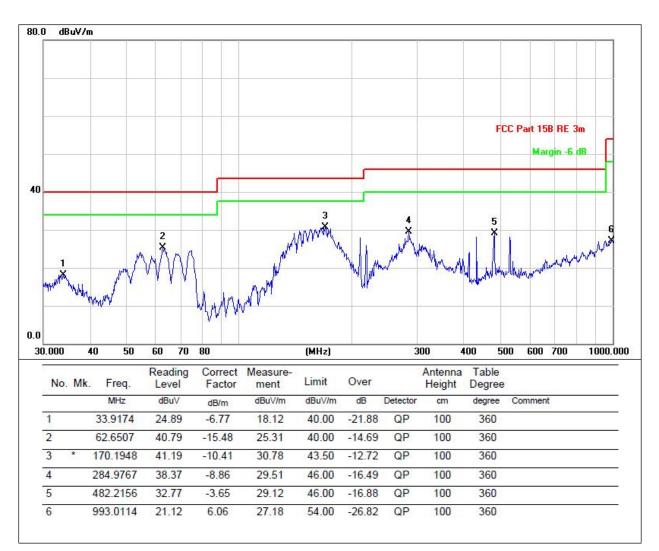
(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


4.2.6 TEST RESULTS

Between 9KHz – 30MHz


The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Between 30MHz - 1GHz

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz		

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz		

Remarks:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

1GHz~25GHz

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			L	ow Chan	nel:2402MH	z			
V	4804	55.54	30.55	5.77	24.66	55.42	74.00	-18.58	PK
V	4804	40.89	30.55	5.77	24.66	40.77	54.00	-13.23	AV
V	7206	53.22	30.33	6.32	24.55	53.76	74.00	-20.24	PK
V	7206	39.23	30.33	6.32	24.55	39.77	54.00	-14.23	AV
V	9608	51.39	30.85	7.45	24.69	52.68	74.00	-21.32	PK
V	9608	37.42	30.85	7.45	24.69	38.71	54.00	-15.29	AV
Н	4804	56.38	30.55	5.77	24.66	56.26	74.00	-17.74	PK
Н	4804	40.63	30.55	5.77	24.66	40.51	54.00	-13.49	AV
Н	7206	54.20	30.33	6.32	24.55	54.74	74.00	-19.26	PK
Н	7206	41.16	30.33	6.32	24.55	41.70	54.00	-12.30	AV
Н	9608	51.99	30.85	7.45	24.69	53.28	74.00	-20.72	PK
Н	9608	38.48	30.85	7.45	24.69	39.77	54.00	-14.23	AV

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			Mi	ddle Cha	nnel:2440M	Hz			
V	4880	54.23	30.55	5.77	24.66	54.11	74.00	-19.89	PK
V	4880	40.37	30.55	5.77	24.66	40.25	54.00	-13.75	AV
V	7320	54.50	30.33	6.32	24.55	55.04	74.00	-18.96	PK
V	7320	41.48	30.33	6.32	24.55	42.02	54.00	-11.98	AV
V	9760	52.15	30.85	7.45	24.69	53.44	74.00	-20.56	PK
V	9760	37.17	30.85	7.45	24.69	38.46	54.00	-15.54	AV
Н	4880	55.38	30.55	5.77	24.66	55.26	74.00	-18.74	PK
Н	4880	41.03	30.55	5.77	24.66	40.91	54.00	-13.09	AV
Н	7320	53.90	30.33	6.32	24.55	54.44	74.00	-19.56	PK
Н	7320	39.54	30.33	6.32	24.55	40.08	54.00	-13.92	AV
Н	9760	51.10	30.85	7.45	24.69	52.39	74.00	-21.61	PK
Н	9760	36.66	30.85	7.45	24.69	37.95	54.00	-16.05	AV

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		_	Н	ligh Chan	nel:2480MH	z	_	_	
V	4960	54.51	30.55	5.77	24.66	54.39	74.00	-19.61	PK
V	4960	39.49	30.55	5.77	24.66	39.37	54.00	-14.63	AV
V	7440	53.30	30.33	6.32	24.55	53.84	74.00	-20.16	PK
V	7440	40.55	30.33	6.32	24.55	41.09	54.00	-12.91	AV
V	9920	50.78	30.85	7.45	24.69	52.07	74.00	-21.93	PK
V	9920	38.83	30.85	7.45	24.69	40.12	54.00	-13.88	AV
Н	4960	56.38	30.55	5.77	24.66	56.26	74.00	-17.74	PK
Н	4960	41.54	30.55	5.77	24.66	41.42	54.00	-12.58	AV
Н	7440	53.76	30.33	6.32	24.55	54.30	74.00	-19.70	PK
Н	7440	41.56	30.33	6.32	24.55	42.10	54.00	-11.90	AV
Н	9920	50.63	30.85	7.45	24.69	51.92	74.00	-22.08	PK
Н	9920	38.17	30.85	7.45	24.69	39.46	54.00	-14.54	AV

5.RADIATED BAND EMISSIONMEASUREMENT

Test Requirement:	FCC Part15 C Section 15.209 and 15.205					
Test Method:	ANSI C63.10: 2013					
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to					
	2500MHz) data was showed.					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	Above	Peak	1MHz	3MHz	Peak	
	1GHz	Average	1MHz	3MHz	Average	

5.1 TEST REQUIREMENT:

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Class B (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

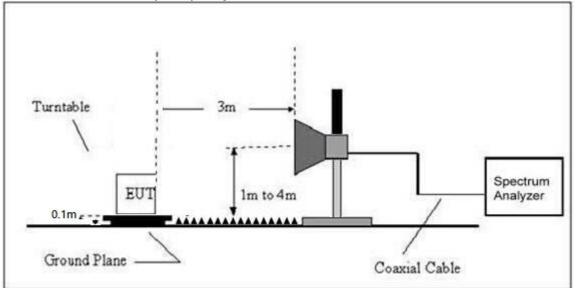
Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could bestopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dBmargin would be re-tested one by one using peak, quasi-peak or average method as specified and then reportedin a data sheet.


g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD No deviation

5.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

	H H H	2390.00				(dB/m)	(dBuV/m)	/m)	Туре	
	Н			Low	/ Channe	el 2402MHz				
			57.97	30.22	4.85	23.98	56.58	74.00	PK	PASS
	Н	2390.00	44.40	30.22	4.85	23.98	43.01	54.00	AV	PASS
		2400.00	57.35	30.22	4.85	23.98	55.96	74.00	PK	PASS
	Н	2400.00	46.14	30.22	4.85	23.98	44.75	54.00	AV	PASS
	V	2390.00	52.13	30.22	4.85	23.98	50.74	74.00	PK	PASS
	V	2390.00	42.63	30.22	4.85	23.98	41.24	54.00	AV	PASS
	V	2400.00	55.20	30.22	4.85	23.98	53.81	74.00	PK	PASS
	V	2400.00	45.45	30.22	4.85	23.98	44.06	54.00	AV	PASS
GFSK			_	High	1 Channe	el: 2480MHz	<u> </u>			
	Н	2483.50	54.75	30.22	4.85	23.98	53.36	74.00	PK	PASS
	Н	2485.50	43.45	30.22	4.85	23.98	42.06	54.00	AV	PASS
	Н	2500.00	56.88	30.22	4.85	23.98	55.49	74.00	PK	PASS
	Н	2500.00	46.58	30.22	4.85	23.98	45.19	54.00	AV	PASS
	V	2483.50	54.00	30.22	4.85	23.98	52.61	74.00	PK	PASS
	V	2485.50	44.22	30.22	4.85	23.98	42.83	54.00	AV	PASS
	V	2500.00	56.99	30.22	4.85	23.98	55.60	74.00	PK	PASS
	V	2500.00	45.09	30.22	4.85	23.98	43.70	54.00	AV	PASS
Remark: 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit										

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB558074 D0115.247 Meas Guidance v 05r02

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS			

6.2 TEST PROCEDURE

1. Set analyzer center frequency to DTS channel center frequency.

2. Set the span to 1.5 times the DTS bandwidth.

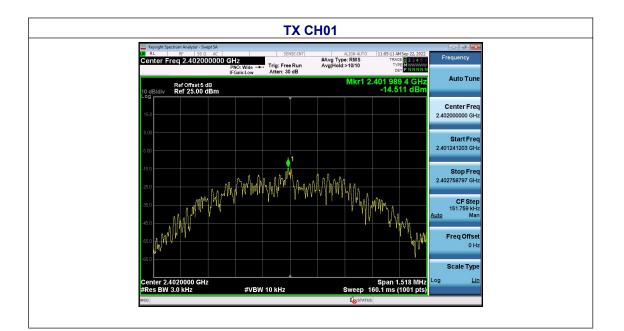
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

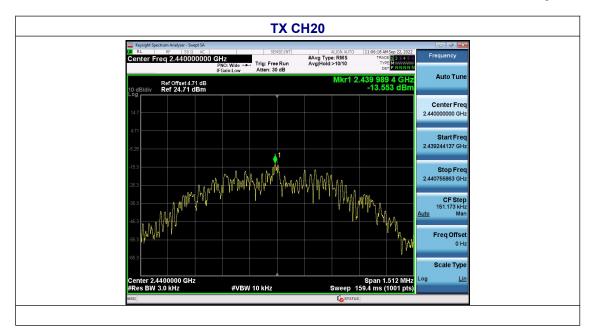
6.3 DEVIATION FROM STANDARD

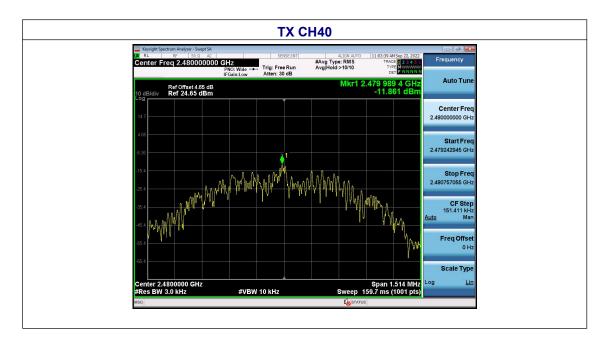
No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER


6.5 EUT OPERATION CONDITIONS


The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.


6.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 12V
Test Mode :	GFSK		

Frequency	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result
2402 MHz	-14.511	8	PASS
2440 MHz	-13.553	8	PASS
2480 MHz	-11.861	8	PASS

7. OCCUPY BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

7.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \ge 3 xRBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.

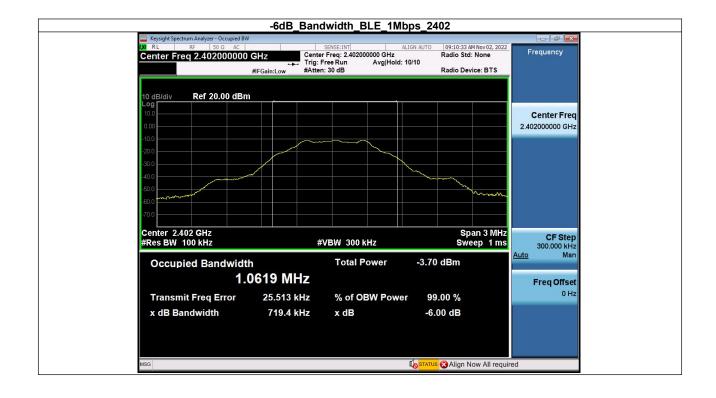
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT]	SPECTRUM
19 170 170 170 170 1		ANALYZER


7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULT

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 12V
Test Mode :	GFSK		

Test CH	Channel Bandwidth (KHz)	Limit(KHz)	Result
Lowest	719.36		
Middle	718.18	>500	Pass
Highest	721.71		

	-6dB_Bandv	vidth_BLE_1M	bps_2440	_00	
Keysight Spectrum Analyzer - Occupied BW		SENSE:INT	ALIGN AUTO	09:10:50 AM Nov 02, 2022	
Center Freq 2.440000000	Trig:	r Freq: 2.440000000 GHz	ld: 10/10	Radio Std: None Radio Device: BTS	Frequency
10 dB/div Ref 20.00 dBm			_		
Log 10.0 0.00					Center Freq 2.440000000 GHz
-10.0 -20.0 -30.0					
-40.0					
-60.0				Span 3 MHz	
#Res BW 100 kHz	#	VBW 300 kHz		Sweep 1 ms	CF Step 300.000 kHz
Occupied Bandwidth 1.0	669 MHz	Total Power	-2.23	dBm	<u>Auto</u> Man Freq Offset
Transmit Freq Error	28.173 kHz	% of OBW Pov	wer 99.	00 %	0 Hz
x dB Bandwidth	718.2 kHz	x dB	-6.0	0 dB	
MSG				🛿 Align Now All requir	ed

-6dB_Bandwidth_BLE_1Mbps_2480

	2022 Frequency
#IFGain:Low #Atten: 30 dB Radio Device: BT	s
10 dB/div Ref 20.00 dBm	Center Freq 2.480000000 GHz
	~~~
Center 2.48 GHz Span 3 F #Res BW 100 kHz #VBW 300 kHz Sweep 1	Hz ms 300.000 kHz Auto Man
Occupied Bandwidth Total Power -1.27 dBm 1.0664 MHz	Freq Offset
Transmit Freq Error31.402 kHz% of OBW Power99.00 %x dB Bandwidth721.7 kHzx dB-6.00 dB	0 Hz
MSG STATUS S Align Now All	a surface of

## 8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

## 8.1 APPLIED PROCEDURES/LIMIT

FCC Part15 (15.247) , Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

#### 8.2 TEST PROCEDURE

#### a. The EUT was directly connected to the Power meter

## 8.3 DEVIATION FROM STANDARD

No deviation.

#### 8.4 TEST SETUP



## **8.5 EUT OPERATION CONDITIONS**

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

## 8.6 TEST RESULT

Temperature :	<b>26</b> ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 12V

Test CH	Peak Output Power (dBm)		
Lowest	0.96	Limit(dBm)	Result
Middle	1.78		
Highest	3.17	30.00	Pass

## 9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

#### 9.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

#### 9.2 TEST PROCEDURE

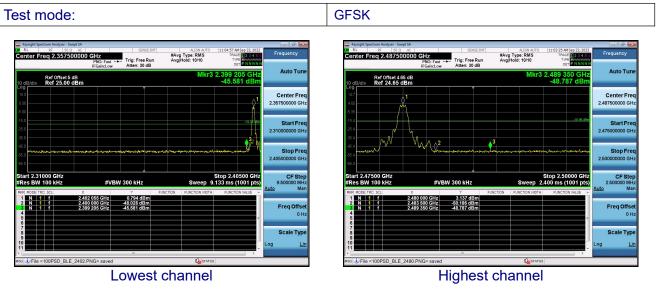
Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

#### 9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP


EUT	SPECTRUM
	ANALYZER

#### 9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


#### 9.6 TEST RESULTS

# Test plot as follows:



# Test plot as follows:

# GFSK Lowest channel



RL	RE	50 Ω AC	T T	SENSE:II	ITI	ALIGN AUTO	11:05:42 A	M Sep 22, 2022	-	- @ E
enter	Freq 12.	5150000	00 GHz PNO: Fast	Trig: Free Ru	#Avg	g Type: RMS Hold: 10/10	TRAC		Fre	quency
			IFGain:Low	Atten: 30 dB						Auto Tu
0 dB/div		set 5 dB 5.00 dBm				Mkr	2 24.53	56 GHz 73 dBm		Hato Ta
.og 15.0									6	enter Fr
5.00										000000 G
5.00	. 1									
15.0								-19.29 dBm		Start Fr
5.0										000000 N
15.0										
5.0							1.4.	a and the		
	1.10					AND A STREET				Stop E.
55.0 <b>(1997)</b>	and the second second	-	and a state of the		and the second secon	بالم المنافق المسالم المسالمة المسالمة المسالمة المسالمة المسالمة المسالمة المسالمة المسالمة المسالمة المسالم				
5.0 0000	a de cale de la cale de		and the second							
5.0 55.0	3 GHz			الكشيرة			Stop 2	5.00 GHz	25.000	000000 G
5.0 55.0			#VE	300 kHz				5.00 GHz	25.000 2.497	000000 G CF St 000000 G
tart 0.0 Res BV	03 GHz V 100 kH TRC SCL	z		300 kHz	FUNCTION		Stop 2 2.387 s (1	5.00 GHz	25.000	000000 G CF St 000000 G
tart 0.0 Res BV	03 GHz V 100 kH	z		SW 300 kHz		Sweep :	Stop 2 2.387 s (1	5.00 GHz 0001 pts)	25.000 2.497 <u>Auto</u>	000000 G CF St 000000 G
50 cm 50 tart 0.0 Res BV KR MODE 1 1 N 2 N 3 4	03 GHz V 100 kH TRC SCL 1 f	z	2.402 2 GHz	300 kHz -16.538 dBm		Sweep :	Stop 2 2.387 s (1	5.00 GHz 0001 pts)	25.000 2.497 <u>Auto</u>	000000 G CF St 000000 G N req Off
55.0 55.0 tart 0.0 Res BV	03 GHz V 100 kH TRC SCL 1 f	z	2.402 2 GHz	300 kHz -16.538 dBm		Sweep :	Stop 2 2.387 s (1	5.00 GHz 0001 pts)	25.000 2.497 <u>Auto</u>	000000 G CF St 000000 G N req Off
50 mm 550 mm tart 0.0 Res BV KR MODE 1 N 2 N 3 4 5 6 6 7	03 GHz V 100 kH TRC SCL 1 f	z	2.402 2 GHz	300 kHz -16.538 dBm		Sweep :	Stop 2 2.387 s (1	5.00 GHz 0001 pts)	25.000 2.497 <u>Auto</u> F	000000 G CF St 000000 G N Treq Off: 0
55.0 ctart 0.0 tart 0.0 Res BV KR MODE 1 N 2 N 3 4 5 6 7 8 9	03 GHz V 100 kH TRC SCL 1 f	z	2.402 2 GHz	300 kHz -16.538 dBm		Sweep :	Stop 2 2.387 s (1	5.00 GHz 0001 pts)	25.000 2.497 <u>Auto</u> F	CF St CF St 000000 G N req Offe 0 Scale Ty
55.0 Commission of the second	03 GHz V 100 kH TRC SCL 1 f	z	2.402 2 GHz	300 kHz -16.538 dBm		Sweep :	Stop 2 2.387 s (1	5.00 GHz 0001 pts)	25.000 2.497 <u>Auto</u> F	Stop Fr           000000 G           CF St           000000 G           M           Scale Ty

# GFSK Middle channel



Keysight Spectrum Analyzer - RL RF S	Swept SA 0 Ω AC		SENSE	INT	ALIGN AUTO	11:07:02 A	M Sep 22, 2022		- 6
enter Freq 12.51	5000000 G	Hz NO: Fast ↔ Gain:Low		#Av tun Avg	g Type: RMS  Hold: 10/10	TRAC	E 1 2 3 4 5 6 M W W W W	Fn	equency
Ref Offset dB/div Ref 24.7					Mkr	2 24.937	7 6 GHz 13 dBm		Auto Tu
9 .7 71 1 29								10.172	<b>enter Fr</b> 5000000 G
3							-18:40 dBm	30	<b>Start Fr</b> .000000 M
3 <b></b>		the second	و الدر الدرو الدراني ا				تعمين	25.000	
art 0.03 GHz tes BW 100 kHz	X	#VBV	V 300 kHz	EUNCTION	Sweep 2	Stop 2 2.387 s (1	5.00 GHz		CF Sto 0000000 G
art 0.03 GHz ess BW 100 kHz R MODE TRC SCL N 1 7	× 2.439 24.937	6 GHz	V 300 kHz	FUNCTION	Sweep 2	Stop 2 2.387 s (1	5.00 GHz 0001 pts)	2.497 <u>Auto</u>	CF St 0000000 G M Freq Offs
	2.439	6 GHz	V 300 kHz Y -1.124 dBm	FUNCTION	Sweep 2	Stop 2 2.387 s (1	5.00 GHz 0001 pts)	2.497 <u>Auto</u>	Stop Fr DOCODOO G CF Sto 7000000 G M Freq Offs 0 Scale Typ

# GFSK Highest channel



RL	RF 50 1 RF 50 1 req 12.515	2 AC 000000 G	Hz Ю: Fast ←	SENSE:	#Av Avg	ALIGN AUTO g Type: RMS  Hold: 10/10	TYPE	1 2 3 4 5 6	Fr	equency
0 dB/div	Ref Offset 4 Ref 24.65	.65 dB	Sain:Low	Atten: 30 dE	3	Mkr	2 24.513 -40.58			Auto Tun
.og 14.7 4.65	¢ ¹								10.00	Center Fre 5000000 G⊦
15.4 25.4 36.4								-16.96.0Bm	30	Start Fre
15.4 55.4 55.4		ي (جوز الانتق ^{اع في} الأميل	-	an daga ng pangana ang pangang	و میاند _{افغا} ریند.	Alathana an an Alathana		north .	25.00	Stop Fro
tart 0.03 Res BW	100 kHz	×	#VB	W 300 kHz	FUNCTION	Sweep 2	Stop 25 2.387 s (10	001 pts)	2.49 <u>Auto</u>	CF Ste 7000000 GI M
1 N 1 2 N 1 3 4 5	f	2.479 ( 24.513 /		3.112 dBm -40.587 dBm				E		Freq Offs 0 I
6 7 8 9 0									Log	Scale Typ
i i	ts changed; al	l traces clears	ed			<b>STATUS</b>				

## **10. ANTENNA REQUIREMENT**

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
be used with the device. The use of a intentional radiator, the manufacturer muse of a standard antenna jack or elect 15.247(c) (1)(i) requirement:	ed to ensure that no antenna other than that furnished by the responsible party shall a permanently attached antenna or of an antenna that uses a unique coupling to the nay design the unit so that a broken antenna can be replaced by the user, but the trical connector is prohibited.
	ectional gain greater than 6dBi provided the maximum conducted output power of dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.
EUT Antenna:	

#### **11. TEST SETUP PHOTO**

## **12. EUT CONSTRUCTIONAL DETAILS**

Please refer to external photos file and internal photos file

******* END OF REPORT ******