

Page: 1 of 31

FCC Test Report

Application No.: HKES140300052801

Applicant: VOXX ACCESSORIES CORP

Address: 3502 Woodview Trace,

Suite 1220 Indianapolis, IN. 46268

Product Information:

Product Description: Multi-Function Emergency Radio Model: RCEP600WR, RCAEP700WR ♣

Product Class: Low Power Communication Device – Transmitter (2.4 GHz)

FCC ID: VIXRCEP600WR

Requirement: CFR 47 FCC PART 15 SUBPART C, 2013

- Intentional Radiators (Section 15.249)

Date of Receipt: 2014-02-14, 2014-03-25

Date of Test: 2014-03-31 **Date of Issue**: 2014-04-04

Test Result:

* In the configuration tested, the EUT complied with the requirements for the relevant clauses of Federal Communications Commission Rules as specified above.

Note: This report is reproduced by transferring the test data from the test report no. HKES1402000294AV issued on 2014-04-04.

Authorized Signature:

CHEN Jian-feng, Jeffrey

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS IECC Limited or testing done by SGS IECC Limited in connection with, distribution or use of the product described in this report must be approved by SGS IECC Limited in writing.

Page: 2 of 31

2 Test Summary

Test	Test Requirement	Test Method	Result
Conducted Emission (150KHz to 30MHz)	FCC PART 15, SUBPART C: 2013	ANSI C63.4:2003	PASS
Radiated Emission (9kMHz to 1GHz)	FCC PART 15, SUBPART C: 2013	ANSI C63.4:2003	PASS
Radiated Emission above 1 GHz	FCC PART 15, SUBPART C: 2013	ANSI C63.4:2003	PASS
Band edge / 20 dB Bandwidth	FCC PART 15, SUBPART C: 2013	ANSI C63.4:2003 Marker-Detla measurement	PASS

[♣] Item no.: MT-787, RCEP600WR, RCAEP700WR

According to the confirmation from the applicant, the above models are identical in all electrical aspects in relating to the circuit design, PCB layout, electrical components used, internal wiring and function. The difference is only the color.

Therefore only the model MT-787 was tested in this report.

Page: 3 of 31

3 Contents

		Page
1	COVER PAGE	1
2	TEST SUMMARY	2
3	CONTENTS	3
4	GENERAL INFORMATION	4
	4.1 GENERAL DESCRIPTION OF EUT	4
	4.2 DETAILS OF EUT	4
	4.3Conditions of EUT	
	4.4 DESCRIPTION OF SUPPORT UNITS	
	4.5 STANDARDS APPLICABLE FOR TESTING	
	4.6 TEST LOCATION	
	4.7 TEST FACILITY	
	4.8 DEVIATION FROM STANDARDS	
	4.9 ABNORMALITIES FROM STANDARD CONDITIONS	
	4.10 DECLARATION OF FAMILY GROUPING	
	4.11 ABBREVIATIONS	6
5	EQUIPMENTS USED DURING TEST	7
6	TEST RESULTS	9
	6.1 CONDUCTED EMISSIONS MAINS TERMINALS, 150kHz to 30MHz	a
	6.1.1 EUT Operation	
	6.1.2 Test Setup and Procedure	
	6.1.3 Measurement Data	
	6.2 RADIATED EMISSIONS, 9KHZ TO1GHZ	
	6.2.1 EUT Operation	
	6.2.2 Test Setup and Procedure	
	6.2.3 Measurement Data	
	6.3 RADIATED EMISSIONS ABOVE 1 GHz	
	6.3.1 EUT Operation	
	6.3.2 Test Setup and Procedure	
	6.3.3 Measurement Data	22
	6.4 BAND EDGE / 20 DB BANDWIDTH	
7	PHOTOGRAPHS	26
	7.1 CONDUCT EMISSION TEST SETUP	26
	7.2 RADIATD EMISSION TEST SETUP	
	7.3 EUT CONSTRUCTIONAL DETAILS	

Page: 4 of 31

4 General Information

4.1 General Description of EUT

EUT Name: Handcrank Digital Multi-banded Radio with Bluetooth & Weather Alert

Siren

Model: MT-787

Serial No.: --

4.2 Details of EUT

Power Supply: AC 100-240V 50/60Hz Adaptor: WCF0500080A1BA

DC3.7V,rechargeable battery

Power Cable: 2 wires unscreened adaptor output cable

Operating Frequency 2402-2480MHz

Antenna Type: Integral antenna (13mm x 4mm)

Bluetooth version V2.1+EDR

Modulation Type: GFSK, ∏/4-DQPSK and 8DPSK

Modulation	Packet	Packet Type	Packet Size
	DH1	4	24
GFSK	DH3	11	183
	DH5	15	339
	2DH1	20	54
(π/4)DQPSK	2DH3	26	367
	2DH5	30	379
	3DH1	24	83
8DPSK	3DH3	27	552
	3DH5	31	1021

Page: 5 of 31

4.3 Conditions of EUT

The received sample was under good condition.

4.4 Description of Support Units

Description	Manufacturer	Model No.	Serial No.	
Notebook	HP	Omnibook xt6200	OE116	
BT test board	Supplied by client	1		
Test software	Appo Tech RF Control Kit V3.2			

All field strength measures in this test report were done by the aid of test software which places the device in continuous transmission with 100% duty cycle under different package type and the test software above allowed to set the frequency fixed and hopping stopped.

When testing, the software about power grade (0-7) setting is 7 as worse case.

4.5 Standards Applicable for Testing

CFR 47, FCC Part 15, Oct 2013 ANSI C63.4:2003

4.6 Test Location

All tests were performed at:

SGS IECC Limited (Member of the SGS Group (SGS SA))

Units 303-305, 3/F., 31 Lok Yip Road, On Lok Tsuen, Fanling, N.T., Hong Kong

Tel: +852 2305 2570 Fax: +852 2756 4480

4.7 Test Facility

Measurement facility located at Fanling (Hong Kong), placed on file with the FCC Pursuant to Section 2.948 of the FCC Rules (FCC Registration No. : 97774).

The test facility is recognized, certified, or accredited by the following organizations:

FCC - CAB Registration No.: 446297

Measurement facility located at Fanling (Hong Kong), accredited as a Conformity Assessment Body (CAB) and was designated by FCC to perform compliance testing on equipment subject to Declaration Of Conformity (DOC) and Certification under Part 15 and 18 of the Commission's Rules.

Page: 6 of 31

4.8 Deviation from Standards

None.

4.9 Abnormalities from Standard Conditions

None.

4.10 Declaration of Family Grouping

None.

4.11 Abbreviations

N/A: Not Applicable

EUT: Equipment Under Test

Page: 7 of 31

5 Equipments Used during Test

Conducted Emission								
Equipment	Manufacturer	Model / Serial No.	Cal. Date	Cal. Due Date				
Test Receiver	Rohde & Schwarz	ESHS 30 / 839667/002	2013/10/23	2014/10/22				
Artificial Mains Network (LISN)	Schwarzbeck	NSLK 8127 / 8127312	2013/4/17	2014/4/16				
Impulse Limiter	Rohde & Schwarz	ESH-3-Z2 / 375881052	2013/1/21	2015/1/20				

Radiated Emission							
Equipment	Manufacturer	Model / Serial No.	Cal. Date	Cal. Due Date			
3m Semi-Anechoic Chamber (pre-test)							
3m / 10m Open Aera Test Site			2012-02-24	2015-02-23			
Test Receiver	Rohde & Schwarz	ESCS 30 / 100388	2013/10/23	2014/10/22			
Spectrum Analyzer	Rohde & Schwarz	FSP 30 / 101474	2013/8/8	2014/8/7			
Spectrum Analyzer 100Hz – 26.5GHz	Advantest	R3273 / 140101852	2013/10/23	2014/10/22			
Loop antenna	Rohde & Schwarz	HFH2-Z2 / 871336/48	2012/12/27	2015/12/26			
Antenna 30-1000MHz	Schaffner	CBL6111C / 2791	2012/10/12	2014/10/11			
Horn Antenna 1-18GHz	Schwarzbeck	BBHA9120D / 9120D-1070	2014/1/13	2016/1/12			
Horn Antenna 15-26.5GHz	Schwarzbeck	BBHA9170 / 9170-492	2012/11/12	2014/11/11			
Preamplifier 10MHz – 6GHz	Schwarzbeck	BBV9743 / 9743-052	2014/1/13	2016/1/12			
Preamplifier 1-18GHz	Schwarzbeck	BBV9718 / 9718-223	2014/1/13	2016/1/12			
Preamplifier 18- 26.5GHz	Schwarzbeck	BBV9719 / 9719-019	2012/11/13	2014/11/12			

Page: 8 of 31

Coaxial Cable		E167	2013-06-28	2014-06-27
RF Cable	HUBER+SUHNER	E207	2012-11-14	2014-11-13
Antenna Mast System	Schwarzbeck	AM9104 / -		
Turntable with Controller	Drehtisch	DT312 / -		

General Use Equipment								
Equipment	Manufacturer	Model / Serial No.	Cal. Date	Cal. Due Date				
Digital Multimeter	Fluke	189 / 83640020	2013/4/10	2014/4/9				
Temperature / Humidity meter	-	E159	2013-11-05	2014-11-04				

Page: 9 of 31

6 Test Results

6.1 Conducted Emissions Mains Terminals, 150kHz to 30MHz

Test Requirement: FCC Part15 C Section 15.207

Test Method: ANSI C63.4
Test Date: 2014-03-31

Frequency Range: 150kHz to 30MHz

Class / Severity: Class B

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak if maximised peak within 6dB of Quasi-Peak limit

Limit:

Frequency range MHz	Class B Limits dB (μV)		
	Quasi-peak	Average	
0.15 to 0.50	66 to 56	56 to 46	
0.50 to 5	56	46	
5 to 30	60	50	

Note:

- 1) The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.
- 2) The lower limit is applicable at the transition frequency.

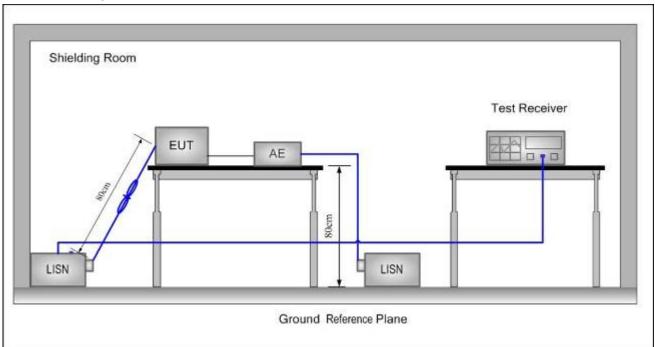
6.1.1 EUT Operation

Operating Environment:

Temperature: 22.4 °C Humidity: 59% RH

EUT Operation: Pre-Scan has been conducted to determine the worst-case mode from all

possible combinations between available modulations, data rates and antenna

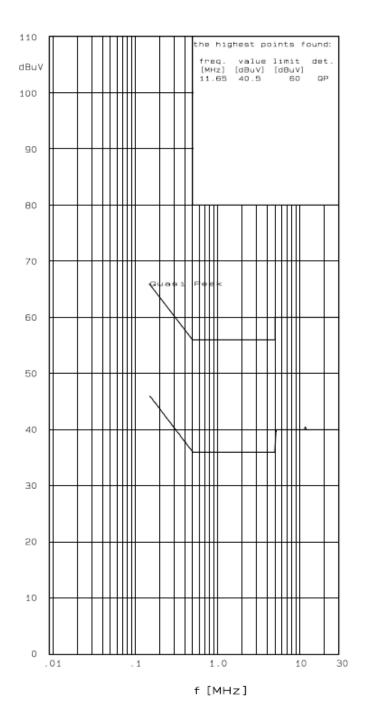

ports.

Remark: BT communication more is worst case and report it.

Page: 10 of 31

6.1.2 Test Setup and Procedure

- 1. The mains terminal conducted emission test was conducted in a shielded room.
- 2. The EUT was connected to AC power source through a LISN (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. For Load terminal voltage measurement, a voltage probe was used on the load terminals. Measurement at control terminals were carried out by means of an impedance stabilization network (ISN). The ISN was bounded to ground.
- 3. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane, but separated from metallic contact with the ground reference plane by 0.1m of insulation.
- 4. The EUT kept a distance of at least 0.8m from any other earthed conducting surface. The Artificial Mains Network was situated at a distance of 0.8m from the EUT. The mains lead of EUT excess 0.8m was folded back and forth parallel to the lead so as to form a horizontal bundle with a length between 0.3m and 0.4m.

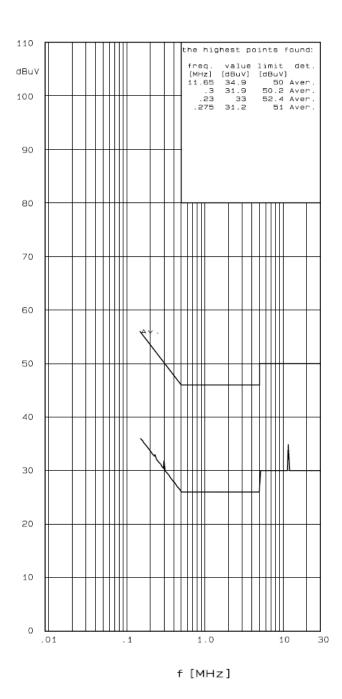


Page: 11 of 31

6.1.3 Measurement Data

Live Line:

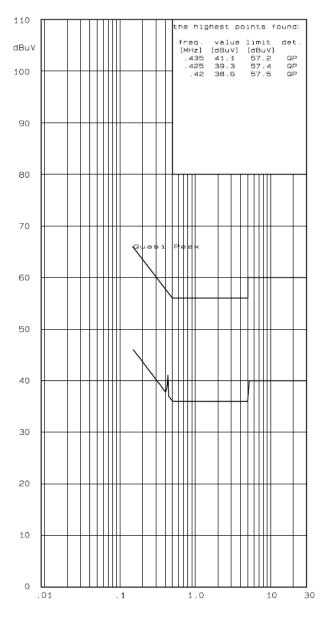
Quasi-peak measurement:



Page: 12 of 31

Live Line:

Average measurement:



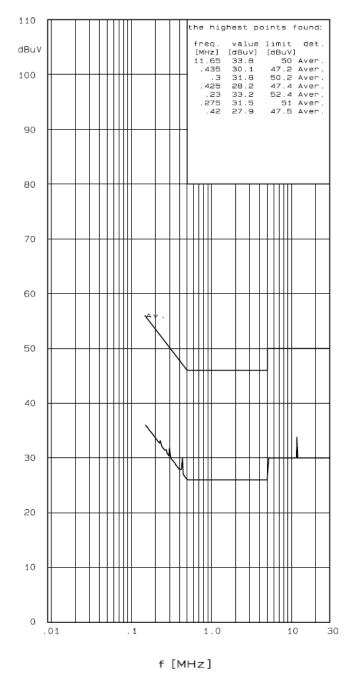
Page: 13 of 31

Neutral Line:

Live Line:

Quasi-peak measurement:

f [MHz]



Page: 14 of 31

Neutral Line:

Live Line:

Average measurement:

Page: 15 of 31

6.2 Radiated Emissions, 9kHz to1GHz

Test Requirement: FCC Part15 Subpart C Section 15.209 and 15.249(d)

Test Method: ANSI C63.4:2003

Test Date: 2014-03-31
Frequency Range: 9kHz – 1GHz

Measurement Distance: 3m

Detector: For PK value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW Sweep = auto

Detector function = peak

Trace = max hold For AV value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW =10 Hz Sweep = auto

Detector function = peak

Trace = max hold

Limit:

Frequency range MHz	Quasi-peak limits dB (μV/m)
0.009 - 0.490	-72.4 – 20logF(MHz)
0.490 - 1.705	-12.4 – 20logF(MHz)
1.705 – 30.0	-10.5
30 to 88	40
88 to 216	43.5
216 to 960	46
Above 960	54

Note:

- 1) At transitional frequencies the lower limit applies.
- 2) F is the frequency of the spurious emission measured in MHz.
- 3) Limit from 0.009 30 MHz is converted from measuring distance 300m or 30m to 3m with the formulat provided in FCC Part 15, section 15.31(f)(2)
- 4) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Page: 16 of 31

6.2.1 EUT Operation

Operating Environment:

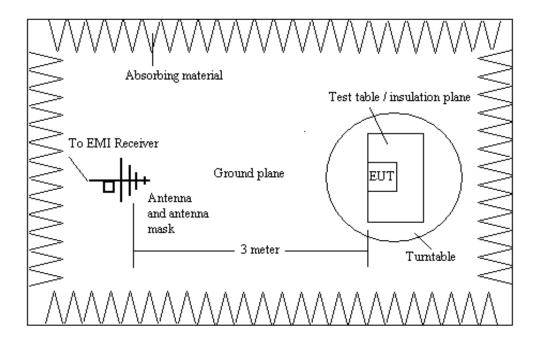
Temperature: 22.4 °C Humidity: 59%

EUT Operation: Pre-test with Peak detector with the following mode(s):

1: Transmission with GFSK

2: Transmimssion with $\Pi/4$ -DQPSK;

3: Transmission with 8DPSK;


Final test with Quasi-Peak detector with the following mode(s):

1: Transmission with GFSK and in continuous transmission with 100% duty cycle mode

Page: 17 of 31

6.2.2 Test Setup and Procedure

- 1. The pre-test of the radiated emissions test was conducted in a semi-anechoic chamber and the final measurement was conducted in the open area test site.
- The EUT was connected to AC power source through a mains power outlet which was bonded to the ground reference plane. The EUT was placed upon a non-metallic table 0.8m above the ground reference plane.
- 3. Loop antennat and Bilog antenna was used for the frequency range from the lowest generated frequency to 30MHz and 30MHz to 1GHz respectively
- 4. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emissions spectrum plots of the EUT with located frequencies.
- 5. The actual frequencies of maximum emission were confirmed in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters for Bilog antenna (Loop antenna is still maintain in 1m hight) in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.

Page: 18 of 31

6.2.3 Measurement Data

An initial pre-scan was performed in the 3m chamber using the spectrum analyser in peak detection mode. The EUT was measured by Bilog antenna with 2 orthogonal polarities and frequencies of peak emissions from the EUT were detected within 6dB of the limit line. Final measurement was conducted in the open area test site with data as follows:

Test results:

(1) Operation Frequency: 2402.0 MHz

Frequency (MHz)	Antenna Polarization	Correction Factor (dB/m)	Receiver QP Reading (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)
30.000	V	19.4	3.9	23.3	40.0	-16.7
100.000	Н	9.9	3.8	13.7	43.5	-29.8
200.000	V	9.5	4.3	13.8	43.5	-29.7
300.000	Н	14.1	5.0	19.1	46.0	-26.9
500.000	V	18.2	5.1	23.3	46.0	-22.7
800.000	V	21.7	1.9	23.6	46.0	-22.4

(2) Operation Frequency: 2441.0 MHz

Frequency (MHz)	Antenna Polarization	Correction Factor (dB/m)	Receiver QP Reading (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)
30.000	V	19.4	2.1	21.5	40.0	-18.5
100.000	V	9.9	4.0	13.9	43.5	-29.6
200.000	V	9.5	4.6	14.1	43.5	-29.4
300.000	Н	14.1	5.0	19.1	46.0	-26.9
500.000	Н	18.2	5.0	23.2	46.0	-22.8
800.000	V	21.7	2.8	24.5	46.0	-21.5

Page: 19 of 31

(3) Operation Frequency: 2480.0 MHz

Frequency (MHz)	Antenna Polarization	Correction Factor (dB/m)	Receiver QP Reading (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over Limit (dB)
30.000	V	19.4	3.0	22.4	40.0	-17.6
100.000	Н	9.9	4.8	14.7	43.5	-28.8
200.000	V	9.5	5.3	14.8	43.5	-28.7
300.000	Н	14.1	4.3	18.4	46.0	-27.6
500.000	V	18.2	3.6	21.8	46.0	-24.2
800.000	V	21.7	3.4	25.1	46.0	-20.9

Note:

- 1) All readings are Quasi-Peak values.
- 2) Correction Factor = Antenna Factor + Cable Loss.
- The above results were the worst case results with the EUT positioned in all 3 axis during the test. The EUT was positioned vertically and horizontally on the table for vertical and horizontal measurement respectively.
- 4) Other emissions more than 20dB below the limit are not shown on the above table and only worst six emissions below 1GHz are listed.
- 5) There is not any other emission which falls in restricted bands which set out in Section 15.205 Restricted bands can be detected and reported.

Page: 20 of 31

6.3 Radiated Emissions above 1 GHz

Test Requirement: FCC Part15 Subpart C Section 15.209 & 15.249(a) & (d)

Test Method: ANSI C63.4:2003

Test Date: 2014-03-31 Frequency Range: 1GHz – 26GHz

Measurement Distance: 3m

Detector: For PK value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW Sweep = auto

Detector function = peak Trace = max hold For AV value:

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW =10 Hz Sweep = auto

Detector function = peak

Trace = max hold

Limit:

Fundamental Frequency:

Frequency range	Limits (Peak)	Limits (Average)		
MHz	dB (μV/m)	dB (μV/m)		
2400 to 2483.5	114	94		

Spurious Emission:

Frequency range	Limits (Peak)	Limits (Average)	
MHz	dB (μV/m)	dB (μV/m)	
Over 1000	74	54	

6.3.1 EUT Operation

Operating Environment:

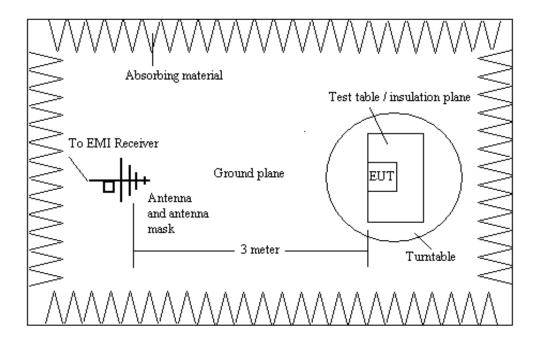
Temperature: 22.4 °C Humidity: 59 %

EUT Operation: Pre-test with Peak detector with the following mode(s):

1: Transmission with GFSK

2: Transmission with $\Pi/4$ -DQPSK;

3: Transmission with 8DPSK;


Final test with Peak and Avearge detector with the following mode(s):

1: Transmission with GFSK and in continuous transmission with 100% duty cycle mode

Page: 21 of 31

6.3.2 Test Setup and Procedure

- 1. The pre-test of the radiated emissions test was conducted in a semi-anechoic chamber and the final measurement was conducted in the open area test site.
- The EUT was connected to AC power source through a mains power outlet which was bonded to the ground reference plane. The EUT was placed upon a non-metallic table 0.8m above the ground reference plane.
- 3. Horn antenna was used for the frequency over 1GHz
- 4. Before final measurements of radiated emissions, a pre-scan was performed in the spectrum mode with the peak detector to find out the maximum emissions spectrum plots of the EUT with located frequencies.
- 5. The actual frequencies of maximum emission were confirmed in the final radiated emissions measurement. At each frequency, the EUT was rotated 360°, and the antenna was raised and lowered from 1 to 4 meters in order to determine the maximum disturbance. Measurements were performed for both horizontal and vertical antenna polarization.

Page: 22 of 31

6.3.3 Measurement Data

An initial pre-scan was performed in the 3m chamber using the spectrum analyser in peak detection mode. The EUT was measured with 2 orthogonal polarities and frequencies of average emissions from the EUT were measured as follows:

Test results:

(1) Fundmental Frequency

Frequency (MHz)	Antenna Polarization	Emission Level (dBµV/m)		Limit (dBµV/m)		Remark
		Peak	Average	Peak	Average	Remark
2402.0	Н	85.13	59.72	114	94	Pass
2402.0	V	87.30	60.48	114	94	Pass
2441.0	Н	86.27	60.16	114	94	Pass
2441.0	V	89.40	61.30	114	94	Pass
2480.0	Н	88.28	61.13	114	94	Pass
2480.0	V	89.23	61.48	114	94	Pass

(2) Spurious Emission

Operation Frequency: 2402.0 MHz

	<u> </u>					
Frequency (MHz)	Antenna Polarization	Emission Level (dBµV/m)		Limit (dBµV/m)		Domark
		Peak	Average	Peak	Average	Remark
2000	Н	19.70	10.45	74	54	Pass
4505	Н	55.36	47.28	74	54	Pass
4800	V	59.83	38.50	74	54	Pass
4804	Н	59.76	48.68	74	54	Pass
7206	Н	62.95	45.42	74	54	Pass
10000	н	43.55	33.17	74	54	Pass

Page: 23 of 31

Operation Frequency: 2441.0 MHz

Frequency (MHz)	Antenna Polarization	Emission Level (dBµV/m)		Limit (dBµV/m)		Remark
		Peak	Average	Peak	Average	Remark
2000	Н	19.90	10.63	74	54	Pass
4570	Н	54.33	45.81	74	54	Pass
4583	Н	56.46	47.39	74	54	Pass
4882	Н	58.111	45.93	74	54	Pass
5182	Н	64.55	43.58	74	54	Pass
7323	Н	70.04	48.49	74	54	Pass

Operation Frequency: 2480.0 MHz

Frequency (MHz)	Antenna Polarization	Emission Level (dBµV/m)		Limit (dBµV/m)		Remark
		Peak	Average	Peak	Average	Remain
2000	Н	49.80	10.46	74	54	Pass
4648	Н	56.17	42.64	74	54	Pass
4960	Н	60.95	47.68	74	54	Pass
5273	Н	63.72	44.55	74	54	Pass
7440	Н	58.73	43.41	74	54	Pass
4831	Н	55.73	41.25	74	54	Pass

Note:

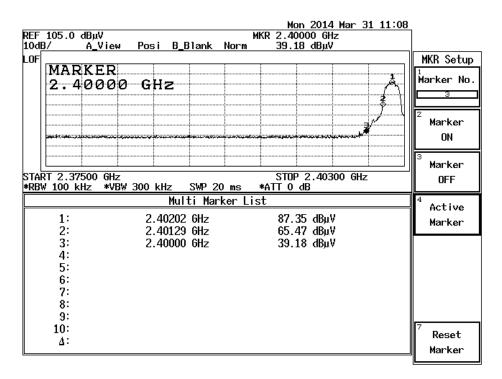
- 1) The above results were the worst case results with the EUT positioned in all 3 axis during the test. The EUT was positioned vertically and horizontally on the table for vertical and horizontal measurement respectively.
- 2) Other emissions more than 20dB below the limit are not shown on the above table and only worst six emissions below 1GHz are listed.
- 3) There is not any other emission which falls in restricted bands which set out in Section 15.205 Restricted bands can be detected and reported.

Page: 24 of 31

6.4 Band Edge / 20 dB Bandwidth

Test Requirement: FCC Part15 Subpart C Section 15.215, 15.249(d)
Test Method: ANSI C63.4:2003 and Marker-Delta Method

Test Date: 2014-03-31

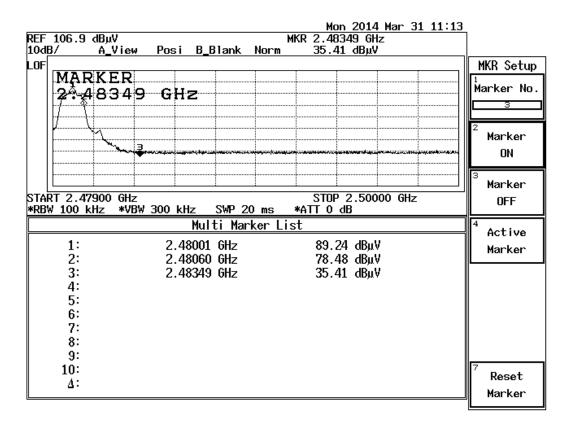

EUT Operation: 1: Transmission with GFSK

2: Transmission with ∏/4-DQPSK;3: Transmission with 8DPSK;

Result: Pass

<u>Test Plot</u>: (Worst case: Transmission with 8DPSK)

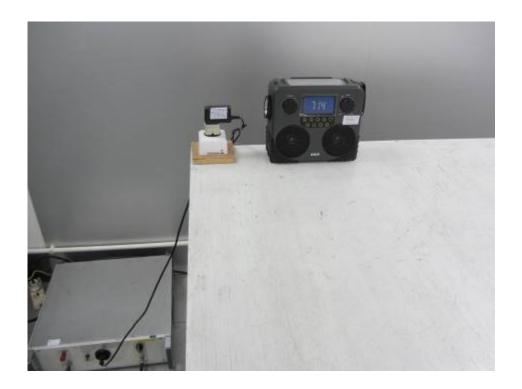
Operation frequency: 2402.0 MHz


According to the page 22 of this report, the emission of the fundamental frequency 2402MHz is 87.30dBuV/m and 60.48dBuV/m for peak and average level respectively. Based on the delta method, the emission at the bandedge, 2400MHz, is more than 40dB below the fundamental and 20dB bandwidth falls in assigned band. It is deemed to comply with section 15.215. Besides, it is below the limit of 74dBuV/m and 54dBuV/m for peak and average level under 15.209. It is deemed to comply with section 15.249(d).

Page: 25 of 31

Test Plot: (Worst case: Transmission with 8DPSK)

Operation frequency: 2480.0 MHz


According to the page 22 of this report, the emission of the fundamental frequency 2480MHz is 89.23dBuV/m and 61.48dBuV/m for peak and average level respectively. Based on the delta method, the emission at the bandedge, 2483.5MHz, is more than 40dB below the fundamental and 20dB bandwidth falls in the assigned band. It is deemed to comply with section 15.215. Besides, it is below the limit of 74dBuV/m and 54dBuV/m for peak and average level under 15.209. It is deemed to comply with section 15.249(d).

Page: 26 of 31

7 Photographs

7.1 Conduct Emission Test Setup

Page: 27 of 31

7.2 Radiatd Emission Test Setup

Page: 28 of 31

7.3 EUT Constructional Details

Page: 29 of 31

Page: 30 of 31

Page: 31 of 31

-- END OF REPORT --