

TEST REPORT

Applicant Name: Address: Report Number: FCC ID: JME & CO. NYC.LLC 469 7TH AVE 14TH FLOOR NEW YORK, NY 10018 United States 2401W48246E-RF-00B 2BMOI-SP3606

Test Standard (s)

FCC PART 15.247

Sample Description

Product Type:	KARAOKE SPEAKER
Model No.:	SP3606-BKA
Multiple Model(s) No.:	SP3606, SP3606-SIA
Trade Mark:	N/A
Date Received:	2024/08/08
Issue Date:	2025/01/10

Test Result:

Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Leni

Jack Zeng RF Engineer

Approved By:

Wang and

Nancy Wang RF Supervisor

Note: The information marked[#] is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government. This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "V".

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West) , 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF003

Page 1 of 83

Version 3.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	4
GENERAL INFORMATION	5
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective Test Methodology	
MEASUREMENT UNCERTAINTY	
Test Facility	
SYSTEM TEST CONFIGURATION	7
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software Support Equipment List and Details	
External I/O Cable	8
BLOCK DIAGRAM OF TEST SETUP	8
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	
FCC §15.247 (I) & §1.1307 (B) (3) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
APPLICABLE STANDARD Result	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (A) - AC LINE CONDUCTED EMISSIONS	15
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	-
FACTOR & OVER LIMIT CALCULATION	
TEST DATA	
FCC §15.209, §15.205 & §15.247(D) – UNWANTED EMISSION FREQUENCIES AND RESTRICTED) BANDS19
APPLICABLE STANDARD	
EUT SETUP	19
EMI Test Receiver & Spectrum Analyzer Setup Test Procedure	
FACTOR & OVER LIMIT/MARGIN CALCULATION	
TEST DATA	
FCC §15.247(A) (2) - 6 DB EMISSON BANDWIDTH	58
STANDARD APPLICABLE	
Test Procedure	
TEST DATA	

FCC §15.247(B) (3) - PEAK OUTPUT POWER MEASUREMENT	60
Applicable Standard	60
Test Procedure	
TEST DATA	61
FCC §15.247(E) - POWER SPECTRAL DENSITY	62
APPLICABLE STANDARD	62
Test Procedure	62
TEST DATA	62
FCC §15.247(D) - 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	63
APPLICABLE STANDARD	63
Test Procedure	63
TEST DATA	64
C63.10 §11.6- DUTY CYCLE	65
Test Procedure	65
TEST DATA	65
EUT PHOTOGRAPHS	66
TEST SETUP PHOTOGRAPHS	67
APPENDIX	68
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	75
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	
APPENDIX E: BAND EDGE MEASUREMENTS	
Appendix F: Duty Cycle	

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision	
0	2401W48246E-RF-00B	Original Report	2025/01/10	

GENERAL INFORMATION

Product	KARAOKE SPEAKER	
Tested Model	SP3606-BKA	
Multiple Model(s)	SP3606, SP3606-SIA	
Frequency Range	BLE: 2402-2480MHz	
Maximum Conducted Peak Output Power	BLE: 6.52dBm	
Modulation Technique	BLE: GFSK	
Antenna Specification [#]	-0.68dBi (provided by the applicant)	
Voltage Range	DC 5V from adapter or DC 3.7V from battery	
Sample serial number	2PO8-1 (Assigned by BACL, Shenzhen)	
Sample/EUT Status	Good condition	
Adapter Information	N/A	
Note: The Multiple models are electrically identical with the test model except for color, model name and combination. Please refer to the declaration letter [#] for more detail, which was provided by manufacturer.		

Objective

This report is in accordance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209, 15.247 rules.

Test Methodology

All tests and measurements indicated in this document were performed in accordance ANSI C63.10-2013.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Parameter			Uncertainty		
1 drameter			Oncertainty		
Occupied (Channel B	andwidth	109.2kHz(k=2, 95% level of confidence)		
RF output	power, co	onducted	0.86dB(k=2, 95% level of confidence)		
AC Power Lines Cond	ucted	9kHz~150 kHz	3.63dB(k=2, 95% level of confidence)		
Emissions		150 kHz ~30MHz	3.66dB(k=2, 95% level of confidence)		
		9kHz - 30MHz	3.60dB(k=2, 95% level of confidence)		
	30MHz~200MHz (Horizontal)		5.32dB(k=2, 95% level of confidence)		
	30MHz~200MHz (Vertical)		5.43dB(k=2, 95% level of confidence)		
Radiated Emissions	200MHz~1000MHz (Horizontal)		5.77dB(k=2, 95% level of confidence)		
Radiated Emissions	200MHz~1000MHz (Vertical)		5.73dB(k=2, 95% level of confidence)		
	1GHz - 6GHz		5.34dB(k=2, 95% level of confidence)		
	6GHz - 18GHz		5.40dB(k=2, 95% level of confidence)		
	18GHz - 40GHz		5.64dB(k=2, 95% level of confidence)		
Temperature		2	±1°C		
Humidity			±1%		
Supply voltages		jes	$\pm 0.4\%$		

Measurement Uncertainty

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 715558, the FCC Designation No. : CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

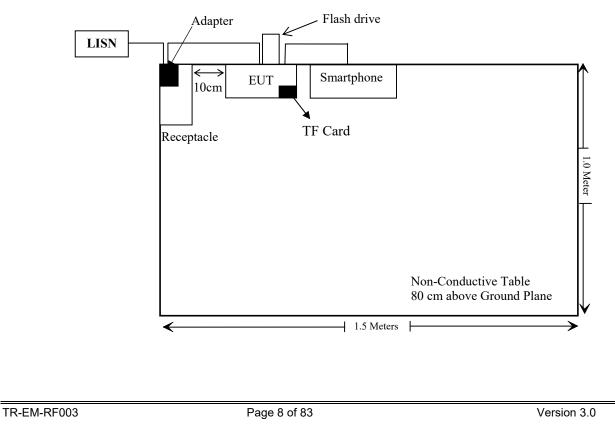
Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

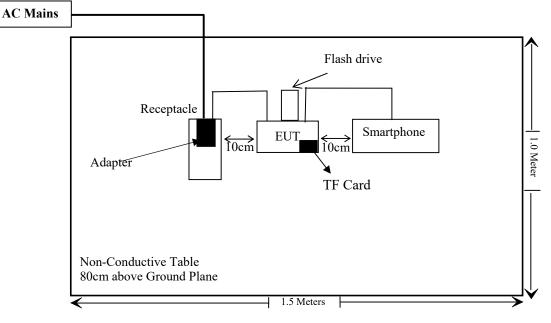
"FCC-assist 1.0.2.2"[#] exercise software was used and the power level is Default[#]. The software and power level was provided by the applicant.

Support Equipment List and Details

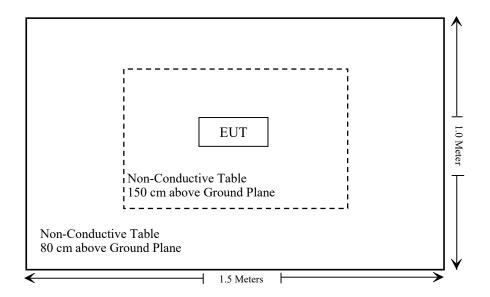

Manufacturer	Description	Model	Serial Number	
Bull	Receptacle	Unknown	Unknown	
iKU	Smartphone	X9	Unknown	
MK Founder Technology Corporation	TF Card	SDSDQAD-032G-MK	C7495098	
Hikvision	Flash drive	128GBUSB3.2	Unknown	

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Un-Detachable DC Cable	1.8	EUT	Adapter
Un-shielding Un-Detachable AC Cable	1.8	Receptacle	AC Mains/LISN
Audio cable	1.0	EUT	Smartphone


Block Diagram of Test Setup

For Conducted Emissions:



Report No.: 2401W48246E-RF-00B

For Radiated Emissions below 1GHz:

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result	
FCC §15.247 (i), §1.1307 (b) (3) & §2.1091	Maximum Permissible Exposure(MPE)	Compliant	
§15.203	Antenna Requirement	Compliant	
§15.207 (a)	AC Line Conducted Emissions	Compliant	
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant	
§15.247 (a)(2)	6 dB Emission Bandwidth	Compliant	
§15.247(b)(3)	Maximum Conducted Output Power	Compliant	
§15.247(e)	Power Spectral Density	Compliant	
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant	
C63.10 §11.6	Duty Cycle	/	

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Conducted Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/01/16	2025/01/15	
Rohde & Schwarz	LISN	ENV216	101613	2024/01/16	2025/01/15	
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20	
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20	
Audix	EMI Test software	E3	191218(V9)	NCR	NCR	
	R	adiated Emission Test	ţ			
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/01/16	2025/01/15	
Sonoma instrument	Pre-amplifier	310 N	186238	2024/05/21	2025/05/20	
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19	
Unknown	Cable	Chamber A Cable 1	N/A	2024/06/18	2025/06/17	
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17	
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13	
Unknown	Cable	2Y194	0735	2024/05/21	2025/05/20	
Unknown	Cable	PNG214	1354	2024/05/21	2025/05/20	
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR	
Rohde & Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26	
COM-POWER	Pre-amplifier	PA-122	181919	2024/06/18	2025/06/17	
Schwarzbeck	Horn Antenna	BBHA9120D(1201)	1143	2023/07/26	2026/07/25	
Unknown	RF Cable	KMSE	735	2024/06/18	2025/06/17	
Unknown	RF Cable	UFA147	219661	2024/06/18	2025/06/17	
Unknown	RF Cable	XH750A-N	J-10M	2024/06/18	2025/06/17	
JD	Multiplex Switch Test Control Set	DT7220FSU	DQ77926	2024/06/18	2025/06/17	
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17	
Electro-Mechanics Co	Horn Antenna	3116	2026	2023/09/18	2026/09/17	
UTIFLEX	RF Cable	NO. 13	232308-001	2024/06/18	2025/06/17	
Audix	EMI Test software	E3	191218(V9)	NCR	NCR	

Report No.: 2401W48246E-RF-00B

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RF Conducted Test			
Tonscend	RF control Unit	JS0806-2	19D8060154	2024/08/06	2025/08/05
Rohde & Schwarz	Spectrum Analyzer	FSV40	101473	2024/01/16	2025/01/15
Unknown	10dB Attenuator	Unknown	F-03-EM190	2024/06/27	2025/06/26

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §1.1307 (b) (3) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

According to KDB 447498 D04 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power(ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(3)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § $1.1307(b)(3)(i)(C)$ - Single RF Sources Subject to Routine Environmental Evaluation				
RF Source frequency (MHz)	Threshold ERP (watts)			
0.3-1.34	1,920 R ² .			
1.34-30	3,450 R ² /f ² .			
30-300	3.83 R ² .			
300-1,500	0.0128 R ² f.			
1,500-100,000	19.2R ² .			

Ris the minimum separation distance in meters f = frequency in MHz

Result

Mode	Frequency (MHz)	Tune up conducted power [#]		enna in [#]	EI	RP	Evaluation Distance	ERP Limit (mW)
	· · · ·	(dBm)	(dBi)	(dBd)	(dBm)	(mW)	(m)	
BLE	2402-2480	7	-0.68	-2.83	4.17	2.61	0.2	768

Note: The tune up conducted power and antenna gain was declared by the applicant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

TR-EM-RF003

FCC §15.203 - ANTENNA REQUIREMENT

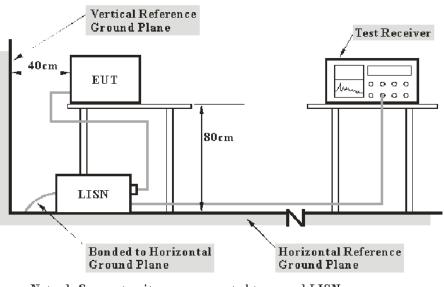
Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached and the maximum antenna gain[#] is -0.68dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant

FCC §15.207 (a) - AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

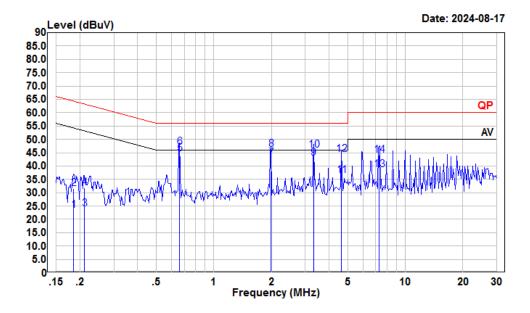
Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

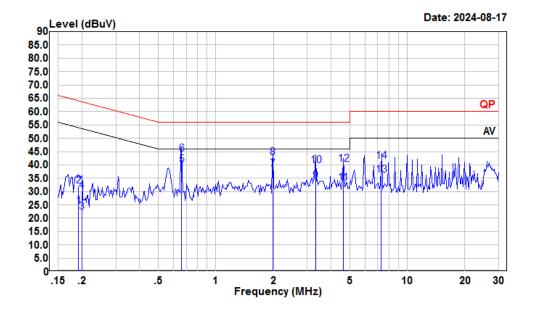
Test Data


Environmental Conditions

Temperature:	25 °C
Relative Humidity:	71 %
ATM Pressure:	101 kPa

The testing was performed by Macy Shi on 2024-08-17.

EUT operation mode: Transmitting (Worst case is BLE 2M, Low Channel)


AC 120V/60 Hz, Line

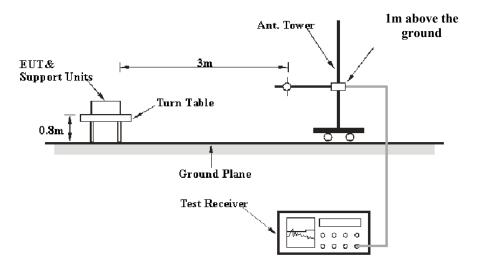
Condition:	Line
Project :	2401W48246E-RF
tester :	Macy.shi
Note :	BLE

		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.185	2.42	23.34	10.83	10.09	54.24	-30.90	Average
2	0.185	10.66	31.58	10.83	10.09	64.24	-32.66	QP
3	0.211	3.07	23.94	10.78	10.09	53.18	-29.24	Average
4	0.211	10.91	31.78	10.78	10.09	63.18	-31.40	QP
5	0.661	24.05	44.69	10.50	10.14	46.00	-1.31	Average
6	0.661	26.44	47.08	10.50	10.14	56.00	-8.92	QP
7	1.988	22.20	42.99	10.60	10.19	46.00	-3.01	Average
8	1.988	25.40	46.19	10.60	10.19	56.00	-9.81	QP
9	3.310	22.50	43.07	10.38	10.19	46.00	-2.93	Average
10	3.310	25.30	45.87	10.38	10.19	56.00	-10.13	QP
11	4.635	16.00	36.54	10.35	10.19	46.00	-9.46	Average
12	4.635	23.80	44.34	10.35	10.19	56.00	-11.66	QP
13	7.280	17.90	38.60	10.51	10.19	50.00	-11.40	Average
14	7.280	23.30	44.00	10.51	10.19	60.00	-16.00	QP

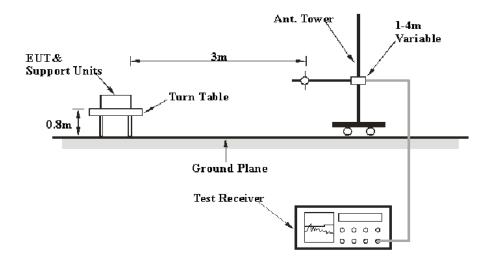
AC 120V/60 Hz, Neutral

Condition:	Neutral
Project :	2401W48246E-RF
tester :	Macy.shi
Note :	BLE

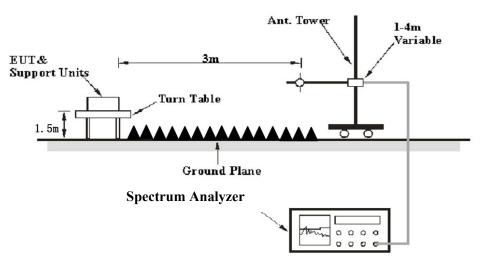
		Read		LISN	Cable	Limit	0ver	
	Freq	Level	Level	Factor	Loss	Line	Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.191	3.86	24.38	10.43	10.09	53.98	-29.60	Average
2	0.191	11.62	32.14	10.43	10.09	63.98	-31.84	QP
3	0.200	1.69	22.18	10.40	10.09	53.62	-31.44	Average
4	0.200	9.77	30.26	10.40	10.09	63.62	-33.36	QP
5	0.661	19.25	40.09	10.70	10.14	46.00	-5.91	Average
6	0.661	23.24	44.08	10.70	10.14	56.00	-11.92	QP
7	1.983	17.80	38.40	10.41	10.19	46.00	-7.60	Average
8	1.983	22.00	42.60	10.41	10.19	56.00	-13.40	QP
9	3.310	13.28	33.87	10.40	10.19	46.00	-12.13	Average
10	3.310	19.04	39.63	10.40	10.19	56.00	-16.37	QP
11	4.630	12.50	33.17	10.48	10.19	46.00	-12.83	Average
12	4.630	19.60	40.27	10.48	10.19	56.00	-15.73	QP
13	7.279	15.40	36.30	10.71	10.19	50.00	-13.70	Average
14	7.279	20.40	41.30	10.71	10.19	60.00	-18.70	QP


FCC §15.209, §15.205 & §15.247(D) – UNWANTED EMISSION FREQUENCIES AND RESTRICTED BANDS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup


9 kHz-30MHz:

30MHz-1GHz:

Above 1GHz:

The radiated emission tests were performed in the 3meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.205, FCC 15.209, FCC 15.247 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
9 kHz – 150 kHz	/	/	200 Hz	QP
9 KHZ – 150 KHZ	300 Hz	1 kHz	/	РК
150 kHz – 30 MHz	/	/	9 kHz	QP
130 KHZ – 30 WHZ	10 kHz	30 kHz	/	РК
30 MHz – 1000 MHz	/	/	120 kHz	QP
30 MITZ – 1000 MITZ	100 kHz	300 kHz	/	РК

1-25GHz:

Pre-scan

Measurement	Duty cycle	RBW	Video B/W
РК	Any	1MHz	3 MHz
	>98%	1MHz	5 kHz
AV	<98%	1MHz	≥1/Ton, not less than 5 kHz

Final measurement for emission identified during pre-scan

Measurement	Duty cycle	RBW	Video B/W	
РК	Any	1MHz	3 MHz	
AV	>98%	1MHz	10 Hz	
	<98%	1MHz	≥1/Ton	

Note: Ton is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

All emissions under the average limit and under the noise floor have not recorded in the report.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

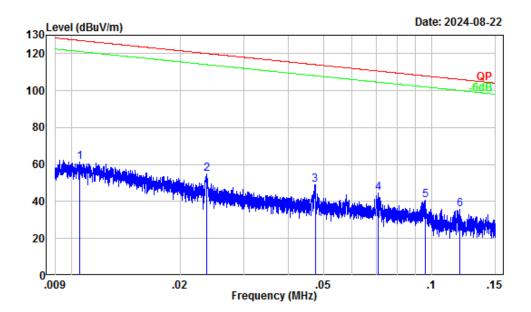
Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

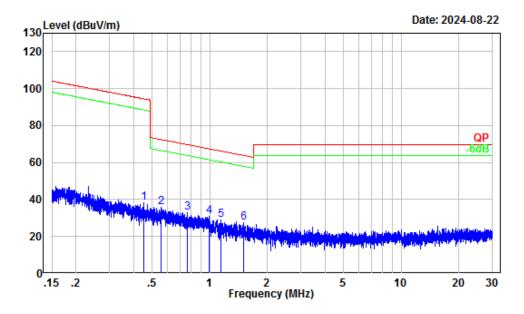
Temperature:	22~25 °C
Relative Humidity:	45~54 %
ATM Pressure:	101~101.2 kPa

The testing was performed by Anson Su on 2024-08-22 for below 1GHz and Dylan Yang on 2024-12-23 for above 1GHz.


EUT operation mode: Transmitting

Pre-scan in the X, Y and Z axes of orientation, the worst case Y-axis of orientation was recorded.

9 kHz-30MHz: (Maximum output power mode BLE 2M, Low Channel)


Note: When the test result of peak was less than the limit of QP/Average more than 6dB, just peak value were recorded.

Parallel (worst case)

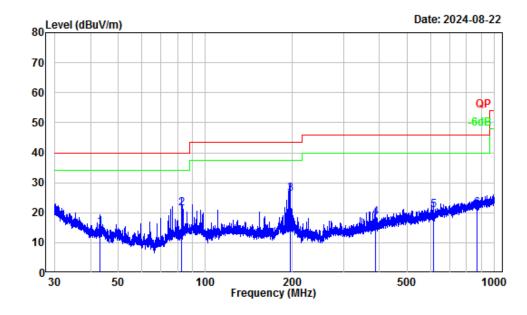
Site :	Chamber A
Condition :	3m
Project Number:	2401W48246E-RF
Test Mode :	BLE
Tester :	Anson Su

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.01	37.40	23.74	61.14	127.12	-65.98	Peak
2	0.02	30.67	24.04	54.71	120.09	-65.38	Peak
3	0.05	23.64	25.65	49.29	114.09	-64.80	Peak
4	0.07	20.23	24.51	44.74	110.57	-65.83	Peak
5	0.10	17.48	23.03	40.51	107.99	-67.48	Peak
6	0.12	16.15	19.90	36.05	106.07	-70.02	Peak

Site	:	Chamber A
Condition	:	3m
Project Number	•:	2401W48246E-RF
Test Mode	:	BLE
Tester	:	Anson Su

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.45	4.52	33.88	38.40	94.52	-56.12	Peak
2	0.56	2.77	33.02	35.79	72.63	-36.84	Peak
3	0.77	0.30	32.59	32.89	69.84	-36.95	Peak
4	0.99	-1.51	32.36	30.85	67.56	-36.71	Peak
5	1.15	-2.11	31.15	29.04	66.24	-37.20	Peak
6	1.51	-3.36	30.73	27.37	63.83	-36.46	Peak

30MHz-1GHz: (*Maximum output power mode BLE 2M, Low Channel*)


Horizontal

Site : Chamber A Condition : 3m Horizontal Project Number: 2401W48246E-RF Test Mode : BLE Tester : Anson Su

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	41.51	-14.32	25.23	10.91	40.00	-29.09	QP
2	95.97	-17.77	31.77	14.00	43.50	-29.50	QP
3	167.02	-14.29	40.44	26.15	43.50	-17.35	QP
4	368.60	-11.74	36.65	24.91	46.00	-21.09	QP
5		-10.29	30.33	20.04	46.00	-25.96	QP
6	822.07	-4.71	26.20	21.49	46.00	-24.51	QP

Site	:	Chamber A
Condition	:	3m Vertical
Project Number	:	2401W48246E-RF
Test Mode	:	BLE
Tester	:	Anson Su

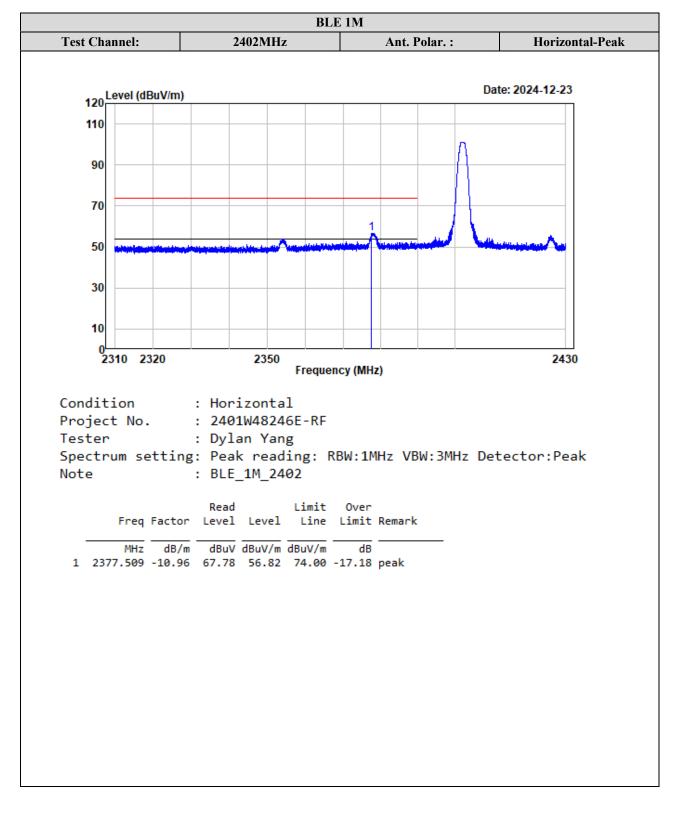
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	43.24	-15.56	30.72	15.16	40.00	-24.84	QP
2	82.58	-18.72	40.19	21.47	40.00	-18.53	QP
3	195.91	-12.70	39.11	26.41	43.50	-17.09	QP
4	388.84	-11.32	29.70	18.38	46.00	-27.62	QP
5	616.37	-8.03	28.86	20.83	46.00	-25.17	QP
6	867.61	-3.99	25.36	21.37	46.00	-24.63	QP

1-25 GHz:

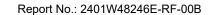
Receiver Receiver		iver	Polar	Factor	Corrected	Limit	Mangin		
Frequency (MHz)	Reading (dBµV)	PK/AV	(H/V)	(dB/m)	Amplitude (dBµV/m)	(dBµV/m)	Margin (dB)		
			BLE 1M						
	Low Channel 2402MHz								
4804.00	62.59	PK	Н	-7.79	54.80	74	-19.20		
4804.00	59.91	AV	Н	-7.79	52.12	54	-1.88		
4804.00	61.82	РК	V	-7.79	54.03	74	-19.97		
4804.00	59.16	AV	V	-7.79	51.37	54	-2.63		
		Mid	dle Channel 2440M	Hz					
4880.00	63.51	РК	Н	-7.59	55.92	74	-18.08		
4880.00	59.74	AV	Н	-7.59	52.15	54	-1.85		
4880.00	61.42	РК	V	-7.59	53.83	74	-20.17		
4880.00	58.66	AV	V	-7.59	51.07	54	-2.93		
		Hig	gh Channel 2480MI	Ηz					
4960.00	64.48	РК	Н	-7.56	56.92	74	-17.08		
4960.00	59.92	AV	Н	-7.56	52.36	54	-1.64		
4960.00	61.20	РК	V	-7.56	53.64	74	-20.36		
4960.00	57.37	AV	V	-7.56	49.81	54	-4.19		

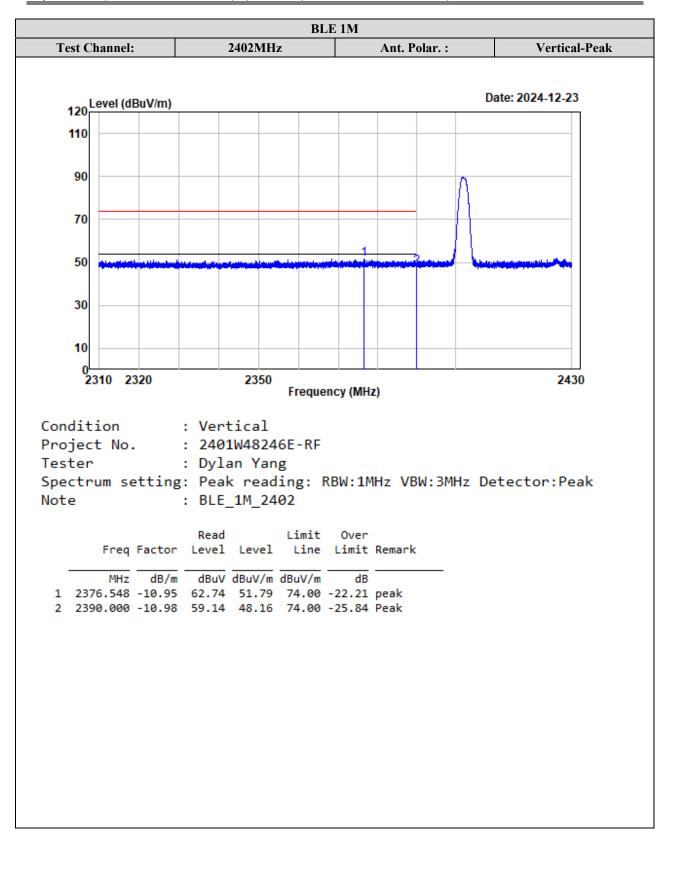
Report No.: 2401W48246E-RF-00B

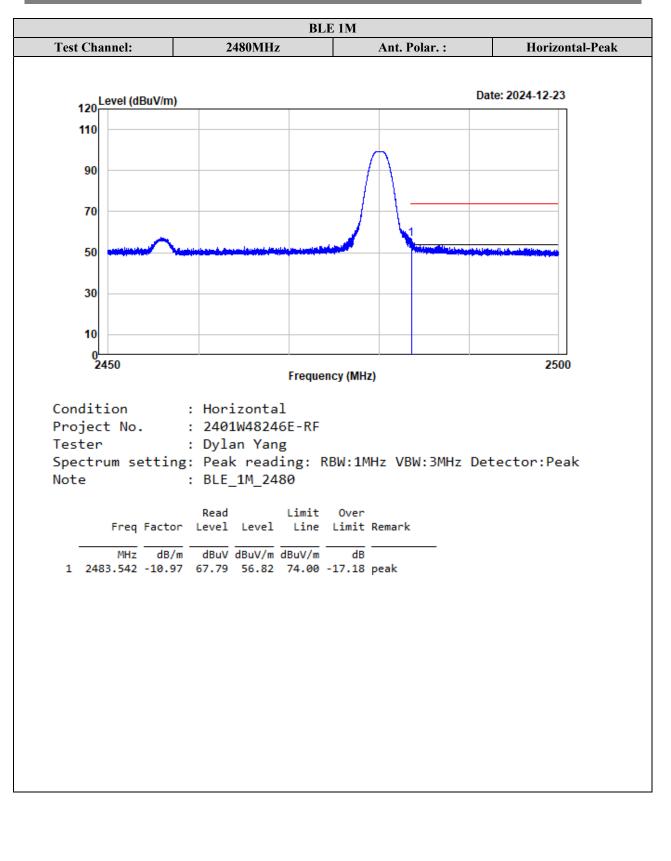
F	Rece	Deler	F irster	Corrected	T ••4	Maria				
Frequency (MHz)	Reading (dBµV)	PK/AV	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
	BLE 2M									
		Lo	w Channel 2402MH	łz						
4804.00	62.23	РК	Н	-7.79	54.44	74	-19.56			
4804.00	60.06	AV	Н	-7.79	52.27	54	-1.73			
4804.00	61.47	РК	V	-7.79	53.68	74	-20.32			
4804.00	59.55	AV	V	-7.79	51.76	54	-2.24			
		Mid	ldle Channel 2440M	[Hz						
4880.00	63.45	РК	Н	-7.59	55.86	74	-18.14			
4880.00	59.32	AV	Н	-7.59	51.73	54	-2.27			
4880.00	60.66	РК	V	-7.59	53.07	74	-20.93			
4880.00	58.74	AV	V	-7.59	51.15	54	-2.85			
		Hi	gh Channel 2480MI	Hz						
4960.00	64.12	РК	Н	-7.57	56.55	74	-17.45			
4960.00	59.82	AV	Н	-7.57	52.25	54	-1.75			
4960.00	61.31	РК	V	-7.57	53.74	74	-20.26			
4960.00	57.64	AV	V	-7.57	50.07	54	-3.93			

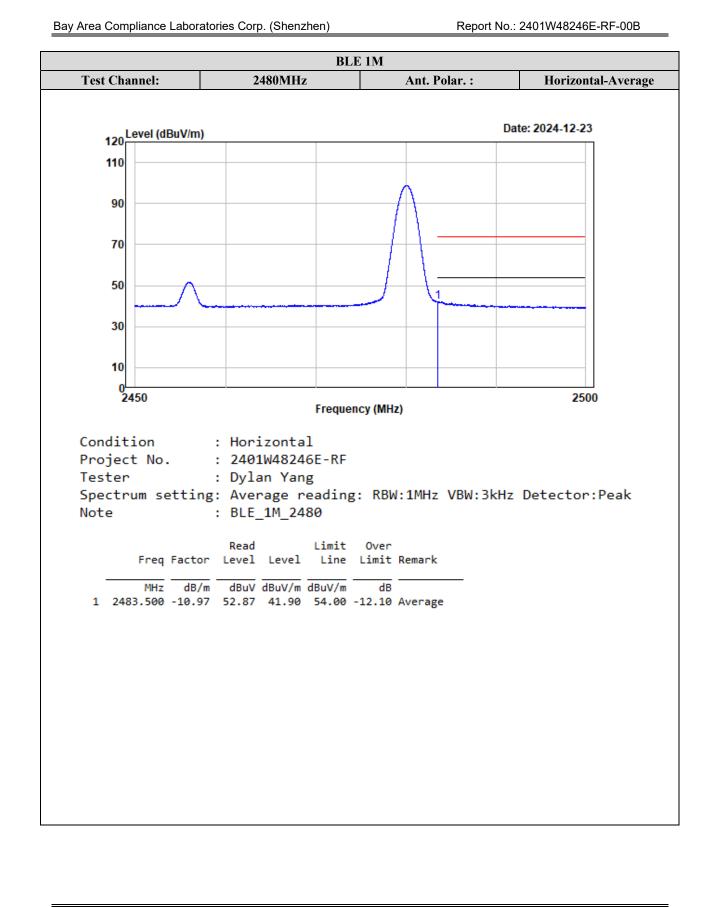

Note:

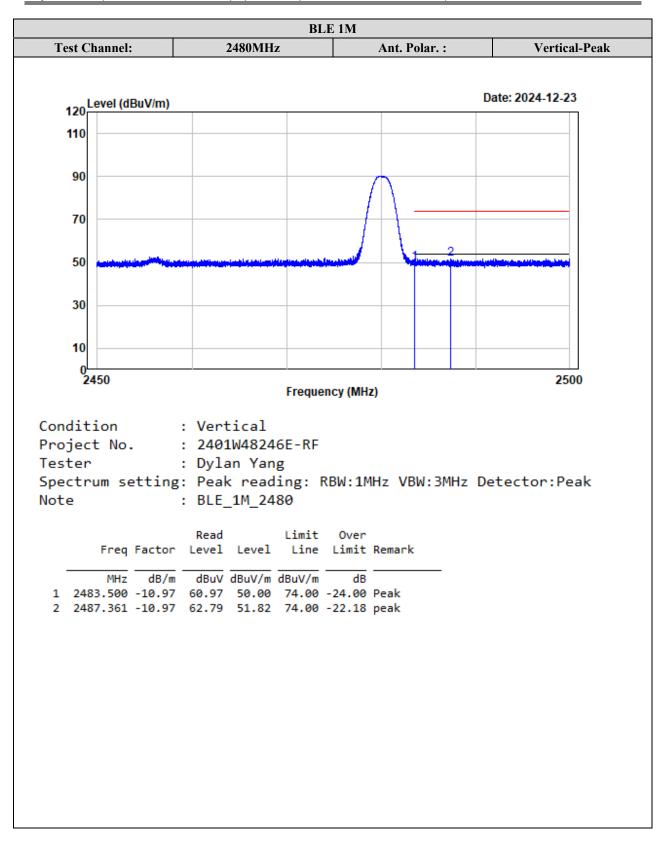

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit

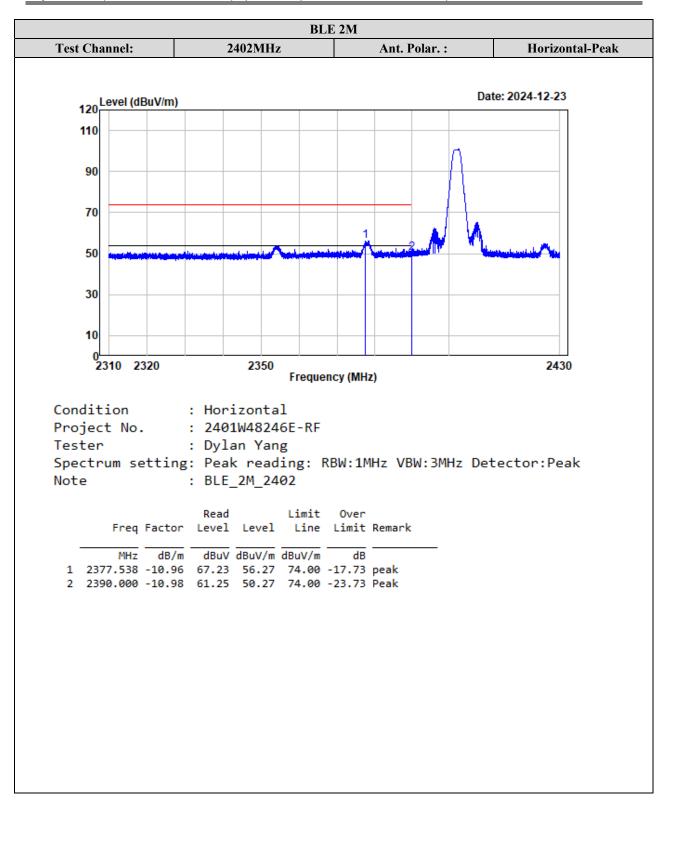

The other spurious emission which is in the noise floor level was not recorded.

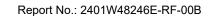

Report No.: 2401W48246E-RF-00B

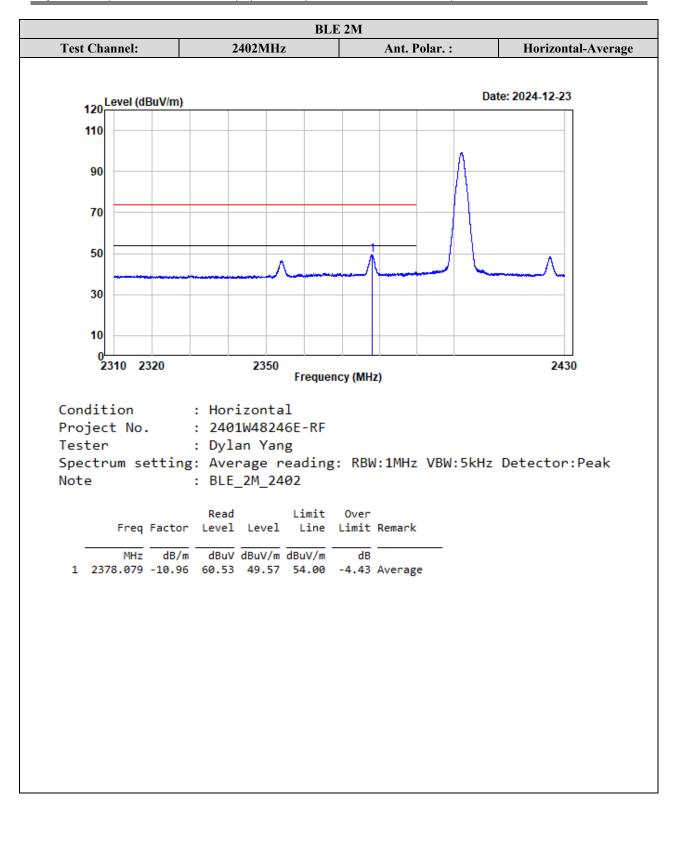


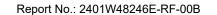


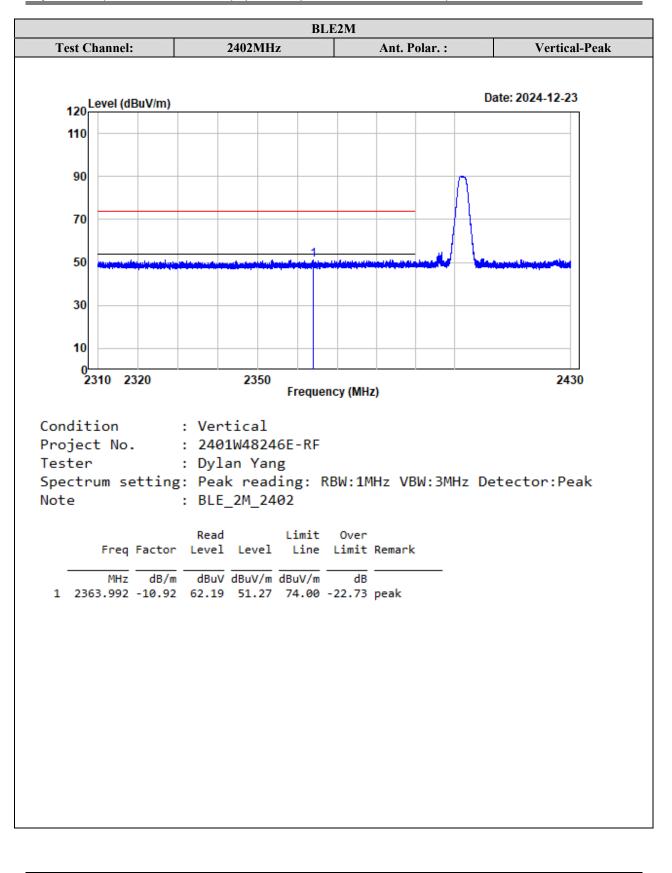


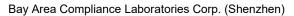


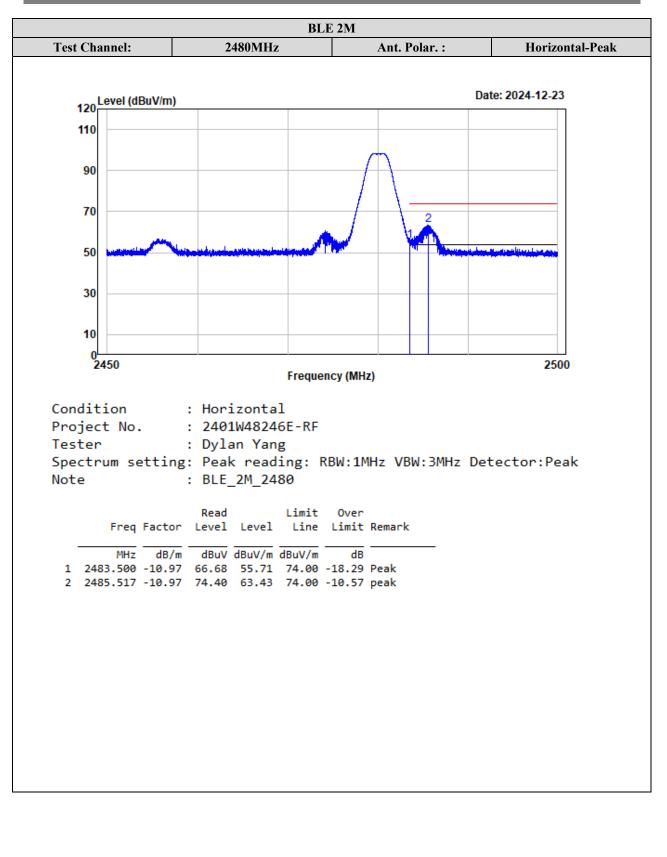


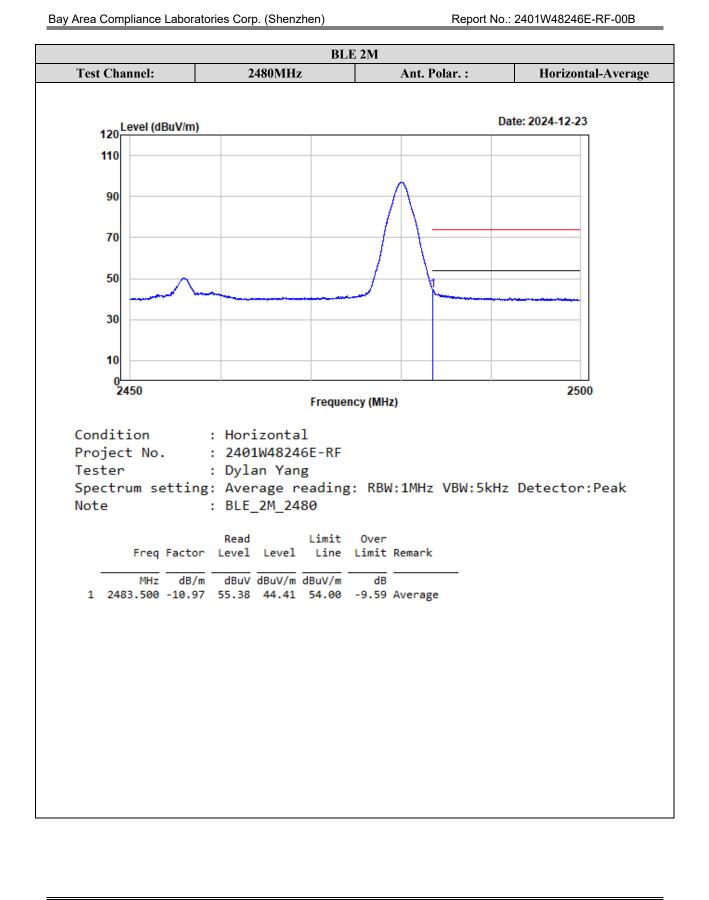


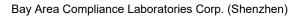


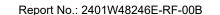


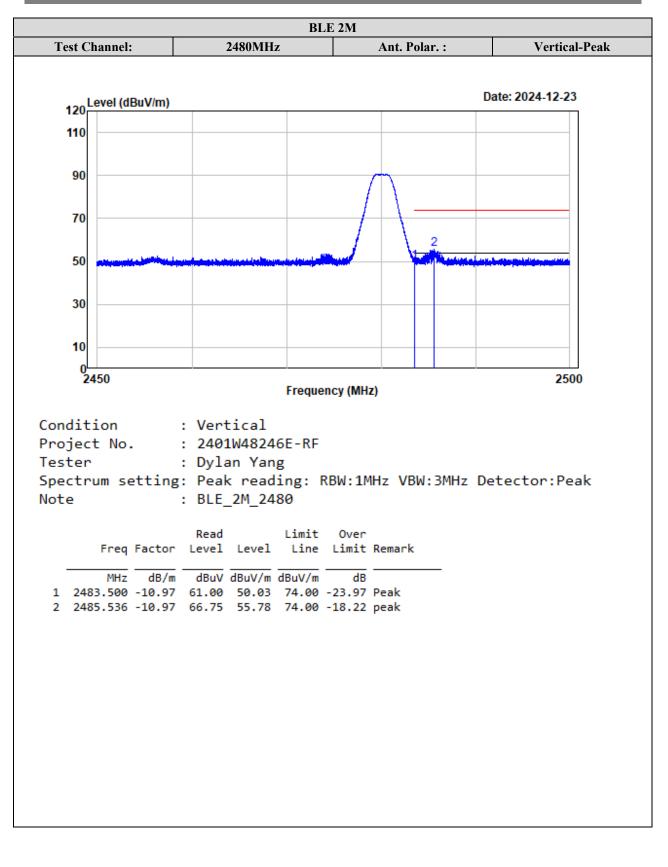


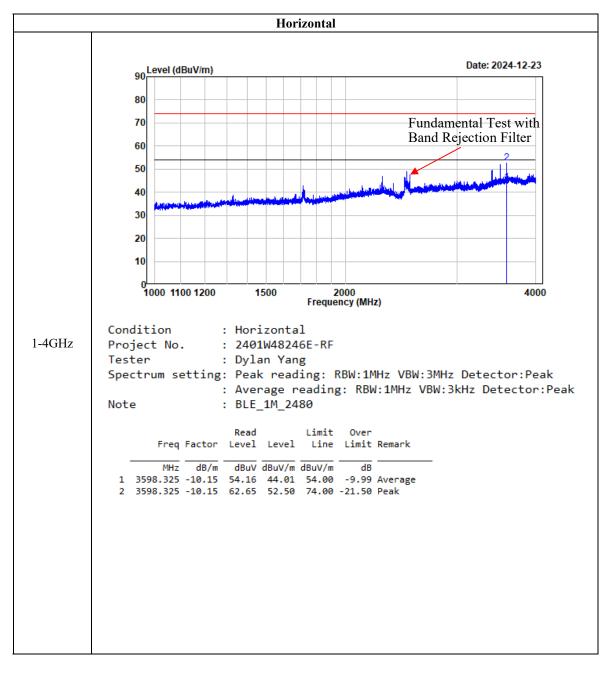


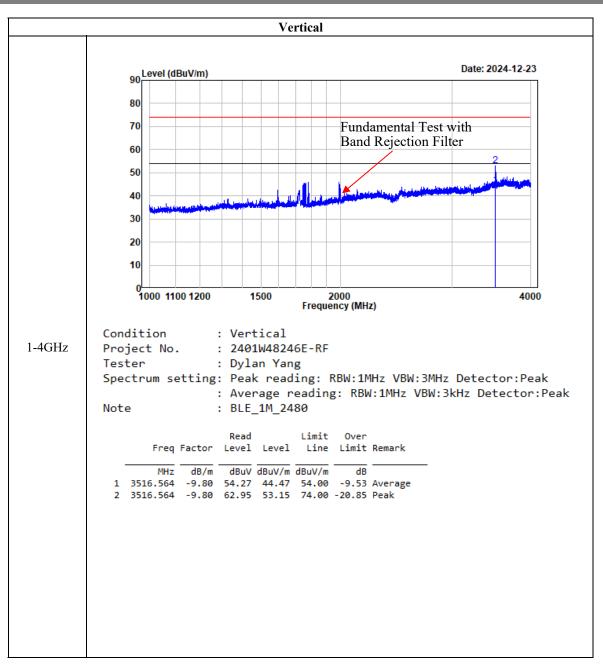


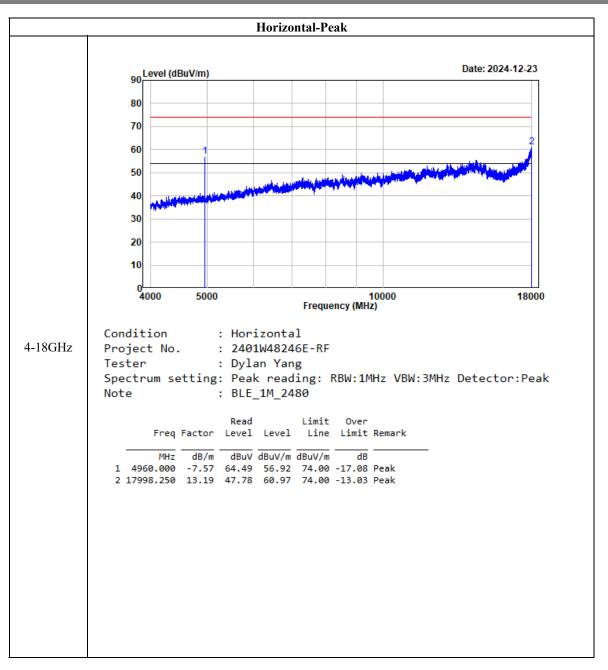


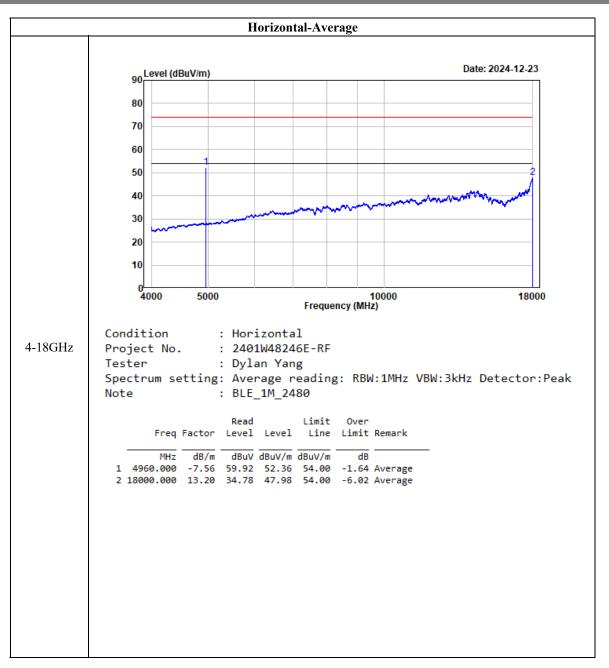


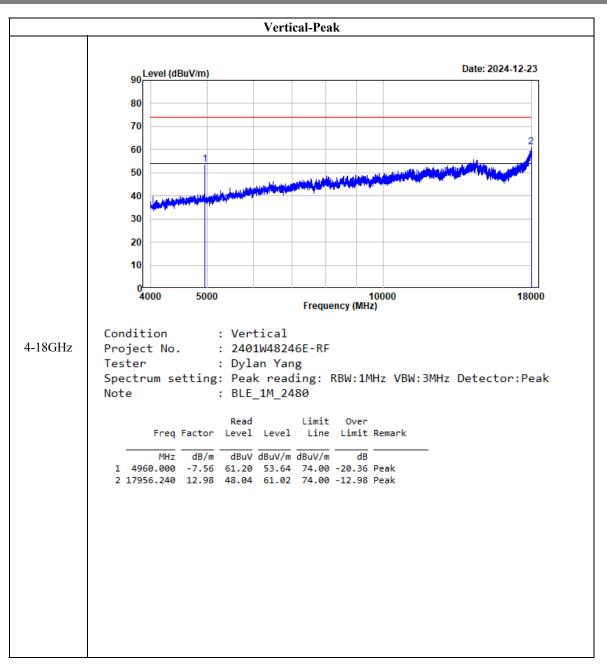


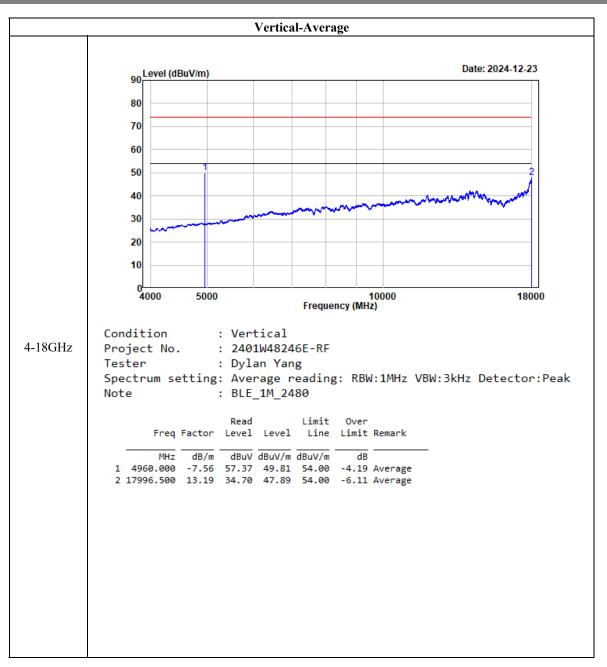


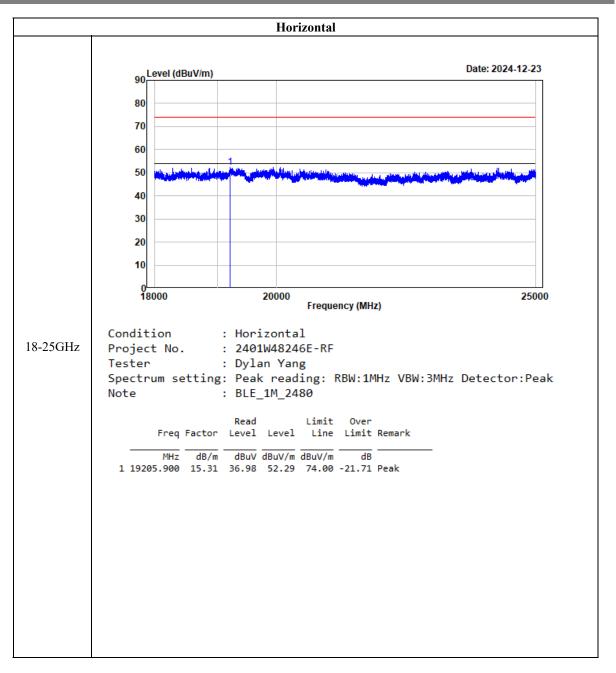


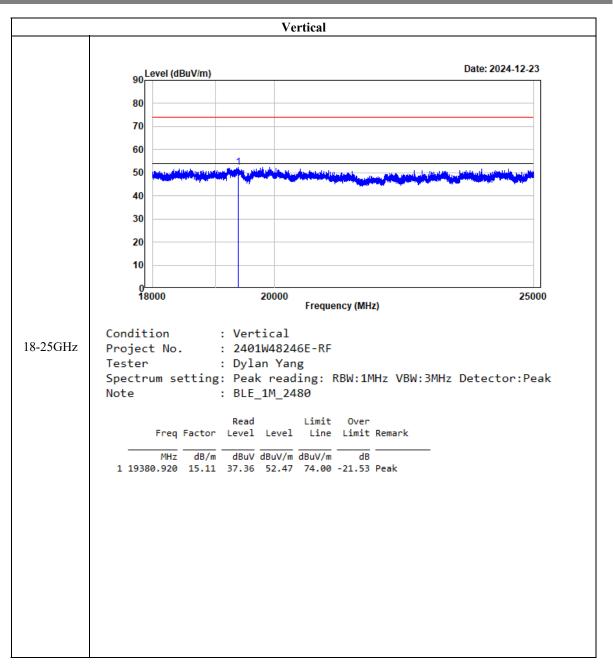

Bay Area Compliance Laboratories Corp. (Shenzhen) Report No.: 2401W48246E-RF-00B BLE 2M **Test Channel:** 2480MHz Ant. Polar. : Vertical-Average 120 Level (dBuV/m) Date: 2024-12-23 110 90 70 50 30 10 2450 2500 Frequency (MHz) Condition : Vertical Project No. : 2401W48246E-RF Tester : Dylan Yang Spectrum setting: Average reading: RBW:1MHz VBW:5kHz Detector:Peak Note : BLE_2M_2480 Read Limit 0ver Freq Factor Level Level Line Limit Remark dBuV dBuV/m dBuV/m dB MHz dB/m 1 2483.500 -10.97 51.33 40.36 54.00 -13.64 Average TR-EM-RF003 Page 41 of 83 Version 3.0

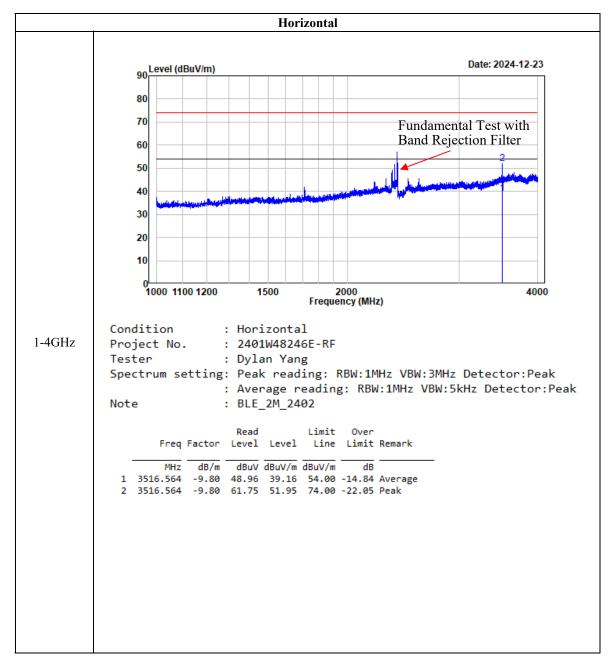

Listed with the worst harmonic margin test plot:

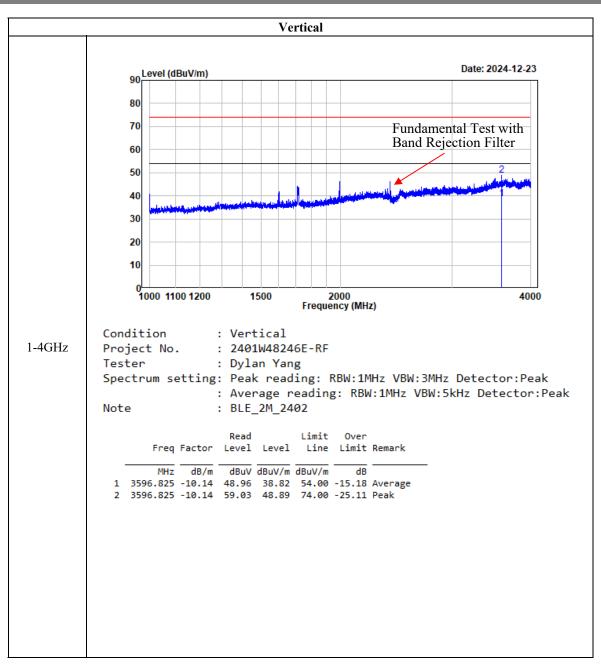

BLE 1M

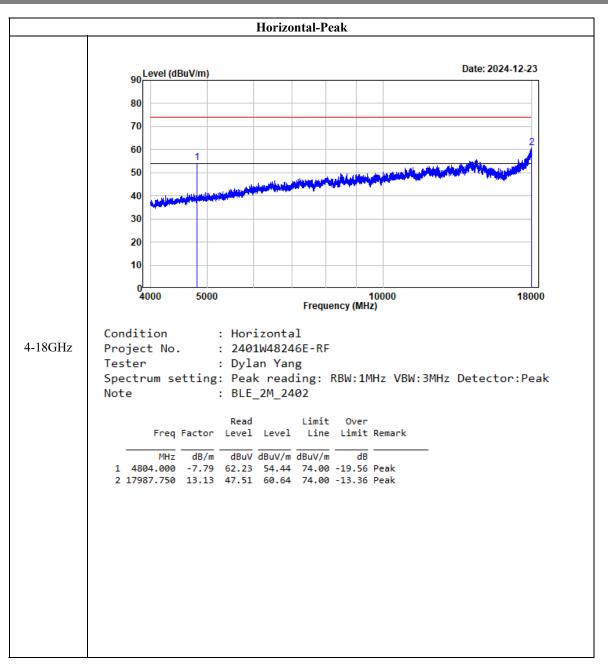


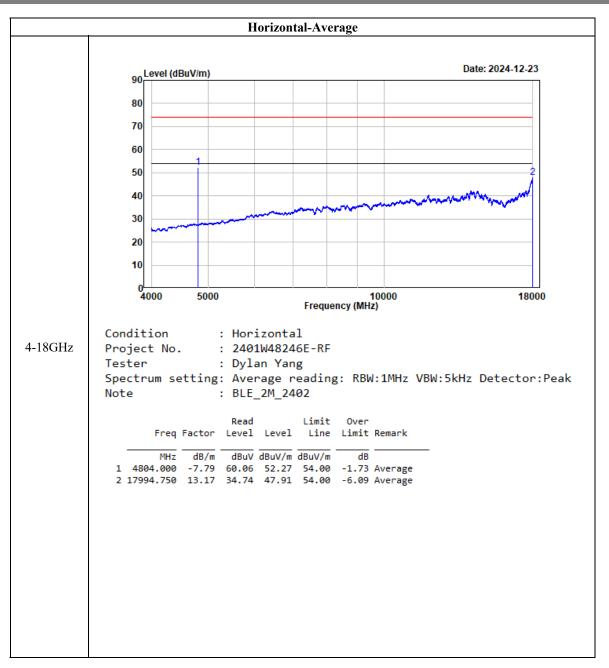


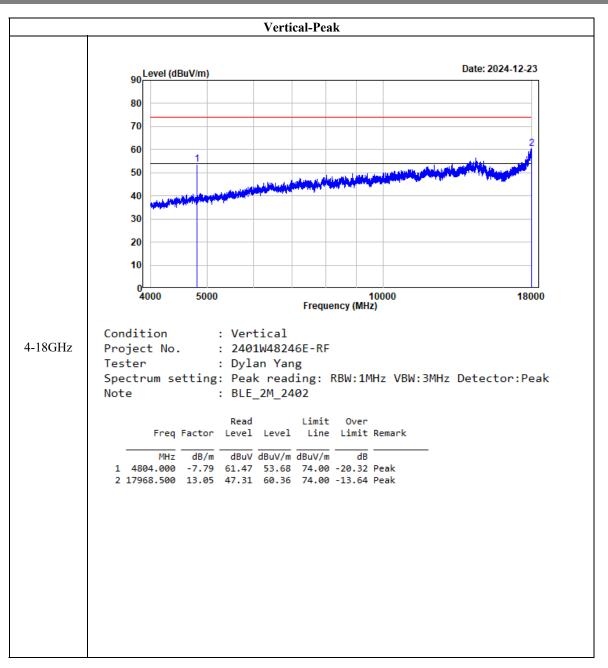


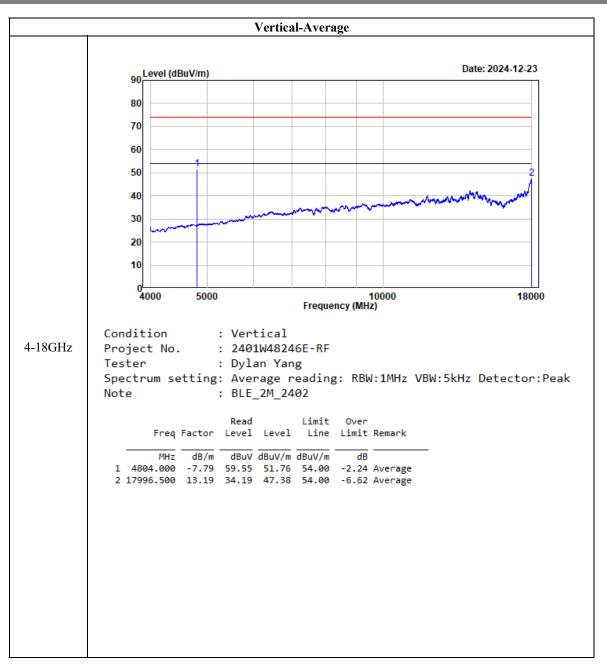

Report No.: 2401W48246E-RF-00B

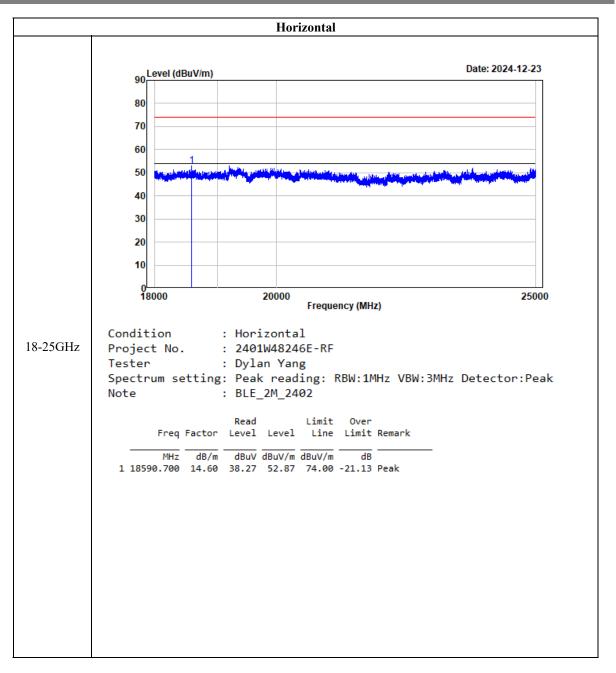


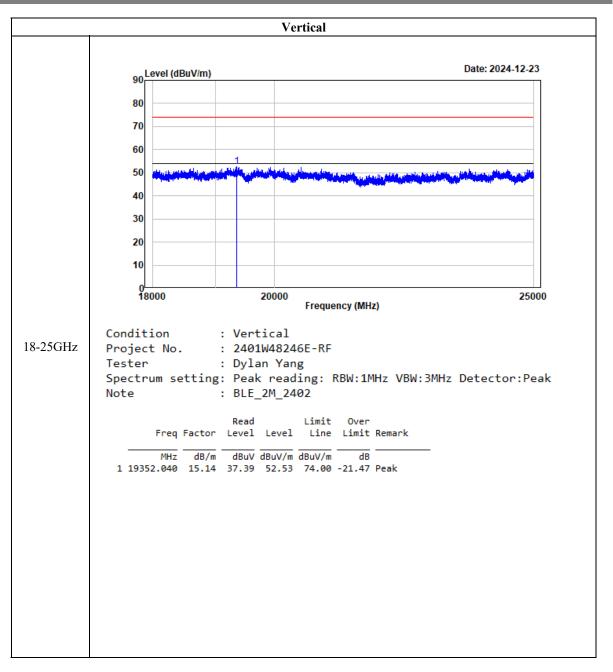

Report No.: 2401W48246E-RF-00B




BLE 2M







Report No.: 2401W48246E-RF-00B

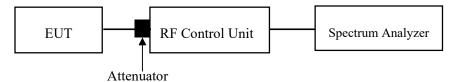
Report No.: 2401W48246E-RF-00B

FCC §15.247(a) (2) - 6 dB EMISSON BANDWIDTH

Standard Applicable

According to FCC §15.247(a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.


Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.8.1 & Clause 6.9.3

- a. Set RBW = 100 kHz.
- b. Set the VBW $\geq [3 \times RBW]$.
- c. Detector = peak.
- d. Trace mode = max hold.
- e. Sweep = auto couple.
- f. Allow the trace to stabilize.
- g. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. Procedure as below

- a. The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b. The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c. Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- d. Step a) through step c) might require iteration to adjust within the specified range.
- e. Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f. Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g. If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h. The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-09-07.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(b) (3) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.9.1.1

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.
- 4. Set the RBW \geq DTS bandwidth.
- 5. Set the VBW \geq [3 × RBW].
- 6. Set span $\geq [3 \times RBW]$.
- 7. Sweep time = auto couple.
- 8. Detector = peak.
- 9. Trace mode = max hold.
- 10. Allow the trace to stabilize.
- 11. Use peak marker function to determine the peak amplitude level.

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-09-07.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

According to FCC §15.247(e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.10.2

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set analyzer center frequency to DTS channel center frequency
- 3. Set the span to 1.5 times the DTS bandwidth.
- 4. Set the RBW to: $3kHz \leq RBW \leq 100 kHz$.
- 5. Set the VBW \geq 3 × RBW.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 11. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Attenuator

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable loss.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-09-07.

Test Mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

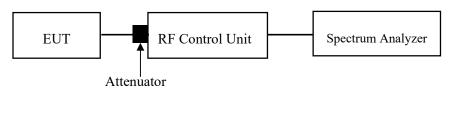
TR-EM-RF003

Page 62 of 83

FCC §15.247(d) - 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required

Test Procedure

Test Method: ANSI C63.10-2013 Clause 11.11

- 1. Set the RBW =100 kHz.
- 2. Set the VBW \ge 3 \times RBW.
- 3. Detector = peak
- 4. Sweep time = auto couple.
- 5. Trace mode=max hold
- 6. All trace to fully stabilize
- 7. Use the peak marker function to determine the maximum amplitude level.

Ensure that amplitude of all unwanted emissions outside of the authorized frequency band(excluding restricted frequency bands) is attenuated by at least the minimum requirement specified in 11.11. Report the three highest emissions relative to the limit.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-09-07.

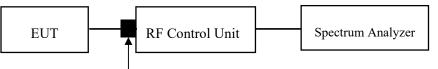
EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

C63.10 §11.6- DUTY CYCLE

Test Procedure

According to ANSI C63.10-2013 Section 11.6


The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

1) Set the center frequency of the instrument to the center frequency of the transmission.

2) Set $RBW \ge OBW$ if possible; otherwise, set RBW to the largest available value.

3) Set VBW \geq RBW. Set detector = peak or average.

4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \mu s$.)

Attenuator

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	55 %
ATM Pressure:	101 kPa

The testing was performed by Navilite Cai on 2024-09-07.

EUT operation mode: Transmitting

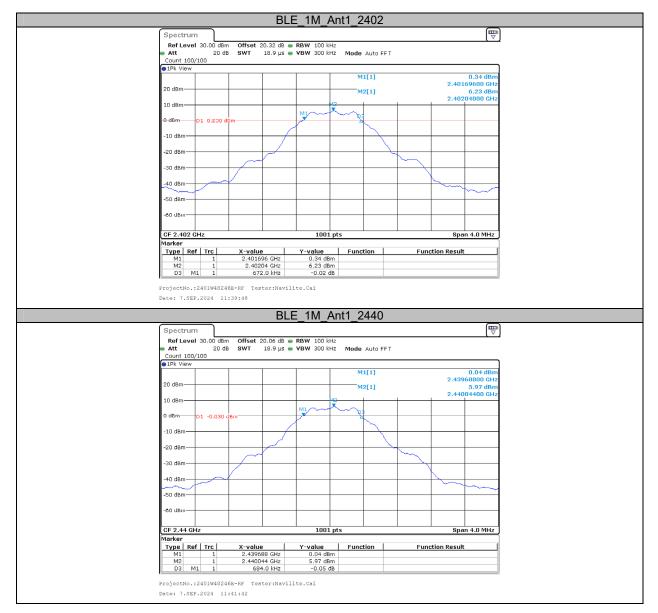
Test Result: Compliant. Please refer to the Appendix.

EUT PHOTOGRAPHS

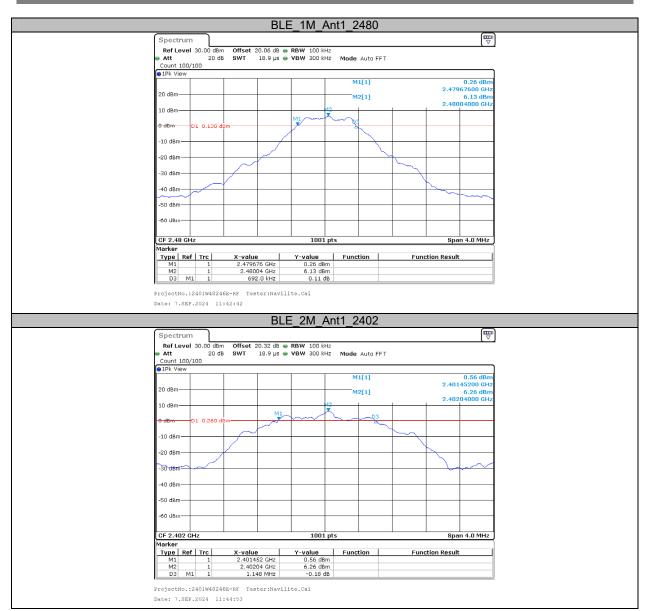
Please refer to the attachment 2401W48246E-RF External photo and 2401W48246E-RF Internal photo.

TEST SETUP PHOTOGRAPHS

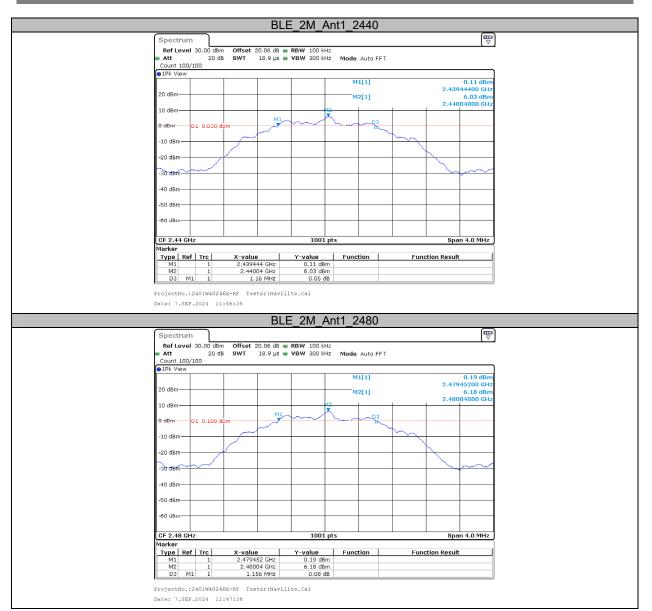
Please refer to the attachment 2401W48246E-RF Test Setup photo.


APPENDIX

Appendix A: DTS Bandwidth

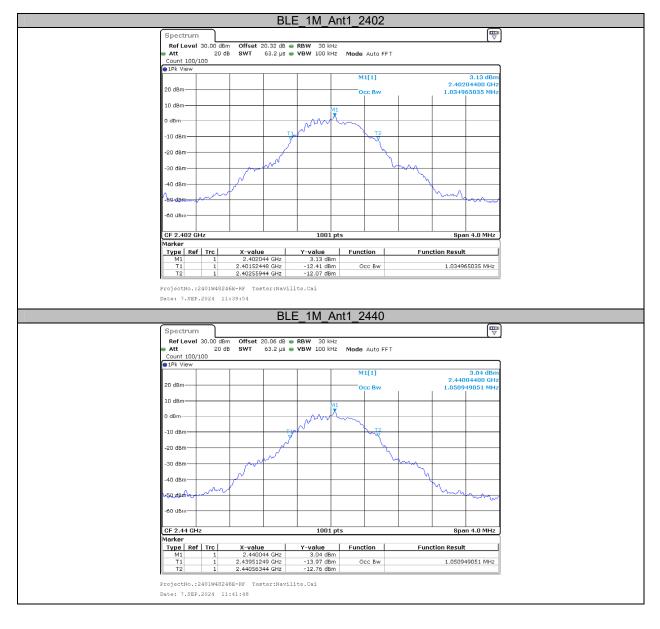

Test Result

Test Mode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
			0.67	2401.696	2402.368	0.5	PASS
BLE_1M	Ant1	2440	0.68	2439.688	2440.372	0.5	PASS
		2480	0.69	2479.676	2480.368	0.5	PASS
		2402	1.15	2401.452	2402.700	0.5	PASS
BLE_2M	Ant1	2440	1.16	2439.444	2440.604	0.5	PASS
		2480	1.16	2479.452	2480.608	0.5	PASS


Test Graphs

Report No.: 2401W48246E-RF-00B

Report No.: 2401W48246E-RF-00B



Appendix B: Occupied Channel Bandwidth

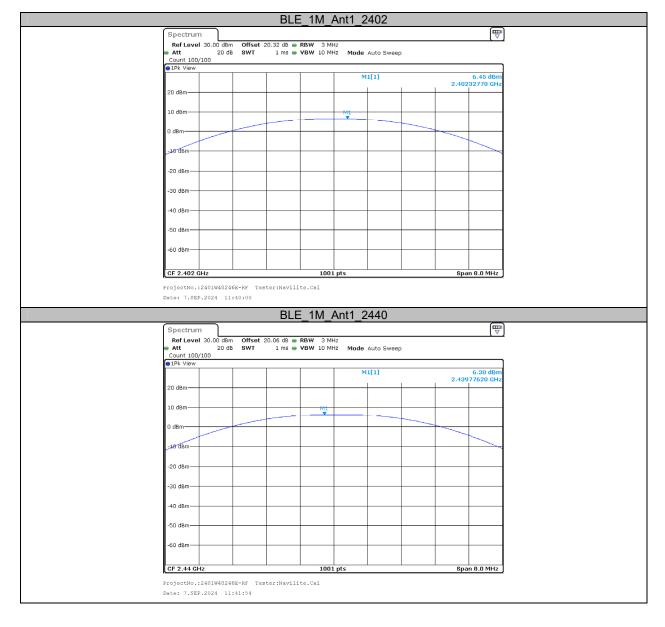
Test Result

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
	2402		1.035	2401.5245	2402.5594		
BLE_1M	Ant1	2440	1.051	2439.5125	2440.5634		
		2480	1.049	2479.5125	2480.5614		
		2402	2.034	2401.0370	2403.0709		
BLE_2M	Ant1	2440	2.038	2439.0370	2441.0749		
		2480	2.038	2479.0370	2481.0749		

Test Graphs

Report No.: 2401W48246E-RF-00B

Report No.: 2401W48246E-RF-00B



Appendix C: Maximum conducted output power

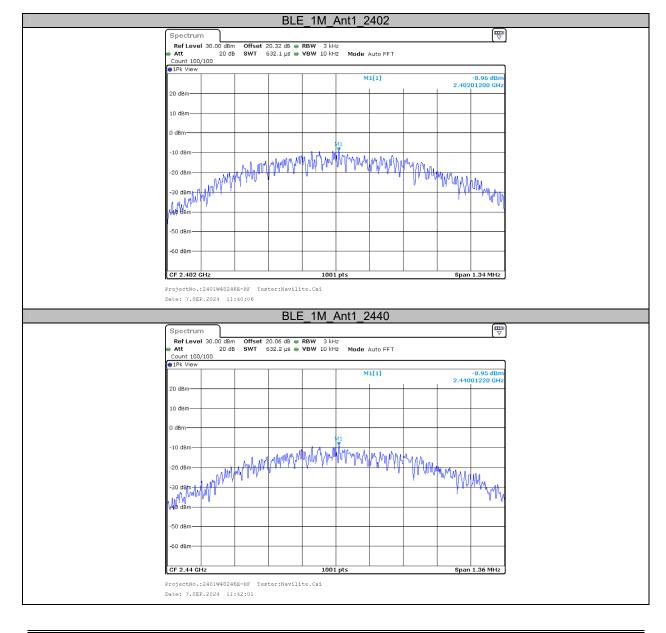
Test Result Peak

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	EIRP[dBm]	EIRP Limit[dBm]	Verdict
		2402	6.45	≤30	5.77	≤36	PASS
BLE_1M	Ant1	2440	6.30	≤30	5.62	≤36	PASS
		2480	6.41	≤30	5.73	≤36	PASS
		2402	6.52	≤30	5.84	≤36	PASS
BLE_2M	Ant1	2440	6.35	≤30	5.67	≤36	PASS
		2480	6.47	≤30	5.79	≤36	PASS

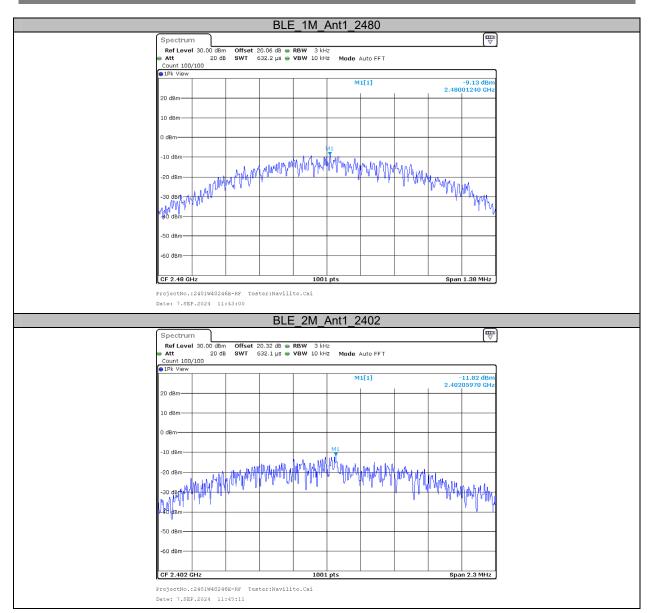
Test Graphs Peak

Report No.: 2401W48246E-RF-00B

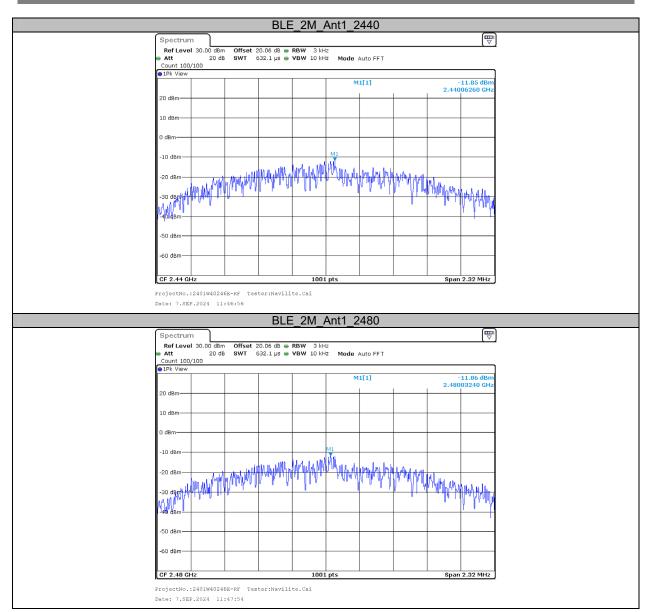
Report No.: 2401W48246E-RF-00B



Appendix D: Maximum power spectral density


Test Result

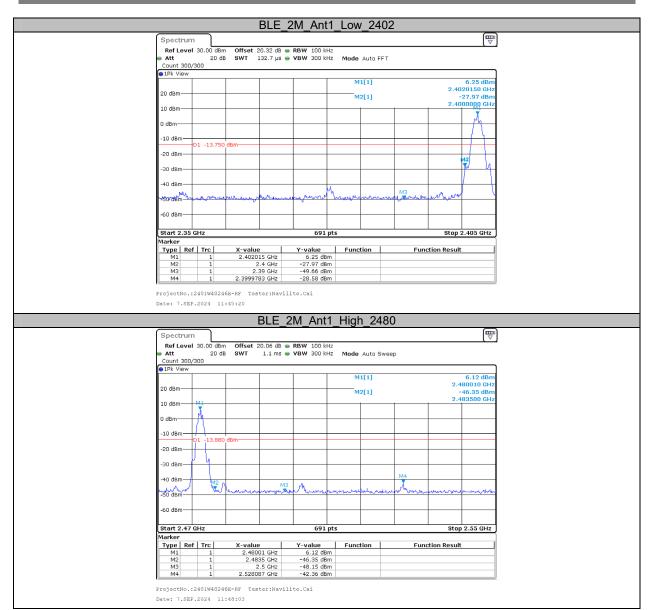
Test Mode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
			-8.96	≤8.00	PASS
BLE_1M	Ant1	2440	-8.95	≤8.00	PASS
		2480	-9.13	≤8.00	PASS
		2402	-11.82	≤8.00	PASS
BLE_2M	Ant1	2440	-11.85	≤8.00	PASS
		2480	-11.86	≤8.00	PASS


Test Graphs

Report No.: 2401W48246E-RF-00B

Report No.: 2401W48246E-RF-00B

Appendix E: Band edge measurements

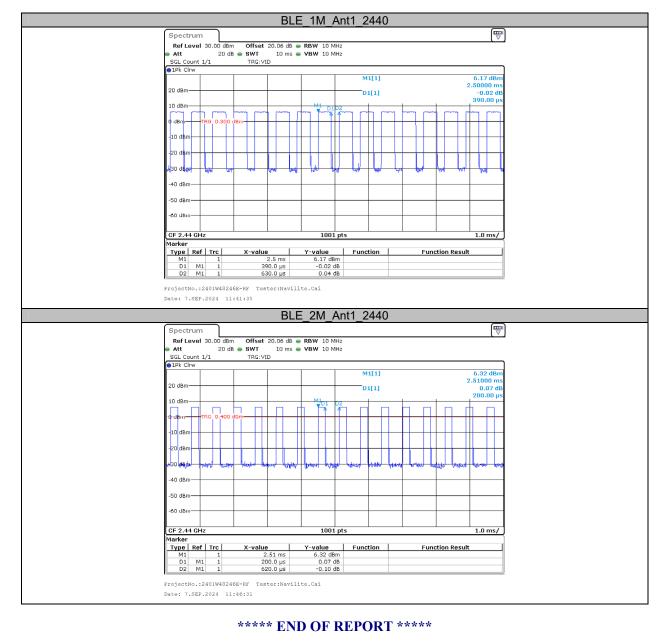

Test Result

Test Mode	Antenna	ChName	Frequency [MHz]	RefLevel [dBm]	Result [dBm]	Limit [dBm]	Verdict
BLE 1M		Low	2402	6.20	-41.67	≤-13.8	PASS
DLE_IM	Ant1	High	2480	6.10	-42.28	≤-13.9	PASS
BLE 2M		Low	2402	6.25	-28.58	≤-13.75	PASS
DLC_2W	Ant1	High	2480	6.12	-42.36	≤-13.88	PASS

Test Graphs

			D		M Ant1	LOW	240Z					
	Spectrum									[₩ ▽		
	Ref Level 3				BW 100 kHz						4	
	Att Count 300/3	20 dB 00	SWI 132	/ µs 👄 V	BW 300 kHz	Mode Au	uto FFT					
•	1Pk View M1[1] 6.20 dBm											
	20 dBm									20150 GHz		
						M2[1	1]		2.400	12.26 dBm 10000 GHz		
1	10 dBm									M1 X		
c	D dBm											
-	-10 dBm		1							-		
-	-20 dBm	1 -13.800	dBm									
										11		
	-30 dBm				M4							
-	-40 dBm				K			MB		Ŭ hi		
15	150-818th ht	w Top Phillippe	chose many and	<u>n santar</u>	when I	m Any marke	Mananha	1 thread	-hardymann	· ••		
	-60 dBm											
Ļ										105.011		
	Start 2.35 G 1arker	HZ			691 pt	s			Stop 2	.405 GHz		
	Type Ref M1	Trc 1	X-value 2.402015		Y-value 6.20 dBm	Functio	n	Func	tion Result			
	M2	1	2.4	GHz	-42.26 dBm							
-	M3 M4	1	2.39 2.378058		-49.24 dBm -41.67 dBm							
			B	LE_1N	M_Ant1	_High_	2480					
	Spectrum						2480			▼]	
-	Ref Level 3 Att	20 dB	Offset 20.	D6 dB 👄 R	M_Ant1 RBW 100 kHz VBW 300 kHz					The second secon]	
-	Ref Level 3 Att Count 300/3	20 dB	Offset 20.	D6 dB 👄 R	BW 100 kHz					Ē]	
-	Ref Level 3 Att	20 dB	Offset 20.	D6 dB 👄 R	BW 100 kHz		uto Sweep			6.10 dBm]	
-	Ref Level 3 Att Count 300/3	20 dB	Offset 20.	D6 dB 👄 R	BW 100 kHz	Mode Au	uto Sweep		-4	6.10 dBm 30010 GHz 16.99 dBm]	
2	Ref Level 3 Att Count 300/30 1Pk View	20 dB	Offset 20.	D6 dB 👄 R	BW 100 kHz	Mode Au M1[1	uto Sweep		-4	6.10 dBm 30010 GHz]	
2	Ref Level 3 Att Count 300/31 1Pk View 20 dBm	20 dB	Offset 20.	D6 dB 👄 R	BW 100 kHz	Mode Au M1[1	uto Sweep		-4	6.10 dBm 30010 GHz 16.99 dBm]	
2	Ref Level 3 Att Count 300/30 PIPk View 20 dBm 10 dBm 0 dBm	20 dB	Offset 20.	D6 dB 👄 R	BW 100 kHz	Mode Au M1[1	uto Sweep		-4	6.10 dBm 30010 GHz 16.99 dBm]	
2 1 0 -	Ref Level 3 Att Count 300/30 IPk View 20 dBm 10 dBm -10 dBm	20 dB	Offset 20. SWT 1	D6 dB 👄 R	BW 100 kHz	Mode Au M1[1	uto Sweep		-4	6.10 dBm 30010 GHz 16.99 dBm]	
2 1 0 -	Ref Level : Att Count 300/30 1Pk View 20 dBm 10 dBm -10 dBm	20 dB	Offset 20. SWT 1	D6 dB 👄 R	BW 100 kHz	Mode Au M1[1	uto Sweep		-4	6.10 dBm 30010 GHz 16.99 dBm]	
2 1 0 -	Ref Level 3 Att Count 300/30 IPk View 20 dBm 10 dBm -10 dBm	20 dB	Offset 20. SWT 1	D6 dB 👄 R	88W 100 kHz 78W 300 kHz	Mode Au M1[1	uto Sweep		-4	6.10 dBm 30010 GHz 16.99 dBm]	
2 1 0 - -	Ref Level 3 Att Count 300/30 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm	20 dB	Offset 20. SWT 1	06 dB ● R .1 ms ● V	XBW 100 kHz XBW 300 kHz	Mode Au M1[1	uto Sweep		-4	6.10 dBm 30010 GHz 16.99 dBm]	
2 1 0 - - -	Ref Level 3 Att Count 300/31 1Pk View 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	20 dB	Offset 20. SWT 1	D6 dB • R .1 ms • V	88W 100 kHz 78W 300 kHz	Mode Au M1[1	uto Sweep		-4	6.10 dBm 30010 GHz 16.99 dBm]	
2 1 0 - - - - - - - - - - - - - 	Ref Level :	20 dB	Offset 20. SWT 1	06 dB ● R .1 ms ● V	XBW 100 kHz XBW 300 kHz	Mode Au M1[1	uto Sweep		2.44	6.10 dBm 30010 GHz 16.99 dBm 33500 GHz]	
2 1 0 - - - - - - - - - - - - - 	Ref Level 3 Att Count 300/31 Count 300/31 11k View 20 dBm 20 dBm 10 dBm 0 -10 dBm 0 -20 dBm -30 dBm -40 dBm -40 dBm	20 dB	Offset 20. SWT 1	06 dB ● R .1 ms ● V	BW 100 kHz BW 300 kHz	Mode At M1[1 	uto Sweep		2.44	6.10 dBm 30010 GHz 16.99 dBm 33500 GHz]	
	Ref Level 3 Att Att Count 300/31 DiPk View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -51 dBm -52 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm	20 dB 00	Offset 20. SWT 1	06 dB ● R .1 ms ● V	XBW 100 kHz XBW 300 kHz	Mode At M1[1 	uto Sweep		 2.48	6.10 dBm 30010 GHz 16.99 dBm 33500 GHz		
2 2 1 0 - - - - - - - - - - - - - - - - - -	Ref Level 3 Att Att Count 300/31 DPK View 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm	20 dB 00 41 1 -13.900 M2 M2 Hz	Offset 20.1 SWT 1	M3 M3	18W 100 kHz /BW 300 kHz /BW 300 kHz //BW 300	Mode Au M1[1] M2[1] M2[1] M2[1] S	L]			6.10 dBm 30010 GHz 66.99 dBm 33500 GHz		
2 2 1 0 - - - - - - - - - - - - - - - - - -	Ref Level 3 Att Att Count 300/31 DPK View 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -51 dBm -60 dBm -60 dBm -60 dBm	20 dB 00 1 -13.900 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	Offset 20.1 SWT 1 	M3 GH2	100 kHz /BW 100 kHz /BW 300 kHz // // // // // // // // // // // // //	Mode Au M1[1] M2[1] M2[1] S	L]		 2.48	6.10 dBm 30010 GHz 66.99 dBm 33500 GHz		
4 2 1 0 - - - - - - - - - - - - - - - - - -	Ref Level 3 Att 2 Att 3 Att 3 Att 4 Att	20 dB 00 1 -13.900 M2 M2 Hz Trc 1 1	Offset 20.1 SWT 1 	M3 GHz GHz GHz GHz GHz	Image: Big 100 kHz KHz /BW 300 kHz Image: Big 300 kHz /BW 300 kHz <td>Mode Au M1[1] M2[1] M2[1] S</td> <td>L]</td> <td></td> <td></td> <td>6.10 dBm 30010 GHz 66.99 dBm 33500 GHz</td> <td></td> <td></td>	Mode Au M1[1] M2[1] M2[1] S	L]			6.10 dBm 30010 GHz 66.99 dBm 33500 GHz		
2 1 0 - - - - - - - - - - - - - - - - - -	Ref Level 3 Att Att Att Count 300/31 1Pk View 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm 20 dBm 30 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -40 dBm -40 dBm -50 dBm -60 dBm -61 dBm -62 dBm -60 dBm -60 dBm -61 dBm -62 dBm -63 dBm -64 dBm -65 dBm -60 dBm -74 GB -74 GB <	20 dB 00 41 1 -13.900 Hz Hz Tre 1 1 1 1	Offset 20.1 SWT 1 	GHz GHz GHz GHz GHz GHz	100 kHz /BW 100 kHz /BW 300 kHz /BW 300 kHz /BW 300 kHz /BW 300 kHz /BW 100 kH	Mode Au M1[1] M2[1] M2[1] S	L]			6.10 dBm 30010 GHz 66.99 dBm 33500 GHz		
2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ref Level 3 Att Att Att Count 300/31 1Pk View 20 dBm 10 dBm 10 dBm 20 dBm 10 dBm 20 dBm 30 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -40 dBm -40 dBm -50 dBm -60 dBm -61 dBm -62 dBm -60 dBm -60 dBm -61 dBm -62 dBm -63 dBm -64 dBm -65 dBm -60 dBm -74 GB -74 GB <	20 dB 00 41 1 -13,900 M2 Hz Hz 1 1 1 1 1 1 401w48246	Offset 20.1 SWT 1 48m 48m 2.48001 2.48001 2.4835 2.5: 2.504319	GHz GHz GHz GHz GHz GHz	100 kHz /BW 100 kHz /BW 300 kHz /BW 300 kHz /BW 300 kHz /BW 300 kHz /BW 100 kH	Mode Au M1[1] M2[1] M2[1] S	L]			6.10 dBm 30010 GHz 66.99 dBm 33500 GHz		

Report No.: 2401W48246E-RF-00B


Report No.: 2401W48246E-RF-00B

Appendix F: Duty Cycle

Test Result

Test Mode	Antenna	Frequency [MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	Duty Cycle Factor [dB]	1/T (Hz)	VBW setting (kHz)
BLE_1M	Ant1	2440	0.39	0.63	61.90	2.08	2564	3
BLE_2M	Ant1	2440	0.20	0.62	32.26	4.91	5000	5

Test Graphs

