Exhibit J: Technical Report

FCC ID: HN2SB555-2

Spurious Radiated Emissions Test Report from NWEMC

Measurement/Technical Report

General Information

Applicant:	Intermec Corporation
Address:	6001 36 th Avenue West
City, State, Zip	Everett, WA 98203-9280
Test Requested By:	Carl Turk
Model:	SB555 Radio in 700C
FCC ID:	HN2SB555-2
First Date of Test:	December 24, 2002
Last Date of Test:	January 2, 2002
Receipt Date of Samples:	December 20, 2002
Job Number	INMC0044

Scope

Regulatory Authority	Federal Communications Commission
Approval Type	Certification
Equipment Type	Part 24 Licensed Base Station
Rule Parts	47 CFR 22.917(e), 24.238(a)
Rule Exemptions	None
Related Submittals or Grants	None

Report Information

Prepared By	Vicki Albertson, Technical Report and Documentation Manager Northwest EMC, Inc.
Signature	Vicki Albertson
Issued By	Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, Oregon 97124 Ph. (503) 844-4066 Fax (503) 844-3826
Report Number	INMC0044
Date Issued	January 6, 2003

Test Facility

The measurement facility used to collect the radiated and conducted data is located at

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124 (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with the FCC (Federal Communications Commission), and accepted by the FCC in a letter maintained in our files.

Laboratory Accreditation

A2LA has granted accreditation Northwest EMC, Inc. to perform the Electromagnetic Compatibility (EMC) tests described in the Scope of Accreditation. Assessment performed to ISO/IEC 17025. Certificate Number: 1936-01, Certificate Number: 1936-02, Certificate Number 1936-03

Justification

The individuals and/or the organization requesting the test provided the modes, configurations and settings available to evaluate. While scanning the radiated emissions, all of the EUT parameters listed below were investigated. This includes, but may not be limited to, antennas, tuned transmit frequency ranges, operating modes, and data rates.

Channels in Specified Band Investigated:	
OW	
<i>l</i> id	
łigh	

Operating Modes Investigated:
PSC Mode
Cellular Mode
PSC Mode simultaneously transmitting with co-located 802.11(b) radio
Cellular Mode simultaneously transmitting with co-located 802.11(b) radio

Antennas Investigated:
PSTGO-1900SCI
PSTGO-900 / 1900SCI

Data Rates Investigated:

Maximum

Power Input Settings Investigated:

Battery

Frequency Range	e Investigated		
Start Frequency	30 MHz	Stop Frequency	25 GHz

Software\Firmware A	Applied During Test		
Exercise software	Sierra SMART	Version	V.046
Description			
The system was tested us	ing special software develo	ped to test all functions of t	he device during the test.

Equipment Modifications

No EMI suppression devices were added or modified. The EUT was tested as delivered.

EUT and Peripherals

Description	Manufacturer	Model/Part Number	Serial Number
EUT-Radio	Intermec	SB555	6301FEOC
Host Device	Intermec	700C	E02093050443010
Antenna	Mobile Mark	PSTGO-1900SCI	N/A
Antenna	Mobile Mark	PSTGO-900 / 1900SCI	N/A

Cables

Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
N/A	N/A	N/A	N/A	N/A	N/A
		المعالمة فالمعالمية المعا			

PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.

Measurement Equipment

Description	Manufacturer	Model	Identifier	Last Cal	Interval
Spectrum Analyzer	Hewlett-Packard	8566B	AAL	03/19/2002	12 mo
Pre-Amplifier	Amplifier Research	LN1000A	APS	12/03/2001	14 mo
Antenna, Biconilog	EMCO	3141	AXE	12/31/2001	36 mo
Antenna, Horn	EMCO	3115	AHJ	05/23/2002	12 mo
Pre-Amplifier	Miteq	AMF-4D-010120-30-10P	AOP	07/09/2002	12 mo
Spectrum Analyzer	Tektronix	2784	AAO	03/08/2001	24 mo
Pre-Amplifier	Miteq	JSD4-18002600-26-8P	APU	01/17/2000	36 mo
Antenna, Horn	EMCO	3160-09	AHG	01/15/2000	36 mo
DC Power Supply	Topward	TPS-2000	TPD	NCR	N/A
Signal Generator	Hewlett-Packard	8341B	TGM	01/09/02	12 mo
Antenna, Horn	EMCO	3115	AHF	03/03/02	12 mo

Test Description

<u>Requirement:</u> Per 2.1053, the field strength of spurious radiation was measured in the far-field at an FCC Listed semi-anechoic chamber up to 25 GHz. The applicable limits are 22.917(e) for the cellular band, and 24.238(a) for the PCS band.

Per 22.917(e), the mean power of out of band emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at least 43 + 10 log (P) dB. (-13 dBm).

Per 24.238(a), on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB. (-13 dBm).

<u>Configuration</u>: Spectrum analyzer, signal generator, and linearly polarized antennas were used to measure radiated harmonics and spurious emissions. The orientation of the EUT and measurement antenna were manipulated to maximize the level of emissions. The EUT was configured to transmit at the highest output at low, mid, and high channels. The EUT was tested with each antenna. Only one antenna can be used at a time.

The substitution method as described in TIA/EIA-603 Section 2.2.12 was used for the highest spurious emissions. The EUT was tested individually, then while simultaneously transmitting with a co-located radio.

Test Methodology: For licensed transmitters, the FCC references TIA/EIA-603 as the measurement procedure standard. TIA/EIA-603 Section 2.2.12 describes a method for measuring radiated spurious emissions that utilizes an antenna substitution method:

At an approved test site, the transmitter is place on a remotely controlled turntable, and the measurement antenna is placed 3 meters from the transmitter. The turntable azimuth is varied to maximize the level of

Spurious Radiated Emissions

spurious emissions. The height of the measurement antenna is also varied from 1 to 4 meters. The amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a $\frac{1}{2}$ wave dipole that is successively tuned to each of the highest spurious emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency. The output of the signal generator is recorded, and by factoring in the cable loss to the dipole antenna and its gain; the power (dBm) into an ideal 1/2 wave dipole antenna is determined for each radiated spurious emission.

For the purposes of preliminary measurements, the field strength of the spurious emissions can be measured and compared with a 3 meter limit. The final measurements must be made utilizing the substitution method described above. The 3 meter limit was calculated to be 84.3 dBuV/m at 3 meters. This was based upon an output power of 0.224 W.

Simultaneous Transmission: The EUT will be co-located with two other radios: FCC ID:HN22011B-2 (802.11(b) radio), and FCC ID:HN2ABTM3-3 (Bluetooth radio). Any two of the three radios can transmit simultaneously. All three radios cannot transmit simultaneously. Each radio transmits through its own antenna.

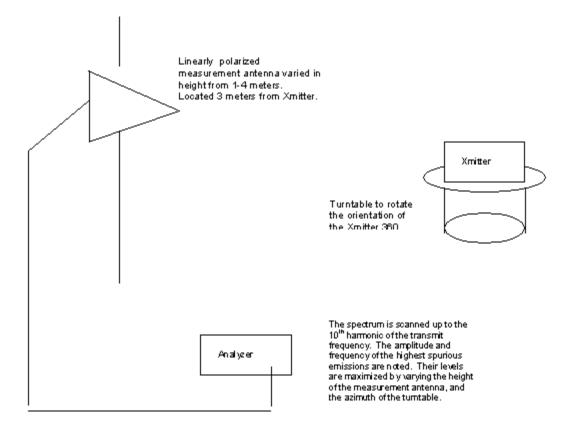
The following is an excerpt from the FCC / TCB Training Q & A, October 2002, Day 2, Question 7:

Assuming that the radios do not share an antenna, only radiated tests for simultaneous transmission is required. If the radios share an antenna, antenna conducted measurements would also be required. Only one set of worst case simultaneous transmission data is going to be requested to be submitted at this time. The test engineer should indicate the worst case condition and provide justification as to why the worst case condition was chosen. The grantee should be reminded that even if the FCC requests one set of data, they are responsible for compliance for all modes of simultaneous transmission.

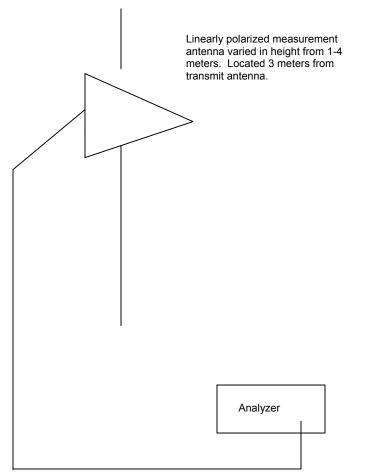
Since the Bluetooth radio has such a low EIRP (.001W) and is a frequency hopper, the worst case simultaneous transmission mode was determined to be the EUT transmitting simultaneously with the 802.11(b) radio (EIRP = 0.056 W & single channel operation). The EUT was tested in both cellular and PCS modes while simultaneously transmitting with the 802.11(b) radio. Simultaneous low, mid, and high transmit frequencies were investigated from 30 MHz to 25 GHz.

In addition, all the possible combinations of harmonic emissions from the EUT and the 802.11(b) radio were compared numerically. It was determined that only channels 526 (1876 MHz) and 930 (1896 MHz) in PCS mode could have harmonic emissions that coincide with the center frequency of harmonic emissions from the 802.11(b) radio (tuned to channels 1 (2412 MHz) and 6 (2437 MHz) respectively). The frequency range from 10 to 18 GHz was investigated for these channel combinations.

Frequency Range (MHz)	Peak Data (kHz)	Quasi-Peak Data (kHz)	Average Data (kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 – 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0


Bandwidths Used for Measurements

measurements were made using the bandwidths and detectors specified. No video filter was used.

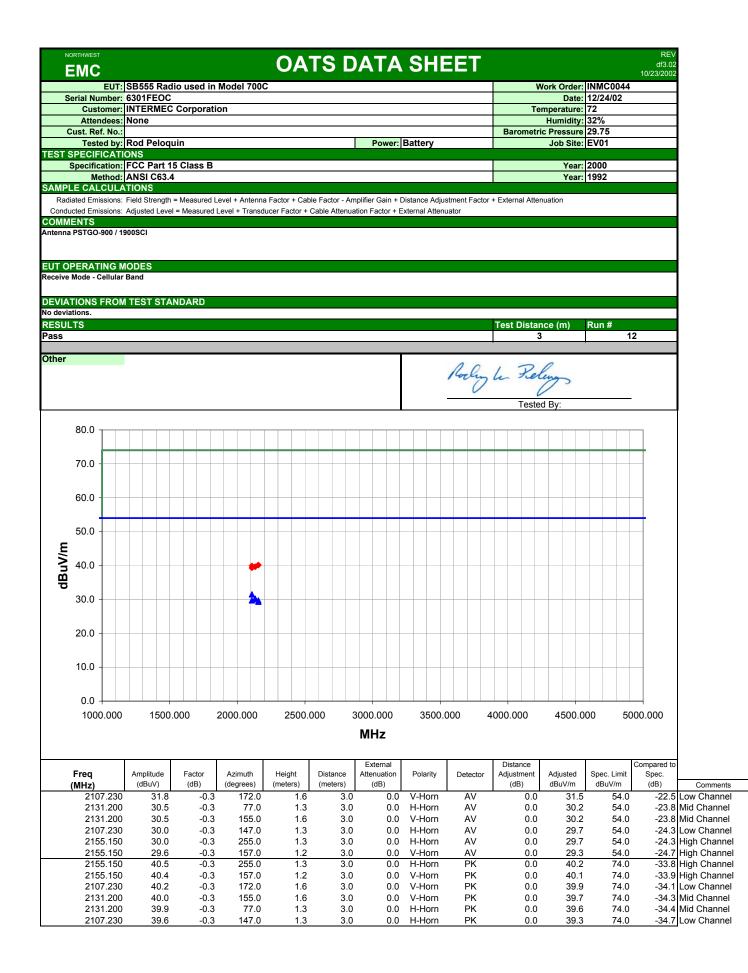

Test Setup Diagram

Test Setup for Field Strength Measurements

Test Setup for Power Measurements Utilizing the Antenna Substitution Method

During field strength measurements, the amplitude and frequency of the highest emissions are noted. The transmitter is then replaced with a ½ wave dipole (at the same height) that is successively tuned to each of the highest spurious emissions. A signal generator is connected to the dipole (horn antenna for frequencies above 1 GHz), and its output is adjusted to match the level previously noted for each frequency.

Signal Generator


The spectrum analyzer is monitored to verify that the output of the signal generator produces a signal equal in amplitude to a previously measured spurious emission.

Completed by: hing to Relengs

NORTHWEST EMC				Α	pp	are	ent	Ρ)W	<i>v</i> er	D	ata	a Sh	eet					REV df3.02 10/23/2002	
EUT:	SB555 Rac		ed in													ork Ord	er: INN	IC0044		l
Serial Number: Customer:			orati	on											Tor	Da [:] nperatu	te: 12/2	24/02		
Attendees:		, corp	orati												Ter	Humidi		6		
Cust. Ref. No.:											Dette			Baro	metri	Pressu				
Tested by: ST SPECIFICATIO		uin							Po	ower:	Batte	ry				Job Si	te: EV)1		
Specification:	FCC Part 2																ar: 200			
Method: MPLE CALCULA	TIA/EIA-60	3														Yea	ar: 199	8		
Radiated Emissions:		= Meas	sured L	evel + Ante	enna Fa	actor + Ca	ble Fac	tor - Amp	olifier G	Gain + D	Distance	Adjus	tment Factor	+ External	Attenu	uation				
Conducted Emissions:	Adjusted Leve	l = Mea	sured L	Level + Tra	nsduce	r Factor +	Cable	Attenuati	on Fac	ctor + E	xternal	Attenu	ator							
enna PSTGO-900 / 19	00SCI																			
T OPERATING M	ODES																			
smitting - PCS Band																				
/IATIONS FROM	TEST STA	NDAE	RD																	
eviations.																				1
SULTS s														Test D	istan 3	. ,	Ru		6	
5														1	3				0	
er														10	1	P	0			l
													/	lochy	le	Fer	eng	>		
														U		6			_	
														Т	estec	l By:				4
0.0																				
0.0																				
10.0																				
-10.0																				
-20.0																				
-30.0																				
ב																				
E -40.0																	_			
0																				
-50.0																				
-60.0																				
-70.0																				
-80.0																				
1000.000	2000.0	000	300	00.000	40	00.000	50	00.00	0	6000	0.000	7	000.000	8000	.000	900	00.000	10	000.000	
									мн											
									IVI F1	2										
I							1										-		Compared to	-
Freq				Azimuth		Height					Pola	rity	Detector			EIRP		ec. Limit	Spec.	
(MHz) 3699.354				(degrees 307		meters) 1.1					H-H	orn	PK			(dBm) -15		dBm) -13.0	(dB)	Con Low C
3699.354				7	.0	1.1					V-H		PK			-16		-13.0		Low C
3819.400				156	i.0	1.2					V-H	orn	PK			-17	.6	-13.0	-4.6	High
3819.400 3759.400				69 347		1.3 1.2					H-H V-H		PK PK			-17 -18		-13.0 -13.0		High Mid C
3759.400				107		1.3					H-H		PK			-18		-13.0	-5.0	Mid C

Custome: INTERREC Corporation Hemperture: P2 Custome: None Hemdity: 227. Custome: Barometric Pressue: 23.75 Testad by: Rod Pelocylin Power. Barometric Pressue: 23.75 Sty SPEcIICATIONS Veer. 2002 Veer. 2002 Method: TALE CACULATIONS Veer. 2002 Reducted Emission: FIG Steright - Measured Level + Antenna Factor + Cable Actor - Ampilter Gan + Distance Aquatiment Factor + External Attenuaton Conducted Emission: Veer. 1998 MMELE CACULATIONS Veer. Note: Note:<	
Attandeus: Humidity: 22%, Cust. Ref. No: Barometric Pressure 29.7 5 Tested by: Ref. (FAC100) Specification: FCC Part 24E Year: 2002 Method: Title:EA-000 Year: 1998 Year: 1998 Method: Title:EA-000 Year: 1998 Year: 1998 Method: Title:EA-000 Year: 1998 Year: 1998 MILE CALCULATIONS Year: 1998 Year: 1998 MILE CALCULATIONS Year: 1998 Year: 1998 Match Envision: Adjusted Level + Messured Level + Antenna Factor + Cable Attenuation Factor + External Attenuator Method: 10000000 10000000 1000000 1000000	
Coult Ref. No: Barometric Pressure (27.7) Tested by: Not Pressure (27.7) StepEdiction: Veer: Specification: Veer: Barometric Pressure (27.7) Veer: StepEdiction: Veer: Barometric Pressure (27.7) Veer: StepEdiction: Veer: Barometric Pressure (27.7) Veer: Distance Adjustmet Factor + Cable Adjustmet Factor + Cable Adjustmetric Pressure (27.7) Distance Adjustmetric Pressure (27.7) Ref Stations Test Distance Adjustmetric Pressure (27.7) Baradottion	
Tested by: Job Site: EV01 SpecificAtion: FCC Part 24E Year: 2002 Method: Tested by: Tested by: Not TOPERATING MODES Test: Distance (m) Run # Sultaria Tested By: Tested By: Tested By: 0.0 Tested By: Tested By: Tested By: Tested By: 0.0 Tested By: Teste	
St SPECIFICATIONS Year: 2002 Method: [TAVE]A603 Year: 1998 Method: [TAVE]A603 Year: 1998 Radiad Ensions. Field Streight = Measured Level + Antenna Factor - Cable Factor - Angilter Gain + Distance Adjustment Factor + External Attenuation ondracted Emeissions. Field Streight = Measured Level + Transducer Factor - Cable Attenuation Factor + External Attenuation ondracted Emeissions. If OPERATING MODES Test Distance (m) Review of the streight = Measured Level + Transducer Factor - Cable Attenuation Factor + External Attenuation MILE TS Test Distance (m) Review of the streight = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuation MILE TS Test Distance (m) Review of the streight = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuation MILE TS Test Distance (m) Review of the streight = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuation MILE TS Test Distance (m) Review of the streight = Measured Level + Measu	
Specification: FCC P and 24E Year: [1998] Weindo: Year: [1998] Year: [1998] PRIE CALCULATIONS Year: [1998] Year: [1998] Initiated function: Adjustment Factor + Amplifier Gain + Distance Adjustment Factor + External Attenuation indicate Emission: Adjustment Factor + External Attenuation Factor +	
Method: Title FL4-063 Year: 1998 Method: Title: Control (Control (Contro) (Contro) (Control (Control (Contro) (Control (Control (Control (
MPLE CALCULATIONS Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation andcade Emission: Adjusted Level + Measured Level + Transdocer Factor + Cable Attenuation External Attenuation Measured Level + Measured Level + Transdocer Factor + Cable Attenuation MIRENTS Ministry - PCS Band Image: Stand S	
Radatad Emissions Field Strength = Massured Level + Atterna Factor + Callie Factor - Angelfer Gan + Distance Adjustment Factor + External Attenuation minded Emissions MUENTS mane PSTGO-1900SCI COPERATING MODES amitting - PCS Band Autors FROM TEST STANDARD evaluate s c c c c c c c c c c c c	
Operation Topst of the secure of Level + Transducer Factor + Cable Attenuator MMENTS mar PSTGO-1900501 TOPERATING MODES amitting - PCS Band MATIONS FROM TEST STANDARD MATIONS FROM TEST STANDARD Standardona. Standardona. TopErATING MODES amitting - PCS Band MATIONS FROM TEST STANDARD Standardona. Standardona. TopErATING MODES amitting - PCS Band MATIONS FROM TEST STANDARD Standardona. TopErATING MODES Colspan="2">TopErATING MODES Standardona. Mathematical Standardona Colspan="2">Standardona Colspan="2">Standardona Colspan="2">Standardona Colspan="2">Standardona Colspan="2">Standardona Colspan="2">Standardona Colspan="2">Standardona Colspan= 2"Standardona Colspan="2">TopErATING MODES Colspan="2">TopErATING MODES Standardona Colspan="2">Standardona Colspan="2">Standardona Colspan="2">Standardona Colspan="2"Standardona Colspan= 2"Standardona Colspan="2"Standardona Colspan="2"Standa	
MMERTS Inna PSTGC-1900SCI TOPERATING MODES WATIONS FROM TEST STANDARD Writilition: Is Is If all Distance (m) Run # Is If all Distance (m) It all Distance (m) <td></td>	
OPERATING MODES Instituting -PCS Band VIATIONS FROM TEST STANDARD Instituting -PCS Band Test Distance (m) Run # Stand Instituting -PCS Band Test Distance (m) Run # Band Instituting -PCS Band Institution -PCS Band Insteo	
Amilting - PCS Band VIATIONS FROM TEST STANDARD Invisions Invis	
VIATIONS FROM TEST STANDARD VIATIONS FROM TEST STANDARD deviations. Stand	
Semitting - PCS Band VIATIONS FROM TEST STANDARD Service Set Distance (m) Run # Se S S S Inf Markatoria Tested By: Tested By: 0.0 Set Set Set Set 0.0 Set Set Set Set Set 0.0 Set	
WATCHONS FROM TEST STANDARD SULTS Test Distance (m) Run # s 3 8 or	
Test Distance (m) Run # s 3 8 er Bull TS Test Distance (m) Run # 0.0 Tested By: Tested By: 0.0 X X X X 30.0 X X X X X X 30.0 X	
Sturfs Test Distance (m) Rtn # sa 3 8	
SULTS Test Distance (m) Run # ss 3 8	
ss 3 8 Image: State of the state of th	
Augustu Relings 0.0 10.0 20.0 30.0 30.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 300.0 60.0 70.0 80.0	
Moduly	
Moduly	
Tested By: 0.0 -10.0 -20.0 -30.0 -30.0 -50.0 -60.0 -70.0 -80.0 1000.000 3000.000 4000.000	
Tested By: 0.0 -10.0 -20.0 -30.0 -30.0 -50.0 -60.0 -70.0 -80.0 1000.000 3000.000 4000.000 -600.0 -70.0	
Tested By: 0.0 -10.0 -20.0 -30.0 -30.0 -50.0 -60.0 -70.0 -80.0 1000.000 3000.000 4000.000 -500	
0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 7000.000 8000.000 9000.000 10000.00	
10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000	
10.0 20.0 30.0 40.0 50.0 60.0 70.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000	
20.0 30.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000	
20.0 30.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000	
20.0 30.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000	
30.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
30.0 40.0 50.0 60.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	'
30.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
40.0 50.0 60.0 70.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
-50.0 -50.0 -60.0 -70.0 -70.0 -80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
-50.0 -60.0 -70.0 -80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
-60.0 -70.0 -80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
-60.0 -70.0 -80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000	
.70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000	
70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000	
-70.0 -70.0 -80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000	
80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
.80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
-80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.00	
Com	
Com	0,000
EFER L AZIMUM HEIDI LOD Coop Limit C	ompared to
	Shec
3819.400 118.0 1.2 V-Horn PK -17.2 -13.0	Spec. (dB)
3699.400 102.0 1.2 V-hom PK -17.2 -13.0	(dB)
3759.400 141.0 1.2 V-Horn PK -17.0 -13.0	(dB) -4.2 Hi
3759.400 141.0 1.2 V-hom PK -17.7 -13.0 3759.400 324.0 1.3 H-Horn PK -18.5 -13.0	(dB) -4.2 H -4.6 Lo
3819.400 99.0 1.3 H-Horn PK -18.5 -13.0	(dB) -4.2 Hi -4.6 Lo -4.7 M
3699.400 301.0 1.3 H-Horn PK -19.6 -13.0	

EMC			Ap	pare	nt P	owei	r Data	a Sh	eet			REV df3.02 10/23/2002	
EL	IT: SB555 Ra	dio used in	Model 700	C					W	ork Order:	INMC0044		
	er: 6301FEO										12/24/02		
	er: INTERME	C Corporati	on						Ter	mperature:			
	s: None									Humidity:			
Cust. Ref. N	o.: oy: Rod Pelo	nuin				Bower	Battery		Barometrie	c Pressure Job Site:			
T SPECIFICA		lanı				Power.	Dattery			JOD Sile.			
	n: FCC Part	22.901(d)								Year:	2002		
	d: TIA/EIA-6										1998		
IPLE CALCU													
Radiated Emissio									 External Attenu 	uation			
onducted Emissio MMENTS	ns: Adjusted Lev	ei = Measured	Level + Trans	ducer Factor +	Cable Attenua	tion Factor + I	External Attenu	lator					
enna PSTGO-900	/ 1900SCI												
smitting - Cellula	ar Band												
IATIONS FR	OM TEST OF												
eviations.	SWITEST ST	ANDARD											1
SULTS									Test Distan	ce (m)	Run #		
S									3			10	1
er								10	. 0	0			
								Roching	he Ret	eng			
								0	1	13			
								116	Tested			-	
									105101	<i>i</i> Dy.			1
0.0													
10.0												_	
												-	
20.0												_	
30.0												-	
40.0												-	
50.0	•												
50.0	2												
60.0													
			$ \top$										
70.0													
80.0													
1000.000	2000.000	3000.0	00 40	00.000	5000.000	6000.0	000 70	00.000	8000.000	9000.0	000 10	000.000	
	_000.000	0000.0				5000.			2000.000				
				1				1	<u>г г</u>			Compared to	ł
Freq			Azimuth	Height			Polarity	Detector		EIRP	Spec. Limit	Spec.	
· · • • •			(degrees)	(meters)				_ 0.0000		(dBm)	(dBm)	(dB)	Comr
(MHz)	00		184.0				H-Horn	PK		-47.2	-13.0		High Ch
1697.4													1
1697.4 1697.4	00		275.0				V-Horn	PK		-50.5			
1697.4 1697.4 1673.4	00 00		161.0	1.2			H-Horn	PK		-51.8	-13.0	-38.8	Mid Cha
1697.4 1697.4	00 00 00			1.2 1.2							-13.0 -13.0	-38.8 -39.9	High Ch Mid Cha Mid Cha Low Ch

ButTl [SB555 Ratio used in Model 700C Work Over [INMC0044 Seria Number Corporation Temperature [NMC0044 Cast Runk Rolp Ferrepresent 73 Attendess Huminity 36%, Cast Runk Rolp Baronenic Present 25.76 Tip 21C FIG / Vol S1 Vair [202 Specification FIC Part 24.6 Vair [202 Method 71 / Kei A 603 Vair [202 Mater 12.8 (Strip 1 - Voir 12.8 (Strip 1	NORTHWEST								Ap	pp	a	re	n		0	W	/e	r	D	at	a	Sh	ee	et							REV df3.02 10/23/2002
Safetia Number: Solid FEOC Date Display Display <thdisplay< th=""> Display <thdisplay< th=""></thdisplay<></thdisplay<>		T: S	B555	Radi	io us	sed i	in M	lode	1700	C															W	/ork C	rder	: INM	C004	4	
Attendese: Ione Home Home Barrier Barrentic Pressure 23.75 Tested by: Rod Pologuin Power, Battery Job Stir, EV01 TSECIE/ACIONS Power, Battery Job Stir, EV01 Specification FOC Part 24E Vaar Memory Vaar Year Memory Total Story Year Memory Name Year Memory Name Year Memory Name Year Marking Name Year Marking Name Year Marking Name Name Marking Name Name Marking Name Name Name Name Name Name Name Name Marking Name Name Name N																													81/02		
Cuts. Rev. No.: Barometric Prevaing 28,75 Tested by: Job Site: EVOI 15 B261[GATIO1KS Vaar 2602 Specification (CC Part 24. Vaar 2602 Wethod: TLAFEA 403 Participation (CC Part 24. Vaar 2602 Wethod: TLAFEA 403 Participation (CC Part 24. Vaar 2602 Wethod: TLAFEA 403 Participation (CC Part 24. Vaar 2602 Wethod: TLAFEA 403 Participation (CC Part 24. Vaar 2602 Wethod: TLAFEA 403 Participation (CC Part 24. Vaar 2602 Wethod: TLAFEA 403 Participation (CC Part 24. Vaar 2602 Wethod: TLAFEA 403 Participation (CC Part 24. Vaar 2602 Wethod: TLAFEA 403 Participation (CC Part 24. TLAFEA 403 Wethod: TLAFEA 403 Participation (CC Part 24. TLAFEA 403 Wethod: TLAFEA 403 Participation (CC Part 24. TLAFEA 403 Partitipation (CC Part 24. TLAFEA 403 </td <td></td> <td></td> <td></td> <td>NEC</td> <td>Cor</td> <td>pora</td> <td>tior</td> <td>n</td> <td></td> <td>Те</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				NEC	Cor	pora	tior	n																	Те						
Tracted by: Rod Pelocyin Power: Battery Job Still: EV01 SpecificArtish FGC Part 24E Vaar. 2002 Vaar. 2002 Vaar. 2002 Method: Trackel A03 Vaar. 2002 Vaar. 1999 Vaar. 1999 PLE_CACCUATIONS Mathod: Vaar. 1999 Vaar. 1999 Vaar. 1999 PLE_CACCUATIONS Mathod: Tracked Print Vaar. 1999 Vaar. 1999 VIEWS Adjustic Lend: Tracked Print Color Adjustic Lend: Tracked Print MILE IS Color Adjustic Lend: Tracked Print Tracked Print Tracked Print OU 3 14 3 14 3 14 or 3 14 3 14 3 14 or 3 3 14 3 14 3 14 or 3 3 14 3 14 3 14 3 14 3 14 3 14 3 14 3 14 3			one																				_								
To SPECIFICATIONS Year 2002 Method: TAVEL Tavel Tavel Max Tavel		-	od Do	logu	in										1	D	0.00	. B	atta	~			E	saror	netri						
Specification ICC Part 24E Year: 2002 Method: Method: Year: 2002 MPLE CACUUATIONS Year: 1998 Related Emission: Adjusted Level + Meanued Level + Traindocer Factor - Cable Atternation Factor + Datemal Atternation Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: <t< td=""><td></td><td></td><td></td><td>loqu</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>F</td><td>ower</td><td>. D</td><td>alle</td><td>y</td><td></td><td></td><td></td><td></td><td></td><td>300</td><td>Site</td><td>. </td><td>/1</td><td></td><td></td></t<>				loqu												F	ower	. D	alle	y						300	Site	.	/1		
Method: TAREE 463 Year: 1998 Predict CANCUNCINS Predict Presidence Addustment Factor + Cable Pactor - Cable Pactor - Cable Addustment Factor + Datemal Attenuation Predict Presidence Addustment Factor + Datemal Attenuation Marking Carl Pacific Addust Addust Addusted Envisions - Cable Addustment Factor + Datemal Attenuation Predict Presidence Addustment Factor + Datemal Attenuation Marking In PCS mode and B82.11(b) mode Test Distance (m) Rm # Add Toris FROM TEST STANDARD Test Distance (m) Rm # Verain 1990 Test Distance (m) Rm # 0.0 Test Distance (m) Rm # 0.0<				art 24	4E																						Year	: 200	2		
Related Emilions. Field Stering - Measured Level + Transducer Factor - Exite Adjustment Factor - External Attenuation objection Emiliano. Field Stering - Measured Level + Transducer Factor - Exite Adjustment Factor - Exiternal Attenuation objection Emiliano. Factor - Exiternal Attenuation methods - Exiternal Attenuation methods - Exiternal Attenuation MILENTS Test Distance (m) Run # 10 10 10 10 10 10 10 10 10 10	Metho	d: Tl	A/EIA																												
bioladed Level - Massured Level - Massured Level - Tarnaducer Factor - Cable Alterwater External Alterwater MENTS TOPERATING MODES marking in PCS moles and 812,11(p) mode Anticols FROM YEST STANDARD eveloance USS S S S S S S S S S S S																															
MILENTS Image PSTGO-080 / 1909SCI COPERATING MODES Test Distance (m) RUN # S Colspan="2">Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan="2" Colspan= Colspan="2" <td></td> <td>+ Ext</td> <td>ernal</td> <td>Atten</td> <td>uation</td> <td></td> <td></td> <td></td> <td></td> <td></td>																							+ Ext	ernal	Atten	uation					
OPERATING MODES Maintagin PCS mode and BIZ-11(0) mode Tost Distance (m) NII # OUTONS FROM TEST STANDARD	MMENTS			Level	= Mea	asure	a Le	vel +	Irans	auce	r Fac	tor +	Cable	Atter	nuatio	n Fa	ctor +	Exte	ernal	Atten	uator	r									
amuting in PCS mode and 802.11(b) mode ADTIONS FROM TEST STANDARD and and 802.11(b) mode SUITS Tost Distance (m) Run # Advice the second of the second	enna PSTGO-900	/ 1900	ISCI																												
ATIONS FROM TEST STANDARD weighted				2.11(b) mo	de																									
Outling Test Distance (m) Run # er	-			-																											
s	leviations.	eni 1	201	5 17-1		ND.																									
s	SULTS																						Te	st <u>D</u> i	ist <u>ar</u>	ice (n	n)	Rur	n#		
Mag W Religy 0.0 Tested By: 0.0 0 0.0 <	is																													14	
Mag W Religy 0.0 Tested By: 0.0 0 0.0 <																															
Tested By: 0.0 10.0 <	ier					_	_	_	_	_	_	_		_		_			_	_		10	,	-	2	0	_				
Tested By: 0.0 10.0 <																					14	orly	h	. 7	Kel	eng					
Tested By: 0.0 10.0 <																						0			1	/	5				
0.0 10.0																						- G									
Interference Azimuth Height (regress) Polarity Detector EIRP Spec. Limit (dBm) Compared till (cBm) 3099.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3099.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -17.2 -13.0 -4. 3819.360 344.0 1.0 V-Horn PK -18.2 -13.0 -6.																		-													
Interference Azimuth Height (regress) Polarity Detector EIRP Spec. Limit (dBm) Compared till (cBm) 3099.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3099.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -17.2 -13.0 -4. 3819.360 344.0 1.0 V-Horn PK -18.2 -13.0 -6.	0.0			, , , , , , , , , , , , , , , , , , ,		, ,																							1		1
20.0 30.0 40.0 50.0 60.0 70.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq Azimuth Height (degrees) (meters) 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq Azimuth Height (degrees) (meters) 3699.356 71.0 2.0 H-Hom PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Hom PK -17.2 -13.0 -4. 3819.360 20.0 1.9 H-Hom PK -18.2 -13.0 -6. 3819.360 344.0 1.0 V-Hom PK -18.2 -13.0 -5. 3819.360 -5. 3819.360 -5. 3810.360 -5										[
20.0 30.0 40.0 50.0 60.0 70.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq Azimuth Height (degrees) (meters) 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq Azimuth Height (degrees) (meters) 3699.356 71.0 2.0 H-Hom PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Hom PK -17.2 -13.0 -4. 3819.360 20.0 1.9 H-Hom PK -18.2 -13.0 -6. 3819.360 344.0 1.0 V-Hom PK -18.2 -13.0 -5. 3819.360 -5. 3819.360 -5. 3810.360 -5																															
20.0 * ·	10.0					$\left \right $		_						$\left \right $		_	+	_												_	-
Current Height (degrees) Polarity (meters) Detector EIRP (dBm) Spec. Linit (dBm) Compared 1 (Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -17.2 -13.0 -4. 3819.360 344.0 1.0 V-Horn PK -18.2 -13.0 -5.							-																								+
Z0.0 Compared 1 30.0 40.0 40.0 50.0 50.0 50.0 60.0 50.0 70.0 50.0 1000.000 2000.000 300.0 4000.000 50.0 500.0 60.0 500.0 1000.000 2000.000 3000.000 4000.000 5000.000 7000.000 809.056 71.0 2.0 H-Horn PK -17.1 3819.360 20.0 3819.360 344.0 3319.360 344.0 344.0 1.0 V-Horn PK -18.2 -13.0 -5 155.0																															
40.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq Azimuth Height Polarity Detector EIRP Spec. Limit Compared to Spec. (MHz) Detector EIRP Spec. Limit Compared to Spec. Limit Compared to Spec. Spec. Limit Compared to Spec. Spec. Limit Compared to Spec. Limit	-20.0 -			$\left \cdot \right $	_	+	_	_		-	-	\vdash	_	+		_	++	_	_				+	_		_	+		$\left \right $		-
40.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq Azimuth Height Polarity Detector EIRP Spec. Limit Compared to Spec. (MHz) Detector EIRP Spec. Limit Compared to Spec. Limit Compared to Spec. Spec. Limit Compared to Spec. Spec. Limit Compared to Spec. Limit																															
40.0 40.0 50.0 60.0 70.0 80.0 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq Azimuth Height Polarity Detector EIRP Spec. Limit Compared to Spec. (MHz) Detector EIRP Spec. Limit Compared to Spec. Limit Compared to Spec. Spec. Limit Compared to Spec. Spec. Limit Compared to Spec. Limit																															
50.0 60.0 90.0 90.0 1000.000 10000.000	-30.0	_			_						_					_														_	
50.0 60.0 90.0 90.0 1000.000 10000.000																															
50.0 60.0 90.0 90.0 1000.000 10000.000																															
60.0	40.0										_							_												_	
60.0																															
60.0																															
To.0 Azimuth Height Polarity Detector EIRP Spec. Limit (dBm) Compared to Spec. (dB) 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq Azimuth Height Polarity Detector EIRP Spec. Limit Compared to Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -17.9 -13.0 -5. 3699.356 153.0 1.0 V-Horn PK -18.2 -13.0 -5.	-50.0				+	+	-	-			+					+	+	-									$\left \right $			-	1
To.0 Azimuth Height Polarity Detector EIRP Spec. Limit (dBm) Compared to Spec. (dB) 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq Azimuth Height Polarity Detector EIRP Spec. Limit Compared to Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -17.9 -13.0 -5. 3699.356 153.0 1.0 V-Horn PK -18.2 -13.0 -5.																															
To.0 Azimuth Height Polarity Detector EIRP Spec. Limit (dBm) Compared to Spec. (dB) 1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq Azimuth Height Polarity Detector EIRP Spec. Limit Compared to Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -17.9 -13.0 -5. 3699.356 153.0 1.0 V-Horn PK -18.2 -13.0 -5.	co o																														
B0.0 Azimuth Height Polarity Detector EIRP (dBm) Spec. Limit (dBm) Compared to Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 344.0 1.0 V-Horn PK -18.2 -13.0 -5. 3699.356 153.0 1.0 V-Horn PK -18.2 -13.0 -5.	0.00																														1
B0.0 Azimuth Height Polarity Detector EIRP (dBm) Spec. Limit (dBm) Compared to Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 344.0 1.0 V-Horn PK -18.2 -13.0 -5. 3699.356 153.0 1.0 V-Horn PK -18.2 -13.0 -5.																															
B0.0 Azimuth Height Polarity Detector EIRP (dBm) Spec. Limit (dBm) Compared to Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 344.0 1.0 V-Horn PK -18.2 -13.0 -5. 3699.356 153.0 1.0 V-Horn PK -18.2 -13.0 -5.	70.0																														
1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq (MHz) Azimuth (degrees) Height (meters) Height (meters) Polarity Detector EIRP (dBm) Spec. Limit (dBm) Compared t Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.1 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -18.2 -13.0 -6. 3699.356 153.0 1.0 V-Horn PK -18.2 -13.0 -5.	.70.0																														
1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq (MHz) Azimuth (degrees) Height (meters) Height (meters) Polarity Detector EIRP (dBm) Spec. Limit (dBm) Compared t Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.1 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -18.2 -13.0 -6. 3699.356 153.0 1.0 V-Horn PK -18.2 -13.0 -5.																															
1000.000 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000 Freq (MHz) Azimuth (degrees) Height (meters) Height (meters) Polarity Detector EIRP (dBm) Spec. Limit (dBm) Compared t Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.1 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -18.2 -13.0 -6. 3699.356 153.0 1.0 V-Horn PK -18.2 -13.0 -5.	80.0																														
Freq (MHz) Azimuth (degrees) Height (meters) Polarity Detector EIRP (dBm) Spec. Limit (dBm) Compared t Spec. (dB) 3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -18.2 -13.0 -5. 3699.356 153.0 1.0 V-Horn PK -18.2 -13.0 -5.		~	000.0	00	~	000	000	0	10	00.	200		F00		0	~	000	00	0		000	000		00.0	000	~	000	000		000	0.000
Freq (MHz) Azimuth (degrees) Height (meters) Polarity Detector EIRP (dBm) Spec. Limit (dBm) Spec. (dBm) Spec. (dBm) <td>1000.000</td> <td>20</td> <td>0.00</td> <td>00</td> <td>3</td> <td>000</td> <td>.000</td> <td>U</td> <td>40</td> <td>UU.(</td> <td>JUU</td> <td></td> <td>500</td> <td>J.UU</td> <td>U</td> <td>6</td> <td>000.</td> <td>.000</td> <td>U</td> <td>70</td> <td>100.</td> <td>000</td> <td>80</td> <td>00.0</td> <td>100</td> <td>9</td> <td>000.</td> <td>.000</td> <td>1(</td> <td>000</td> <td>0.000</td>	1000.000	20	0.00	00	3	000	.000	U	40	UU.(JUU		500	J.UU	U	6	000.	.000	U	70	100.	000	80	00.0	100	9	000.	.000	1(000	0.000
Freq (MHz) Azimuth (degrees) Height (meters) Polarity Detector EIRP (dBm) Spec. Limit (dBm) Spec. (dBm) Spec. (dBm) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td>							_			1			1					-			-		-					-			
(MHz) (degrees) (meters) (meters) (meters) (dBm) (dBm) <td>Freq</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Azim</td> <td>nuth</td> <td>1</td> <td>Heia</td> <td>nt</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Pola</td> <td>ritv</td> <td></td> <td>Detector</td> <td></td> <td></td> <td></td> <td>FI</td> <td>RP</td> <td>Sne</td> <td>c, Limi</td> <td></td> <td></td>	Freq							Azim	nuth	1	Heia	nt							Pola	ritv		Detector				FI	RP	Sne	c, Limi		
X3699.356 71.0 2.0 H-Horn PK -17.1 -13.0 -4. 3759.348 49.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -19.2 -13.0 -6. 3819.360 20.0 1.9 H-Horn PK -19.2 -13.0 -6. 3819.360 344.0 1.0 V-Horn PK -18.2 -13.0 -5. 3699.356 153.0 1.0 V-Horn PK -18.3 -13.0 -5.																			1 014		'	Jereciol								·	
3759.348 49.0 1.9 H-Horn PK -17.9 -13.0 -4. 3819.360 20.0 1.9 H-Horn PK -19.2 -13.0 -6. 3819.360 344.0 1.0 V-Horn PK -18.2 -13.0 -5. 3699.356 153.0 1.0 V-Horn PK -18.3 -13.0 -5.		56											I						H-H	orn	1	PK								0	-4.1
3819.360 344.0 1.0 V-Horn PK -18.2 -13.0 -5 3699.356 153.0 1.0 V-Horn PK -18.3 -13.0 -5									49.0)																					-4.9
3699.356 153.0 1.0 V-Horn PK -18.3 -13.0 -5.																															-6.2
																															-5.2
3759.400 355.0 1.3 V-Horn PK -20.6 -13.0 -7.1												1.0 1.3										PK PK									-5.3 -7.6

EUT: [38555 Radio used in Model 700C Work Order: [NMC0044] unber: 6301FEPGC Date: [1231/02 astomar: [NTERMEC Corporation Temperature: [3 astomar: [NTERMEC Corporation Humidity: [34%, Set No:: Barometric Pressure [29:76 set do by: Rod Peloquin Power: [Battery Jie Do bits: EV01 IEICATIONS Year: [1998 CUCLATIONS Year: [1998 UCULATIONS Year: [1998 UCULATIONS Year: [1998 Collard used in Model 700C Year: [1998 UCULATIONS Year: [1998 UCULATIONS Year: [1998 Matched: TAVEEA-603 Year: [1998 UCULATIONS Year: [1998 UCULATIONS Year: [1998 Matched: TAVEEA-603 Year: [1998 UCULATIONS Year: [1998 Matched: Stance (m) Run # 0 400 / 1909SCI Year: [1900 YING MODES SFROM TEST STANDARD YEAR Year: [100] Under mode and 802.11(b) mode S FROM TEST STANDARD
istomer: INTERMEC Corporation Temperature: 73 endees: None Humidity: 34% Ref. No.: Barometric Pressure 29.75 sted by: Rod Peloquin Power: Battery Job Site: EV01 IFICATIONS IFICATIONS Year: 2002 wethod: TIA/EIA-603 Year: 1998 ALCULATIONS Ifald Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation :missions: Field Strength = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator Or 900 / 1900SCI Test Distance (m) Run # 3 16
endees: None Humidity: 34% Ref. No: Barometric Pressure 29.75 sted by: Rod Peloquin Power: Battery Job Site: EV01 FICATIONS fication: FCC Part 22.901(d) Year: 2002 Method: TIA/EIA-603 Year: 1998 ALCULATIONS missions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation imissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator O-900 / 1900SCI TING MODES Test Distance (m) Run # 3 16
Ref. No.: Barometric Pressure 29.75 sted by: Rod Peloquin Power: Battery Job Site: EV01 IFICATIONS For an intervention of the state of the stat
IFICATIONS fication: FCC Part 22.901(d) Wethod: TIA/EIA-603 Vear: 2002 Method: TIA/EIA-603 Vear: 1998 ALCULATIONS missions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation imissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator O-900 / 1900SCI ATING MODES To Cellular mode and 802.11(b) mode S FROM TEST STANDARD Test Distance (m) Run # 3 16
fitcation: FCC Part 22.901(d) Year: 2002 Method: TIA/EIA-603 Year: 1998 ALCULATIONS ::missions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation :missions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator So :0-900 / 1900SCI ATING MODES : : In Cellular mode and 802.11(b) mode : : S FROM TEST STANDARD : : Method: : : : Model : : : Model : : : S FROM TEST STANDARD : : : Method: : : : : Method: : : : : S FROM TEST STANDARD : : : : Method: : : : : : Mathod: : : : : : : : : : : : : : : <t< td=""></t<>
Method: TIA/EIA-603 Year: 1998 ALCULATIONS Imissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation imissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator O-900 / 1900SCI ATING MODES In Cellular mode and 802.11(b) mode S FROM TEST STANDARD Test Distance (m) Run # 3 16
ALCULATIONS imissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation imissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator 3 O-900 / 1900SCI ATING MODES a Cellular mode and 802.11(b) mode S FROM TEST STANDARD Test Distance (m) Run # 3 16
imissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation imissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator O-900 / 1900SCI ATING MODES 1 Cellular mode and 802.11(b) mode S FROM TEST STANDARD Test Distance (m) Run # 3 16 Maga Maga Maga Maga Maga Maga Maga Maga
imissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator C-900 / 1900SCI TING MODES Cellular mode and 802.11(b) mode S FROM TEST STANDARD Test Distance (m) Run # 3 16 August Refuge
0-900 / 1900SCI ATING MODES In Cellular mode and 802.11(b) mode S FROM TEST STANDARD Test Distance (m) Run # 3 16 Adva to Relays
ATING MODES n Cellular mode and 802.11(b) mode S FROM TEST STANDARD Test Distance (m) Run # 3 16 Archy Ur Relwyy
n Cellular mode and 802.11(b) mode S FROM TEST STANDARD Test Distance (m) Run # 3 16 Acchy to Relays
n Cellular mode and 802.11(b) mode S FROM TEST STANDARD Test Distance (m) Run # 3 16 Acchy to Relays
n Cellular mode and 802.11(b) mode S FROM TEST STANDARD Test Distance (m) Run # 3 16 Acchy to Relays
S FROM TEST STANDARD Test Distance (m) Run # 3 16
Test Distance (m) Run # 3 16
Test Distance (m) Run # 3 16
3 16 Rochy te Relenz
Rocky te Relings
00 2000.000 3000.000 4000.000 5000.000 6000.000 7000.000 8000.000 9000.000 10000.000
Compared
Azimuth Height Polarity Detector EIRP Spec. Limit Spec.
) (degrees) (meters) (dBm) (dBm) (dB)
573.360 319.0 1.2 V-Horn PK -21.7 -13.0 -8
697.360 113.0 1.3 H-Horn PK -25.0 -13.0 -12
697.360 19.0 1.2 V-Horn PK -22.5 -13.0 -9
649.360 78.0 1.3 H-Horn PK -25.2 -13.0 -12 649.360 116.0 1.2 V-Horn PK -22.8 -13.0 -9
349.300 110.0 1.2 V-Hollin PK -22.8 -13.0 -9

NORTHWEST										_												RE	/
EMC							(DA	TS	D	AT/	4	SHE									df3.0/ 10/23/200	2
E		B555 Ra		used in	n Mo	odel 70	0C										V	Vork O	rder:	INM	C0044		
Serial Num	ber: 6	301FEO	С															[Date:	01/0			1
		NTERME	C Co	orporat	ion												Te	mpera		_			4
Attende Cust. Ref. I		ione														в	arometr	Humi					-
		od Pelo	quin								Powe	r: E	Battery				aromen			EV0			-
EST SPECIFIC	ATIO	NS																					
Specificat				47(c)																2001			-
Meth AMPLE CALC		NSI C63	.4																Year:	1992	2		
Radiated Emiss			th = Me	easured	Level	l + Anten	na Fact	or + Ca	ble Facto	r - Am	plifier Gain	+ Dis	stance Adjus	stmer	nt Factor	+ Exte	ernal Atter	nuation					
Conducted Emiss	ions: A	djusted Lev	/el = M	leasured	Leve	el + Trans	sducer F	actor +	Cable At	ttenua	tion Factor -	+ Ext	ternal Attenu	uator									
OMMENTS ntenna PSTGO-90	0 / 190	0501																					
	07130	0001																					
JT OPERATIN ansmitting in Cell			02 44/1	h) mada																			
insmitting in Cell	iular m	ode and a	JZ.11(I	b) mode																			
VIATIONS FR	ROM .	TEST ST	AND	ARD																			
deviations.																							1
SULTS																Tes	t Dista		1)	Run		40	
SS			_				_										:	5				18	1
ther	-											Т											
														1	20	1	P	P					
														14	D	u	Re	1	C				1
															~		Teste					_	1
												1					reste	ы БУ:					1
80.0			1 1		,													1	1				1
																							1
																						++	1
70.0												+											
60.0																							
60.0																							
																						<u> </u>	
50.0							4					_											
							- 🐴																1
40.0																							
30.0																							
30.0																							1
20.0							_	_		+		_											
																							1
																							1
10.0																							1
0.0																							
1000.000	20	000.000	1	3000.0	00	40	00.00	0	5000.0	000	6000	.00	0 70	, 00.C	000	800	00.000	90	.000	000	10	000.000	
	_					.0		-								200							
											External			1		Di	stance					Compared to	0
Freq		Amplitude		actor		Azimuth		eight	Dista		Attenuatio	n	Polarity	D	etector	Adj	ustment	Adjus			c. Limit	Spec.	
(MHz)	000	(dBuV)		(dB)		degrees)		eters)	(mete		(dB)		1111	1	A\/		(dB)	dBu∖		dB	uV/m	(dB)	Cor
4176. 4126.		47.0 46.6		5.9 6.0		16.0 360.0		1.3 1.7		3.0 3.0			H-Horn H-Horn		AV AV		0.0 0.0		52.9 52.6		54.0 54.0		High
4076.		46.3		6.0		86.0		1.3		3.0			V-Horn		AV		0.0		52.0		54.0		Low (
4076.	000	45.3	3	6.0)	66.0	D	1.8		3.0	0.	.0	H-Horn		AV		0.0		51.3		54.0) -2.7	Low C
4126.		41.4		6.0		348.0		1.3		3.0			V-Horn		AV		0.0		47.4		54.0		6 Mid C
4176. 4176.		41.3 49.0		5.9 5.9		<u>342.0</u> 16.0		<u>1.1</u> 1.3		3.0			V-Horn H-Horn		AV PK		0.0		47.2 54.9		54.0 74.0		B High
4176. 4076.		49.0		5.9 6.0		86.0		1.3		3.0 3.0			V-Horn		PK		0.0		54.9 54.6		74.0		Low C
4126.	000	48.4	1	6.0)	360.0	D	1.7		3.0	0.	.0	H-Horn		PK		0.0		54.4		74.0	.19.6	6 Mid C
4076.		48.2		6.0		66.0		1.8		3.0			H-Horn		PK		0.0		54.2		74.0		B Low (
4126.		44.8		6.0		348.0		1.3		3.0			V-Horn		PK		0.0		50.8		74.0		2 Mid C
4176.	000	44.1	I	5.9	,	329.0	J	1.2		3.0	0.	.0	V-Horn		PK		0.0		50.0		74.0	J -24.() High

	RTHWEST MC				OA	TS D	ΑΤΑ	SHE	ET				RE df3.0 10/23/200
		SB555 Rad	io used in	Model 700	C					V		INMC004	
Se	rial Number:	6301FEOC									Date:	01/02/03	
		INTERMEC	Corporati	on						Te	mperature:		
-	Attendees: ust. Ref. No.:	None								Baramata	Humidity: c Pressure		
ι υ		Rod Peloqu	iin				Power:	Battery		Barometr	Job Site:		
ST S	PECIFICATIO						I Ower.	Duttery			oob one.		
	pecification:		5.247(c)								Year	2001	
	Method:	ANSI C63.4									Year:	1992	
	E CALCULA												
	ated Emissions: cted Emissions:	-								+ External Atter	uation		
	ENTS		Medbured			ouble / menua		Alernar / tterie	lator				
nna	PSTGO-900 / 19	OOSCI											
		0059											
	ERATING M		b) mode										
31111			b) mode										
	IONS FROM	TEST STA	NDARD										
	tions.												
SUL	TS									Test Distar		Run #	
5										3			20
er									10	ID	0		
									rocky	he Ren	ing		
									0	6	/		_
										Teste	d By:		
	80.0												
	70.0 -												
	70.0												
	60.0												
					•								
	50.0				- 4								
Ξ													
dBuV/m	40.0												
m m	40.0												
Ë													
	30.0												
	20.0												+
	100												
	10.0												
	0.0												
	1000.000	2000.00	00 300	0.000 4	000.000	5000.00	6000	.000 7	000.000	8000.000	9000	.000 10	000.000
								-					
							MHz						
	F	A	F a (A		Dist	External	D		Distance		0	Compared t
	Freq	Amplitude (dBuV)	Factor (dB)	Azimuth (degrees)	Height (meters)	Distance (meters)	Attenuation (dB)	Polarity	Detector	Adjustment (dB)	Adjusted dBuV/m	Spec. Limit dBuV/m	Spec. (dB)
	MHz) 4126.000	(dBuV) 47.0	(ub) 6.0	(degrees) 31.0	(meters)	(neters)	(ub) 0.0	H-Horn	AV	(ub) 0.0	53.0		
	4076.000	43.7	6.0	226.0	1.1	3.0	0.0	V-Horn	AV	0.0	49.7		
	4176.000	41.9	5.9	57.0	1.2	3.0	0.0	V-Horn	AV	0.0	47.8		
	4176.000	41.4	5.9	143.0	1.3	3.0	0.0	H-Horn	AV	0.0	47.3	54.0	6.
	4126.000	39.5	6.0	135.0	1.2	3.0	0.0	V-Horn	AV	0.0	45.5	54.0) -8.
	4076.000	38.1	6.0	221.0	1.3	3.0	0.0	H-Horn	AV	0.0	44.1		
	4126.000	50.2	6.0	31.0	1.5	3.0	0.0	H-Horn	PK	0.0	56.2		
	4076.000	46.3	6.0	226.0	1.1	3.0	0.0	V-Horn	PK	0.0	52.3		
	4176.000	45.1	5.9	143.0 135.0	1.3	3.0 3.0	0.0 0.0	H-Horn	PK	0.0	51.0 50.9		
	4126.000	44.9 43.6	6.0 6.0	135.0 221.0	1.2 1.3	3.0 3.0	0.0	V-Horn H-Horn	PK PK	0.0 0.0	50.9 49.6		
			0.0	221.0	1.3	3.0	0.0	11-110111	Γ'N	0.0	49.0	/4.0	J -∠4.
	4076.000 4176.000	42.5	5.9	145.0	1.2	3.0	0.0	V-Horn	PK	0.0	48.4	74.0) -25.

				Ap	par	'el	nt	Ρ	0\	Ne	er	D	at	a	Sh	e	et							REV df3.02
EMC	BEEE Dog	lie wood			Ξ.			-						-				10/	orte d	Ondon		10004		10/23/2002
Serial Number: 6	B555 Rac 301FEOC		In Mode	17000														VV	Ork			1C004 31/02	4	
Customer: IN			ation															Ter	nper	ature				
Attendees: N	one																			nidity				
Cust. Ref. No.:									1		- 1	D - 44 -				I	Baron	netrio		ssure				
Tested by: R TEST SPECIFICATIO		uin								Powe	er:	Batte	ry						Jo	b Site	EV	J1		
Specification: F		4E																		Year	200	2		
Method: T																				Year				
SAMPLE CALCULAT																								
Radiated Emissions: Fi Conducted Emissions: Ad															t Facto	r + Ex	ternal	Atten	uatior	ı				
COMMENTS	ujusieu Leve	i – Measul	eu Level +	mansu		JI + C	aule F	Allenu	alion	Factor	τE.	Alema	Allei	luator										
Antenna PSTGO-900 / 1900	OSCI																							
	DEC																							
EUT OPERATING MO Transmitting in Channel 52		z) PCS mo	de and Ch	annel 1	1 (2412MH	lz) 80	2.11(b) mo	de															
	(_,			. (_,	(-	.,																
DEVIATIONS FROM 1	EST STA	NDARD																						
No deviations.																								
RESULTS																Те	st Di			m)	Rur			
Pass																		1					22	
Other						-	-	-	-		-		-			-	-	-	-		-		-	
														1	0	1	1	P	0					
														14	chy	, u	~ /	en	m	5				
															V								_	
																	10	estec	By:					
0.0																								
0.0																								
-10.0						_												_						
00.0																								
-20.0																								
-30.0									_															
Ε																								
E -40.0																				•				
-50.0						_			_															
00.0																								
-60.0																								
-70.0									_															
-80.0						_																		
10000.000	1100	0.000	12000	.000	130	00.0	000	1	1400	00.00	0	15	5000	.000		1600	0.00	0	17	000.0	000	18	000	0.000
									М	Hz														
			-			Т			1		- 1			1				-			1		0.0	mpared to
Freq			Azim	nuth	Height				1			Pola	arity	De	etector				E	RP	Spe	ec. Limit		mpared to Spec.
(MHz)			(degr	ees)	(meters															Bm)	(dBm)		(dB)
16844.000				35.0		.2					-	H-F			PK					-40.4		-13.0		-27.4
16844.000			1	40.0	1	.2						V-H	orn		PK					-39.8		-13.0)	-26.8

			Ar	pare	nt	Pov	ver	' Da	nta	a Sł	nee	et					RE\ df3.03
EMC	SPEEE D	adio usod	in Model 700										Work	Ordor	INMC	0044	10/23/200
Serial Number:			III Wodel / 00										WORK		12/31		
Customer:			ration									т	empe	rature:			
Attendees:	None													midity:		_	
Cust. Ref. No.: Tested by:	Rod Pole	auin					Dowory	Battery	,		В	aromet			29.75 EV01		
TEST SPECIFICAT		quin					Power:	Бацегу					J 0	b Site:			
Specification:		t 24E												Year:	2002		
	TIA/EIA-	603												Year:	1998		
SAMPLE CALCULA																	
Radiated Emissions: Conducted Emissions:											or + Exte	ernal Att	enuatio	n			
COMMENTS	/ lajuotoa Ee	induction in the second	tod Eoror + Hand		00010710	onducion	dotor - 1		tonia	ator							
Antenna PSTGO-900 / 1	900SCI																
EUT OPERATING N	IODES																
Transmitting in Channe		(Hz) PCS mo	de and Channe	6 (2437MHz) 8	802.11(b)	mode											
DEVIATIONS FROM	I TEST ST	FANDARD															
No deviations.											_						
RESULTS Pass											Tes	t Dista	ance (1	(m)	Run	# 2	4
r ass											_						4
Other								r					0				
										Roch	1.	P	le.				
										0	, a		1	0			
									-				ed By				
												Test	ец Бу				
0.0																	_
0.0																	
-10.0									_				_			_	
-20.0																	
20.0																	
-30.0								_	-				_				_
E -40.0																	
HD -40.0														•			
-50.0																	_
-60.0																	
00.0																	
-70.0									-				_				_
00.0																	
-80.0	0 440		40000.000	40000	000	4 4 0 0		450	~~ ~		10000		4-	7000 0		100	
10000.00	U 110	000.000	12000.000	13000	.000	1400	0.000	150	UU.(100	16000	000	17	7000.0	000	180	000.000
						M	Hz										
				1							1		1		1		Compared to
Freq		1	Azimuth	Height				Polarit	y	Detecto	·			IRP		Limit	Spec.
(MHz)		1	(degrees)	(meters)				L					(0	IBm)	(dE		(dB)
17066.000			180.0					H-Hor		PK				-42.2		-13.0	-29.2
17066.000			180.0	1.0				V-Hor	'n	PK				-41.9		-13.0	-28.9

RF Conducted Test Report from Sierra Wireless

FCC Part 22 and 24 800/1900 MHz CDMA DUAL BAND MODULE Model: SB555-S

Prepared by SIERRA WIRELESS INC. 13811 WIRELESS WAY RICHMOND, BC V6V 3A4 CANADA

Test Date(s): September 2002

© 2002 Sierra Wireless, Inc.

This document contains information which is proprietary and confidential to Sierra Wireless, Inc. Disclosure to persons other than the officers, employees, agents, or subcontractors of the Company or licensee of this document without the prior written permission of Sierra Wireless, Inc. is strictly prohibited.

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 2 of 43
1		1	0

Table of Contents

1	Int	roduction and Purpose	3
2	Te	st Summary	3
3	Pro	oduct Description	4
4		st Configuration	
5		Power Output	
	5.1	Test Procedure	
	5.2	Test Equipment	6
	5.3	Test Results	7
6	Oc	cupied Bandwidth	14
	6.1	Test Procedure	14
	6.2	Test Equipment	14
	6.3	Test Results	14
7	Ou	t of Band Emissions at Antenna Terminals	17
	7.1	Test Procedure	17
	7.2	Test Equipment	17
	7.3	Test Results	18
8	Fre	equency Stability vs Temperature	40
	8.1	Test Procedure	
	8.2	Test Equipment	40
	8.3	Test Results	41
9	Fre	equency Stability vs Voltage	42
	9.1	Test Procedure	42
	9.2	Test Equipment	43
	9.3	Test Results	43

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 3 of 43
------------------------------	---------	-----------	--------------

1 Introduction and Purpose

This document provides the FCC test data for the SB555-S module. The tests included in this report are limited to all conducted tests required. Other radiated tests were performed at an external test facility.

2 Test Summary

FCC RULE	DESCRIPTION OF TEST	RESULT	PAGE
2.1046	RF Power Output	Complies	6
2.1049	Occupied Bandwidth	Complies	15
2.1051, 22.901(d)	Out of Band Emissions at Antenna	Complies	18
22.917(f),	Terminals		
24.238(a)	Mobile Emissions In Base Frequency		
	Range		
2.1053	Field Strength of Spurious Radiation	Complies	See CCS
			Report
2.1055	Frequency Stability vs Temperature	Complies	44
2.1055	Frequency Stability vs Voltage	Complies	45

The tests described in this report were performed by Mr. Sean Hoare, under the supervision of Mr Ron Vanderhelm, P.Eng. at

Sierra Wireless, Inc. 13811 Wireless Way Richmond, B.C. V6V 3A4 Canada

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 4 of 43
			0

3 Product Description

The Sierra Wireless Inc. model SB555-S is a dual band CDMA embedded modem.

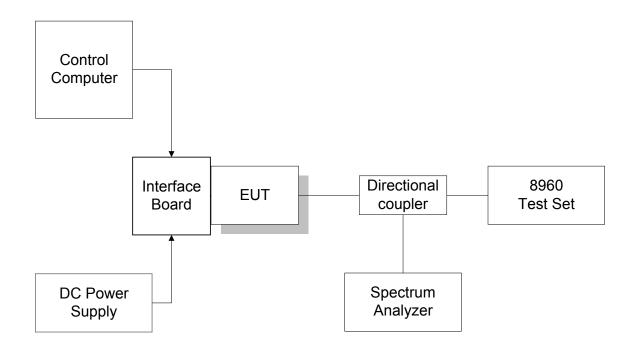
EUT Type	Cellular and PCS CDMA Embedded Modem	
Whether quantity(>1) production	[X] Yes []No	
is planned		
Standards	CDMA2000	
Types of Emission	1M25F9W	
RF Output Power	824-849 MHz: 23.5 dBm max	
_	1850-1910 MHz: 23.5 dBm max	
	In both bands, power is variable to -50 dBm.	
Frequency Range	824-849 MHz, 1850-1910 MHz	

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 5 of 43
------------------------------	---------	-----------	--------------

4 Test Configuration

Tests were performed on the radio module alone. For frequency stability versus temperature, testing the module requires a wider range of temperature at the higher extreme to account for the insulating and warming affects of the end-user device. We test up to 70 degrees C for the module alone rather than just 50 deg C for the module in the end user device. For the effect of variation of DC power supply on frequency stability, the DC supply to the module was varied to the extremes of its specified voltage range, 3.15 to 4.2 volts.

Item #	Description	Model No.	Serial No.
1	Module EUT	SB555-S	E0207135003503C


5 **RF Power Output**

FCC 2.1046

5.1 Test Procedure

The transmitter output was connected to an Agilent 8960 CDMA Test Set and configured to operate at maximum power. The power was measured at three equally spaced operating frequencies in each band and was confirmed by the plots taken on the Spectrum Analyzer.

<u>Test Setup</u>

5.2 Test Equipment

Instrument List

EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE
Control Computer	TC	Generic PC	100844	N/A
Wireless Test Set	Agilent	8960	US41070182	09/05/2001
Spectrum Analyzer	Agilent	PSA E4440A	US41421268	2002-01-25
DC Power Supply	HP	HP6632A	3326A-03423	N/A
Interface Board	Shop built	Nest	N/a	N/A
Directional Coupler	Pasternack	PE2209-10	N/A	N/A

© 2002 Sierra Wireless, Inc. The contents of this page are subject to the confidentiality information on page one.

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 7 of 43

5.3 Test Results

Frequency (MHz)	Power (dBm)
824.70	23.28
836.52	23.50
848.31	23.30
1851.25	23.44
1880.0	23.69
1908.75	23.72

• Cellular Band (CDMA Mode)

Plot Number	Description
1.1	Low Channel (Ch 1013)
1.2	Middle Channel (Ch 384)
1.3	High Channel (Ch 777)

• PCS Band (CDMA Mode)

Plot Number	Description
1.4	Low Channel (Ch 25)
1.5	Middle Channel (Ch 600)
1.6	High Channel (Ch 1175)

The Modem was calibrated to a maximum power of 23.5 dBm.

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 8 of 43
------------------------------	---------	-----------	--------------

Plot 1.1 Cellular Band (Low Channel)

* Agilent 16:28:31 Sep 24, 2002

Ref 34 dBm Atten 30 dB Ext PG -17 dB #Norm Log 10 dB/WAY WAY WAY LgAv 20 W1 S2 Center 824.700 MHz Span 3 MHz Res BW 27 kHz #VBW 270 kHz Sweep 3.8 ms (601 pts) Power Spectral Density Channel Power

23.28 dBm / 2.0000 MHz

ower opectial Density

L

-39.73 dBm/Hz

© 2002 Sierra Wireless, Inc. The contents of this page are subject to the confidentiality information on page one.

FCC Part 22 & 24 Test ReportSB555-SSept 2002Page 9 of 43

Plot 1.2 Cellular Band (Middle Channel)

🔆 Agilent 16:29:03 Sep 24, 2002

Ref 34 dBm Atten 30 dB Ext PG -17 dB #Norm Log 10 dB/N.W. Walter "NUM" W LgAv 20 W1 S2 Span 3 MHz Center 836.520 MHz Res BW 27 kHz #VBW 270 kHz Sweep 3.8 ms (601 pts) Power Spectral Density Channel Power

23.50 dBm / 2.0000 MHz

-39.51 dBm/Hz

L

 $\hfill \ensuremath{\mathbb{C}}$ 2002 Sierra Wireless, Inc. The contents of this page are subject to the confidentiality information on page one.

FCC Part 22 & 24 Test ReportSB555-SSept 2002Page 10 of 43

Plot 1.3 Cellular Band (High Channel)

🔆 Agilent 16:29:46 Sep 24, 2002

Ref 34 dBm Atten 30 dB Ext PG -17 dB #Norm Log 10 dB/W٧ en land and γw LgAv 20 W1 S2 Center 848.310 MHz Span 3 MHz Res BW 27 kHz #VBW 270 kHz Sweep 3.8 ms (601 pts) Power Spectral Density Channel Power

23.30 dBm / 2.0000 MHz

-39.71 dBm/Hz

L

 $\hfill \ensuremath{\mathbb{C}}$ 2002 Sierra Wireless, Inc. The contents of this page are subject to the confidentiality information on page one.

FCC Part 22 & 24 Test ReportSB555-SSept 2002Page 11 of 43

Plot 1.4 PCS Band (Low Channel)

🔆 Agilent 16:25:49 Sep 24, 2002

Ref 34 dBm Atten 30 dB Ext PG -17 dB #Norm Log 10 dB/A HARAN LgAv 20 W1 S2 Center 1.851 250 GHz Span 3 MHz Res BW 27 kHz #VBW 270 kHz Sweep 3.8 ms (601 pts)

Channel Power

Power Spectral Density

L

23.44 dBm / 2.0000 MHz

-39.57 dBm/Hz

FCC Part 22 & 24 Test ReportSB555-SSept 2002Page 12 of 43

Plot 1.4 PCS Band (Middle Channel)

🔆 Agilent 16:24:39 Sep 24, 2002

Ref 34 dBm Atten 30 dB Ext PG -17 dB #Norm Log 10 dB/₩₩ et ye we den den den de LgAv 20 W1 S2 Center 1.880 000 GHz Span 3 MHz Res BW 27 kHz #VBW 270 kHz Sweep 3.8 ms (601 pts) Power Spectral Density Channel Power

23.69 dBm / 2.0000 MHz

wer Spectral Density

L

-39.32 dBm/Hz

© 2002 Sierra Wireless, Inc. The contents of this page are subject to the confidentiality information on page one.

Page 13 of 43 FCC Part 22 & 24 Test Report Sept 2002 SB555-S

Plot 1.4 PCS Band (High Channel)

🔆 Agilent 16:26:50 Sep 24, 2002

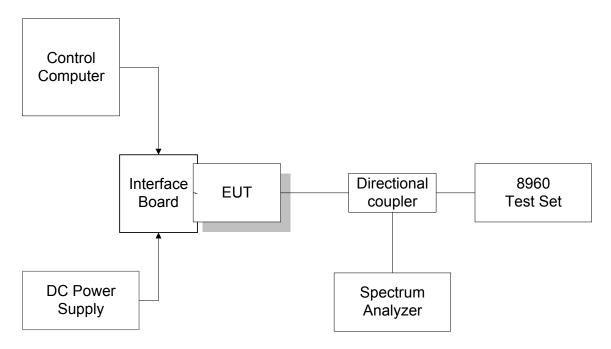
Ref 34 dBm Atten 30 dB Ext PG -17 dB #Norm Log 10 dB/wat what W WAY WHEN et and the part of LgAv 20 W1 S2 Center 1.908 750 GHz Span 3 MHz Res BW 27 kHz #VBW 270 kHz Sweep 3.8 ms (601 pts) Channel Power

Power Spectral Density

L

23.72 dBm / 2.0000 MHz

-39.29 dBm/Hz


FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 14 of 43
	000000	Sept 2002	

6 Occupied Bandwidth FCC 2.1049

6.1 Test Procedure

The transmitter output was connected to a calibrated coaxial cable, the other end of which was connected to a spectrum analyzer. The occupied Bandwidth (defined as the 99% Power Bandwidth) was measured with the Spectrum Analyzer at the center frequency of each band.

<u>Test Setup</u>

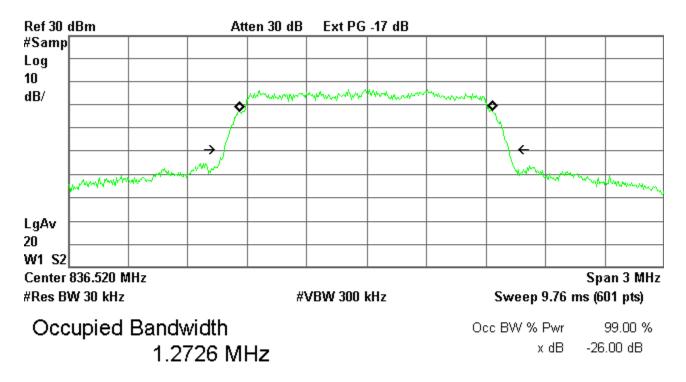
6.2 Test Equipment

EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	Last CAL.DATE
Spectrum Analyzer	Agilent	PSA E4440A	US41421268	2002-01-25
Interface Board	Shop built	Nest	N/a	N/a
Control Computer	TC	Generic PC	100844	N/a
DC Power Supply	HP	HP6632A	3326A-03423	N/a

6.3 Test Results

The performance of 800 MHz cellular band is shown in plots 2.1. Performance of 1900 MHz PCS band is shown in plots 2.3.

The test results shows that the bandwidth in all cases is approximately 1.270 MHz.


© 2002 Sierra Wireless, Inc.

The contents of this page are subject to the confidentiality information on page one.

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 15 of 43
------------------------------	---------	-----------	---------------

Plot 2.1 Cellular Band (Middle Channel)

🔆 Agilent 12:53:44 Sep 24, 2002

L

Transmit Freq Error	-1.760 kHz
x dB Bandwidth	1.432 MHz*

$ \Gamma \cup \Gamma $ and $22 \propto 24 \Gamma S R C \cup 01 S \cup 0333-5 S \cup 012002 \Gamma B U \cup 012002 C \cup 01202 C \cup 012002$	FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 16 of 43
--	------------------------------	---------	-----------	---------------

Plot 2.2 PCS Band (Middle Channel)

🔆 Agilent 12:54:22 Sep 24, 2002

Ref 30 dBm Atten 30 dB Ext PG -17 dB #Samp[Log 10 dB/ name LgAv 20 W1 S2 Center 1.880 000 GHz Span 3 MHz #Res BW 30 kHz #VBW 300 kHz Sweep 9.76 ms (601 pts) Occupied Bandwidth Occ BW % Pwr 99.00 % -26.00 dB 1.2716 MHz x dB

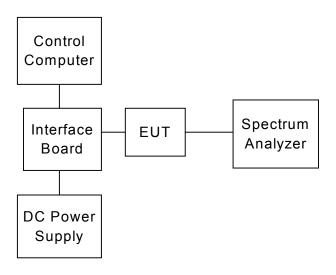
L

Transmit Freq Error	-106.709 Hz
x dB Bandwidth	1.434 MHz*

7 Out of Band Emissions at Antenna Terminals FCC 22.901(d), 22.917(f), 24.238(a)

Out of Band Emissions:

The mean power of emissions must be attenuated below the mean power of the unmodulated carrier (P) on any frequency outside the frequency band by at least $(43 + 10 \log P) dB$, in this case, -13dBm.


Mobile Emissions in Base Frequency Range:

The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitters operated must be attenuated to a level not exceed -80 dBm at the transmit antenna connector.

7.1 Test Procedure

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. The EUT was scanned for spurious emissions from 1MHz to 20GHz with sufficient bandwidth and video resolution. Data plots are included.

<u>Test Setup</u>

7.2 Test Equipment

EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	Last CAL. DATE
Spectrum Analyzer	Agilent	PSA E4440A	US41421268	2002-01-25
Interface Board	Shop built	Nest	N/a	N/a
Control Computer	TC	Generic PC	100844	N/a
DC Power Supply	HP	HP6632A	3326A-03423	N/a
Directional Coupler	Pasternack	PE2209-10	N/A	N/A

© 2002 Sierra Wireless, Inc.

The contents of this page are subject to the confidentiality information on page one.

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 18 of 43
------------------------------	---------	-----------	---------------

7.3 Test Results

Refer to the following plots.

• Cellular Band

Plot Number	Description
3.1a – 3.1c	Low channel, 824.70 MHz
3.2a - 3.2c	Middle Channel, 836.52 MHz
3.3a - 3.3c	High Channel, 848.31 MHz

• PCS Band

Plot Number	Description
3.4a - 3.4c	Low Channel, 1851.25 MHz
3.5a – 3.5c	Middle Channel, 1880 MHz
3.6a – 3.6c	High Channel, 1908.75 MHz

• Emissions in Base Station Frequency Range, Cellular band

Plot Number	Description
3.7a	Low Channel, 824.70 MHz,
3.8a	Middle Channel, 836.52 MHz
3.9a	High Channel, 848.31 MHz

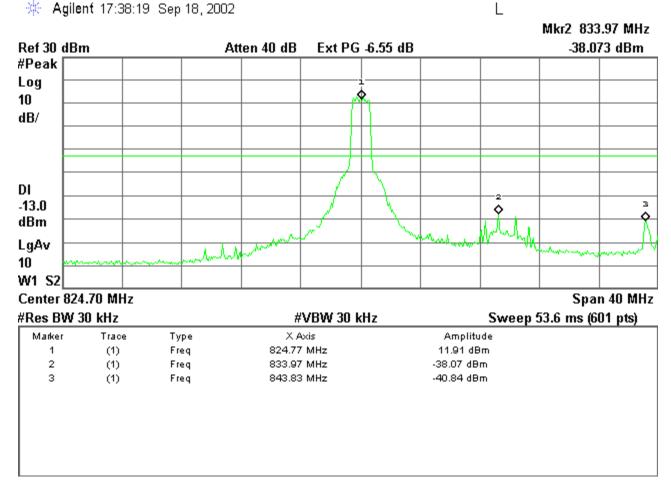
These plots show that the radiated emission limits requirements are met.

FCC Part 22 & 24 Test ReportSB555-SSept 2002Page 19 of 43

Plot 3.1a Out of Band Emissions at Antenna Terminals

Low channel, 824.700 MHz, 1 Mhz to 1 GHz

🔆 Agilent 17:34:57 Sep 18, 2002

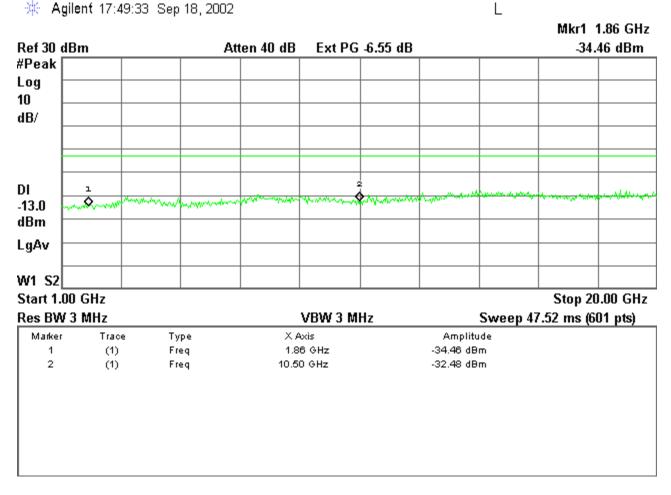

Ref 30 dBm Atten 40 dB Ext PG -6.55 dB #Peak Log 10 dB/ DI -13.0 around rear march march March and March and a state of the second and the second some marked and the second 1-al that we want to the mound dBm LgAv W1 S2 Start 1.0 MHz Stop 1.000 0 GHz Res BW 3 MHz Sweep 1.68 ms (601 pts) VBW 3 MHz Marker Trace Туре X Axis Amplitude 1 (1) Freq 825.2 MHz 26.58 dBm

	FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 20 of 43
--	------------------------------	---------	-----------	---------------

Plot 3.1b Out of Band Emissions at Antenna Terminals

Low channel, 824.700 MHz TX signal +/- 20 MHz

🔆 Agilent 17:38:19 Sep 18, 2002

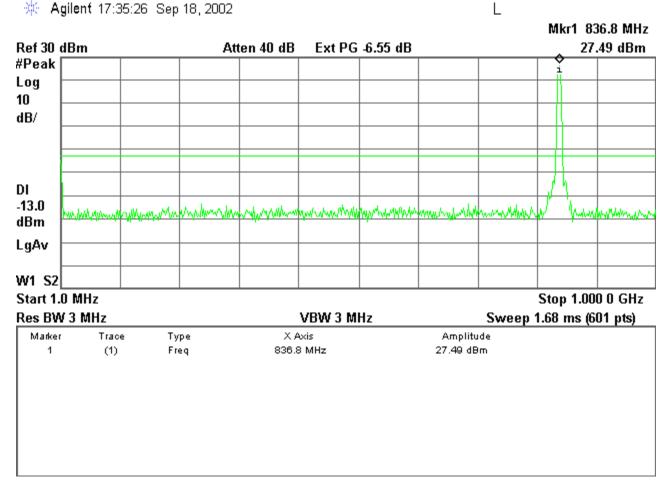


	FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 21 of 43
--	------------------------------	---------	-----------	---------------

Plot 3.1c Out of Band Emissions at Antenna Terminals

Low channel, 824.700 MHz 1 GHz to 20 GHz

🔆 Agilent 17:49:33 Sep 18, 2002

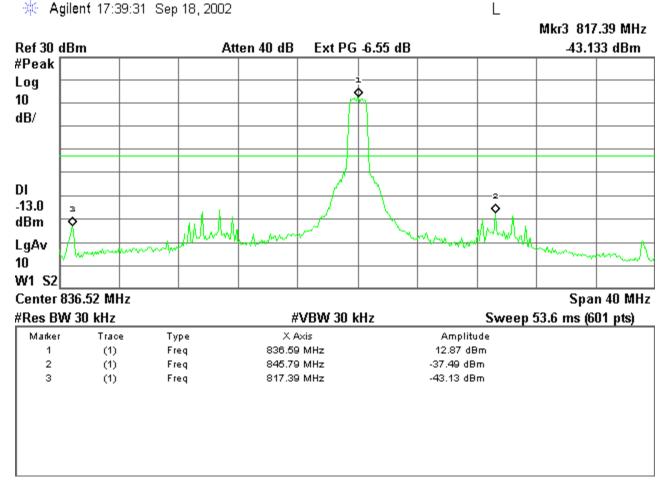


FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 22 of 43
------------------------------	---------	-----------	---------------

Plot 3.2a Out of Band Emissions at Antenna Terminals

Mid Channel, 836.52 MHz 1 MHz to 1 GHz

🔆 Agilent 17:35:26 Sep 18, 2002

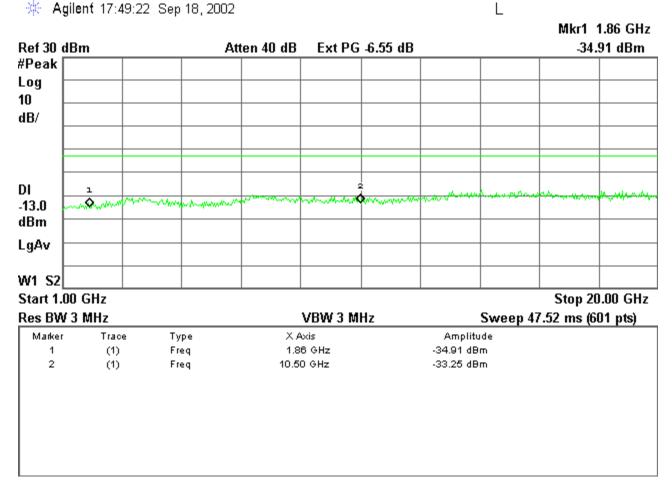


FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 23 of 43
------------------------------	---------	-----------	---------------

Plot 3.2b Out of Band Emissions at Antenna Terminals

Mid Channel, 836.52 MHz TX signal +/- 20 MHz

🔆 Agilent 17:39:31 Sep 18, 2002

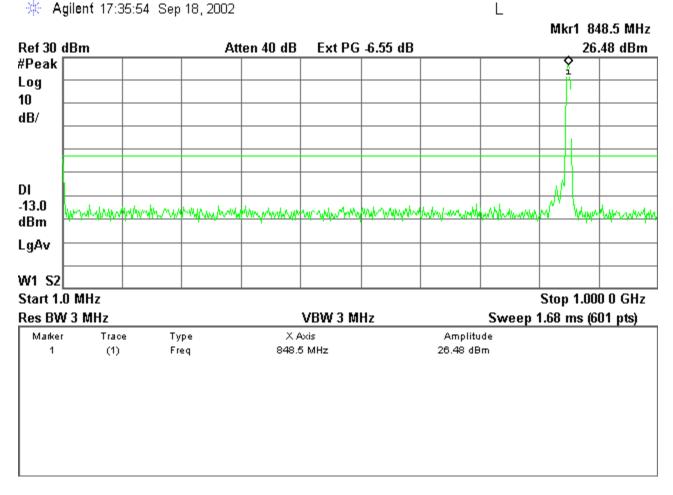


	FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 24 of 43
--	------------------------------	---------	-----------	---------------

Plot 3.2c Out of Band Emissions at Antenna Terminals

Mid Channel, 836.52 MHz 1 GHz to 20 GHz

🔆 Agilent 17:49:22 Sep 18, 2002

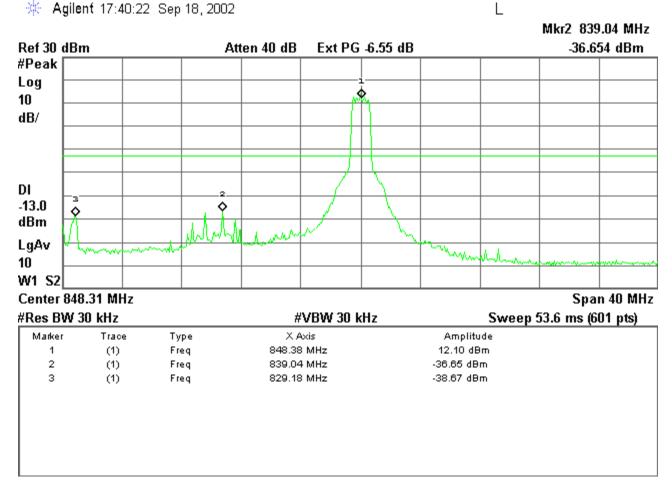


FCC Part 22 & 24 Test ReportSB555-SSept 2002Page 25 of 43

Plot 3.3a Out of Band Emissions at Antenna Terminals

High Channel, 848.31 MHz 1 Mhz to 1 GHz

🔆 Agilent 17:35:54 Sep 18, 2002



FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 26 of 43
------------------------------	---------	-----------	---------------

Plot 3.3b Out of Band Emissions at Antenna Terminals

High Channel, 848.31 MHz TX signal +/- 20 MHz

🔆 Agilent 17:40:22 Sep 18, 2002

FCC Part 22 & 24 Test Report SB555-S Sept 2002 Page 27 of 43
--

Plot 3.3c Out of Band Emissions at Antenna Terminals

High Channel, 848.31 MHz 1 Ghz to 20 GHz

🔆 Agilent 17:49:09 Sep 18, 2002

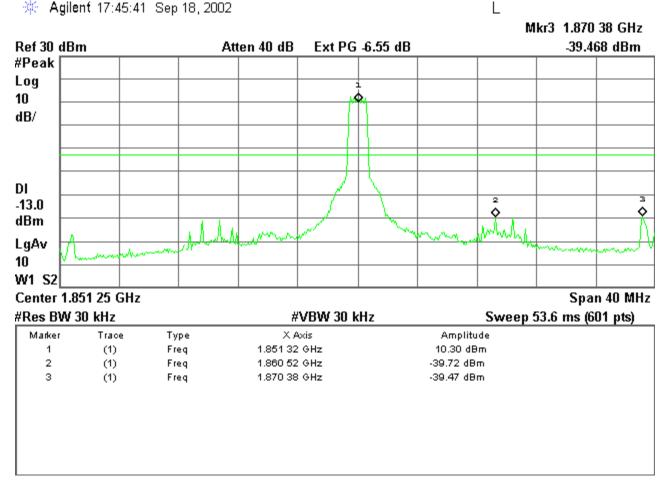
Mkr1 1.86 GHz Ref 30 dBm Atten 40 dB Ext PG -6.55 dB -34.14 dBm #Peak Log 10 dB/ DI ı Courses. Sim -13.0 approximited the dBm LgAv W1 S2 Start 1.00 GHz Stop 20.00 GHz Res BW 3 MHz VBW 3 MHz Sweep 47.52 ms (601 pts) Marker Trace Туре X Axis Amplitude (1) Freq 1.86 GHz -34.14 dBm 1 2 (1) Freq 10.50 GHz -32.54 dBm

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 28 of 43
		~~~~~	

## Plot 3.4a Out of Band Emissions at Antenna Terminals

Low channel, 1851.25 MHz 1 Mhz to 1 GHz

🔆 Agilent 17:36:19 Sep 18, 2002

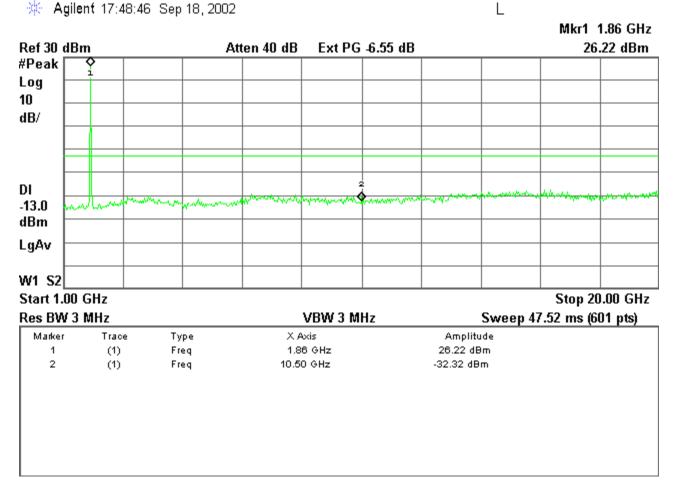

f 30 d	lBm		Att	ten 40 dB	Ext PG	-6.55 dB				48.5 MHz .77 dBm
eak   g										
'										
' L										
F										
.0	الدرو المراجع المراجع	المعمالية	and transfer	way a printer			a state sound of	hours	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
n	ala di Maria Mandala	Calific March 4 A	d ^e adian suivasi	an of other links	har ya wa tufu	MM	pana ang ang ang ang ang ang ang ang ang	rea waaabah	(P) W. Propade	Man have a
۹v										
S2[	D MHz								Stop 1.0	
	3 MHz				VBW 3 MI	Hz		Sween	1.68 ms (	
/arker		e Ty	rpe	XA			Amplitu		1100 1110 (	
	(1)		eq	0.00	5 MHz		-36.77 dB			

FCC Part 22 & 24 Test Report Sept 2002 Page 29 of 43 SB555-S

### Plot 3.4b Out of Band Emissions at Antenna Terminals

Low channel, 1851.25 MHz TX signal +/- 20 MHz

🔆 Agilent 17:45:41 Sep 18, 2002




	FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 30 of 43
--	------------------------------	---------	-----------	---------------

## Plot 3.4c Out of Band Emissions at Antenna Terminals

Low channel, 1851.25 MHz 1 GHz to 20 GHz

🔆 Agilent 17:48:46 Sep 18, 2002

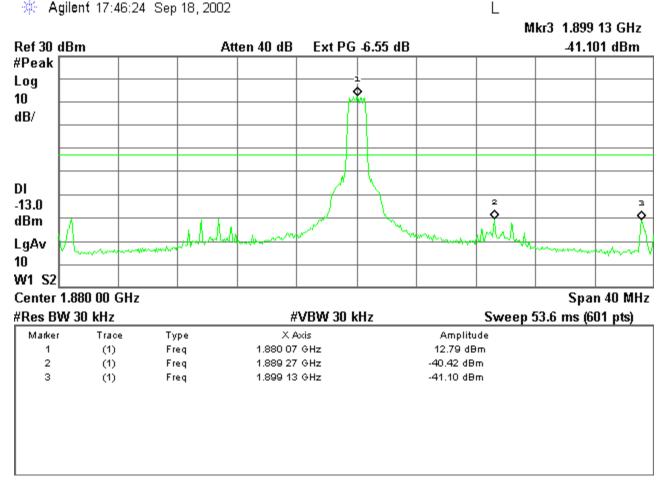


FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 31 of 43

## Plot 3.5a Out of Band Emissions at Antenna Terminals

Mid Channel, 1880 MHz 1 Mhz to 1 GHz

🔆 Agilent 17:36:50 Sep 18, 2002

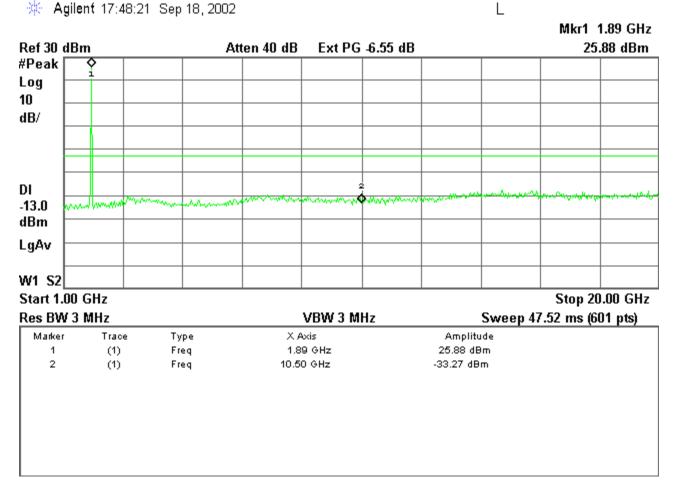

Peak	
3/	1.000 0 GHz
/	Υ ^μ ινητικό για το Αγγιατικό το Αγγιστικό το Αγγιατικό το Αγγι Αγγιατικό Αγγιατικό το Αγγιατικό τ
	<u>Марилин № идини № идини</u> Бара 1.000 0 GHz
Av	Стиминикана Маланийн Маланийн Басан Гарийн Сарийн С Stop 1.000 0 GHz
Av	Υ [™] ////////////////////////////////////
	Υ [™] ////////////////////////////////////
	Stop 1.000 0 GHz
Av	Stop 1.000 0 GHz
	-
S2	-
32	-
rt 1.0 MHz	-
larker Trace Type X-Axis Amplitude	Amplitude
1 (1) Freq 848.5 MHz -35.16 dBm	-35.16 dBm

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 32 of 43
------------------------------	---------	-----------	---------------

### Plot 3.5b Out of Band Emissions at Antenna Terminals

Mid Channel, 1880 MHz TX signal +/- 20 MHz

🔆 Agilent 17:46:24 Sep 18, 2002




FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 33 of 43
------------------------------	---------	-----------	---------------

### Plot 3.5c Out of Band Emissions at Antenna Terminals

Mid Channel, 1880 MHz 1 GHz to 20 GHz

🔆 Agilent 17:48:21 Sep 18, 2002

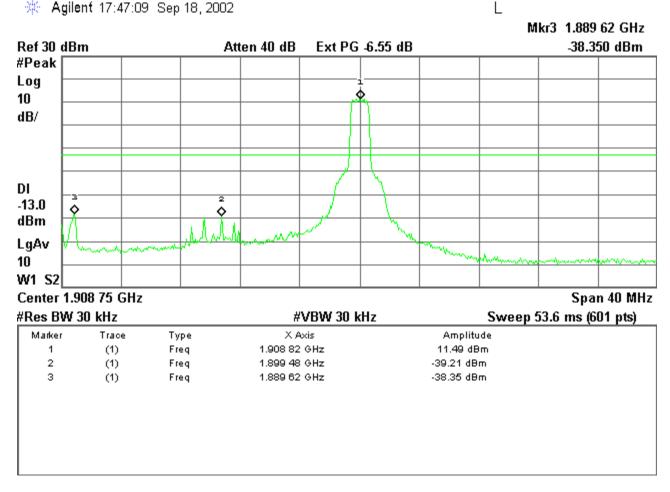


	FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 34 of 43
--	------------------------------	---------	-----------	---------------

## Plot 3.6a Out of Band Emissions at Antenna Terminals

High Channel, 1908.75 MHz 1 Mhz to 1 GHz

🔆 Agilent 17:37:06 Sep 18, 2002

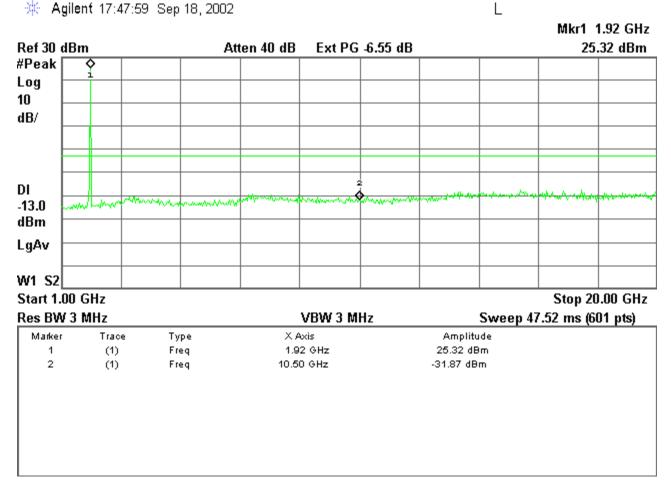

ef 30 d	:IBm		Att	ten 40 dB	Ext PG	-6.55 dB				48.5 MHz .73 dBm
'eak    g										
́э										
87										
3.0 3m	ndundunged	www.htelana	home	ule upperson	hypersonalyte	adalar and the second second	hor which wh	n Mindinga Mi	M. W. Stand	-
Av										
ŀ										
1 S2									<u> </u>	
	0 MHz (3 MHz				VBW 3 MI	H7		Sween	Stop 1.00 1.68 ms (6	
Marker		e Tv	/pe	XA		12	Amplitu		1.00 ms (c	01 proj
	(1)		•							

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 35 of 43
------------------------------	---------	-----------	---------------

### Plot 3.6b Out of Band Emissions at Antenna Terminals

High Channel, 1908.75 MHz TX signal +/- 20 MHz

🔆 Agilent 17:47:09 Sep 18, 2002




	FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 36 of 43
--	------------------------------	---------	-----------	---------------

### Plot 3.6c Out of Band Emissions at Antenna Terminals

High Channel, 1908.75 MHz 1 GHz to 20 GHz

🔆 Agilent 17:47:59 Sep 18, 2002



FCC Part 22 & 24 Test Report	SB555-S Se	ept 2002	Page 37 of 43
------------------------------	------------	----------	---------------

#### Plot 3.7a Low Channel, 824.70 MHz

Mkr1 880.88 MHz Ref 0 dBm #Atten 16 dB Ext PG -6.4 dB -93.85 dBm Log 10 dB/ DI -80.0 dBm LgAv W1 S2 S3 FC AA FTun Swp And harder the many the state of the second st WAR ANY here M.M. Start 869.00 MHz Stop 894.00 MHz #Res BW 1 kHz VBW 1 kHz Sweep 30.14 s (601 pts)

🔆 Agilent 17:56:43 Sep 18, 2002

#Peak ¤(f):

	FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 38 of 43
--	------------------------------	---------	-----------	---------------

#### Plot 3.7a Middle Channel, 836.52 MHz

L Mkr1 880.88 MHz Ref 0 dBm #Atten 16 dB Ext PG -6.4 dB -93.31 dBm #Peak Log 10 dB/ DI -80.0 dBm LgAv W1 S2 S3 FC AA ¤(f): FTun Swp the books of the for the second and the second and the second and presented with Archard Murally and all was and nn Aml Start 869.00 MHz Stop 894.00 MHz #Res BW 1 kHz VBW 1 kHz Sweep 30.14 s (601 pts)

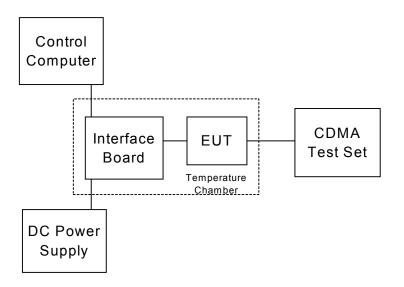
🔆 Agilent 17:57:31 Sep 18, 2002

FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 39 of 43

#### Plot 3.7c High Channel, 848.31 MHz

L Mkr1 880.88 MHz Ref 0 dBm -92.75 dBm #Atten 16 dB Ext PG -6.4 dB #Peak Log 10 dB/ DI -80.0 dBm LgAv W1 S2 S3 FC AA ¤(f): FTun Swp ı and allow when we want the way we want the all have by the prove of the second states and the second states an MANYANAWARA ANT ANY Same Start 869.00 MHz Stop 894.00 MHz #Res BW 1 kHz VBW 1 kHz Sweep 30.14 s (601 pts)

🔆 Agilent 17:58:40 Sep 18, 2002


FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 40 of 43

# 8 Frequency Stability vs Temperature FCC 2.1055

### 8.1 Test Procedure

The SB555-S was placed inside the temperature chamber. The transmitting frequency error is measured at 25 deg C, then the temperature is set to -30 deg C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, then the measurement is repeated. This is repeated until 80 deg C is completed. Frequency metering included averaging of 50 samples per reading to stabilize the reading. Reference power supply voltage for these tests is 3.30 volts.

### Test Setup



## 8.2 Test Equipment

EQUIPMENT	MANUFACTURER	MODEL	SERIAL NO.	Last CAL. DATE
Wireless Test Set	Agilent	8960	US41070182	09/05/2001
DC Power Supply	Hewlett Packard	E3631A	MY40003202	1/11/00
Temperature Chamber	Sigma Systems	M30M	7550	N/a
Control Computer	ACT	Canadien	N/A	N/a
Interface Board	Shop built	Nest	N/a	N/a

 $\hfill \ensuremath{\mathbb{C}}$  2002 Sierra Wireless, Inc. The contents of this page are subject to the confidentiality information on page one.

FCC Part 22 & 24 Test Report         SB555-S         Sept 2002         Page 41 of 43
--------------------------------------------------------------------------------------

# 8.3 Test Results

PCS band

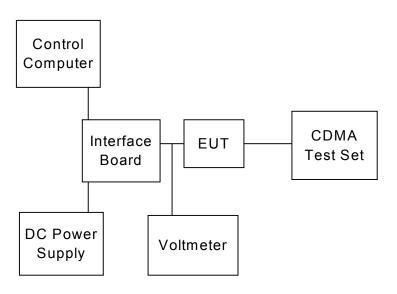
	1880.00 MHz	
Temperature	Frequency error	Worst case
(degC)	(Hz)	Frequency
		error (ppm)
25	1.83	.001
-30	1.21	001
-20	2.21	0
-10	2.22	.001
0	1.29	002
10	-0.32	002
20	-0.55	001
30	2.22	0
40	1.17	.001
50	1.65	.001
60	2.74	.001
70	1.18	.001
80	-1.89	.002

# 9 Frequency Stability vs Voltage FCC 2.1055

### 9.1 Test Procedure

The SB555-S was connected to a DC Power Supply and a CDMA test set with frequency error measurement capability. The power supply output is adjusted to the test voltage as measured at the input terminals to the module while transmitting. A voltmeter was used to confirm the terminal voltage.

The test voltages are:


3.15 V, rated voltage

3.2 V, minimum specified operating voltage

4.2 V, maximum specified operating voltage.

The output frequency error was recorded for each voltage setting at one center channel for each band of operation. Frequency metering included averaging of 50 samples per reading to stabilize the reading.

### <u>Test Setup</u>



FCC Part 22 & 24 Test Report	SB555-S	Sept 2002	Page 43 of 43
------------------------------	---------	-----------	---------------

### 9.2 Test Equipment

EQUIPMENT	MANUFACTURER	MODEL	SERIAL NO.	Last Cal. DATE
CDMA Test Set	Agilent	8960	US41070182	09/05/2001
DC Power Supply	Hewlett Packard	HP6632A	3326A-03423	N/A
Control Computer	TC	Generic PC	100844	N/a
Interface Board	Shop built	Nest	N/a	N/a
Voltmeter	Fluke	75III	78270326	21/12/01

### 9.3 Test Results

#### **Cellular Band**

Expected Transmitting Frequency : 837.00 MHz

Vcc (Volts)	Measured Frequency Error (Hz)	Measured Frequency Error (ppm) see note 1 below
3.3	2.77	.001 (+/006)
3.2	3.29	002 (+/006)
4.2	0.77	001 (+/006)

### PCS Band

Expected Transmitting Frequency: **1880 MHz** 

Vcc (Volts)	<b>Measured Frequency Error</b>	<b>Measured Frequency Error</b>
	(Hz)	(ppm) see note 1 below
3.3	2.00	0 (+/006)
3.2	1.02	.001 (+/006)
4.2	1.14	.001 (+/006)

Note 1 There is considerable short-term variation of the frequency as measured on an 8960 test set. Without averaging, an actual error of 0 Hz can appear to vary from -50 to +50 Hz from one sample to the next due to the effect of the CDMA modulation. Averaging helps steady this variation down to +/-5 Hz or less, and that is what was used for our tests. Observation of the readings by the test engineer are that the variation is symmetrical around 0 Hz.

This data shows that frequency stability versus voltage meets the requirements.